Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.
Cressman, William J; Beckett, Dorothy
2016-01-19
Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.
Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites
Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens
2013-01-01
Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program. PMID:23526890
Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa
2017-01-01
Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997
Garcia, Marlene; Mauro, James A; Ramsamooj, Michael; Blanck, George
2015-08-03
Apoptosis- and proliferation-effector genes are substantially regulated by the same transactivators, with E2F-1 and Oct-1 being notable examples. The larger proliferation-effector genes have more binding sites for the transactivators that regulate both sets of genes, and proliferation-effector genes have more regions of active chromatin, i.e, DNase I hypersensitive and histone 3, lysine-4 trimethylation sites. Thus, the size differences between the 2 classes of genes suggest a transcriptional regulation paradigm whereby the accumulation of transcription factors that regulate both sets of genes, merely as an aspect of stochastic behavior, accumulate first on the larger proliferation-effector gene "traps," and then accumulate on the apoptosis effector genes, thereby effecting sequential activation of the 2 different gene sets. As IRF-1 and p53 levels increase, tumor suppressor proteins are first activated, followed by the activation of apoptosis-effector genes, for example during S-phase pausing for DNA repair. Tumor suppressor genes are larger than apoptosis-effector genes and have more IRF-1 and p53 binding sites, thereby likewise suggesting a paradigm for transcription sequencing based on stochastic interactions of transcription factors with different gene classes. In this report, using the ENCODE database, we determined that tumor suppressor genes have a greater number of open chromatin regions and histone 3 lysine-4 trimethylation sites, consistent with the idea that a larger gene size can facilitate earlier transcriptional activation via the inclusion of more transactivator binding sites.
van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.
2016-01-01
Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes. PMID:27855160
MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility
Hutin, Mathilde; Pérez-Quintero, Alvaro L.; Lopez, Camilo; Szurek, Boris
2015-01-01
Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance. PMID:26236326
Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L
2016-01-01
Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917
Kombrink, Anja; Hansen, Guido; Valkenburg, Dirk-Jan
2013-01-01
While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI: http://dx.doi.org/10.7554/eLife.00790.001 PMID:23840930
Moorman, Veronica R.; Valentine, Kathleen G.; Bédard, Sabrina; Kasinath, Vignesh; Dogan, Jakob; Love, Fiona M.; Wand, A. Joshua
2014-01-01
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type GTPase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21 activated kinase 3 (PAK3) is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation were measured to investigate the dynamical changes in activated GMPPCP•Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with a sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately −10 kcal mol−1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs become more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring become more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding. PMID:25109462
Hubber, Andree; Arasaki, Kohei; Nakatsu, Fubito; Hardiman, Camille; Lambright, David; De Camilli, Pietro; Nagai, Hiroki; Roy, Craig R
2014-07-01
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.
Martí-Arbona, Ricardo; Teshima, Munehiro; Anderson, Penelope S; Nowak-Lovato, Kristy L; Hong-Geller, Elizabeth; Unkefer, Clifford J; Unkefer, Pat J
2012-01-01
We have developed a high-throughput approach using frontal affinity chromatography coupled to mass spectrometry (FAC-MS) for the identification and characterization of the small molecules that modulate transcriptional regulator (TR) binding to TR targets. We tested this approach using the methionine biosynthesis regulator (MetJ). We used effector mixtures containing S-adenosyl-L-methionine (SAM) and S-adenosyl derivatives as potential ligands for MetJ binding. The differences in the elution time of different compounds allowed us to rank the binding affinity of each compound. Consistent with previous results, FAC-MS showed that SAM binds to MetJ with the highest affinity. In addition, adenine and 5'-deoxy-5'-(methylthio)adenosine bind to the effector binding site on MetJ. Our experiments with MetJ demonstrate that FAC-MS is capable of screening complex mixtures of molecules and identifying high-affinity binders to TRs. In addition, FAC-MS experiments can be used to discriminate between specific and nonspecific binding of the effectors as well as to estimate the dissociation constant (K(d)) for effector-TR binding. Copyright © 2012 S. Karger AG, Basel.
Alontaga, Aileen Y.; Fenton, Aron W.
2011-01-01
The binding site for allosteric inhibitor (amino acid) is highly conserved between human liver pyruvate kinase (hL-PYK) and the rabbit muscle isozyme (rM1-PYK). To detail similarities/differences in the allosteric function of these two homologs, we quantified the binding of 45 amino acid analogues to hL-PYK and their allosteric impact on affinity for the substrate, phosphoenolpyruvate (PEP). This complements a similar study previously completed for rM1-PYK. In hL-PYK, the minimum chemical requirements for effector binding are the same as those identified for rM1-PYK (i.e. the L-2-aminopropanaldehyde substructure of the effector is primarily responsible for binding). However different regions of the effector determine the magnitude of the allosteric response in hL-PYK vs. rM1-PYK. This finding is inconsistent with the idea that allosteric pathways are conserved between homologs of a protein family. PMID:21261284
Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.
Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner
2007-01-24
A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.
Impact of mutations on the allosteric conformational equilibrium
Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej
2012-01-01
Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330
Protein Allostery and Conformational Dynamics.
Guo, Jingjing; Zhou, Huan-Xiang
2016-06-08
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J
2012-09-01
Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko
2015-05-26
K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.
Chen, Xuewei; Ronald, Pamela C.
2011-01-01
Advances in studies of rice innate immunity have led to the identification and characterization of host sensors encoding receptor kinases that perceive conserved microbial signatures. The non-RD domain, a newly recognized hallmark of these receptor kinases is highly expanded in rice (Oryza sativa) compared with Arabidopsis (Arabidopsis thaliana). Researchers have also identified a diverse array of microbial effectors from bacterial and fungal pathogens that triggers immune responses upon perception. These include both, effectors that indirectly target host Nucleotide binding site/Leucine rice repeat (NBS-LRR) proteins and transcription activator-like (TAL) effectors that directly bind promoters of host genes. Here we review the recognition and signaling events that govern rice innate immunity. PMID:21602092
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes
Marwaha, Rituraj; Arya, Subhash B.; Jagga, Divya; Kaur, Harmeet
2017-01-01
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. PMID:28325809
Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K
2014-07-29
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.
2013-01-01
In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132
Faurobert, E; Otto-Bruc, A; Chardin, P; Chabre, M
1993-01-01
We have produced a recombinant transducin alpha subunit (rT alpha) in sf9 cells, using a baculovirus system. Deletion of the myristoylation site near the N-terminal increased the solubility and allowed the purification of rT alpha. When reconstituted with excess T beta gamma on retinal membrane, rT alpha displayed functional characteristics of wild-type T alpha vis à vis its coupled receptor, rhodopsin and its effector, cGMP phosphodiesterase (PDE). We further mutated a tryptophan, W207, which is conserved in all G proteins and is suspected to elicit the fluorescence change correlated to their activation upon GDP/GTP exchange or aluminofluoride (AlFx) binding. [W207F]T alpha mutant displayed high affinity receptor binding and underwent a conformational switch upon receptor-catalysed GTP gamma S binding or upon AlFx binding, but this did not elicit any fluorescence change. Thus W207 is the only fluorescence sensor of the switch. Upon the switch the mutant remained unable to activate the PDE. To characterize better its effector-activating interaction we measured the affinity of [W207F]T alpha GDP-AlFx for PDE gamma, the effector subunit that binds most tightly to T alpha. [W207F]T alpha still bound in an activation-dependent way to PDE gamma, but with a 100-fold lower affinity than rT alpha. This suggests that W207 contributes to the G protein effector binding. Images PMID:8223434
Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao
2014-01-24
Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua
2014-08-01
Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.
NASA Astrophysics Data System (ADS)
Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua
2014-08-01
Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.
Joseph, Thomas T; Osman, Roman
2012-01-01
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways.
Joseph, Thomas T.; Osman, Roman
2012-01-01
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand “seed region” have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways. PMID:23028290
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes.
Marwaha, Rituraj; Arya, Subhash B; Jagga, Divya; Kaur, Harmeet; Tuli, Amit; Sharma, Mahak
2017-04-03
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. © 2017 Marwaha et al.
Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth
2015-01-01
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300
Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila.
Beyrakhova, Ksenia A; van Straaten, Karin; Li, Lei; Boniecki, Michal T; Anderson, Deborah H; Cygler, Miroslaw
2016-07-22
Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Oh, Chang-Sik; Carpenter, Sara C D; Hayes, Marshall L; Beer, Steven V
2010-04-01
DspA/E is a type III effector of Erwinia amylovora, the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation. In this work, DspB/F-binding sites and secretion and translocation signals in the DspA/E protein were determined. Based on yeast two-hybrid assays, DspB/F was found to bind DspA/E within the first 210 amino acids of the protein. Surprisingly, both DspB/F and OrfA, the putative chaperone of Eop1, also interacted with the C-terminal 1059 amino acids of DspA/E; this suggests another chaperone-binding site. Secretion and translocation assays using serial N-terminal lengths of DspA/E fused with the active form of AvrRpt2 revealed that at least the first 109 amino acids, including the first N-terminal chaperone-binding motif and DspB/F, were required for efficient translocation of DspA/E, although the first 35 amino acids were sufficient for its secretion and the presence of DspB/F was not required. These results indicate that secretion and translocation signals are present in the N terminus of DspA/E, and that at least one DspB/F-binding motif is required for efficient translocation into plant cells.
Context influences on TALE–DNA binding revealed by quantitative profiling
Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.
2015-01-01
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805
Context influences on TALE-DNA binding revealed by quantitative profiling.
Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L
2015-06-11
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.
An exclusive α/β code directs allostery in TetR-peptide complexes.
Sevvana, Madhumati; Goetz, Christoph; Goeke, Dagmar; Wimmer, Cornelius; Berens, Christian; Hillen, Wolfgang; Muller, Yves A
2012-02-10
The allosteric mechanism of one of the best characterized bacterial transcription regulators, tetracycline repressor (TetR), has recently been questioned. Tetracycline binding induces cooperative folding of TetR, as suggested by recent unfolding studies, rather than switching between two defined conformational states, namely a DNA-binding-competent conformation and a non-DNA-binding conformation. Upon ligand binding, a host of near-native multiconformational structures collapse into a single, highly stabilized protein conformation that is no longer able to bind DNA. Here, structure-function studies performed with four synthetic peptides that bind to TetR and mimic the function of low-molecular-weight effectors, such as tetracyclines, provide new means to discriminate between different allosteric models. Whereas two inducing peptides bind in an extended β-like conformation, two anti-inducing peptides form an α-helix in the effector binding site of TetR. This exclusive bimodal interaction mode coincides with two distinct overall conformations of TetR, namely one that is identical with induced TetR and one that mirrors the DNA-bound state of TetR. Urea-induced unfolding studies show no increase in thermodynamic stability for any of the peptide complexes, although fluorescence measurements demonstrate peptide binding to TetR. This strongly suggests that, at least for these peptide effectors, a classical two-state allosteric model best describes TetR function. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G
2001-03-02
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.
Katen, Sarah P; Tan, Zhenning; Chirapu, Srinivas Reddy; Finn, M G; Zlotnick, Adam
2013-08-06
Hepatitis B virus (HBV) is a major cause of liver disease. Assembly of the HBV capsid is a critical step in virus production and an attractive target for new antiviral therapies. We determined the structure of HBV capsid in complex with AT-130, a member of the phenylpropenamide family of assembly effectors. AT-130 causes tertiary and quaternary structural changes but does not disrupt capsid structure. AT-130 binds a hydrophobic pocket that also accommodates the previously characterized heteroaryldihydropyrimidine compounds but favors a unique quasiequivalent location on the capsid surface. Thus, this pocket is a promiscuous drug-binding site and a likely target for different assembly effectors with a broad range of mechanisms of activity. That AT-130 successfully decreases virus production by increasing capsid assembly rate without disrupting capsid structure delineates a paradigm in antiviral design, that disrupting reaction timing is a viable strategy for assembly effectors of HBV and other viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.
Wang, Jingheng; Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina
2017-08-29
Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.
Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 andmore » A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.« less
Binding Leverage as a Molecular Basis for Allosteric Regulation
Mitternacht, Simon; Berezovsky, Igor N.
2011-01-01
Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. PMID:21935347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unterberger, Claudia; Hanson, Steven; Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN
Little is known about determinants regulating expression of Mannan-binding lectin associated serine protease-2 (MASP-2), the effector component of the lectin pathway of complement activation. Comparative bioinformatic analysis of the MASP2 promoter regions in human, mouse, and rat, revealed conservation of two putative Stat binding sites, termed StatA and StatB. Site directed mutagenesis specific for these sites was performed. Transcription activity was decreased 5-fold when StatB site was mutated in the wildtype reporter gene construct. Gel retardation and competition assays demonstrated that proteins contained in the nuclear extract prepared from HepG2 specifically bound double-stranded StatB oligonucleotides. Supershift analysis revealed Stat3 tomore » be the major specific binding protein. We conclude that Stat3 binding is important for MASP2 promoter activity.« less
Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor
2014-01-01
A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243
Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien
2013-01-01
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221
The Role of TIR-NBS and TIR-X Proteins in Plant Basal Defense Responses1[W][OA
Nandety, Raja Sekhar; Caplan, Jeffery L.; Cavanaugh, Keri; Perroud, Bertrand; Wroblewski, Tadeusz; Michelmore, Richard W.; Meyers, Blake C.
2013-01-01
Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors. PMID:23735504
The role of TIR-NBS and TIR-X proteins in plant basal defense responses.
Nandety, Raja Sekhar; Caplan, Jeffery L; Cavanaugh, Keri; Perroud, Bertrand; Wroblewski, Tadeusz; Michelmore, Richard W; Meyers, Blake C
2013-07-01
Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors.
Rhee, Ho Sung; Closser, Michael; Guo, Yuchun; Bashkirova, Elizaveta V; Tan, G Christopher; Gifford, David K; Wichterle, Hynek
2016-12-21
Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.
Kazanov, Marat D.; Li, Xiaoqing; Gelfand, Mikhail S.; Osterman, Andrei L.; Rodionov, Dmitry A.
2013-01-01
Large and functionally heterogeneous families of transcription factors have complex evolutionary histories. What shapes specificities toward effectors and DNA sites in paralogous regulators is a fundamental question in biology. Bacteria from the deep-branching lineage Thermotogae possess multiple paralogs of the repressor, open reading frame, kinase (ROK) family regulators that are characterized by carbohydrate-sensing domains shared with sugar kinases. We applied an integrated genomic approach to study functions and specificities of regulators from this family. A comparative analysis of 11 Thermotogae genomes revealed novel mechanisms of transcriptional regulation of the sugar utilization networks, DNA-binding motifs and specific functions. Reconstructed regulons for seven groups of ROK regulators were validated by DNA-binding assays using purified recombinant proteins from the model bacterium Thermotoga maritima. All tested regulators demonstrated specific binding to their predicted cognate DNA sites, and this binding was inhibited by specific effectors, mono- or disaccharides from their respective sugar catabolic pathways. By comparing ligand-binding domains of regulators with structurally characterized kinases from the ROK family, we elucidated signature amino acid residues determining sugar-ligand regulator specificity. Observed correlations between signature residues and the sugar-ligand specificities provide the framework for structure functional classification of the entire ROK family. PMID:23209028
PI(4,5)P2-binding effector proteins for vesicle exocytosis
Martin, Thomas F. J.
2014-01-01
PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637
Modulation of hemoglobin dynamics by an allosteric effector
Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; ...
2016-12-15
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb andmore » HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo (NSE) measurements accompanied by wideangle x-ray scattering (WAXS) to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. Furthermore, these observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prochazkova, Katerina; Shuvalova, Ludmilla A.; Minasov, George
2009-10-05
The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP{sub 6}). In this study, we demonstrated that InsP{sub 6} is not simply an allosteric cofactor, but rather binding of InsP{sub 6} stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-{angstrom} crystal structure of thismore » InsP{sub 6}-bound unprocessed form of CPD was determined and revealed the scissile bond Leu{sup 3428}-Ala{sup 3429} captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP{sub 6}, but was reactivated for high affinity binding of InsP{sub 6} by cooperative binding of both a new substrate and InsP{sub 6}. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.« less
Ai, Haixin; Zhang, Li; Chang, Alan K; Wei, Hongyun; Che, Yuchen; Liu, Hongsheng
2014-03-01
Inhibition of CPSF30 function by the effector domain of influenza A virus of non-structural protein 1 (NS1A) protein plays a critical role in the suppression of host key antiviral response. The CPSF30-binding site of NS1A appears to be a very attractive target for the development of new drugs against influenza A virus. In this study, structure-based molecular docking was utilized to screen more than 30,000 compounds from a Traditional Chinese Medicine (TCM) database. Four drug-like compounds were selected as potential inhibitors for the CPSF30-binding site of NS1A. Docking conformation analysis results showed that these potential inhibitors could bind to the CPSF30-binding site with strong hydrophobic interactions and weak hydrogen bonds. Molecular dynamics simulations and MM-PBSA calculations suggested that two of the inhibitors, compounds 32056 and 31674, could stably bind to the CPSF30-binding site with high binding free energy. These two compounds could be modified to achieve higher binding affinity, so that they may be used as potential leads in the development of new anti-influenza drugs.
Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected].
Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing
2014-01-01
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
2015-01-01
Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221
K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions
Ostrem, Jonathan M.; Peters, Ulf; Sos, Martin L.; Wells, James A.; Shokat, Kevan M.
2014-01-01
Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies1–3. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP4 and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis5,6. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP7 and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner. PMID:24256730
Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne
2012-01-01
Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689
Fuchs, Julian E; von Grafenstein, Susanne; Huber, Roland G; Wallnoefer, Hannes G; Liedl, Klaus R
2014-04-01
Proteases are prototypes of multispecific protein-protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well-defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in programmed cell death and inflammation, turning caspases into interesting drug targets. Specific ligand binding to one particular caspase is difficult to achieve, as substrate specificities of caspase isoforms are highly similar. In an effort to rationalize substrate specificity of two closely related caspases, we investigate the substrate promiscuity of the effector Caspases 3 and 7 by data mining (cleavage entropy) and by molecular dynamics simulations. We find a strong correlation between binding site rigidity and substrate readout for individual caspase subpockets explaining more stringent substrate readout of Caspase 7 via its narrower conformational space. Caspase 3 subpockets S3 and S4 show elevated local flexibility explaining the more unspecific substrate readout of that isoform in comparison to Caspase 7. We show by in silico exchange mutations in the S3 pocket of the proteases that a proline residue in Caspase 7 contributes to the narrowed conformational space of the binding site. These findings explain the substrate specificities of caspases via a mechanism of conformational selection and highlight the crucial importance of binding site local dynamics in substrate recognition of proteases. Proteins 2014; 82:546-555. © 2013 Wiley Periodicals, Inc. Copyright © 2013 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi,J.; Liu, R.; Rossi, M.
2006-01-01
The difficulty in obtaining binding target and site information for low-affinity drugs, like the inhaled anesthetics, has limited identification of their molecular effectors. Because such information can be provided by photoactive analogues, we designed, synthesized, and characterized a novel diazirnyl haloether that closely mimics isoflurane, the most widely used clinical general anesthetic. This compound, H-diaziflurane, is a nontoxic, potent anesthetic that potentiates GABA-gated ion channels in primary cultures of hippocampal neurons. Calorimetric and structural characterizations show that H-diaziflurane binds a model anesthetic host protein with similar energetics as isoflurane and forms photoadducts with residues lining the isoflurane binding site. H-diazifluranemore » will be immediately useful for identifying targets and sites important for the molecular pharmacology of the inhaled haloether anesthetics.« less
Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.
Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim
2013-01-01
Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita
Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination ofmore » an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.« less
Verma, Anju; Lee, Chris; Morriss, Stephanie; Odu, Fiona; Kenning, Charlotte; Rizzo, Nancy; Spollen, William G; Lin, Marriam; McRae, Amanda G; Givan, Scott A; Hewezi, Tarek; Hussey, Richard; Davis, Eric L; Baum, Thomas J; Mitchum, Melissa G
2018-05-04
Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif
2010-01-01
Background Effector secretion is a common strategy of pathogen in mediating host-pathogen interaction. Eight EPIYA-motif containing effectors have recently been discovered in six pathogens. Once these effectors enter host cells through type III/IV secretion systems (T3SS/T4SS), tyrosine in the EPIYA motif is phosphorylated, which triggers effectors binding other proteins to manipulate host-cell functions. The objectives of this study are to evaluate the distribution pattern of EPIYA motif in broad biological species, to predict potential effectors with EPIYA motif, and to suggest roles and biological functions of potential effectors in host-pathogen interactions. Results A hidden Markov model (HMM) of five amino acids was built for the EPIYA-motif based on the eight known effectors. Using this HMM to search the non-redundant protein database containing 9,216,047 sequences, we obtained 107,231 sequences with at least one EPIYA motif occurrence and 3115 sequences with multiple repeats of the EPIYA motif. Although the EPIYA motif exists among broad species, it is significantly over-represented in some particular groups of species. For those proteins containing at least four copies of EPIYA motif, most of them are from intracellular bacteria, extracellular bacteria with T3SS or T4SS or intracellular protozoan parasites. By combining the EPIYA motif and the adjacent SH2 binding motifs (KK, R4, Tarp and Tir), we built HMMs of nine amino acids and predicted many potential effectors in bacteria and protista by the HMMs. Some potential effectors for pathogens (such as Lawsonia intracellularis, Plasmodium falciparum and Leishmania major) are suggested. Conclusions Our study indicates that the EPIYA motif may be a ubiquitous functional site for effectors that play an important pathogenicity role in mediating host-pathogen interactions. We suggest that some intracellular protozoan parasites could secrete EPIYA-motif containing effectors through secretion systems similar to the T3SS/T4SS in bacteria. Our predicted effectors provide useful hypotheses for further studies. PMID:21143776
Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A
1993-01-01
SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612
Stapleton, Nigel M; Armstrong-Fisher, Sylvia S; Andersen, Jan Terje; van der Schoot, C Ellen; Porter, Charlene; Page, Kenneth R; Falconer, Donald; de Haas, Masja; Williamson, Lorna M; Clark, Michael R; Vidarsson, Gestur; Armour, Kathryn L
2018-03-01
We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the neonatal Fc receptor (FcRn) is important to preserve the long half-life typical of IgG. An ability to cross the placenta, which is also mediated, at least in part, by FcRn is desirable in some indications, such as feto-maternal alloimmune disorders. Here, we show that G1Δnab mutants retain pH-dependent binding to human FcRn but that the amino acid alterations reduce the affinity of the IgG1:FcRn interaction by 2.0-fold and 1.6-fold for the two antibodies investigated. The transport of the modified G1Δnab mutants across monolayers of human cell lines expressing FcRn was approximately 75% of the wild-type, except that no difference was observed with human umbilical vein endothelial cells. G1Δnab mutation also reduced transport in an ex vivo placenta model. In conclusion, we demonstrate that, although the G1Δnab mutations are away from the FcRn-binding site, they have long-distance effects, modulating FcRn binding and transcellular transport. Our findings have implications for the design of therapeutic human IgG with tailored effector functions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing
2014-01-01
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review. PMID:25513772
Hoffmann, Jana; Altenbuchner, Josef
2015-01-01
A new pBBR1MCS-2-derived vector containing the Pseudomonas fluorescens DSM10506 mannitol promoter PmtlE and mtlR encoding its AraC/XylS type transcriptional activator was constructed and optimized for low basal expression. Mannitol, arabitol, and glucitol-inducible gene expression was demonstrated with Pseudomonas putida and eGFP as reporter gene. The new vector was applied for functional characterization of PmtlE. Identification of the DNA binding site of MtlR was achieved by in vivo eGFP measurement with PmtlE wild type and mutants thereof. Moreover, purified MtlR was applied for detailed in vitro investigations using electrophoretic mobility shift assays and DNaseI footprinting experiments. The obtained data suggest that MtlR binds to PmtlE as a dimer. The proposed DNA binding site of MtlR is AGTGC-N5-AGTAT-N7-AGTGC-N5-AGGAT. The transcription activation mechanism includes two binding sites with different binding affinities, a strong upstream binding site and a weaker downstream binding site. The presence of the weak downstream binding site was shown to be necessary to sustain mannitol-inducibility of PmtlE. Two possible functions of mannitol are discussed; the effector might stabilize binding of the second monomer to the downstream half site or promote transcription activation by inducing a conformational change of the regulator that influences the contact to the RNA polymerase. PMID:26207762
Athwal, G S; Huber, J L; Huber, S C
1998-11-01
The inactivation of phosphorylated nitrate reductase (NR) by the binding of 14-3-3 proteins is one of a very few unambiguous biological functions for 14-3-3 proteins. We report here that serine and threonine residues at the +6 to +8 positions, relative to the known regulatory binding site involving serine-543, are important in the interaction with GF14omega, a recombinant plant 14-3-3. Also shown is that an increase in ionic strength with KCl or inorganic phosphate, known physical effectors of NR activity, directly disrupts the binding of protein and peptide ligands to 14-3-3 proteins. Increased ionic strength attributable to KCl caused a change in conformation of GF14omega, resulting in reduced surface hydrophobicity, as visualized with a fluorescent probe. Similarly, it is shown that the 5' isomer of AMP was specifically able to disrupt the inactive phosphorylated NR:14-3-3 complex. Using the 5'-AMP fluorescent analog trinitrophenyl-AMP, we show that there is a probable AMP-binding site on GF14omega.
Coherent Conformational Degrees of Freedom as a Structural Basis for Allosteric Communication
Mitternacht, Simon; Berezovsky, Igor N.
2011-01-01
Conformational changes in allosteric regulation can to a large extent be described as motion along one or a few coherent degrees of freedom. The states involved are inherent to the protein, in the sense that they are visited by the protein also in the absence of effector ligands. Previously, we developed the measure binding leverage to find sites where ligand binding can shift the conformational equilibrium of a protein. Binding leverage is calculated for a set of motion vectors representing independent conformational degrees of freedom. In this paper, to analyze allosteric communication between binding sites, we introduce the concept of leverage coupling, based on the assumption that only pairs of sites that couple to the same conformational degrees of freedom can be allosterically connected. We demonstrate how leverage coupling can be used to analyze allosteric communication in a range of enzymes (regulated by both ligand binding and post-translational modifications) and huge molecular machines such as chaperones. Leverage coupling can be calculated for any protein structure to analyze both biological and latent catalytic and regulatory sites. PMID:22174669
Rivalta, Ivan; Lisi, George P; Snoeberger, Ning-Shiuan; Manley, Gregory; Loria, J Patrick; Batista, Victor S
2016-11-29
Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.
Locked and proteolysis-based transcription activator-like effector (TALE) regulation.
Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman
2016-02-18
Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Grimmer, Matthew R.; Stolzenburg, Sabine; Ford, Ethan; Lister, Ryan; Blancafort, Pilar; Farnham, Peggy J.
2014-01-01
Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications. PMID:25122745
Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway
Reizis, Boris; Leder, Philip
2002-01-01
The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor α (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway. PMID:11825871
Corbett, John; Cornacchione, Louis; Daly, William; Galan, Diego; Wysota, Michael; Tivnan, Patrick; Collins, Justin; Nye, Dillon; Levitz, Talya; Breyer, Wendy A.; Glasfeld, Arthur
2015-01-01
ABSTRACT Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+ is better than Zn2+ at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+ provides insight into the means by which selective activation by Mn2+ may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+ and with its SloR recognition element to gain a clearer picture of the regulatory networks that optimize SloR-mediated metal ion homeostasis and virulence gene expression in S. mutans. These experiments can have a significant impact on caries treatment and/or prevention by revealing the S. mutans SloR-DNA binding interface as an appropriate target for the development of novel therapeutic interventions. PMID:26350131
SPACER: server for predicting allosteric communication and effects of regulation
Goncearenco, Alexander; Mitternacht, Simon; Yong, Taipang; Eisenhaber, Birgit; Eisenhaber, Frank; Berezovsky, Igor N.
2013-01-01
The SPACER server provides an interactive framework for exploring allosteric communication in proteins with different sizes, degrees of oligomerization and function. SPACER uses recently developed theoretical concepts based on the thermodynamic view of allostery. It proposes easily tractable and meaningful measures that allow users to analyze the effect of ligand binding on the intrinsic protein dynamics. The server shows potential allosteric sites and allows users to explore communication between the regulatory and functional sites. It is possible to explore, for instance, potential effector binding sites in a given structure as targets for allosteric drugs. As input, the server only requires a single structure. The server is freely available at http://allostery.bii.a-star.edu.sg/. PMID:23737445
Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J
2016-03-01
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Suplatov, Dmitry; Kirilin, Eugeny; Arbatsky, Mikhail; Takhaveev, Vakil; Švedas, Vytas
2014-01-01
The new web-server pocketZebra implements the power of bioinformatics and geometry-based structural approaches to identify and rank subfamily-specific binding sites in proteins by functional significance, and select particular positions in the structure that determine selective accommodation of ligands. A new scoring function has been developed to annotate binding sites by the presence of the subfamily-specific positions in diverse protein families. pocketZebra web-server has multiple input modes to meet the needs of users with different experience in bioinformatics. The server provides on-site visualization of the results as well as off-line version of the output in annotated text format and as PyMol sessions ready for structural analysis. pocketZebra can be used to study structure–function relationship and regulation in large protein superfamilies, classify functionally important binding sites and annotate proteins with unknown function. The server can be used to engineer ligand-binding sites and allosteric regulation of enzymes, or implemented in a drug discovery process to search for potential molecular targets and novel selective inhibitors/effectors. The server, documentation and examples are freely available at http://biokinet.belozersky.msu.ru/pocketzebra and there are no login requirements. PMID:24852248
USDA-ARS?s Scientific Manuscript database
Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...
Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr
2012-02-01
The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less
Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J
2002-11-01
Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sol-Rolland, J.; Joseph, M.; Rinaldi-Carmona, M.
1991-05-01
A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca{sup 2}{sup +},Mg({sup 2}{sup +})-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca{sup 2}{sup +} channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with ({sup 3}H)(+)-PN 200-110, ({sup 3}H)(-)-desmethoxyverapamil (( {sup 3}H)(-)-D888) and ({sup 3}H)-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand bindingmore » studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca{sup 2}{sup +} channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.« less
QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically
Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel
2015-01-01
Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082
Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.
Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto
2014-04-01
The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.
Engineering synthetic TAL effectors with orthogonal target sites
Garg, Abhishek; Lohmueller, Jason J.; Silver, Pamela A.; Armel, Thomas Z.
2012-01-01
The ability to engineer biological circuits that process and respond to complex cellular signals has the potential to impact many areas of biology and medicine. Transcriptional activator-like effectors (TALEs) have emerged as an attractive component for engineering these circuits, as TALEs can be designed de novo to target a given DNA sequence. Currently, however, the use of TALEs is limited by degeneracy in the site-specific manner by which they recognize DNA. Here, we propose an algorithm to computationally address this problem. We apply our algorithm to design 180 TALEs targeting 20 bp cognate binding sites that are at least 3 nt mismatches away from all 20 bp sequences in putative 2 kb human promoter regions. We generated eight of these synthetic TALE activators and showed that each is able to activate transcription from a targeted reporter. Importantly, we show that these proteins do not activate synthetic reporters containing mismatches similar to those present in the genome nor a set of endogenous genes predicted to be the most likely targets in vivo. Finally, we generated and characterized TALE repressors comprised of our orthogonal DNA binding domains and further combined them with shRNAs to accomplish near complete repression of target gene expression. PMID:22581776
Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.
2015-01-01
Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050
Galka, Marek M; Rajagopalan, Nandhakishore; Buhrow, Leann M; Nelson, Ken M; Switala, Jacek; Cutler, Adrian J; Palmer, David R J; Loewen, Peter C; Abrams, Suzanne R; Loewen, Michele C
2015-01-01
Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.
Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lechtenberg, Bernhard C.; Mace, Peter D.; Sessions, E. Hampton
ERK is the effector kinase of the RAS-RAF-MEK-ERK signaling cascade, which promotes cell transformation and malignancy in many cancers and is thus a major drug target in oncology. Kinase inhibitors targeting RAF or MEK are already used for the treatment of certain cancers, such as melanoma. Although the initial response to these drugs can be dramatic, development of drug resistance is a major challenge, even with combination therapies targeting both RAF and MEK. Importantly, most resistance mechanisms still rely on activation of the downstream effector kinase ERK, making it a promising target for drug development efforts. Here, we report themore » design and structural/functional characterization of a set of bivalent ERK inhibitors that combine a small molecule inhibitor that binds to the ATP-binding pocket with a peptide that selectively binds to an ERK protein interaction surface, the D-site recruitment site (DRS). Our studies show that the lead bivalent inhibitor, SBP3, has markedly improved potency compared to the small molecule inhibitor alone. Unexpectedly, we found that SBP3 also binds to several ERK-related kinases that contain a DRS, highlighting the importance of experimentally verifying the predicted specificity of bivalent inhibitors. However, SBP3 does not target any other kinases belonging to the same CMGC branch of the kinome. Additionally, our modular click chemistry inhibitor design facilitates the generation of different combinations of small molecule inhibitors with ERK-targeting peptides.« less
Oldham, William M.; Van Eps, Ned; Preininger, Anita M.; Hubbell, Wayne L.; Hamm, Heidi E.
2007-01-01
Heterotrimeric G proteins function as molecular relays that mediate signal transduction from heptahelical receptors in the cell membrane to intracellular effector proteins. Crystallographic studies have demonstrated that guanine nucleotide exchange on the Gα subunit causes specific conformational changes in three key “switch” regions of the protein, which regulate binding to Gβγ subunits, receptors, and effector proteins. In the present study, nitroxide side chains were introduced at sites within the switch I region of Gαi to explore the structure and dynamics of this region throughout the G protein cycle. EPR spectra obtained for each of the Gα(GDP), Gα(GDP)βγ heterotrimer and Gα(GTPγS) conformations are consistent with the local environment observed in the corresponding crystal structures. Binding of the heterotrimer to activated rhodopsin to form the nucleotide-free (empty) complex, for which there is no crystal structure, causes prominent changes relative to the heterotrimer in the structure of switch I and contiguous sequences. The data identify a putative pathway of allosteric changes triggered by receptor binding and, together with previously published data, suggest elements of a mechanism for receptor-catalyzed nucleotide exchange. PMID:17463080
Mojo Hand, a TALEN design tool for genome editing applications.
Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C
2013-01-16
Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.
TALE-PvuII fusion proteins--novel tools for gene targeting.
Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang
2013-01-01
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity
Su, Jianbin; Yang, Liuyi; Zhu, Qiankun; Wu, Hongjiao; He, Yi; Liu, Yidong; Xu, Juan; Jiang, Dean
2018-01-01
Extensive research revealed tremendous details about how plants sense pathogen effectors during effector-triggered immunity (ETI). However, less is known about downstream signaling events. In this report, we demonstrate that prolonged activation of MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MPKs), is essential to ETI mediated by both coiled coil-nucleotide binding site-leucine rich repeats (CNLs) and toll/interleukin-1 receptor nucleotide binding site-leucine rich repeats (TNLs) types of R proteins. MPK3/MPK6 activation rapidly alters the expression of photosynthesis-related genes and inhibits photosynthesis, which promotes the accumulation of superoxide (O2•−) and hydrogen peroxide (H2O2), two major reactive oxygen species (ROS), in chloroplasts under light. In the chemical-genetically rescued mpk3 mpk6 double mutants, ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation are compromised, which correlates with delayed hypersensitive response (HR) cell death and compromised resistance. Furthermore, protection of chloroplasts by expressing a plastid-targeted cyanobacterial flavodoxin (pFLD) delays photosynthetic inhibition and compromises ETI. Collectively, this study highlights a critical role of MPK3/MPK6 in manipulating plant photosynthetic activities to promote ROS accumulation in chloroplasts and HR cell death, which contributes to the robustness of ETI. Furthermore, the dual functionality of MPK3/MPK6 cascade in promoting defense and inhibiting photosynthesis potentially allow it to orchestrate the trade-off between plant growth and defense in plant immunity. PMID:29723186
Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon
2015-09-15
TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.
Lipid binding activities of flax rust AvrM and AvrL567 effectors.
Gan, Pamela H P; Rafiqi, Maryam; Ellis, Jeffrey G; Jones, David A; Hardham, Adrienne R; Dodds, Peter N
2010-10-01
Effectors are pathogen-encoded proteins that are thought to facilitate infection by manipulation of host cells. Evidence showing that the effectors of some eukaryotic plant pathogens are able to interact directly with cytoplasmic host proteins indicates that translocation of these proteins into host cells is an important part of infection. Recently, we showed that the flax rust effectors AvrM and AvrL567 are able to internalize into plant cells in the absence of the pathogen. Further, N-terminal sequences that were sufficient for uptake were identified for both these proteins. In light of the possibility that the internalization of fungal and oomycete effectors may require binding to specific phospholipids, the lipid binding activities of AvrM and AvrL567 mutants with different abilities to enter cells were tested. While AvrL567 was not found to bind to phospholipids, AvrM bound strongly to phosphatidyl inositol, phosphatidyl inositol monophosphates and phosphatidyl serine. However, a fragment of AvrM sufficient to direct uptake of a fusion protein into plant cells did not bind to these phospholipids. Thus, our results do not support the role of specific binding of AvrM and AvrL567 to phospholipids for uptake into the plant cytoplasm. © 2010 Landes Bioscience
Ensign, Daniel L; Webb, Lauren J
2011-12-01
Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.
Zhou, Yan; Dong, Na; Hu, Liyan; Shao, Feng
2013-01-01
The genus Shigella infects human gut epithelial cells to cause diarrhea and gastrointestinal disorders. Like many other Gram-negative bacterial pathogens, the virulence of Shigella spp. relies on a conserved type three secretion system that delivers a handful of effector proteins into host cells to manipulate various host cell physiology. However, many of the Shigella type III effectors remain functionally uncharacterized. Here we observe that OspG, one of the Shigella effectors, interacted with ubiquitin conjugates and poly-ubiquitin chains of either K48 or K63 linkage in eukaryotic host cells. Purified OspG protein formed a stable complex with ubiquitin but showed no interactions with other ubiquitin-like proteins. OspG binding to ubiquitin required the carboxyl terminal helical region in OspG and the canonical I44-centered hydrophobic surface in ubiquitin. OspG and OspG-homologous effectors, NleH1/2 from enteropathogenic E coli (EPEC), contain sub-domains I-VII of eukaryotic serine/threonine kinase. GST-tagged OspG and NleH1/2 could undergo autophosphorylation, the former of which was significantly stimulated by ubiquitin binding. Ubiquitin binding was also required for OspG functioning in attenuating host NF-κB signaling. Our data illustrate a new mechanism that bacterial pathogen like Shigella exploits ubiquitin binding to activate its secreted virulence effector for its functioning in host eukaryotic cells. PMID:23469023
Ho, Oanh; Rogne, Per; Edgren, Tomas; Wolf-Watz, Hans; Login, Frédéric H.; Wolf-Watz, Magnus
2017-01-01
Many pathogenic Gram-negative bacteria use the type III secretion system (T3SS) to deliver effector proteins into eukaryotic host cells. In Yersinia, the switch to secretion of effector proteins is induced first after intimate contact between the bacterium and its eukaryotic target cell has been established, and the T3SS proteins YscP and YscU play a central role in this process. Here we identify the molecular details of the YscP binding site on YscU by means of nuclear magnetic resonance (NMR) spectroscopy. The binding interface is centered on the C-terminal domain of YscU. Disrupting the YscU-YscP interaction by introducing point mutations at the interaction interface significantly reduced the secretion of effector proteins and HeLa cell cytotoxicity. Interestingly, the binding of YscP to the slowly self-cleaving YscU variant P264A conferred significant protection against autoproteolysis. The YscP-mediated inhibition of YscU autoproteolysis suggests that the cleavage event may act as a timing switch in the regulation of early versus late T3SS substrates. We also show that YscUC binds to the inner rod protein YscI with a dissociation constant (Kd) of 3.8 μm and with 1:1 stoichiometry. The significant similarity among different members of the YscU, YscP, and YscI families suggests that the protein-protein interactions discussed in this study are also relevant for other T3SS-containing Gram-negative bacteria. PMID:28039361
Potent and Selective Peptide-based Inhibition of the G Protein Gαq*
Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John
2016-01-01
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837
Potent and Selective Peptide-based Inhibition of the G Protein Gαq.
Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John
2016-12-02
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nissan, Gal; Manulis-Sasson, Shulamit; Chalupowicz, Laura; Teper, Doron; Yeheskel, Adva; Pasmanik-Chor, Metsada; Sessa, Guido; Barash, Isaac
2012-02-01
The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs. A binding site selection procedure was used to isolate a target gene of HsvG, named HSVGT, in Gypsophila paniculata. HSVGT is a predicted acidic protein of the DnaJ family with 244 amino acids. It harbors characteristic conserved motifs of a eukaryotic transcription factor, including a bipartite nuclear localization signal, zinc finger, and leucine zipper DNA-binding motifs. Quantitative real-time polymerase chain reaction analysis demonstrated that HSVGT transcription is specifically induced in planta within 2 h after inoculation with the wild-type P. agglomerans pv. gypsophilae compared with the hsvG mutant. Induction of HSVGT reached a peak of sixfold at 4 h after inoculation and progressively declined thereafter. Gel-shift assay demonstrated that HsvG binds to the HSVGT promoter, indicating that HSVGT is a direct target of HsvG. Our results support the hypothesis that HsvG functions as a transcription factor in gypsophila.
Suplatov, Dmitry; Kirilin, Eugeny; Arbatsky, Mikhail; Takhaveev, Vakil; Svedas, Vytas
2014-07-01
The new web-server pocketZebra implements the power of bioinformatics and geometry-based structural approaches to identify and rank subfamily-specific binding sites in proteins by functional significance, and select particular positions in the structure that determine selective accommodation of ligands. A new scoring function has been developed to annotate binding sites by the presence of the subfamily-specific positions in diverse protein families. pocketZebra web-server has multiple input modes to meet the needs of users with different experience in bioinformatics. The server provides on-site visualization of the results as well as off-line version of the output in annotated text format and as PyMol sessions ready for structural analysis. pocketZebra can be used to study structure-function relationship and regulation in large protein superfamilies, classify functionally important binding sites and annotate proteins with unknown function. The server can be used to engineer ligand-binding sites and allosteric regulation of enzymes, or implemented in a drug discovery process to search for potential molecular targets and novel selective inhibitors/effectors. The server, documentation and examples are freely available at http://biokinet.belozersky.msu.ru/pocketzebra and there are no login requirements. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kolin, Ana; Balasubramaniam, Vinitha; Skredenske, Jeff; Wickstrum, Jason; Egan, Susan M.
2008-01-01
SUMMARY Proteins in the largest subset of AraC/XylS family transcription activators, including RhaS and RhaR, have C-terminal domains (CTDs) that mediate DNA-binding and transcription activation, and N-terminal domains (NTDs) that mediate dimerization and effector binding. The mechanism of the allosteric effector response in this family has been identified only for AraC. Here, we investigated the mechanism by which RhaS and RhaR respond to their effector, L-rhamnose. Unlike AraC, N-terminal truncations suggested that RhaS and RhaR don’t use an N-terminal arm to inhibit activity in the absence of effector. We used random mutagenesis to isolate RhaS and RhaR variants with enhanced activation in the absence of L-rhamnose. NTD substitutions largely clustered around the predicted L-rhamnose-binding pockets, suggesting that they mimic the structural outcome of effector binding to the wild-type proteins. RhaS-CTD substitutions clustered in the first HTH motif, and suggested that L-rhamnose induces improved DNA binding. In contrast, RhaR-CTD substitutions clustered at a single residue in the second HTH motif, at a position consistent with improved RNAP contacts. We propose separate allosteric mechanisms for the two proteins: Without L-rhamnose, RhaS doesn’t effectively bind DNA while RhaR doesn’t effectively contact RNAP. Upon L-rhamnose binding, both proteins undergo structural changes that enable transcription activation. PMID:18366439
The Rab-binding Profiles of Bacterial Virulence Factors during Infection*
So, Ernest C.; Schroeder, Gunnar N.; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W.; Frankel, Gad
2016-01-01
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. PMID:26755725
McKinney, J D
1989-01-01
Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666
Prediction of Ras-effector interactions using position energy matrices.
Kiel, Christina; Serrano, Luis
2007-09-01
One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga
2012-06-19
The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed amore » tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.« less
TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting
Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang
2013-01-01
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308
Thermodynamic and structural insights into CSL-DNA complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, David R.; Kovall, Rhett A.
The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less
Perception of the plant immune signal salicylic acid
Yan, Shunping; Dong, Xinnian
2014-01-01
Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance. PMID:24840293
Minimal determinants for binding activated G-alpha from the structure of a G-alpha-i1/peptide dimer†
Johnston, Christopher A.; Lobanova, Ekaterina S.; Shavkunov, Alexander S.; Low, Justin; Ramer, J. Kevin; Blaesius, Rainer; Fredericks, Zoey; Willard, Francis S.; Kuhlman, Brian; Arshavsky, Vadim Y.; Siderovski, David P.
2008-01-01
G-proteins cycle between an inactive GDP-bound state and active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage-display to identify a series of peptides that bind Gα subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069–1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP·AlF4−- and GTPγS-bound states of Gαi subunits. KB-1753 blocks interaction of Gαtransducin with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated Gα in vitro. The crystal structure of KB-1753 bound to Gαi1·GDP·AlF4− reveals binding to a conserved hydrophobic groove between switch II and α3 helices, and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for Gαi subunits. PMID:16981699
ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.
Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B
2018-05-31
Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.
Ho, Oanh; Rogne, Per; Edgren, Tomas; Wolf-Watz, Hans; Login, Frédéric H; Wolf-Watz, Magnus
2017-02-24
Many pathogenic Gram-negative bacteria use the type III secretion system (T3SS) to deliver effector proteins into eukaryotic host cells. In Yersinia , the switch to secretion of effector proteins is induced first after intimate contact between the bacterium and its eukaryotic target cell has been established, and the T3SS proteins YscP and YscU play a central role in this process. Here we identify the molecular details of the YscP binding site on YscU by means of nuclear magnetic resonance (NMR) spectroscopy. The binding interface is centered on the C-terminal domain of YscU. Disrupting the YscU-YscP interaction by introducing point mutations at the interaction interface significantly reduced the secretion of effector proteins and HeLa cell cytotoxicity. Interestingly, the binding of YscP to the slowly self-cleaving YscU variant P264A conferred significant protection against autoproteolysis. The YscP-mediated inhibition of YscU autoproteolysis suggests that the cleavage event may act as a timing switch in the regulation of early versus late T3SS substrates. We also show that YscU C binds to the inner rod protein YscI with a dissociation constant ( K d ) of 3.8 μm and with 1:1 stoichiometry. The significant similarity among different members of the YscU, YscP, and YscI families suggests that the protein-protein interactions discussed in this study are also relevant for other T3SS-containing Gram-negative bacteria. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and vertebrate Nanos.
Raisch, Tobias; Bhandari, Dipankar; Sabath, Kevin; Helms, Sigrun; Valkov, Eugene; Weichenrieder, Oliver; Izaurralde, Elisa
2016-05-02
Nanos proteins repress the expression of target mRNAs by recruiting effector complexes through non-conserved N-terminal regions. In vertebrates, Nanos proteins interact with the NOT1 subunit of the CCR4-NOT effector complex through a NOT1 interacting motif (NIM), which is absent in Nanos orthologs from several invertebrate species. Therefore, it has remained unclear whether the Nanos repressive mechanism is conserved and whether it also involves direct interactions with the CCR4-NOT deadenylase complex in invertebrates. Here, we identify an effector domain (NED) that is necessary for the Drosophila melanogaster (Dm) Nanos to repress mRNA targets. The NED recruits the CCR4-NOT complex through multiple and redundant binding sites, including a central region that interacts with the NOT module, which comprises the C-terminal domains of NOT1-3. The crystal structure of the NED central region bound to the NOT module reveals an unanticipated bipartite binding interface that contacts NOT1 and NOT3 and is distinct from the NIM of vertebrate Nanos. Thus, despite the absence of sequence conservation, the N-terminal regions of Nanos proteins recruit CCR4-NOT to assemble analogous repressive complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
The Rab-binding Profiles of Bacterial Virulence Factors during Infection.
So, Ernest C; Schroeder, Gunnar N; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W; Frankel, Gad
2016-03-11
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Direct observation of transcription activator-like effector (TALE) protein dynamics
NASA Astrophysics Data System (ADS)
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.
2014-03-01
In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.
Teper, Doron; Salomon, Dor; Sunitha, Sukumaran; Kim, Jung-Gun; Mudgett, Mary Beth; Sessa, Guido
2014-01-01
Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan
2013-10-22
Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.
Analysis of Binding Site Hot Spots on the Surface of Ras GTPase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhrman, Greg; O; #8242
2012-09-17
We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond themore » active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.« less
Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M
2010-07-23
Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.
Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N
2014-01-01
Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations. Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303
Sodium and Potassium Ions in Proteins and Enzyme Catalysis.
Vašák, Milan; Schnabl, Joachim
2016-01-01
The group I alkali metal ions Na(+) and K(+) are ubiquitous components of biological fluids that surround biological macromolecules. They play important roles other than being nonspecific ionic buffering agents or mediators of solute exchange and transport. Molecular evolution and regulated high intracellular and extracellular M(+) concentrations led to incorporation of selective Na(+) and K(+) binding sites into enzymes to stabilize catalytic intermediates or to provide optimal positioning of substrates. The mechanism of M(+) activation, as derived from kinetic studies along with structural analysis, has led to the classification of cofactor-like (type I) or allosteric effector (type II) activated enzymes. In the type I mechanism substrate anchoring to the enzyme active site is mediated by M(+), often acting in tandem with a divalent cation like Mg(2+), Mn(2+) or Zn(2+). In the allosteric type II mechanism, M(+) binding enhances enzyme activity through conformational transitions triggered upon binding to a distant site. In this chapter, following the discussion of the coordination chemistry of Na(+) and K(+) ions and the structural features responsible for the metal binding site selectivity in M(+)-activated enzymes, well-defined examples of M(+)-activated enzymes are used to illustrate the structural basis for type I and type II activation by Na(+) and K(+).
Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...
2012-12-13
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less
Niu, Qian; Ybe, Joel A
2008-02-01
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-A crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled approximately 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule.
Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, James A.; Baumberg, Simon; Stockley, Peter G.
2007-11-01
The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolicmore » sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.« less
The mucosal immune system: From dentistry to vaccine development
KIYONO, Hiroshi; AZEGAMI, Tatsuhiko
2015-01-01
The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases. PMID:26460320
A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.
Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G
2015-05-21
Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.
Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure
Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka
2014-01-01
Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view. PMID:24710521
Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka
2014-04-08
Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.
Sugio, Akiko; MacLean, Allyson M; Hogenhout, Saskia A
2014-05-01
Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei. To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants. SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11. Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Evolution of context dependent regulation by expansion of feast/famine regulatory proteins
Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; ...
2014-11-14
Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore » mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less
Evolution of context dependent regulation by expansion of feast/famine regulatory proteins.
Plaisier, Christopher L; Lo, Fang-Yin; Ashworth, Justin; Brooks, Aaron N; Beer, Karlyn D; Kaur, Amardeep; Pan, Min; Reiss, David J; Facciotti, Marc T; Baliga, Nitin S
2014-11-14
Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.
Klein-Hessling, Stefan; Bopp, Tobias; Jha, Mithilesh K.; Schmidt, Arthur; Miyatake, Shoichiro; Schmitt, Edgar; Serfling, Edgar
2008-01-01
Elevated intracellular cyclic AMP levels, which suppress the proliferation of naive T cells and type 1 T helper (Th1) cells are a property of T helper 2 (Th2) cells and regulatory T cells. While cyclic AMP signals interfere with the IL-2 promoter induction, they support the induction of Th2-type genes, in particular of il-5 gene. We show here that cyclic AMP signals support the generation of three inducible DNase I hypersensitive chromatin sites over the il-5 locus, including its promoter region. In addition, cyclic AMP signals enhance histone H3 acetylation at the IL-5 promoter and the concerted binding of GATA-3 and NFATc to the promoter. This is facilitated by direct protein-protein interactions involving the C-terminal Zn2+-finger of GATA-3 and the C-terminal region of the NFATc1 DNA binding domain. Because inhibition of NFATc binding to the IL-5 promoter in vivo also affects the binding of GATA-3, one may conclude that upon induction of Th2 effector cells NFATc recruits GATA-3 to Th2-type genes. These data demonstrate the functional importance of cyclic AMP signals for the interplay between GATA-3 and NFATc factors in the transcriptional control of lymphokine expression in Th2 effector cells. PMID:18772129
Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert
2012-10-01
The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.
Postma, Wiebe J.; Slootweg, Erik J.; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O.G.; van Gelderen, Kasper; Lozano-Torres, Jose L.; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert
2012-01-01
The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants. PMID:22904163
Liu, Jinling; Liu, Xionglun; Dai, Liangying; Wang, Guoliang
2007-09-01
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupardus, P.J.; Shen, A.; Bogyo, M.
2009-05-19
Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.
Differential Effector Engagement by Oncogenic KRAS. | Office of Cancer Genomics
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines.
Chen, Chunhong; Newell, Kim; Lawrence, Gregory J.; Ellis, Jeffrey G.; Anderson, Peter A.; Dodds, Peter N.
2016-01-01
NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216
Roberts, D; Kellett, G L
1979-01-01
1. The fluorescent ATP analogue 1,N6-etheno-ATP is a good substrate and an efficient allosteric inhibitor of rabbit skeletal-muscle phosphofructokinase. 2. Fluorescence energy transfer occurs between bound 1,N6-etheno-ATP and phosphofructokinase. 1,N6-Etheno-ATP fluorescence is enhanced, intrinsic protein fluorescence is quenched, and the excitation spectrum of 1,N6-etheno-ATP fluorescence is characteristic of protein absorption. 3. The binding reaction of 1,N6-etheno-ATP observed by stopped-flow fluorimetry is biphasic. The fast phase results from binding to the catalytic site alone. The slow phase results from the allosteric transition of the R conformation into the T conformation induced by the binding of 1,N6-etheno-ATP to the regulatory site. 4. The fluorescence signal that allows the transition of the R conformation into the T conformation to be observed does not arise from 1,N6-etheno-ATP bound to the regulatory site. It arises instead from 1,N6-etheno-ATP bound to the catalytic site as a consequence of changes at the catalytic site caused by the transition of the R conformation into the T conformation. 5. In the presence of excess of Mg2+, the affinity of 1,N6-etheno-ATP for the regulatory site is very much greater in the T state than in the R state. Images Fig. 5. Fig. 8. PMID:160791
Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-01-01
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30–60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. PMID:27006398
Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL.
Schuelein, Ralf; Spencer, Hugh; Dagley, Laura F; Li, Peng Fei; Luo, Lin; Stow, Jennifer L; Abraham, Gilu; Naderer, Thomas; Gomez-Valero, Laura; Buchrieser, Carmen; Sugimoto, Chihiro; Yamagishi, Junya; Webb, Andrew I; Pasricha, Shivani; Hartland, Elizabeth L
2018-04-24
The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localizes to the nucleus where they subvert host cell transcriptional responses to infection. Here we identified Lpg2519 (Lpp2587/Lpw27461), as a new nuclear-localized effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localization by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, SUPT5H/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex (DSIF complex) that regulates RNA polymerase II (Pol II) dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central KOW motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression. This article is protected by copyright. All rights reserved.
Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions.
Wang, Yue; Shang, Yuan; Li, Jianchao; Chen, Weidi; Li, Gang; Wan, Jun; Liu, Wei; Zhang, Mingjie
2018-05-11
The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases. © 2018, Wang et al.
Functional Proteomics to Identify Moderators of CD8+ T Cell Function in Melanoma
2015-05-01
identified 17 phage that selectively bind TIL rather than effector cells. However, none of these phage influenced CD8+ TIL expansion or function in vitro...Using a novel NextGeneration sequencing approach, we have further defined another 1,000,000 phage that selectively bind TIL , of which 100,000 are unique...Using the original approach outlined in the application, we identified a total of 17 unique phage that selectively bind CD8+ TIL but not effector or
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germane, Katherine L.; Spiller, Benjamin W.
2011-09-20
Bacterial pathogens secrete effectors into their hosts that subvert host defenses and redirect host processes. EspG is a type three secretion effector with a disputed function that is found in enteropathogenic Escherichia coli. Here we show that EspG is structurally similar to VirA, a Shigella virulence factor; EspG has a large, conserved pocket on its surface; EspG binds directly to the amino-terminal inhibitory domain of human p21-activated kinase (PAK); and mutations to conserved residues in the surface pocket disrupt the interaction with PAK.
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-06-03
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
EMSA Analysis of DNA Binding By Rgg Proteins
LaSarre, Breah; Federle, Michael J.
2016-01-01
In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004
EMSA Analysis of DNA Binding By Rgg Proteins.
LaSarre, Breah; Federle, Michael J
2013-08-20
In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).
Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.
Baumann, R; Mazur, G; Braunitzer, G
1984-04-01
The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.
Tramonti, Angela; Milano, Teresa; Nardella, Caterina; di Salvo, Martino L; Pascarella, Stefano; Contestabile, Roberto
2017-02-01
The vitamin B 6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B 6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B 6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B 6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup. © 2016 Federation of European Biochemical Societies.
Scholze, Heidi; Boch, Jens
2010-01-01
TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.
Structural Evolution of Differential Amino Acid Effector Regulation in Plant Chorismate Mutases*
Westfall, Corey S.; Xu, Ang; Jez, Joseph M.
2014-01-01
Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1–3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme. PMID:25160622
Jain, Deepti
2015-07-01
The GntR family of transcription regulators constitutes one of the most abundant family of transcription factors. These modulators are involved in a variety of mechanisms controlling various metabolic processes. GntR family members are typically two domain proteins with a smaller N-terminus domain (NTD) with conserved architecture of winged-helix-turn-helix (wHTH) for DNA binding and a larger C-terminus domain (CTD) or the effector binding domain which is also involved in oligomerization. Interestingly, the CTD shows structural heterogeneity depending upon the type of effector molecule that it binds and displays structural homology to various classes of proteins. Binding of the effector molecule to the CTD brings about a conformational change in the transcription factor such that its affinity for its cognate DNA sequence is altered. This review summarizes the structural information available on the members of GntR family and discusses the common features of the DNA binding and operator recognition within the family. The variation in the allosteric mechanism employed by the members of this family is also discussed. © 2015 International Union of Biochemistry and Molecular Biology.
Rivera-Cancel, Giomar; Motta-Mena, Laura B.; Gardner, Kevin H.
2012-01-01
Light-oxygen-voltage (LOV) domains serve as the photosensory modules for a wide range of plant and bacterial proteins, conferring blue light dependent regulation to effector activities as diverse as enzymes and DNA binding. LOV domains can also be engineered into a variety of exogenous targets, enabling similar regulation for new protein-based reagents. Common to these proteins is the ability for LOV domains to reversibly form a photochemical adduct between an internal flavin chromophore and the surrounding protein, using this to trigger conformational changes that affect output activity. Using the Erythrobacter litoralis protein EL222 model system which links LOV regulation to a helix-turn-helix (HTH) DNA binding domain, we demonstrated that the LOV domain binds and inhibits the HTH domain in the dark, releasing these interactions upon illumination [Nash et al. (2011) Proc. Natl. Acad. Sci. USA 108, 9449–9454]. Here we combine genomic and in vitro selection approaches to identify optimal DNA binding sites for EL222. Within the bacterial host, we observe binding several genomic sites using a 12 bp sequence consensus that is also found by in vitro selection methods. Sequence-specific alterations in the DNA consensus reduce EL222-binding affinity in a manner consistent with the expected binding mode: a protein dimer binding to two repeats. Finally, we demonstrate the light-dependent activation of transcription of two genes adjacent to an EL222 binding site. Taken together, these results shed light on the native function of EL222 and provide useful reagents for further basic and applications research of this versatile protein. PMID:23205774
Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E
2016-09-01
The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Triplett, Lindsay R.; Cohen, Stephen P.; Heffelfinger, Christopher; Schmidt, Clarice L.; Huerta, Alejandra; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J.; Leach, Jan E.
2016-01-01
Summary The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable diresidues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. PMID:27197779
Nakhaei-Rad, Saeideh; Nakhaeizadeh, Hossein; Kordes, Claus; Cirstea, Ion C; Schmick, Malte; Dvorsky, Radovan; Bastiaens, Philippe I H; Häussinger, Dieter; Ahmadian, Mohammad Reza
2015-06-19
E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Koland, John G.
2014-01-01
Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR (HER/ErbB) family receptors and growth factor receptor PTKs in general. PMID:24453959
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Huang, S; Zhao, XF
Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less
X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability
Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...
2015-06-04
The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less
Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng
2015-01-01
Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tianyu; University of Chinese Academy of Sciences, Beijing 100049; Ding, Jinjing
The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively.more » Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.« less
Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3.
Esposito, Diego; Günster, Regina A; Martino, Luigi; El Omari, Kamel; Wagner, Armin; Thurston, Teresa L M; Rittinger, Katrin
2018-04-06
The Salmonella -secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N -acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating D X D motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N -acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N -glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N -glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors. © 2018 Esposito et al.
Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W
1997-06-05
Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.
MENA is a transcriptional target of the Wnt/beta-catenin pathway.
Najafov, Ayaz; Seker, Tuncay; Even, Ipek; Hoxhaj, Gerta; Selvi, Osman; Ozel, Duygu Esen; Koman, Ahmet; Birgül-İyison, Necla
2012-01-01
Wnt/β-catenin signalling pathway plays important roles in embryonic development and carcinogenesis. Overactivation of the pathway is one of the most common driving forces in major cancers such as colorectal and breast cancers. The downstream effectors of the pathway and its regulation of carcinogenesis and metastasis are still not very well understood. In this study, which was based on two genome-wide transcriptomics screens, we identify MENA (ENAH, Mammalian enabled homologue) as a novel transcriptional target of the Wnt/β-catenin signalling pathway. We show that the expression of MENA is upregulated upon overexpression of degradation-resistant β-catenin. Promoters of all mammalian MENA homologues contain putative binding sites for Tcf4 transcription factor--the primary effector of the Wnt/β-catenin pathway and we demonstrate functionality of these Tcf4-binding sites using luciferase reporter assays and overexpression of β-catenin, Tcf4 and dominant-negative Tcf4. In addition, lithium chloride-mediated inhibition of GSK3β also resulted in increase in MENA mRNA levels. Chromatin immunoprecipitation showed direct interaction between β-catenin and MENA promoter in Huh7 and HEK293 cells and also in mouse brain and liver tissues. Moreover, overexpression of Wnt1 and Wnt3a ligands increased MENA mRNA levels. Additionally, knock-down of MENA ortholog in D. melanogaster eyeful and sensitized eye cancer fly models resulted in increased tumor and metastasis formations. In summary, our study identifies MENA as novel nexus for the Wnt/β-catenin and the Notch signalling cascades.
Oxygen binding to partially nitrosylated hemoglobin.
Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia
2013-09-01
Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Kearney, Bradley M; Johnson, Christian W; Roberts, Daniel M; Swartz, Paul; Mattos, Carla
2014-02-06
Ras GTPase mediates several cellular signal transduction pathways and is found mutated in a large number of cancers. It is active in the GTP-bound state, where it interacts with effector proteins, and at rest in the GDP-bound state. The catalytic domain is tethered to the membrane, with which it interacts in a nucleotide-dependent manner. Here we present the program Detection of Related Solvent Positions (DRoP) for crystallographic water analysis on protein surfaces and use it to study Ras. DRoP reads and superimposes multiple Protein Data Bank coordinates, transfers symmetry-related water molecules to the position closest to the protein surface, and ranks the waters according to how well conserved and tightly clustered they are in the set of structures. Coloring according to this rank allows visualization of the results. The effector-binding region of Ras is hydrated with highly conserved water molecules at the interface between the P-loop, switch I, and switch II, as well as at the Raf-RBD binding pocket. Furthermore, we discovered a new conserved water-mediated H-bonding network present in Ras-GTP, but not in Ras-GDP, that links the nucleotide sensor residues R161 and R164 on helix 5 to the active site. The double mutant RasN85A/N86A, where the final link between helix 5 and the nucleotide is not possible, is a severely impaired enzyme, while the single mutant RasN86A, with partial connection to the active site, has a wild-type hydrolysis rate. DRoP was instrumental in determining the water-mediated connectivity networks that link two lobes of the catalytic domain in Ras. Copyright © 2013 Elsevier Ltd. All rights reserved.
A transcription activator-like effector (TALE) induction system mediated by proteolysis.
Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F
2016-04-01
Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.
Engineered TAL Effector modulators for the large-scale gain-of-function screening
Zhang, Hanshuo; Li, Juan; Hou, Sha; Wang, Gancheng; Jiang, Mingjun; Sun, Changhong; Hu, Xiongbing; Zhuang, Fengfeng; Dai, Zhifei; Dai, Junbiao; Xi, Jianzhong Jeff
2014-01-01
Recent effective use of TAL Effectors (TALEs) has provided an important approach to the design and synthesis of sequence-specific DNA-binding proteins. However, it is still a challenging task to design and manufacture effective TALE modulators because of the limited knowledge of TALE–DNA interactions. Here we synthesized more than 200 TALE modulators and identified two determining factors of transcription activity in vivo: chromatin accessibility and the distance from the transcription start site. The implementation of these modulators in a gain-of-function screen was successfully demonstrated for four cell lines in migration/invasion assays and thus has broad relevance in this field. Furthermore, a novel TALE–TALE modulator was developed to transcriptionally inhibit target genes. Together, these findings underscore the huge potential of these TALE modulators in the study of gene function, reprogramming of cellular behaviors, and even clinical investigation. PMID:24939900
A transcription activator-like effector induction system mediated by proteolysis
Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.
2016-01-01
Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666
Zhang, Xiaoxiao; Farah, Nadya; Rolston, Laura; Ericsson, Daniel J; Catanzariti, Ann-Maree; Bernoux, Maud; Ve, Thomas; Bendak, Katerina; Chen, Chunhong; Mackay, Joel P; Lawrence, Gregory J; Hardham, Adrienne; Ellis, Jeffrey G; Williams, Simon J; Dodds, Peter N; Jones, David A; Kobe, Bostjan
2018-05-01
The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector-triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc-finger-like structure with a novel interleaved zinc-binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P-mediated recognition. The first zinc-coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid-binding and chromatin-associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non-conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M
2010-06-11
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd. All rights reserved.
Nguyen, Tinh T.; Martí-Arbona, Ricardo; Hall, Richard S.; ...
2013-05-21
Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xenovoransLB400, Bxe_B2842, which is homologous to E. coli’s OhrR. Bxe_B2842 regulates the expression of an organic hydroperoxide resistance protein (OsmC). We utilized frontal affinity chromatography coupled with mass spectrometry (FAC-MS) and electrophoretic mobility gel shift assays (EMSA) to identify and characterize the possible effectors of the regulation by Bxe_B2842. Without an effector, Bxe_B2842 binds a DNA operator sequence (DOS) upstream ofmore » osmC. FAC-MS results suggest that 2-aminophenol binds to the protein and is potentially an effector molecule. EMSA analysis shows that 2-aminophenol also attenuates the Bxe_B2842’s affinity for its DOS. EMSA analysis also shows that organic peroxides attenuate Bxe_B2842/DOS affinity, suggesting that binding of the TR to its DOS is regulated by the two-cysteine mechanism, common to TRs in this family. Bxe_B2842 is the first OhrR TR to have both oxidative and effector-binding mechanisms of regulation. Our paper reveals further mechanistic diversity TR mediated gene regulation and provides insights into methods for function discovery of TRs.« less
Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors
Wan, Hua; Hu, Jian-ping; Li, Kang-shun; Tian, Xu-hong; Chang, Shan
2013-01-01
TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism. PMID:24130757
Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.
2015-01-01
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475
Lesne, Annick; Bécavin, Christophe; Victor, Jean-Marc
2012-02-01
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
NASA Astrophysics Data System (ADS)
Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc
2012-02-01
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
Cesari, Stella; Thilliez, Gaëtan; Ribot, Cécile; Chalvon, Véronique; Michel, Corinne; Jauneau, Alain; Rivas, Susana; Alaux, Ludovic; Kanzaki, Hiroyuki; Okuyama, Yudai; Morel, Jean-Benoit; Fournier, Elisabeth; Tharreau, Didier; Terauchi, Ryohei; Kroj, Thomas
2013-01-01
Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer–fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain. PMID:23548743
Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR.
Patil, Vinod Vikas; Park, Kwang-Hyun; Lee, Seung-Goo; Woo, Euijeon
2016-04-05
Positive phenol-degradative gene regulator (PoxR) is a σ(54)-dependent AAA+ ATPase transcription activator that regulates the catabolism of phenols. The PoxR sensory domain detects phenols and relays signals for the activation of transcription. Here we report the first structure of the phenol sensory domain bound to phenol and five derivatives. It exists as a tightly intertwined homodimer with a phenol-binding pocket buried inside, placing two C termini on the same side of the dimer. His102 and Trp130 interact with the hydroxyl group of the phenol in a cavity surrounded by rigid hydrophobic residues on one side and a flexible region on the other. Each monomer has a V4R fold with a unique zinc-binding site. A shift at the C-terminal helix suggests that there is a possible conformational change upon ligand binding. The results provide a structural basis of chemical effector binding for transcriptional regulation with broad implications for protein engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides
Choe, Weonu; Durgannavar, Trishaladevi A.; Chung, Sang J.
2016-01-01
The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed. PMID:28774114
Phosphoenolpyruvate carboxylase: a new era of structural biology.
Izui, Katsura; Matsumura, Hiroyoshi; Furumoto, Tsuyoshi; Kai, Yasushi
2004-01-01
There have been remarkable advances in our knowledge of this important enzyme in the last decade. This review focuses on three recent topics: the three-dimensional structure of the protein, molecular mechanisms of catalytic and regulatory functions, and the molecular cloning and characterization of PEPC kinases, which are Ser/Thr kinases involved specifically in regulatory phosphorylation of vascular plant PEPC. Analysis by X-ray crystallography and site-directed mutagenesis for E. coli and maize PEPC identified the catalytic site and allosteric effector binding sites, and revealed the functional importance of mobile loops. We present the reaction mechanism of PEPC in which we assign the roles of individual amino acid residues. We discuss the unique molecular property of PEPC kinase and its possible regulation at the post-translational level.
A structural biology perspective on bioactive small molecules and their plant targets.
Kumari, Selva; van der Hoorn, Renier A L
2011-10-01
Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Differential Effector Engagement by Oncogenic KRAS.
Yuan, Tina L; Amzallag, Arnaud; Bagni, Rachel; Yi, Ming; Afghani, Shervin; Burgan, William; Fer, Nicole; Strathern, Leslie A; Powell, Katie; Smith, Brian; Waters, Andrew M; Drubin, David; Thomson, Ty; Liao, Rosy; Greninger, Patricia; Stein, Giovanna T; Murchie, Ellen; Cortez, Eliane; Egan, Regina K; Procter, Lauren; Bess, Matthew; Cheng, Kwong Tai; Lee, Chih-Shia; Lee, Liam Changwoo; Fellmann, Christof; Stephens, Robert; Luo, Ji; Lowe, Scott W; Benes, Cyril H; McCormick, Frank
2018-02-13
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering
Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel
2016-01-01
Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647
Jørgensen, Casper Møller; Fields, Christopher J.; Chander, Preethi; Watt, Desmond; Burgner, John W.; Smith, Janet L.; Switzer, Robert L.
2011-01-01
Summary The PyrR protein regulates expression of pyrimidine biosynthetic (pyr) genes in many bacteria. PyrR binds to specific sites in the 5’ leader RNA of target operons and favors attenuation of transcription. Filter binding and gel mobility assays were used to characterize the binding of PyrR from Bacillus caldolyticus to RNA sequences (binding loops) from the three attenuation regions of the B. caldolyticus pyr operon. Binding of PyrR to the three binding loops and modulation of RNA binding by nucleotides was similar for all three RNAs. Apparent dissociation constants at 0° C ranged from 0.13 to 0.87 nM in the absence of effectors; dissociation constants were decreased by 3 to 12 fold by uridine nucleotides and increased by 40 to 200 fold by guanosine nucleotides. The binding data suggest that pyr operon expression is regulated by the ratio of intracellular uridine nucleotides to guanosine nucleotides; the effects of nucleoside addition to the growth medium on aspartate transcarbamylase (pyrB) levels in B. subtilis cells in vivo supported this conclusion. Analytical ultracentrifugation established that RNA binds to dimeric PyrR, even though the tetrameric form of unbound PyrR predominates in solution at the concentrations studied. PMID:18190533
TAL effectors and the executor R genes
Zhang, Junli; Yin, Zhongchao; White, Frank
2015-01-01
Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized—recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance. PMID:26347759
TAL effectors and the executor R genes.
Zhang, Junli; Yin, Zhongchao; White, Frank
2015-01-01
Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.
Triplett, Lindsay R; Wedemeyer, William J; Sundin, George W
2010-09-01
The structure of DspF, a type III secretion system (T3SS) chaperone required for virulence of the fruit tree pathogen Erwinia amylovora, was modeled based on predicted structural homology to characterized T3SS chaperones. This model guided the selection of 11 amino acid residues that were individually mutated to alanine via site-directed mutagenesis. Each mutant was assessed for its effect on virulence complementation, dimerization and interaction with the N-terminal chaperone-binding site of DspE. Four amino acid residues were identified that did not complement the virulence defect of a dspF knockout mutant, and three of these residues were required for interaction with the N-terminus of DspE. This study supports the significance of the predicted beta-sheet helix-binding groove in DspF chaperone function. Copyright 2010 Elsevier Masson SAS. All rights reserved.
de Lange, Orlando; Schreiber, Tom; Schandry, Niklas; Radeck, Jara; Braun, Karl Heinz; Koszinowski, Julia; Heuer, Holger; Strauß, Annett; Lahaye, Thomas
2013-08-01
Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Morrison, Emma A; Bowerman, Samuel; Sylvers, Kelli L
2018-01-01
Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome. PMID:29648537
TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis
Anderson, Ryan G.; Cherkis, Karen A.; Law, Terry F.; Liu, Qingli L.; Machius, Mischa; Nimchuk, Zachary L.; Yang, Li; Chung, Eui-Hwan; El Kasmi, Farid; Hyunh, Michael; Sondek, John E.; Dangl, Jeffery L.
2017-01-01
Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll–interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR–TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that “truncated” NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system. PMID:28137883
Maung-Maung-Thwin; Gopalakrishnakone, P; Yuen, R; Tan, C H
1996-02-01
Daboiatoxin (DbTx), the PLA2 neurotoxin from Daboia russelli siamensis venom, was shown to bind specifically and saturably to rat cerebrocortical synaptosomes and synaptic membrane fragments. Two families of binding sites were detected by equilibrium binding analysis in the presence and absence of Ca2+. Scatchard analysis of biphasic plateaus revealed Kdl 5 nM and Bmax1, 6 pmoles/mg protein, and Kd2 80 nM and Bmax2 20 pmoles/mg protein, respectively, for the high- and low-affinity binding sites. The binding of 125I-DbTx to synaptosomes did not show marked dependence on Ca2+, Mg2+, Co2+ and Sr2+. Native DbTx was the only strong competitor to 125I-DbTx synaptosomal binding (IC50 12.5 nM, KI 5.5 nM). Two other crotalid PLA2 neurotoxins, crotoxin CB and mojave toxin basic subunit, and nontoxic C. Atrox PLA2 enzyme, were relatively weaker inhibitors, while two viperid PLA2 neurotoxins, ammodytoxin A and VRV PL V, were very weak inhibitors. Crotoxin CA was a poor inhibitor even at microM concentrations, whereas no inhibitory effect at all was observed with crotoxin CACB, ammodytoxin C, VRV PL VIIIa, taipoxin, beta-bungarotoxin, or with PLA2 enzymes from N. naja venom, E. schistosa venom, bee venom and porcine pancreas. All other pharmacologically active ligands examined (epinephrine, norepinephrine, histamine, choline, dopamine, serotonin, GABA, naloxone, WB-4101, atropine, hexamethonium and alpha-bun-garotoxin) also failed to interfere with 125I-DbTx binding. As those competitors that showed partial inhibition were effective only at microM concentration range compared to the Kd (5 nM) of 125I-DbTx synaptosomal binding, DbTx could well recognize a different neuronal binding site. Rabbit anti-DbTx polyclonal antisera completely blocked the specific binding. When a range of Ca2+ and K+ channels modulators were examined, Ca2+ channel blockers (omega-conotoxins GVIA and MVIIC, taicatoxin, calciseptine and nitrendiprene) did not affect the binding even at high concentrations, while charybdotoxin was the only K+ channel effector that could partially displace 125I-DbTx synaptosomal binding amongst the K+ channel blockers tested (apamin, dendrotoxin-I, iberiotoxin, MCD-peptide, 4-aminopyridine and tetraethylammonium), suggesting that neither K+ nor Ca2+ channels are associated with DbTx binding sites.
Muradov, Khakim G; Granovsky, Alexey E; Schey, Kevin L; Artemyev, Nikolai O
2002-03-26
Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.
Xu, Jianpo; Xu, Dandan; Wan, Muyang; Yin, Li; Wang, Xiaofei; Wu, Lijie; Liu, Yanhua; Liu, Xiaoyun; Zhou, Yan; Zhu, Yongqun
2017-12-19
The type IVb secretion system (T4BSS) of Legionella pneumophila is a multiple-component apparatus that delivers ∼300 virulent effector proteins into host cells. The injected effectors modulate host cellular processes to promote bacterial infection and proliferation. IcmS and IcmW are two conserved small, acidic adaptor proteins that form a binary complex to interact with many effectors and facilitate their translocation. IcmS and IcmW can also interact with DotL, an ATPase of the type IV coupling protein complex (T4CP). However, how IcmS-IcmW recognizes effectors, and what the roles of IcmS-IcmW are in T4BSSs are unclear. In this study, we found that IcmS and IcmW form a 1:1 heterodimeric complex to bind effector substrates. Both IcmS and IcmW adopt new structural folds and have no structural similarities with known effector chaperones. IcmS has a compact global structure with an α/β fold, while IcmW adopts a fully α-folded, relatively loose architecture. IcmS stabilizes IcmW by binding to its two C-terminal α-helices. Photocrosslinking assays revealed that the IcmS-IcmW complex binds its cognate effectors via an extended hydrophobic surface, which can also interact with the C terminus of DotL. A crystal structure of the DotL-IcmS-IcmW complex reveals extensive and highly stable interactions between DotL and IcmS-IcmW. Moreover, IcmS-IcmW recruits LvgA to DotL and assembles a unique T4CP. These data suggest that IcmS-IcmW also functions as an inseparable integral component of the DotL-T4CP complex in the bacterial inner membrane. This study provides molecular insights into the dual roles of the IcmS-IcmW complex in T4BSSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, S.; Tanaka, N; Micetic, I
2010-01-01
Hemocyanin (Hc) is an oxygen carrier protein in which oxygen binding is regulated by allosteric effectors such as H{sup +} and L-lactate. Isothermal titration calorimetric measurements showed that L-lactate binds to dodecameric and heterohexameric Hc and to the CaeSS3 homohexamer but not to the CaeSS2 monomer. The binding of lactate caused no change in the optical absorption and x-ray absorption spectra of either oxy- or deoxy-Hc, suggesting that no structural rearrangement of the active site occurred. At pH 6.5, the oxygen binding rate constant k{sub obs} obtained by flash photolysis showed a significant increase upon addition of L-lactate, whereas L-lactatemore » addition had little effect at pH 8.3. Lactate binding caused a concentration-dependent shift in the interhexameric distances at pH 6.5 based on small angle x-ray scattering measurements. These results show that L-lactate affects oxygen affinity at pH 6.5 by modulating the global structure of Hc without affecting its binuclear copper center (the active site). In contrast to this, the active site structure of deoxy-Hc is affected by changes in pH (Hirota, S., Kawahara, T., Beltramini, M., Di Muro, P., Magliozzo, R. S., Peisach, J., Powers, L. S., Tanaka, N., Nagao, S., and Bubacco, L. (2008) J. Biol. Chem. 283, 31941-31948). Upon addiction of lactate, the kinetic behavior of oxygen rebinding for Hc was heterogeneous under low oxygen concentrations at pH 6.5 due to changes in the T and R state populations, and the equilibrium was found to shift from the T toward the R state with addition of lactate.« less
CYP2E1 Metabolism of Styrene Involves Allostery
Hartman, Jessica H.; Boysen, Gunnar
2012-01-01
We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E1−1. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E1−1. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108
MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy
2015-08-21
T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels ofmore » Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.« less
megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.
Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M
2014-02-01
Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay
Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activationmore » of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.« less
Tobi, Dror
2017-08-01
A new algorithm for comparison of protein dynamics is presented. Compared protein structures are superposed and their modes of motions are calculated using the anisotropic network model. The obtained modes are aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Dynamical comparison of hemoglobin in the T and R2 states reveals that the dynamics of the allosteric effector 2,3-bisphosphoglycerate binding site is different in the two states. These differences can contribute to the selectivity of the effector to the T state. Similar comparison of the ionotropic glutamate receptor in the kainate+(R,R)-2b and ZK bound states reveals that the kainate+(R,R)-2b bound states slow modes describe upward motions of ligand binding domain and the transmembrane domain regions. Such motions may lead to the opening of the receptor. The upper lobes of the LBDs of the ZK bound state have a smaller interface with the amino terminal domains above them and have a better ability to move together. The present study exemplifies the use of dynamics comparison as a tool to study protein function. Proteins 2017; 85:1507-1517. © 2014 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Isabet, Tatiana; Montagnac, Guillaume; Regazzoni, Karine; Raynal, Bertrand; El Khadali, Fatima; England, Patrick; Franco, Michel; Chavrier, Philippe; Houdusse, Anne; Ménétrey, Julie
2009-09-16
The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.
Biswas, Ambarish; Brown, Chris M
2014-06-08
Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.
Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh
2016-01-01
Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775
Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Perera, Rodrigo Casasnovas; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo
2017-02-17
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.
Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Casasnovas Perera, Rodrigo; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo
2017-01-01
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to up-regulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields. PMID:28536352
USDA-ARS?s Scientific Manuscript database
Disease resistance (R) genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLRs define the fastest evolving...
Interaction of the Disordered Yersinia Effector Protein YopE with Its Cognate Chaperone SycE
2009-01-01
structures of YopECBD were molten globules with a hydrophobic core. Molecular dynamics (MD) simulations indi- cated that the structure remained compact at...ensembles of unfolded conformations of the Yersinia effector YopE using REMD simulations and docked them to the chaper- one SycE using a multistep protein...disordered state but transitions into an ordered state upon binding to its cognate chaperone (7). The dynamics of the disordered effector protein and
Chen, Dong-Wei; Zhang, Yun; Jiang, Cheng-Ying
2014-01-01
A previous study showed that benzoate was catabolized via a coenzyme A (CoA)-dependent epoxide pathway in Azoarcus evansii (R. Niemetz, U. Altenschmidt, S. Brucker, and G. Fuchs, Eur. J. Biochem. 227:161-168, 1995), but gentisate 1,2-dioxygenase was induced. Similarly, we found that the Comamonas testosteroni strain CNB-1 degraded benzoate via a CoA-dependent epoxide pathway and that gentisate 1,2-dioxygenase (GenA) was also induced when benzoate or 3-hydroxybenzoate served as a carbon source for growth. Genes encoding the CoA-dependent epoxide (box genes) and gentisate (gen genes) pathways were identified. Genetic disruption revealed that the gen genes were not involved in benzoate and 3-hydroxybenzoate degradation. Hence, we investigated gen gene regulation in the CNB-1 strain. The PgenA promoter, a MarR-type regulator (GenR), and the GenR binding site were identified. We found that GenR took gentisate, 3-hydroxybenzoate, and benzoyl-CoA as effectors and that binding of GenR to its target DNA sequence was prohibited when these effectors were present. In vivo studies showed that the CNB-1 mutant that lost benzoyl-CoA synthesis was not able to activate PgenA promoter, while transcription of genA was upregulated in another CNB-1 mutant that lost the ability to degrade benzoyl-CoA. The finding that benzoyl-CoA (a metabolic intermediate of benzoate degradation) and 3-hydroxybenzoate function as GenR effectors explains why GenA was induced when CNB-1 grew on benzoate or 3-hydroxybenzoate. Regulation of gentisate pathways by MarR-, LysR-, and IclR-type regulators in diverse bacterial groups is discussed in detail. PMID:24771026
NASA Astrophysics Data System (ADS)
Rodnick, Kenneth J.; Holman, R. W.; Ropski, Pamela S.; Huang, Mingdong; Swislocki, Arthur L. M.
2017-06-01
This perspective focuses on illustrating the underappreciated connections between reactive carbonyl species (RCS), initial binding in the nonenzymatic glycation (NEG) process, and nonenzymatic covalent protein modification (here termed NECPM). While glucose is the central species involved in NEG, recent studies indicate that the initially-bound glucose species in the NEG of human hemoglobin (HbA) and human serum albumin (HSA) are non-RCS ring-closed isomers. The ring-opened glucose, an RCS structure that reacts in the NEG process, is most likely generated from previously-bound ring-closed isomers undergoing concerted acid/base reactions while bound to protein. The generation of the glucose RCS can involve concomitantly-bound physiological species (e.g., inorganic phosphate, water, etc.); here termed effector reagents. Extant NEG schemes do not account for these recent findings. In addition, effector reagent reactions with glucose in the serum and erythrocyte cytosol can generate RCS (e.g., glyoxal, glyceraldehyde, etc.). Recent research has shown that these RCS covalently modify proteins in vivo via NECPM mechanisms. A general scheme that reflects both the reagent and mechanistic diversity that can lead to NEG and NECPM is presented here. A perspective that accounts for the relationships between RCS, NEG, and NECPM can facilitate the understanding of site selectivity, may help explain overall glycation rates, and may have implications for the clinical assessment/control of diabetes mellitus. In view of this perspective, concentrations of ribose, fructose, Pi, bicarbonate, counter ions, and the resulting RCS generated within intracellular and extracellular compartments may be of importance and of clinical relevance. Future research is also proposed.
Wagner, Melany J.; Stacey, Melissa M.; Liu, Bernard A.; Pawson, Tony
2013-01-01
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events. PMID:24296166
Wagner, Melany J; Stacey, Melissa M; Liu, Bernard A; Pawson, Tony
2013-12-01
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.
Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas
2016-10-01
Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M; Hagen, Shoko I; Walker, Joshua M; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B; Planer, Shannon L; Legasse, Alfred; Sylwester, Andrew W; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Sodora, Donald L; Douek, Daniel C; Axthelm, Michael K; Grossman, Zvi; Picker, Louis J
2007-09-03
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4(+) CCR5(+) effector-memory T (T(EM)) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4(+) memory T cell proliferation appears to prevent collapse of effector site CD4(+) T(EM) cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4(+) T(EM) cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4(+) T(EM) cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4(+) T(EM) cells from central-memory T (T(CM)) cell precursors. The instability of effector site CD4(+) T(EM) cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5(-) CD4(+) T(CM) cells. These data suggest that although CD4(+) T(EM) cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4(+) T(CM) cells.
Jefferis, R; Lund, J; Pound, J D
1998-06-01
The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.
Exosites in the substrate specificity of blood coagulation reactions.
Bock, P E; Panizzi, P; Verhamme, I M A
2007-07-01
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen
2015-02-15
Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida*
Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M.; de Lorenzo, Víctor
2011-01-01
The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida. PMID:21239488
Geddie, Melissa L; O'Loughlin, Taryn L; Woods, Kristen K; Matsumura, Ichiro
2005-10-21
The dominant paradigm of protein engineering is structure-based site-directed mutagenesis. This rational approach is generally more effective for the engineering of local properties, such as substrate specificity, than global ones such as allostery. Previous workers have modified normally unregulated reporter enzymes, including beta-galactosidase, alkaline phosphatase, and beta-lactamase, so that the engineered versions are activated (up to 4-fold) by monoclonal antibodies. A reporter that could easily be "reprogrammed" for the facile detection of novel effectors (binding or modifying activities) would be useful in high throughput screens for directed evolution or drug discovery. Here we describe a straightforward and general solution to this potentially difficult design problem. The transcription factor p53 is normally regulated by a variety of post-translational modifications. The insertion of peptides into intrinsically unstructured domains of p53 generated variants that were activated up to 100-fold by novel effectors (proteases or antibodies). An engineered p53 was incorporated into an existing high throughput screen for the detection of human immunodeficiency virus protease, an arbitrarily chosen novel effector. These results suggest that the molecular recognition properties of intrinsically unstructured proteins are relatively easy to engineer and that the absence of crystal structures should not deter the rational engineering of this class of proteins.
Verma, Chandra
2017-01-01
The Hippo signaling pathway, which is implicated in the regulation of organ size, has emerged as a potential target for the development of cancer therapeutics. YAP, TAZ (transcription co-activators) and TEAD (transcription factor) are the downstream transcriptional machinery and effectors of the pathway. Formation of the YAP/TAZ-TEAD complex leads to transcription of growth-promoting genes. Conversely, disrupting the interactions of the complex decreases cell proliferation. Herein, we screened a 1000-member fragment library using Thermal Shift Assay and identified a hit fragment. We confirmed its binding at the YAP/TAZ-TEAD interface by X-ray crystallography, and showed that it occupies the same hydrophobic pocket as a conserved phenylalanine of YAP/TAZ. This hit fragment serves as a scaffold for the development of compounds that have the potential to disrupt YAP/TAZ-TEAD interactions. Structure-activity relationship studies and computational modeling were also carried out to identify more potent compounds that may bind at this validated druggable binding site. PMID:28570566
Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor
NASA Astrophysics Data System (ADS)
Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.
2017-02-01
IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.
Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity
Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.
2015-01-01
Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin. PMID:26246073
Ma, Lay-Sun; Wang, Lei; Trippel, Christine; Mendoza-Mendoza, Artemio; Ullmann, Steffen; Moretti, Marino; Carsten, Alexander; Kahnt, Jörg; Reissmann, Stefanie; Zechmann, Bernd; Bange, Gert; Kahmann, Regine
2018-04-27
To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism.
Binding of sulphonated indigo derivatives to RepA-WH1 inhibits DNA-induced protein amyloidogenesis
Gasset-Rosa, Fátima; Maté, María Jesús; Dávila-Fajardo, Cristina; Bravo, Jerónimo; Giraldo, Rafael
2008-01-01
The quest for inducers and inhibitors of protein amyloidogenesis is of utmost interest, since they are key tools to understand the molecular bases of proteinopathies such as Alzheimer, Parkinson, Huntington and Creutzfeldt–Jakob diseases. It is also expected that such molecules could lead to valid therapeutic agents. In common with the mammalian prion protein (PrP), the N-terminal Winged-Helix (WH1) domain of the pPS10 plasmid replication protein (RepA) assembles in vitro into a variety of amyloid nanostructures upon binding to different specific dsDNA sequences. Here we show that di- (S2) and tetra-sulphonated (S4) derivatives of indigo stain dock at the DNA recognition interface in the RepA-WH1 dimer. They compete binding of RepA to its natural target dsDNA repeats, found at the repA operator and at the origin of replication of the plasmid. Calorimetry points to the existence of a major site, with micromolar affinity, for S4-indigo in RepA-WH1 dimers. As revealed by electron microscopy, in the presence of inducer dsDNA, both S2/S4 stains inhibit the assembly of RepA-WH1 into fibres. These results validate the concept that DNA can promote protein assembly into amyloids and reveal that the binding sites of effector molecules can be targeted to inhibit amyloidogenesis. PMID:18285361
Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A
2016-02-01
Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.
Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
B McCray; E Skordalakes; J Taylor
2011-12-31
Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Throughmore » extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.« less
Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S; Mitchum, Melissa G; Wang, Xiaohong
2015-01-01
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.
Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K
2009-05-01
Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.
Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation.
Tang, Xiaoling; Jang, Sung-Wuk; Wang, Xuerong; Liu, Zhixue; Bahr, Scott M; Sun, Shi-Yong; Brat, Daniel; Gutmann, David H; Ye, Keqiang
2007-10-01
The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.
A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion
Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko
2014-11-06
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components thatmore » form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.« less
Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.
Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter
2011-12-09
Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.
Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke
2015-01-01
Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319
Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J; Tamanoi, Fuyuhiko; Hattori, Seisuke
2015-01-09
Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Stalder, Danièle; Novick, Peter J.
2016-01-01
Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling. PMID:26700316
Busby, Jason N.; Fritz, Georg; Moreland, Nicole J.; Cook, Gregory M.; Lott, J. Shaun; Baker, Edward N.
2014-01-01
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains. PMID:25049090
Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer
Charité, Jeroen; McFadden, David G.; Merlo, Giorgio; Levi, Giovanni; Clouthier, David E.; Yanagisawa, Masashi; Richardson, James A.; Olson, Eric N.
2001-01-01
Neural crest cells play a key role in craniofacial development. The endothelin family of secreted polypeptides regulates development of several neural crest sublineages, including the branchial arch neural crest. The basic helix–loop–helix transcription factor dHAND is also required for craniofacial development, and in endothelin-1 (ET-1) mutant embryos, dHAND expression in the branchial arches is down-regulated, implicating it as a transcriptional effector of ET-1 action. To determine the mechanism that links ET-1 signaling to dHAND transcription, we analyzed the dHAND gene for cis-regulatory elements that control transcription in the branchial arches. We describe an evolutionarily conserved dHAND enhancer that requires ET-1 signaling for activity. This enhancer contains four homeodomain binding sites that are required for branchial arch expression. By comparing protein binding to these sites in branchial arch extracts from endothelin receptor A (EdnrA) mutant and wild-type mouse embryos, we identified Dlx6, a member of the Distal-less family of homeodomain proteins, as an ET-1-dependent binding factor. Consistent with this conclusion, Dlx6 was down-regulated in branchial arches from EdnrA mutant mice. These results suggest that Dlx6 acts as an intermediary between ET-1 signaling and dHAND transcription during craniofacial morphogenesis. PMID:11711438
Athwal, G S; Lombardo, C R; Huber, J L; Masters, S C; Fu, H; Huber, S C
2000-04-01
The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.
CUP promotes deadenylation and inhibits decapping of mRNA targets
Igreja, Catia; Izaurralde, Elisa
2011-01-01
CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1–CCR4–NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs. PMID:21937713
Luo, Xi; Wasilko, David J; Liu, Yao; Sun, Jiayi; Wu, Xiaochun; Luo, Zhao-Qing; Mao, Yuxin
2015-06-01
The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires' disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells.
Chen, Guang-Chao; Kim, Yung-Jin; Chan, Clarence S.M.
1997-01-01
BEM2 of Saccharomyces cerevisiae encodes a Rho-type GTPase-activating protein that is required for proper bud site selection at 26°C and for bud emergence at elevated temperatures. We show here that the temperature-sensitive growth phenotype of bem2 mutant cells can be suppressed by increased dosage of the GIC1 gene. The Gic1 protein, together with its structural homolog Gic2, are required for cell size and shape control, bud site selection, bud emergence, actin cytoskeletal organization, mitotic spindle orientation/positioning, and mating projection formation in response to mating pheromone. Each protein contains a CRIB (Cdc42/Rac-interactive binding) motif and each interacts in the two-hybrid assay with the GTP-bound form of the Rho-type Cdc42 GTPase, a key regulator of polarized growth in yeast. The CRIB motif of Gic1 and the effector domain of Cdc42 are required for this association. Genetic experiments indicate that Gic1 and Gic2 play positive roles in the Cdc42 signal transduction pathway, probably as effectors of Cdc42. Subcellular localization studies with a functional green fluorescent protein–Gic1 fusion protein indicate that this protein is concentrated at the incipient bud site of unbudded cells, at the bud tip and mother-bud neck of budded cells, and at cortical sites on large-budded cells that may delimit future bud sites in the two progeny cells. The ability of Gic1 to associate with Cdc42 is important for its function but is apparently not essential for its subcellular localization. PMID:9367979
Eves-van den Akker, Sebastian; Lilley, Catherine J.; Jones, John T.; Urwin, Peter E.
2014-01-01
Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism. PMID:25255291
Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E
2014-09-01
Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.
Direct observation of TALE protein dynamics reveals a two-state search mechanism
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.
2015-01-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871
Direct observation of TALE protein dynamics reveals a two-state search mechanism.
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M
2015-06-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process-a search state and a recognition state-facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.
Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem.
Wulff, B B H; Chakrabarti, A; Jones, D A
2009-10-01
The interactions between plants and many biotrophic or hemibiotrophic pathogens are controlled by receptor proteins in the host and effector proteins delivered by the pathogen. Pathogen effectors facilitate pathogen growth through the suppression of host defenses and the manipulation of host metabolism, but recognition of a pathogen-effector protein by a host receptor enables the host to activate a suite of defense mechanisms that limit pathogen growth. In the tomato (Lycopersicon esculentum syn. Solanum lycopersicum)-Cladosporium fulvum (leaf mold fungus syn. Passalora fulva) pathosystem, the host receptors are plasma membrane-anchored, leucine-rich repeat, receptor-like proteins encoded by an array of Cf genes conferring resistance to C. fulvum. The pathogen effectors are mostly small, secreted, cysteine-rich, but otherwise largely dissimilar, extracellular proteins encoded by an array of avirulence (Avr) genes, so called because of their ability to trigger resistance and limit pathogen growth when the corresponding Cf gene is present in tomato. A number of Cf and Avr genes have been isolated, and details of the complex molecular interplay between tomato Cf proteins and C. fulvum effector proteins are beginning to emerge. Each effector appears to have a different role; probably most bind or modify different host proteins, but at least one has a passive role masking the pathogen. It is, therefore, not surprising that each effector is probably detected in a distinct and specific manner, some by direct binding, others as complexes with host proteins, and others via their modification of host proteins. The two papers accompanying this review contribute further to our understanding of the molecular specificity underlying effector perception by Cf proteins. This review, therefore, focuses on our current understanding of recognitional specificity in the tomato-C. fulvum pathosystem and highlights some of the critical questions that remain to be addressed. It also addresses the evolutionary causes and consequences of this specificity.
Janik, Katrin; Mithöfer, Axel; Raffeiner, Margot; Stellmach, Hagen; Hause, Bettina; Schlink, Katja
2017-04-01
The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple-growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11-like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11-like proteins seem to be key players in phytoplasmal infection. © 2016 BSPP AND JOHN WILEY & SONS LTD.
E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruneda, Jonathan N.; Smith, F. Donelson; Daurie, Angela
Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A cocrystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes anmore » active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.« less
Mitić, Natasa; Schwartz, Jennifer K; Brazeau, Brian J; Lipscomb, John D; Solomon, Edward I
2008-08-12
The multicomponent soluble form of methane monooxygenase (sMMO) catalyzes the oxidation of methane through the activation of O 2 at a nonheme biferrous center in the hydroxylase component, MMOH. Reactivity is limited without binding of the sMMO effector protein, MMOB. Past studies show that mutations of specific MMOB surface residues cause large changes in the rates of individual steps in the MMOH reaction cycle. To define the structural and mechanistic bases for these observations, CD, MCD, and VTVH MCD spectroscopies coupled with ligand-field (LF) calculations are used to elucidate changes occurring near and at the MMOH biferrous cluster upon binding of MMOB and the MMOB variants. Perturbations to both the CD and MCD are observed upon binding wild-type MMOB and the MMOB variant that similarly increases O 2 reactivity. MMOB variants that do not greatly increase O 2 reactivity fail to cause one or both of these changes. LF calculations indicate that reorientation of the terminal glutamate on Fe2 reproduces the spectral perturbations in MCD. Although this structural change allows O 2 to bridge the diiron site and shifts the redox active orbitals for good overlap, it is not sufficient for enhanced O 2 reactivity of the enzyme. Binding of the T111Y-MMOB variant to MMOH induces the MCD, but not CD changes, and causes only a small increase in reactivity. Thus, both the geometric rearrangement at Fe2 (observed in MCD) coupled with a more global conformational change that may control O 2 access (probed by CD), induced by MMOB binding, are critical factors in the reactivity of sMMO.
Monnet, Céline; Jorieux, Sylvie; Souyris, Nathalie; Zaki, Ouafa; Jacquet, Alexandra; Fournier, Nathalie; Crozet, Fabien; de Romeuf, Christophe; Bouayadi, Khalil; Urbain, Rémi; Behrens, Christian K; Mondon, Philippe; Fontayne, Alexandre
2014-01-01
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGen™) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling(®) platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.
Roche, John P.; Alsharif, Peter; Graf, Ethan R.
2015-01-01
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909
Wang, Yupeng; Khan, Iram F.; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M.; Rawlings, David J.
2014-01-01
LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825
Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; ...
2015-12-28
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ 54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response tomore » cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ 54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response tomore » cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.« less
Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; Harwood, Caroline S.; Sondermann, Holger; Navarro, Marcos V. A. S.
2016-01-01
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs. PMID:26712005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kemin; Johnson, Parker M.; Stols, Lucy
Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI +bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein fromNeisseria meningitidisMC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homologymore » suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease fromXenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.« less
Effector-triggered immunity: from pathogen perception to robust defense.
Cui, Haitao; Tsuda, Kenichi; Parker, Jane E
2015-01-01
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Tricking the guard: exploiting plant defense for disease susceptibility.
Lorang, J; Kidarsa, T; Bradford, C S; Gilbert, B; Curtis, M; Tzeng, S-C; Maier, C S; Wolpert, T J
2012-11-02
Typically, pathogens deploy virulence effectors to disable defense. Plants defeat effectors with resistance proteins that guard effector targets. We found that a pathogen exploits a resistance protein by activating it to confer susceptibility in Arabidopsis. The guard mechanism of plant defense is recapitulated by interactions among victorin (an effector produced by the necrotrophic fungus Cochliobolus victoriae), TRX-h5 (a defense-associated thioredoxin), and LOV1 (an Arabidopsis susceptibility protein). In LOV1's absence, victorin inhibits TRX-h5, resulting in compromised defense but not disease by C. victoriae. In LOV1's presence, victorin binding to TRX-h5 activates LOV1 and elicits a resistance-like response that confers disease susceptibility. We propose that victorin is, or mimics, a conventional pathogen virulence effector that was defeated by LOV1 and confers virulence to C. victoriae solely because it incites defense.
Structural basis of death domain signaling in the p75 neurotrophin receptor
Lin, Zhi; Tann, Jason Y; Goh, Eddy TH; Kelly, Claire; Lim, Kim Buay; Gao, Jian Fang; Ibanez, Carlos F
2015-01-01
Death domains (DDs) mediate assembly of oligomeric complexes for activation of downstream signaling pathways through incompletely understood mechanisms. Here we report structures of complexes formed by the DD of p75 neurotrophin receptor (p75NTR) with RhoGDI, for activation of the RhoA pathway, with caspase recruitment domain (CARD) of RIP2 kinase, for activation of the NF-kB pathway, and with itself, revealing how DD dimerization controls access of intracellular effectors to the receptor. RIP2 CARD and RhoGDI bind to p75NTR DD at partially overlapping epitopes with over 100-fold difference in affinity, revealing the mechanism by which RIP2 recruitment displaces RhoGDI upon ligand binding. The p75NTR DD forms non-covalent, low-affinity symmetric dimers in solution. The dimer interface overlaps with RIP2 CARD but not RhoGDI binding sites, supporting a model of receptor activation triggered by separation of DDs. These structures reveal how competitive protein-protein interactions orchestrate the hierarchical activation of downstream pathways in non-catalytic receptors. DOI: http://dx.doi.org/10.7554/eLife.11692.001 PMID:26646181
Structural basis of arrestin-3 activation and signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiuyan; Perry, Nicole A.; Vishnivetskiy, Sergey A.
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underliemore » coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.« less
Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding
Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.
2016-01-01
Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897
Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding.
Danilov, Sergei M; Lünsdorf, Heinrich; Akinbi, Henry T; Nesterovitch, Andrew B; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V; Piegeler, Tobias; Golukhova, Elena Z; Schwartz, David E; Dull, Randal O; Minshall, Richard D; Kost, Olga A; Garcia, Joe G N
2016-10-13
Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.
Popovic, Matija; Wienk, Hans; Coglievina, Maristella; Boelens, Rolf; Pongor, Sándor; Pintar, Alessandro
2014-04-01
Hairy and enhancer of split 1, one of the main downstream effectors in Notch signaling, is a transcriptional repressor of the basic helix-loop-helix (bHLH) family. Using nuclear magnetic resonance methods, we have determined the structure and dynamics of a recombinant protein, H1H, which includes an N-terminal segment, b1, containing functionally important phosphorylation sites, the basic region b2, required for binding to DNA, and the HLH domain. We show that a proline residue in the sequence divides the protein in two parts, a flexible and disordered N-terminal region including b1 and a structured, mainly helical region comprising b2 and the HLH domain. Binding of H1H to a double strand DNA oligonucleotide was monitored through the chemical shift perturbation of backbone amide resonances, and showed that the interaction surface involves not only the b2 segment but also several residues in the b1 and HLH regions. Copyright © 2014 Wiley Periodicals, Inc.
Garner, Omai B.; Aguilar, Hector C.; Fulcher, Jennifer A.; Levroney, Ernest L.; Harrison, Rebecca; Wright, Lacey; Robinson, Lindsey R.; Aspericueta, Vanessa; Panico, Maria; Haslam, Stuart M.; Morris, Howard R.; Dell, Anne
2010-01-01
Nipah virus targets human endothelial cells via NiV-F and NiV-G envelope glycoproteins, resulting in endothelial syncytia formation and vascular compromise. Endothelial cells respond to viral infection by releasing innate immune effectors, including galectins, which are secreted proteins that bind to specific glycan ligands on cell surface glycoproteins. We demonstrate that galectin-1 reduces NiV-F mediated fusion of endothelial cells, and that endogenous galectin-1 in endothelial cells is sufficient to inhibit syncytia formation. Galectin-1 regulates NiV-F mediated cell fusion at three distinct points, including retarding maturation of nascent NiV-F, reducing NiV-F lateral mobility on the plasma membrane, and directly inhibiting the conformational change in NiV-F required for triggering fusion. Characterization of the NiV-F N-glycome showed that the critical site for galectin-1 inhibition is rich in glycan structures known to bind galectin-1. These studies identify a unique set of mechanisms for regulating pathophysiology of NiV infection at the level of the target cell. PMID:20657665
Abe, Valeria Yukari; Benedetti, Celso Eduardo
2016-10-01
Citrus canker, caused by Xanthomonas citri, affects most commercial citrus varieties. All X. citri strains possess at least one transcription activator-like effector of the PthA family that activates host disease susceptibility (S) genes. The X. citri strain 306 encodes four PthA effectors; nevertheless, only PthA4 is known to elicit cankers on citrus. As none of the PthAs act as avirulence factors on citrus, we hypothesized that PthAs 1-3 might also contribute to pathogenicity on certain hosts. Here, we show that, although PthA4 is indispensable for canker formation in six Brazilian citrus varieties, PthAs 1 and 3 contribute to canker development in 'Pera' sweet orange, but not in 'Tahiti' lemon. Deletions in two or more pthA genes reduce bacterial growth in planta more pronouncedly than single deletions, suggesting an additive role of PthAs in pathogenicity and bacterial fitness. The contribution of PthAs 1 and 3 in canker formation in 'Pera' plants does not correlate with the activation of the canker S gene, LOB1 (LATERAL ORGAN BOUNDARIES 1), but with the induction of other PthA targets, including LOB2 and citrus dioxygenase (DIOX). LOB1, LOB2 and DIOX show differential PthA-dependent expression between 'Pera' and 'Tahiti' plants that appears to be associated with nucleotide polymorphisms found at or near PthA-binding sites. We also present evidence that LOB1 activation alone is not sufficient to elicit cankers on citrus, and that DIOX acts as a canker S gene in 'Pera', but not 'Tahiti', plants. Our results suggest that the activation of multiple S genes, such as LOB1 and DIOX, is necessary for full canker development. © 2015 BSPP and John Wiley & Sons Ltd.
2014-01-01
Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens. PMID:24564253
Pereira, Andre L A; Carazzolle, Marcelo F; Abe, Valeria Y; de Oliveira, Maria L P; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E
2014-02-25
Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.
Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole.
Campbell, Kevin L; Storz, Jay F; Signore, Anthony V; Moriyama, Hideaki; Catania, Kenneth C; Payson, Alexander P; Bonaventura, Joseph; Stetefeld, Jörg; Weber, Roy E
2010-07-16
Elevated blood O(2) affinity enhances survival at low O(2) pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O(2) affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors. Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O(2) affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the beta-type delta-globin chain (delta136Gly-->Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with delta82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at delta82Lys, thereby markedly reducing competition for carbamate formation (CO(2) binding) at the delta-chain N-termini. We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO(2) carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.
Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole
2010-01-01
Background Elevated blood O2 affinity enhances survival at low O2 pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O2 affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors. Results Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O2 affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing competition for carbamate formation (CO2 binding) at the δ-chain N-termini. Conclusions We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO2 carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation. PMID:20637064
Lu, Xunli; Kracher, Barbara; Saur, Isabel M. L.; Bauer, Saskia; Ellwood, Simon R.; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul
2016-01-01
Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1. Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation. PMID:27702901
Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul
2016-10-18
Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing.
Flamand, Mathieu N; Gan, Hin Hark; Mayya, Vinay K; Gunsalus, Kristin C; Duchaine, Thomas F
2017-07-07
Although strong evidence supports the importance of their cooperative interactions, microRNA (miRNA)-binding sites are still largely investigated as functionally independent regulatory units. Here, a survey of alternative 3΄UTR isoforms implicates a non-canonical seedless site in cooperative miRNA-mediated silencing. While required for target mRNA deadenylation and silencing, this site is not sufficient on its own to physically recruit miRISC. Instead, it relies on facilitating interactions with a nearby canonical seed-pairing site to recruit the Argonaute complexes. We further show that cooperation between miRNA target sites is necessary for silencing in vivo in the C. elegans embryo, and for the recruitment of the Ccr4-Not effector complex. Using a structural model of cooperating miRISCs, we identified allosteric determinants of cooperative miRNA-mediated silencing that are required for both embryonic and larval miRNA functions. Our results delineate multiple cooperative mechanisms in miRNA-mediated silencing and further support the consideration of target site cooperation as a fundamental characteristic of miRNA function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tasset, Céline; Bernoux, Maud; Jauneau, Alain; Pouzet, Cécile; Brière, Christian; Kieffer-Jacquinod, Sylvie; Rivas, Susana; Marco, Yves; Deslandes, Laurent
2010-11-18
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-01-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740
Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-03-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.
Novel regulation of Smad3 oligomerization and DNA binding by its linker domain.
Vasilaki, Eleftheria; Siderakis, Manos; Papakosta, Paraskevi; Skourti-Stathaki, Konstantina; Mavridou, Sofia; Kardassis, Dimitris
2009-09-08
Smad proteins are key effectors of the transforming growth factor beta (TGFbeta) signaling pathway in mammalian cells. Smads are composed of two highly structured and conserved domains called Mad homology 1 (MH1) and 2 (MH2), which are linked together by a nonconserved linker region. The recent identification of phosphorylation sites and binding sites for ubiquitin ligases in the linker regions of TGFbeta and bone morphogenetic protein (BMP) receptor-regulated Smads suggested that the linker may contribute to the regulation of Smad function by facilitating cross-talks with other signaling pathways. In the present study, we have generated and characterized novel Smad3 mutants bearing individual substitutions of conserved and nonconserved amino acid residues within a previously described transcriptionally active linker fragment. Our analysis showed that the conserved linker amino acids glutamine 222 and proline 229 play important roles in Smad functions such as homo- and hetero-oligomerization, nuclear accumulation in response to TGFbeta stimulation, and DNA binding. Furthermore, a Smad3 mutant bearing a substitution of the nonconserved amino acid asparagine 218 to alanine displayed enhanced transactivation potential relative to wild type Smad3. Finally, Smad3 P229A inhibited TGFbeta signaling when overexpressed in mammalian cells. In conclusion, our data are in line with previous studies supporting an important regulatory role of the linker region of Smads in their function as key transducers of TGFbeta signaling.
A Redox 2-Cys Mechanism Regulates the Catalytic Activity of Divergent Cyclophilins1[W
Campos, Bruna Medéia; Sforça, Mauricio Luis; Ambrosio, Andre Luis Berteli; Domingues, Mariane Noronha; Brasil de Souza, Tatiana de Arruda Campos; Barbosa, João Alexandre Ribeiro Gonçalvez; Leme, Adriana Franco Paes; Perez, Carlos Alberto; Whittaker, Sara Britt-Marie; Murakami, Mario Tyago; Zeri, Ana Carolina de Matos; Benedetti, Celso Eduardo
2013-01-01
The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism. PMID:23709667
Pintchovski, Sean A.; Peebles, Carol L.; Kim, Hong Joo; Verdin, Eric; Finkbeiner, Steven
2010-01-01
The immediate-early effector gene Arc/Arg3.1 is robustly upregulated by synaptic activity associated with learning and memory. Here we show in primary cortical neuron culture that diverse stimuli induce Arc expression through new transcription. Searching for regulatory regions important for Arc transcription, we found nine DNaseI-sensitive nucleosome-depleted sites at this genomic locus. A reporter gene encompassing these sites responded to synaptic activity in an NMDA receptor–dependent manner, consistent with endogenous Arc mRNA. Responsiveness mapped to two enhancer regions ∼6.5 kb and ∼1.4 kb upstream of Arc. We dissected these regions further and found that the proximal enhancer contains a functional and conserved “Zeste-like” response element that binds a putative novel nuclear protein in neurons. Therefore, activity regulates Arc transcription partly by a novel signaling pathway. We also found that the distal enhancer has a functional and highly conserved serum response element. This element binds serum response factor, which is recruited by synaptic activity to regulate Arc. Thus, Arc is the first target of serum response factor that functions at synapses to mediate plasticity. PMID:19193899
Akeda, Yukihiro; Okayama, Kanna; Kimura, Tomomi; Dryselius, Rikard; Kodama, Toshio; Oishi, Kazunori; Iida, Tetsuya; Honda, Takeshi
2009-07-01
Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus. In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30-100 amino acids and an amino terminal secretion signal encompassing the first 5-20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.
Enzymatic Production of c-di-GMP Using a Thermophilic Diguanylate Cyclase.
Venkataramani, Prabhadevi; Liang, Zhao-Xun
2017-01-01
C-di-GMP has emerged as a prevalent bacterial messenger that controls a multitude of bacterial behaviors. Having access to milligram or gram quantities of c-di-GMP is essential for the biochemical and structural characterization of enzymes and effectors involved in c-di-GMP signaling. Although c-di-GMP can be synthesized using chemical methods, diguanylate cyclases (DGC)-based enzymatic synthesis is the most efficient method of preparing c-di-GMP today. Many DGCs are not suitable for c-di-GMP production because of poor protein stability and the presence of a c-di-GMP-binding inhibitory site (I-site) in most DGCs. We have identified and engineered a thermophilic DGC for efficient production of c-di-GMP for characterizing c-di-GMP signaling proteins and riboswitches. Importantly, residue replacement in the inhibitory I-site of the thermophilic DGC drastically relieved product inhibition to enable the production of hundreds of milligrams of c-di-GMP using 5-10 mg of this robust biocatalyst.
Varughese, Jayson F; Chalovich, Joseph M; Li, Yumin
2010-10-01
Mutations of any subunit of the troponin complex may lead to serious disorders. Rational approaches to managing these disorders require knowledge of the complex interactions among the three subunits that are required for proper function. Molecular dynamics (MD) simulations were performed for both skeletal (sTn) and cardiac (cTn) troponin. The interactions and correlated motions among the three components of the troponin complex were analyzed using both Molecular Mechanics-Generalized Born Surface Area (MMGBSA) and cross-correlation techniques. The TnTH2 helix was strongly positively correlated with the two long helices of TnI. The C domain of TnC was positively correlated with TnI and TnT. The N domain of TnC was negatively correlated with TnI and TnT in cTn, but not in sTn. The two C-domain calcium-binding sites of TnC were dynamically correlated. The two regulatory N-domain calcium-binding sites of TnC were dynamically correlated, even though the calcium-binding site I is dysfunctional. The strong interaction residue pairs and the strong dynamically correlated residues pairs among the three components of troponin complexes were identified. These correlated motions are consistent with the idea that there is a high degree of cooperativity among the components of the regulatory complex in response to Ca(2+) and other effectors. This approach may give insight into the mechanism by which mutations of troponin cause disease. It is interesting that some observed disease causing mutations fall within regions of troponin that are strongly correlated or interacted.
Mattoon, Dawn R; Lamothe, Betty; Lax, Irit; Schlessinger, Joseph
2004-01-01
Background Gab1 is a docking protein that recruits phosphatidylinositol-3 kinase (PI-3 kinase) and other effector proteins in response to the activation of many receptor tyrosine kinases (RTKs). As the autophosphorylation sites on EGF-receptor (EGFR) do not include canonical PI-3 kinase binding sites, it is thought that EGF stimulation of PI-3 kinase and its downstream effector Akt is mediated by an indirect mechanism. Results We used fibroblasts isolated from Gab1-/- mouse embryos to explore the mechanism of EGF stimulation of the PI-3 kinase/Akt anti-apoptotic cell signaling pathway. We demonstrate that Gab1 is essential for EGF stimulation of PI-3 kinase and Akt in these cells and that these responses are mediated by complex formation between p85, the regulatory subunit of PI-3 kinase, and three canonical tyrosine phosphorylation sites on Gab1. Furthermore, complex formation between Gab1 and the protein tyrosine phosphatase Shp2 negatively regulates Gab1 mediated PI-3 kinase and Akt activation following EGF-receptor stimulation. We also demonstrate that tyrosine phosphorylation of ErbB3 may lead to recruitment and activation of PI-3 kinase and Akt in Gab1-/- MEFs. Conclusions The primary mechanism of EGF-induced stimulation of the PI-3 kinase/Akt anti-apoptotic pathway occurs via the docking protein Gab1. However, in cells expressing ErbB3, EGF and neuroregulin can stimulate PI-3 kinase and Akt activation in a Gab1-dependent or Gab1-independent manner. PMID:15550174
An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor
Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O
2016-01-01
Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567
Walker, David M; Wang, Ruifei; Webb, Lauren J
2014-10-07
Vibrational Stark effect (VSE) spectroscopy was used to measure the electrostatic fields present at the interface of the human guanosine triphosphatase (GTPase) Ras docked with the Ras binding domain (RBD) of the protein kinase Raf. Nine amino acids located on the surface of Raf were selected for labeling with a nitrile vibrational probe. Eight of the probe locations were situated along the interface of Ras and Raf, and one probe was 2 nm away on the opposite side of Raf. Vibrational frequencies of the nine Raf nitrile probes were compared both in the monomeric, solvated protein and when docked with wild-type (WT) Ras to construct a comprehensive VSE map of the Ras-Raf interface. Molecular dynamics (MD) simulations employing an umbrella sampling strategy were used to generate a Boltzmann-weighted ensemble of nitrile positions in both the monomeric and docked complexes to determine the effect that docking has on probe location and orientation and to aid in the interpretation of VSE results. These results were compared to an identical study that was previously conducted on nine nitrile probes on the RBD of Ral guanidine dissociation stimulator (RalGDS) to make comparisons between the docked complexes formed when either of the two effectors bind to WT Ras. This comparison finds that there are three regions of conserved electrostatic fields that are formed upon docking of WT Ras with both downstream effectors. Conservation of this pattern in the docked complex then results in different binding orientations observed in otherwise structurally similar proteins. This work supports an electrostatic cause of the known binding tilt angle between the Ras-Raf and Ras-RalGDS complexes.
Multivalent small molecule pan-RAS inhibitors
Welsch, Matthew E.; Kaplan, Anna; Chambers, Jennifer M.; Stokes, Michael E.; Bos, Pieter H.; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A.; Huang, Christine S.; Tran, Timothy H.; Akkiraju, Hemanth; Brown, Lewis M.; Nandakumar, Renu; Cremers, Serge; Yang, Wan S.; Tong, Liang; Olive, Kenneth P.; Ferrando, Adolfo; Stockwell, Brent R.
2017-01-01
SUMMARY Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, have potential use as chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers, and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. PMID:28235199
Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia
2003-10-28
The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique C-terminal tail of c-Met (supersite). There is a strong link between aberrant c-Met activity and oncogenesis, which makes this kinase an important cancer drug target. The furanosylated indolocarbazole K-252a belongs to a family of microbial alkaloids that also includes staurosporine. It was recently shown to be a potent inhibitor of c-Met. Here we report the crystal structures of an unphosphorylated c-Met kinase domain harboring a human cancer mutation and its complex with K-252a at 1.8-A resolution. The structure follows the well established architecture of protein kinases. It adopts a unique, inhibitory conformation of the activation loop, a catalytically noncompetent orientation of helix alphaC, and reveals the complete C-terminal docking site. The first SH2-binding motif (1349YVHV) adopts an extended conformation, whereas the second motif (1356YVNV), a binding site for Grb2-SH2, folds as a type II Beta-turn. The intermediate portion of the supersite (1353NATY) assumes a type I Beta-turn conformation as in an Shc-phosphotyrosine binding domain peptide complex. K-252a is bound in the adenosine pocket with an analogous binding mode to those observed in previously reported structures of protein kinases in complex with staurosporine.
Badr, Myriam A; Pinto, Jose R; Davidson, Michael W; Chase, P Bryant
2016-01-01
Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.
Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M.; Hagen, Shoko I.; Walker, Joshua M.; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B.; Planer, Shannon L.; Legasse, Alfred; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Sodora, Donald L.; Douek, Daniel C.; Axthelm, Michael K.; Grossman, Zvi; Picker, Louis J.
2007-01-01
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells. PMID:17724130
Niu, Qian; Ybe, Joel A.
2008-01-01
Summary Huntington’s disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of htt permits HIP-protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits Procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain (DED). Our 2.8 Å crystal structure of the HIP1 371-481 sub-fragment that includes F432 and K474 important for HIPPI binding is not a DED, but is a partially opened coiled-coil. The HIP1 371-481 model reveals a basic surface we hypothesize is suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R from different organisms, but are not conserved in the yeast homolog of HIP1, sla2p. We have modeled ∼85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (PDB code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a “U” shaped HIP1 molecule. PMID:18155047
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963
Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.
2008-01-01
Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075
Probing the diphosphoglycerate binding pocket of HbA and HbPresbyterian (beta 108Asn --> Lys).
Gottfried, D S; Manjula, B N; Malavalli, A; Acharya, A S; Friedman, J M
1999-08-31
HbPresbyterian (beta 108Asn --> Lys, HbP) contains an additional positive charge (per alpha beta dimer) in the middle of the central cavity and exhibits a lower oxygen affinity than wild-type HbA in the presence of chloride. However, very little is known about the molecular origins of its altered functional properties. In this study, we have focused on the beta beta cleft of the Hb tetramer. Recently, we developed an approach for quantifying the ligand binding affinity to the beta-end of the Hb central cavity using fluorescent analogues of the natural allosteric effector 2, 3-diphosphoglycerate (DPG) [Gottfried, D. S., et al. (1997) J. Biol. Chem. 272, 1571-1578]. Time-correlated single-photon counting fluorescence lifetime studies were used to assess the binding of pyrenetetrasulfonate to both HbA and HbP in the deoxy and CO ligation states under acidic and neutral pH conditions. Both the native and mutant proteins bind the probe at a weak binding site and a strong binding site; in all cases, the binding to HbP was stronger than to HbA. The most striking finding was that for HbA the binding affinity varies as follows: deoxy (pH 6.35) > deoxy (pH 7.20) > CO (pH 6.35); however, the binding to HbP is independent of ligation or pH. The mutant oxy protein also hydrolyzes p-nitrophenyl acetate, through a reversible acyl-imidazole pathway linked to the His residues of the beta beta cleft, at a considerably higher rate than does HbA. This implies a perturbation of the microenvironment of these residues at the DPG binding pocket. Structural consequences due to the presence of the new positive charge in the middle of the central cavity have been transmitted to the beta beta cleft of the protein, even in its liganded conformation. This is consistent with a newly described quaternary state (B) for liganded HbPresbyterian and an associated change in the allosteric control mechanism.
Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.
Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L
2011-11-01
In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.
Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors
Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L
2011-01-01
In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2013-06-01
G-protein coupled receptors (GPCRs) are one of the largest families of membrane receptors in eukaryotes. Heterotrimeric G-proteins, composed of α, β and γ subunits, are important molecular switches in the mediation of GPCR signaling. Receptor stimulation after the binding of a suitable ligand leads to G-protein heterotrimer activation and dissociation into the Gα subunit and Gβγ heterodimer. These subunits then interact with a large number of effectors, leading to several cell responses. We studied the interactions between Gα subunits and their binding partners, using information from structural, mutagenesis and Bioinformatics studies, and conducted a series of comparisons of sequence, structure, electrostatic properties and intermolecular energies among different Gα families and subfamilies. We identified a number of Gα surfaces that may, in several occasions, participate in interactions with receptors as well as effectors. The study of Gα interacting surfaces in terms of sequence, structure and electrostatic potential reveals features that may account for the Gα subunit's behavior towards its interacting partners. The electrostatic properties of the Gα subunits, which in some cases differ greatly not only between families but also between subfamilies, as well as the G-protein interacting surfaces of effectors and regulators of G-protein signaling (RGS) suggest that electrostatic complementarity may be an important factor in G-protein interactions. Energy calculations also support this notion. This information may be useful in future studies of G-protein interactions with GPCRs and effectors. Copyright © 2013 Elsevier Inc. All rights reserved.
¹H, ¹³C and ¹⁵N resonance assignment for the human K-Ras at physiological pH.
Vo, Uybach; Embrey, Kevin J; Breeze, Alexander L; Golovanov, Alexander P
2013-10-01
K-Ras, a member of the Ras family of small GTPases, is involved in cell growth, proliferation, differentiation and apoptosis and is frequently mutated in cancer. The activity of Ras is mediated by the inter-conversion between GTP- and GDP- bound states. This conversion is regulated by binding of effector proteins such as guanine nucleotide exchange factors and GTPase activating proteins. Previously, NMR signals from these effector-binding regions of Ras often remained unassigned and largely unobservable due to conformational exchange and polysterism inherent to this protein. In this paper, we report the complete backbone and C(β), as well as partial H(α), H(β) and C(γ), NMR assignment for human K-Ras (residues 1-166) in the GDP-bound form at a physiological pH of 7.4. These data thereby make possible detailed monitoring of the functional cycle of Ras and its interactions with nucleotides and effector proteins through the observation of fingerprint signals from all the functionally important regions of the protein.
Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens
2017-01-01
Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511
Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens
2017-01-01
Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.
Wang, Shumei; Boevink, Petra C; Welsh, Lydia; Zhang, Ruofang; Whisson, Stephen C; Birch, Paul R J
2017-10-01
The potato blight pathogen Phytophthora infestans secretes effector proteins that are delivered inside (cytoplasmic) or can act outside (apoplastic) plant cells to neutralize host immunity. Little is known about how and where effectors are secreted during infection, yet such knowledge is essential to understand and combat crop disease. We used transient Agrobacterium tumefaciens-mediated in planta expression, transformation of P. infestans with fluorescent protein fusions and confocal microscopy to investigate delivery of effectors to plant cells during infection. The cytoplasmic effector Pi04314, expressed as a monomeric red fluorescent protein (mRFP) fusion protein with a signal peptide to secrete it from plant cells, did not passively re-enter the cells upon secretion. However, Pi04314-mRFP expressed in P. infestans was translocated from haustoria, which form intimate interactions with plant cells, to accumulate at its sites of action in the host nucleus. The well-characterized apoplastic effector EPIC1, a cysteine protease inhibitor, was also secreted from haustoria. EPIC1 secretion was inhibited by brefeldin A (BFA), demonstrating that it is delivered by conventional Golgi-mediated secretion. By contrast, Pi04314 secretion was insensitive to BFA treatment, indicating that the cytoplasmic effector follows an alternative route for delivery into plant cells. Phytophthora infestans haustoria are thus sites for delivery of both apoplastic and cytoplasmic effectors during infection, following distinct secretion pathways. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia
2007-01-01
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574
Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia
2007-08-15
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.
Saunders, Diane G O; Breen, Susan; Win, Joe; Schornack, Sebastian; Hein, Ingo; Bozkurt, Tolga O; Champouret, Nicolas; Vleeshouwers, Vivianne G A A; Birch, Paul R J; Gilroy, Eleanor M; Kamoun, Sophien
2012-08-01
Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.
GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS
Forman, James; Möller, Göran
1973-01-01
Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560
Yang, Aimin; Pantoom, Supansa; Wu, Yao-Wen
2017-01-01
Autophagy is a conserved cellular process involved in the elimination of proteins and organelles. It is also used to combat infection with pathogenic microbes. The intracellular pathogen Legionella pneumophila manipulates autophagy by delivering the effector protein RavZ to deconjugate Atg8/LC3 proteins coupled to phosphatidylethanolamine (PE) on autophagosomal membranes. To understand how RavZ recognizes and deconjugates LC3-PE, we prepared semisynthetic LC3 proteins and elucidated the structures of the RavZ:LC3 interaction. Semisynthetic LC3 proteins allowed the analysis of structure-function relationships. RavZ extracts LC3-PE from the membrane before deconjugation. RavZ initially recognizes the LC3 molecule on membranes via its N-terminal LC3-interacting region (LIR) motif. The RavZ α3 helix is involved in extraction of the PE moiety and docking of the acyl chains into the lipid-binding site of RavZ that is related in structure to that of the phospholipid transfer protein Sec14. Thus, Legionella has evolved a novel mechanism to specifically evade host autophagy. DOI: http://dx.doi.org/10.7554/eLife.23905.001 PMID:28395732
USDA-ARS?s Scientific Manuscript database
The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...
Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition
NASA Astrophysics Data System (ADS)
Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping
Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.
[Transcription activator-like effectors(TALEs)based genome engineering].
Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang
2013-10-01
Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.
The allosteric switching mechanism in bacteriophage MS2
NASA Astrophysics Data System (ADS)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.
2016-07-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
The allosteric switching mechanism in bacteriophage MS2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu
2016-07-21
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less
The allosteric switching mechanism in bacteriophage MS2
Perkett, Matthew R.; Mirijanian, Dina T.
2016-01-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905
At the Frontier; RXLR Effectors Crossing the Phytophthora-Host Interface.
Bouwmeester, Klaas; Meijer, Harold J G; Govers, Francine
2011-01-01
Plants are constantly beset by pathogenic organisms. To successfully infect their hosts, plant pathogens secrete effector proteins, many of which are translocated to the inside of the host cell where they manipulate normal physiological processes and undermine host defense. The way by which effectors cross the frontier to reach the inside of the host cell varies among different classes of pathogens. For oomycete plant pathogens - like the potato late blight pathogen Phytophthora infestans - it has been shown that effector translocation to the host cell cytoplasm is dependent on conserved amino acid motifs that are present in the N-terminal part of effector proteins. One of these motifs, known as the RXLR motif, has a strong resemblance with a host translocation motif found in effectors secreted by Plasmodium species. These malaria parasites, that reside inside specialized vacuoles in red blood cells, make use of a specific protein translocation complex to export effectors from the vacuole into the red blood cell. Whether or not also oomycete RXLR effectors require a translocation complex to cross the frontier is still under investigation. For one P. infestans RXLR effector named IPI-O we have found a potential host target that could play a role in establishing the first contact between this effector and the host cell. This membrane spanning lectin receptor kinase, LecRK-I.9, interacts with IPI-O via the tripeptide RGD that overlaps with the RXLR motif. In animals, RGD is a well-known cell adhesion motif; it binds to integrins, which are membrane receptors that regulate many cellular processes and which can be hijacked by pathogens for either effector translocation or pathogen entry into host cells.
Goodford, P J; St-Louis, J; Wootton, R
1978-01-01
1. Oxygen dissociation curves have been measured for human haemoglobin solutions with different concentrations of the allosteric effectors 2,3-diphosphoglycerate, adenosine triphosphate and inositol hexaphosphate. 2. Each effector produces a concentration dependent right shift of the oxygen dissociation curve, but a point is reached where the shift is maximal and increasing the effector concentration has no further effect. 3. Mathematical models based on the Monod, Wyman & Changeux (1965) treatment of allosteric proteins have been fitted to the data. For each compound the simple two-state model and its extension to take account of subunit inequivalence were shown to be inadequate, and a better fit was obtained by allowing the effector to lower the oxygen affinity of the deoxy conformational state as well as binding preferentially to this conformation. PMID:722582
A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward
2010-01-12
Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loopsmore » that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.« less
Calmodulin is a phospholipase C-beta interacting protein.
McCullar, Jennifer S; Larsen, Shana A; Millimaki, Ryan A; Filtz, Theresa M
2003-09-05
Phospholipase C-beta 3 (PLC beta 3) is an important effector enzyme in G protein-coupled signaling pathways. Activation of PLC beta 3 by G alpha and G beta gamma subunits has been fairly well characterized, but little is known about other protein interactions that may also regulate PLC beta 3 function. A yeast two-hybrid screen of a mouse brain cDNA library with the amino terminus of PLC beta 3 has yielded potential PLC beta 3 interacting proteins including calmodulin (CaM). Physical interaction between CaM and PLC beta 3 is supported by a positive secondary screen in yeast and the identification of a CaM binding site in the amino terminus of PLC beta 3. Co-precipitation of in vitro translated and transcribed amino- and carboxyl-terminal PLC beta 3 revealed CaM binding at a putative amino-terminal binding site. Direct physical interaction of PLC beta 3 and PLC beta 1 isoforms with CaM is supported by pull-down of both isoenzymes with CaM-Sepharose beads from 1321N1 cell lysates. CaM inhibitors reduced M1-muscarinic receptor stimulation of inositol phospholipid hydrolysis in 1321N1 astrocytoma cells consistent with a physiologic role for CaM in modulation of PLC beta activity. There was no effect of CaM kinase II inhibitors, KN-93 and KN-62, on M1-muscarinic receptor stimulation of inositol phosphate hydrolysis, consistent with a direct interaction between PLC beta isoforms and CaM.
Yadav, Pramod Kumar; Xie, Peter; Banerjee, Ruma
2012-11-02
Human cystathionine β-synthase (CBS) is a unique pyridoxal 5'-phosphate (PLP)-dependent enzyme that has a regulatory heme cofactor. Previous studies have demonstrated the importance of Arg-266, a residue at the heme pocket end of α-helix 8, for communication between the heme and PLP sites. In this study, we have examined the role of the conserved Thr-257 and Thr-260 residues, located at the other end of α-helix 8 on the heme electronic environment and on activity. The mutations at the two positions destabilize PLP binding, leading to lower PLP content and ~2- to ~500-fold lower activity compared with the wild-type enzyme. Activity is unresponsive to PLP supplementation, consistent with the pyridoxine-nonresponsive phenotype of the T257M mutation in a homocystinuric patient. The H(2)S-producing activities, also impacted by the mutations, show a different pattern of inhibition compared with the canonical transsulfuration reaction. Interestingly, the mutants exhibit contrasting sensitivities to the allosteric effector, S-adenosylmethionine (AdoMet); whereas T257M and T257I are inhibited, the other mutants are hyperactivated by AdoMet. All mutants showed an increased propensity of the ferrous heme to form an inactive species with a 424 nm Soret peak and exhibited significantly reduced enzyme activity in the ferrous and ferrous-CO states. Our results provide the first evidence for bidirectional transmission of information between the cofactor binding sites, suggest the additional involvement of this region in allosteric communication with the regulatory AdoMet-binding domain, and reveal the potential for independent modulation of the canonical transsulfuration versus H(2)S-generating reactions catalyzed by CBS.
Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin
2017-02-28
Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (< 0.3 fold of the control) was associated with invasiveness of oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.
Yoon, Hye Jin; Kim, Kyoung Hoon; Yang, Jin Kuk; Suh, Se Won; Kim, Hyunsik; Jang, Soonmin
2013-11-01
The intracellular pathogen Mycobacterium tuberculosis (Mtb) causes tuberculosis, and one of its secreted effector proteins, called enhanced intracellular survival (Eis) protein, enhances its survival in macrophages. Mtb Eis activates JNK-specific dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase-7 (MKP-7) through the acetylation on Lys55, thus inactivating JNK by dephosphorylation. Based on the recently reported crystal structure of Mtb Eis, a docking model for the binding of Mtb Eis to DUSP16/MKP-7 was generated. In the docking model, the substrate helix containing Lys55 of DUSP16/MKP-7 fits nicely into the active-site cleft of Mtb Eis; the twisted β-sheet of Eis domain II embraces the substrate helix from one side. Most importantly, the side-chain of Lys55 is inserted toward acetyl-CoA and the resulting distance is 4.6 Å between the NZ atom of Lys55 and the carbonyl carbon of the acetyl group in acetyl-CoA. The binding of Mtb Eis and DUSP16/MKP-7 is maintained by strong electrostatic interactions. The active-site cleft of Mtb Eis has a negatively charged surface formed by Asp25, Glu138, Asp286, Glu395 and the terminal carboxylic group of Phe396. In contrast, DUSP16/MKP-7 contains five basic residues, Lys52, Lys55, Arg56, Arg57 and Lys62, which point toward the negatively charged surface of the active-site pocket of Mtb Eis. Thus, the current docking model suggests that the binding of DUSP16/MKP-7 to Mtb Eis should be established by charge complementarity in addition to a very favorable geometric arrangement. The suggested mode of binding requires the dissociation of the hexameric Mtb Eis into dimers or monomers. This study may be useful for future studies aiming to develop inhibitors of Mtb Eis as a new anti-tuberculosis drug candidate.
Zoltowski, Brian D.; Nash, Abigail I.; Gardner, Kevin H.
2011-01-01
Light Oxygen Voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue-light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark state cleavage of the photochemically-generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2 and ribityl hydroxyls with the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. PMID:21923139
Zoltowski, Brian D; Nash, Abigail I; Gardner, Kevin H
2011-10-18
Light, oxygen, voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine-tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark-state cleavage of the photochemically generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2, and ribityl hydroxyls and the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility, and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. © 2011 American Chemical Society
Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf
2017-12-01
Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.
Allostery and the dynamic oligomerization of porphobilinogen synthase
Jaffe, Eileen K.; Lawrence, Sarah H.
2011-01-01
The structural basis for allosteric regulation of porphobilinogen synthase (PBGS) is modulation of a quaternary structure equilibrium between octamer and hexamer (via dimers), which is represented schematically as 8mer ⇔ 2mer ⇔ 2mer* ⇔ 6mer*. The “*” represents a reorientation between two domains of each subunit that occurs in the dissociated state because it is sterically forbidden in the larger multimers. Allosteric effectors of PBGS are both intrinsic and extrinsic and are phylogenetically variable. In some species this equilibrium is modulated intrinsically by magnesium which binds at a site specific to the 8mer. In other species this equilibrium is modulated intrinsically by pH; the guanidinium group of an arginine being spatially equivalent to the allosteric magnesium ion. In humans, disease associated variants all shift the equilibrium toward the 6mer* relative to wild type. The 6mer* has a surface cavity that is not present in the 8mer and is proposed as a small molecule allosteric binding site. In silico and in vitro approaches have revealed species-specific allosteric PBGS inhibitors that stabilize the 6mer*. Some of these inhibitors are drugs in clinical use leading to the hypothesis that extrinsic allosteric inhibition of human PBGS could be a mechanism for drug side effects. PMID:22037356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barta, Michael L.; Guragain, Manita; Adam, Philip
2012-10-25
Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaDmore » undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.« less
Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J W M; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J M; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H E; Koudstaal, Wouter; Goudsmit, Jaap
2016-01-01
Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.
Betson, Martha; Settleman, Jeffrey
2007-08-01
The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.
Cleavage of the interchain disulfide bonds in rituximab increases its affinity for FcγRIIIA.
Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Kobayashi, Eiji; Fukuchi, Kaori; Tsukimoto, Mitsutoshi; Kojima, Shuji; Kohroki, Junya; Akimoto, Kazunori; Masuho, Yasuhiko
2013-07-05
The Fc region of human IgG1 mediates effector function via binding to Fcγ receptors and complement activation. The H and L chains of IgG1 antibodies are joined by four interchain disulfide bonds. In this study, these bonds within the therapeutic IgG1 rituximab (RTX) were cleaved either by mild reduction followed by alkylation or by mild S-sulfonation; consequently, two modified RTXs - A-RTX (alkylated) and S-RTX (S-sulfonated) - were formed, and both were almost as potent as unmodified RTX when binding CD20 antigen. Unexpectedly, each modified RTX had a higher binding affinity for FcγRIIIA (CD16A) than did unmodified RTX. However, S-RTX and A-RTX were each less potent than RTX in an assay of antibody-dependent cellular cytotoxicity (ADCC). In this ADCC assay, each modified RTX showed decreased secretion of granzyme B, but no change in perforin secretion, from effector cells. These results provide significant information on the structures within IgG1 that are involved in binding FcγRIIIA, and they may be useful in the development of therapeutic antagonists for FcγRIIIA. Copyright © 2013 Elsevier Inc. All rights reserved.
Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen
2008-07-17
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.
Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein
Alvarez, Claudia P.; Bueler, Stephanie A.; Xu, Caishuang; Boniecki, Michal T.; Kanelis, Voula; Rubinstein, John L.
2017-01-01
Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires’ Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the ‘open’ conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK. PMID:28570695
Ragnarsson, Lotten; Wang, Ching-I Anderson; Andersson, Åsa; Fajarningsih, Dewi; Monks, Thea; Brust, Andreas; Rosengren, K. Johan; Lewis, Richard J.
2013-01-01
The G protein-coupled receptor (GPCR) superfamily is an important drug target that includes over 1000 membrane receptors that functionally couple extracellular stimuli to intracellular effectors. Despite the potential of extracellular surface (ECS) residues in GPCRs to interact with subtype-specific allosteric modulators, few ECS pharmacophores for class A receptors have been identified. Using the turkey β1-adrenergic receptor crystal structure, we modeled the α1B-adrenoceptor (α1B-AR) to help identify the allosteric site for ρ-conopeptide TIA, an inverse agonist at this receptor. Combining mutational radioligand binding and inositol 1-phosphate signaling studies, together with molecular docking simulations using a refined NMR structure of ρ-TIA, we identified 14 residues on the ECS of the α1B-AR that influenced ρ-TIA binding. Double mutant cycle analysis and docking confirmed that ρ-TIA binding was dominated by a salt bridge and cation-π between Arg-4-ρ-TIA and Asp-327 and Phe-330, respectively, and a T-stacking-π interaction between Trp-3-ρ-TIA and Phe-330. Water-bridging hydrogen bonds between Asn-2-ρ-TIA and Val-197, Trp-3-ρ-TIA and Ser-318, and the positively charged N terminus and Glu-186, were also identified. These interactions reveal that peptide binding to the ECS on transmembrane helix 6 (TMH6) and TMH7 at the base of extracellular loop 3 (ECL3) is sufficient to allosterically inhibit agonist signaling at a GPCR. The ligand-accessible ECS residues identified provide the first view of an allosteric inhibitor pharmacophore for α1-adrenoceptors and mechanistic insight and a new set of structural constraints for the design of allosteric antagonists at related GPCRs. PMID:23184947
Ragnarsson, Lotten; Wang, Ching-I Anderson; Andersson, Åsa; Fajarningsih, Dewi; Monks, Thea; Brust, Andreas; Rosengren, K Johan; Lewis, Richard J
2013-01-18
The G protein-coupled receptor (GPCR) superfamily is an important drug target that includes over 1000 membrane receptors that functionally couple extracellular stimuli to intracellular effectors. Despite the potential of extracellular surface (ECS) residues in GPCRs to interact with subtype-specific allosteric modulators, few ECS pharmacophores for class A receptors have been identified. Using the turkey β(1)-adrenergic receptor crystal structure, we modeled the α(1B)-adrenoceptor (α(1B)-AR) to help identify the allosteric site for ρ-conopeptide TIA, an inverse agonist at this receptor. Combining mutational radioligand binding and inositol 1-phosphate signaling studies, together with molecular docking simulations using a refined NMR structure of ρ-TIA, we identified 14 residues on the ECS of the α(1B)-AR that influenced ρ-TIA binding. Double mutant cycle analysis and docking confirmed that ρ-TIA binding was dominated by a salt bridge and cation-π between Arg-4-ρ-TIA and Asp-327 and Phe-330, respectively, and a T-stacking-π interaction between Trp-3-ρ-TIA and Phe-330. Water-bridging hydrogen bonds between Asn-2-ρ-TIA and Val-197, Trp-3-ρ-TIA and Ser-318, and the positively charged N terminus and Glu-186, were also identified. These interactions reveal that peptide binding to the ECS on transmembrane helix 6 (TMH6) and TMH7 at the base of extracellular loop 3 (ECL3) is sufficient to allosterically inhibit agonist signaling at a GPCR. The ligand-accessible ECS residues identified provide the first view of an allosteric inhibitor pharmacophore for α(1)-adrenoceptors and mechanistic insight and a new set of structural constraints for the design of allosteric antagonists at related GPCRs.
Silva, Mariana; Fung, Ronald Kam Fai; Donnelly, Conor Brian; Videira, Paula Alexandra; Sackstein, Robert
2017-01-01
Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. Here, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human peripheral blood mononuclear cells (PBMCs). Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sLeX and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T-cells but no binding by B-cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds including PSGL-1, CD43, and CD44 (rendering the E-selectin ligands CLA, CD43E, and HCELL, respectively), and B-cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B-cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B-cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites. PMID:28330896
Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization
Witte, Kristen; Strickland, Devin; Glotzer, Michael
2017-01-01
Cell polarization underlies many cellular and organismal functions. The GTPase Cdc42 orchestrates polarization in many contexts. In budding yeast, polarization is associated with a focus of Cdc42•GTP which is thought to self sustain by recruiting a complex containing Cla4, a Cdc42-binding effector, Bem1, a scaffold, and Cdc24, a Cdc42 GEF. Using optogenetics, we probe yeast polarization and find that local recruitment of Cdc24 or Bem1 is sufficient to induce polarization by triggering self-sustaining Cdc42 activity. However, the response to these perturbations depends on the recruited molecule, the cell cycle stage, and existing polarization sites. Before cell cycle entry, recruitment of Cdc24, but not Bem1, induces a metastable pool of Cdc42 that is sustained by positive feedback. Upon Cdk1 activation, recruitment of either Cdc24 or Bem1 creates a stable site of polarization that induces budding and inhibits formation of competing sites. Local perturbations have therefore revealed unexpected features of polarity establishment. DOI: http://dx.doi.org/10.7554/eLife.26722.001 PMID:28682236
Mass spectroscopic phosphoprotein mapping of Ral Binding protein 1 (RalBP1/Rip1/RLIP76)
Herlevsen, Mikael C; Theodorescu, Dan
2009-01-01
RalBP1, a multifunctional protein implicated in cancer cell proliferation, radiation and chemoresistance and ligand dependent receptor internalization, is upregulated in bladder cancer and is a downstream effector of RalB, a GTPase associated with metastasis. RalBP1 can be regulated by phosphorylation by protein kinase C (PKC). No studies have comprehensively mapped RalBP1 phosphorylation sites or whether RalB affects these. We identified fourteen phosphorylation sites of RalBP1 in human bladder carcinoma UMUC-3 and embryonic kidney derived 293T cells. The phosphorylated residues are concentrated at the N-terminus. Ten of the first 100 amino acids of the primary structure were phosphorylated. Nine were serine residues, and one a threonine. We evaluated the effect of RalB overexpression on RalBP1 phosphorylation and found the largest change in phosphorylation status at S463 and S645. Further characterization of these sites will provide novel insights on RalBP1 biology, its functional relationship to RalB and possible avenues for therapeutic intervention. PMID:17706599
Kainer, Manuela; Antes, Bernhard; Wiederkum, Susanne; Wozniak-Knopp, Gordana; Bauer, Anton; Rüker, Florian; Woisetschläger, Max
2012-10-15
Antigen binding immunoglobulin Fc fragments (Fcab) are generated by engineering loop regions in the CH3 domain of human IgG1 Fc. Variants of an Fcab specific for Her-2 were designed to display either enhanced (S239D:A330L:I332E) or diminished (L234A:L235A) binding affinities to the Fc receptor CD16a based on mutations described previously. The two mutant Fcab proteins demonstrated the expected modulation of CD16a binding. Interaction with recombinant or cell surface expressed Her-2 was unaffected in both mutants compared to the parental Fcab. Binding affinities for CD16a correlated with the ADCC-potencies of the Fcab variants. Additional studies indicated that the L234A:L235A variant Fcab had equivalent structural features as the unmodified Fcab since their DSC profiles were similar and antigen binding after re-folding upon partial heat denaturation had not changed. Introduction of the S239D:A330L:I332E mutations resulted in a significant reduction of the CH2 domain melting temperature, a moderate decrease of the thermal transition of the CH3 domain and lower antigen binding after thermal stress compared to the parental Fcab. We conclude that the known correlation between CD16a binding affinity and ADCC potency is also valid in Fcab proteins and that antigen specific Fcab molecules can be further engineered for fine tuning of immuno effector functions. Copyright © 2012 Elsevier Inc. All rights reserved.
Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease
Yang, Sihai; Li, Jing; Zhang, Xiaohui; Zhang, Qijun; Huang, Ju; Chen, Jian-Qun; Hartl, Daniel L.; Tian, Dacheng
2013-01-01
We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS–LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS–LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS–LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed “constrained divergence,” in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance. PMID:24145399
Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi
2011-11-01
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.
Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping
2018-02-05
The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.
Koldsø, Heidi; Noer, Pernille; Grouleff, Julie; Autzen, Henriette Elisabeth; Sinning, Steffen; Schiøtt, Birgit
2011-01-01
Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport. PMID:22046120
Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice
2007-08-17
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.
An m6A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis.
Arribas-Hernández, Laura; Bressendorff, Simon; Hansen, Mathias Henning; Poulsen, Christian; Erdmann, Susanne; Brodersen, Peter
2018-04-11
Methylation of N6-adenosine (m6A) in mRNA is an important post-transcriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins ("readers") that influence pre-mRNA splicing, mRNA degradation or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis. © 2018 American Society of Plant Biologists. All rights reserved.
Lewis, Melanie J.; Wagner, Bettina; Woof, Jenny M.
2008-01-01
Recombinant versions of the seven equine IgG subclasses were expressed in CHO cells. All assembled into intact immunoglobulins stabilised by disulphide bridges, although, reminiscent of human IgG4, a small proportion of equine IgG4 and IgG7 were held together by non-covalent bonds alone. All seven IgGs were N-glycosylated. In addition IgG3 appeared to be O-glycosylated and could bind the lectin jacalin. Staphylococcal protein A displayed weak binding for the equine IgGs in the order: IgG1 > IgG3 > IgG4 > IgG7 > IgG2 = IgG5 > IgG6. Streptococcal protein G bound strongly to IgG1, IgG4 and IgG7, moderately to IgG3, weakly to IgG2 and IgG6, and not at all to IgG5. Analysis of antibody effector functions revealed that IgG1, IgG3, IgG4, IgG5 and IgG7, but not IgG2 and IgG6, were able to elicit a strong respiratory burst from equine peripheral blood leukocytes, predicting that the former five IgG subclasses are able to interact with Fc receptors on effector cells. IgG1, IgG3, IgG4 and IgG7, but not IgG2, IgG5 and IgG6, were able to bind complement C1q and activate complement via the classical pathway. The differential effector function capabilities of the subclasses suggest that, for maximum efficacy, equine vaccine strategies should seek to elicit antibody responses of the IgG1, IgG3, IgG4, and IgG7 subclasses. PMID:17669496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Deepa; Gawel, Damian; Itsko, Mark
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present paper, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNAmore » with high affinity (K d ~ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent K m for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Finally, our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.« less
Singh, Deepa; Gawel, Damian; Itsko, Mark; ...
2015-02-18
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present paper, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNAmore » with high affinity (K d ~ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent K m for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Finally, our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.« less
Azuma, Miyuki
2010-01-01
Glucocorticoid-induced TNF receptor-related protein (GITR) is expressed in regulatory T cells at high levels, but is also inducible in conventional effector T cells after activation. Initial studies using an agonistic anti- GITR mAb mislead this line of research with respect to the contribution of GITR stimulation on the function of regulatory T cells. In fact, GITR acts as a costimulatory receptor for both effector and regulatory T cells by enhancing effector and regulatory functions, respectively. Unlike other costimulatory ligands, GITR ligand (GITRL) expression on mature myeloid dendritic cells (DCs) is extremely limited and the GITR-GITRL pathway does not contribute markedly to direct interactions with T cells and antigen-presenting cells in the secondary lymphoid tissues. Rather, GITRL is constitutively expressed on parenchymal tissue cells and interacts with GITR expressed on tissue-infiltrating macrophages and DCs, or effector and regulatory T cells. Interactions with GITR and GITRL at local inflammatory sites induce site-specific production of cytokines and chemokines, resulting in control activation of tissue-infiltrating effector or regulatory cells and their migration. This review summarizes recent reports on the GITR-GITRL pathway, which controls both innate and adaptive immune responses.
Structural Basis for Nicotinamide Inhibition and Base Exchange in Sir2 Enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, B.; Zhao, K; Slama, J
2007-01-01
The Sir2 family of proteins consists of broadly conserved NAD+-dependent deacetylases that are implicated in diverse biological processes, including DNA regulation, metabolism, and longevity. Sir2 proteins are regulated in part by the cellular concentrations of a noncompetitive inhibitor, nicotinamide, that reacts with a Sir2 reaction intermediate via a base-exchange reaction to reform NAD+ at the expense of deacetylation. To gain a mechanistic understanding of nicotinamide inhibition in Sir2 enzymes, we captured the structure of nicotinamide bound to a Sir2 homolog, yeast Hst2, in complex with its acetyl-lysine 16 histone H4 substrate and a reaction intermediate analog, ADP-HPD. Together with relatedmore » biochemical studies and structures, we identify a nicotinamide inhibition and base-exchange site that is distinct from the so-called 'C pocket' binding site for the nicotinamide group of NAD+. These results provide insights into the Sir2 mechanism of nicotinamide inhibition and have important implications for the development of Sir2-specific effectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilden, A.B.; Cauda, R.; Grossi, C.E.
1986-06-01
Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar tomore » those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.« less
The Aged Microenvironment Influences Prostate Carcinogenesis
2008-12-01
binding protein-like +36 nucleic acid binding Serpinb5 serine (or cysteine) peptidase inhibitor, clade +9 serine-type endopeptidase inhibitor activity...synthase ( phosphatidate +1.9 phosphatidate cytidylyltransferase activity Car1 carbonic anhydrase 1 +1.9 carbonate dehydratase activity;zinc ion...activity Wdr45l Wdr45 like +1.7 acid phosphatase activity;molecular_function unknown Perp PERP, TP53 apoptosis effector +1.7 structural constituent of
Sun, Yaping; Iyer, Matthew; McEachin, Richard; Zhao, Meng; Wu, Yi-Mi; Cao, Xuhong; Oravecz-Wilson, Katherine; Zajac, Cynthia; Mathewson, Nathan; Wu, Shin-Rong Julia; Rossi, Corinne; Toubai, Tomomi; Qin, Zhaohui S.; Chinnaiya, Arul M.; Reddy, Pavan
2016-01-01
STAT3 is a master transcriptional regulator that plays an important role in the induction of both immune activation and immune tolerance in dendritic cells (DCs). The transcriptional targets of STAT3 in promoting DC activation are becoming increasingly understood; however, the mechanisms underpinning its role in causing DC suppression remain largely unknown. To determine the functional gene targets of STAT3, we compared the genome-wide binding of STAT3 using ChIP-seq coupled with gene expression microarrays to determine STAT3-dependent gene regulation in DCs after histone deacetylase (HDAC) inhibition. HDAC inhibition boosted the ability of STAT3 to bind to distinct DNA targets and regulate gene expression. Among the top 500 STAT3 binding sites, the frequency of canonical motifs was significantly higher than that of non-canonical motifs. Functional analysis revealed that after treatment with an HDAC inhibitor, the upregulated STAT3 target genes were those that were primarily the negative regulators of pro-inflammatory cytokines and those in the IL-10 signaling pathway. The downregulated STAT3-dependent targets were those involved in immune effector processes and antigen processing/presentation. The expression and functional relevance of these genes were validated. Specifically, functional studies confirmed that the upregulation of IL-10Ra by STAT3 contributed to the suppressive function of DCs following HDAC inhibition. PMID:27866206
Advances in targeted genome editing.
Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A
2012-08-01
New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.
Crans, D C; Simone, C M; Saha, A K; Glew, R H
1989-11-30
A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.
Type III secretion system effector proteins: double agents in bacterial disease and plant defense.
Alfano, James R; Collmer, Alan
2004-01-01
Many phytopathogenic bacteria inject virulence effector proteins into plant cells via a Hrp type III secretion system (TTSS). Without the TTSS, these pathogens cannot defeat basal defenses, grow in plants, produce disease lesions in hosts, or elicit the hypersensitive response (HR) in nonhosts. Pathogen genome projects employing bioinformatic methods to identify TTSS Hrp regulon promoters and TTSS pathway targeting signals suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of effectors. The Hrp TTSS employs customized cytoplasmic chaperones, conserved export components in the bacterial envelope (also used by the TTSS of animal pathogens), and a more specialized set of TTSS-secreted proteins to deliver effectors across the plant cell wall and plasma membrane. Many effectors can act as molecular double agents that betray the pathogen to plant defenses in some interactions and suppress host defenses in others. Investigations of the functions of effectors within plant cells have demonstrated the plasma membrane and nucleus as subcellular sites for several effectors, revealed some effectors to possess cysteine protease or protein tyrosine phosphatase activity, and provided new clues to the coevolution of bacterium-plant interactions.
A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases.
Feng, Feng; Yang, Fan; Rong, Wei; Wu, Xiaogang; Zhang, Jie; Chen, She; He, Chaozu; Zhou, Jian-Min
2012-04-15
Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.
Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.
2012-01-01
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562
Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E
2011-12-09
Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.
Integration of two RAB5 groups during endosomal transport in plants
Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko
2018-01-01
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929
Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.
2011-01-01
Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370
Generation of knockout rabbits using transcription activator-like effector nucleases.
Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue
2014-01-01
Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.
Slootweg, Erik J.; Spiridon, Laurentiu N.; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska
2013-01-01
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins. PMID:23660837
Slootweg, Erik J; Spiridon, Laurentiu N; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska
2013-07-01
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.
Crystal structure of human S100A8 in complex with zinc and calcium.
Lin, Haili; Andersen, Gregers Rom; Yatime, Laure
2016-06-01
S100 proteins are a large family of calcium binding proteins present only in vertebrates. They function intra- and extracellularly both as regulators of homeostatic processes and as potent effectors during inflammation. Among these, S100A8 and S100A9 are two major constituents of neutrophils that can assemble into homodimers, heterodimers and higher oligomeric species, including fibrillary structures found in the ageing prostate. Each of these forms assumes specific functions and their formation is dependent on divalent cations, notably calcium and zinc. In particular, zinc appears as a major regulator of S100 protein function in a disease context. Despite this central role, no structural information on how zinc bind to S100A8/S100A9 and regulates their quaternary structure is yet available. Here we report two crystallographic structures of calcium and zinc-loaded human S100A8. S100A8 binds two zinc ions per homodimer, through two symmetrical, all-His tetracoordination sites, revealing a classical His-Zn binding mode for the protein. Furthermore, the presence of a (Zn)2-cacodylate complex in our second crystal form induces ligand swapping within the canonical His4 zinc binding motif, thereby creating two new Zn-sites, one of which involves residues from symmetry-related molecules. Finally, we describe the calcium-induced S100A8 tetramer and reveal how zinc stabilizes this tetramer by tightening the dimer-dimer interface. Our structures of Zn(2+)/Ca(2+)-bound hS100A8 demonstrate that S100A8 is a genuine His-Zn S100 protein. Furthermore, they show how zinc stabilizes S100A8 tetramerization and potentially mediates the formation of novel interdimer interactions. We propose that these zinc-mediated interactions may serve as a basis for the generation of larger oligomers in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan
2012-02-15
The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, suchmore » as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.« less
Sackstein, Robert
2009-07-01
During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.
Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.
Kabadi, Ami M; Gersbach, Charles A
2014-09-01
Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Chimeric TALE recombinases with programmable DNA sequence specificity.
Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F
2012-11-01
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.
Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection.
Meyers, B C; Shen, K A; Rohani, P; Gaut, B S; Michelmore, R W
1998-01-01
Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of approximately 5. 5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka /Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands. PMID:9811792
Ferreira, Rafael Marini; de Oliveira, Amanda Carolina P; Moreira, Leandro M; Belasque, José; Gourbeyre, Edith; Siguier, Patricia; Ferro, Maria Inês T; Ferro, Jesus A; Chandler, Michael; Varani, Alessandro M
2015-02-17
Members of the genus Xanthomonas are among the most important phytopathogens. A key feature of Xanthomonas pathogenesis is the translocation of type III secretion system (T3SS) effector proteins (T3SEs) into the plant target cells via a T3SS. Several T3SEs and a murein lytic transglycosylase gene (mlt, required for citrus canker symptoms) are found associated with three transposition-related genes in Xanthomonas citri plasmid pXAC64. These are flanked by short inverted repeats (IRs). The region was identified as a transposon, TnXax1, with typical Tn3 family features, including a transposase and two recombination genes. Two 14-bp palindromic sequences within a 193-bp potential resolution site occur between the recombination genes. Additional derivatives carrying different T3SEs and other passenger genes occur in different Xanthomonas species. The T3SEs include transcription activator-like effectors (TALEs). Certain TALEs are flanked by the same IRs as found in TnXax1 to form mobile insertion cassettes (MICs), suggesting that they may be transmitted horizontally. A significant number of MICs carrying other passenger genes (including a number of TALE genes) were also identified, flanked by the same TnXax1 IRs and delimited by 5-bp target site duplications. We conclude that a large fraction of T3SEs, including individual TALEs and potential pathogenicity determinants, have spread by transposition and that TnXax1, which exhibits all of the essential characteristics of a functional transposon, may be involved in driving MIC transposition. We also propose that TALE genes may diversify by fork slippage during the replicative Tn3 family transposition. These mechanisms may play a crucial role in the emergence of Xanthomonas pathogenicity. Xanthomonas genomes carry many insertion sequences (IS) and transposons, which play an important role in their evolution and architecture. This study reveals a key relationship between transposons and pathogenicity determinants in Xanthomonas. We propose that several transposition events mediated by a Tn3-like element carrying different sets of passenger genes, such as different type III secretion system effectors (including transcription activation-like effectors [TALEs]), were determinant in the evolution and emergence of Xanthomonas pathogenicity. TALE genes are DNA-binding effectors that modulate plant transcription. We also present a model for generating TALE gene diversity based on fork slippage associated with the replicative transposition mechanism of Tn3-like transposons. This may provide a mechanism for niche adaptation, specialization, host-switching, and other lifestyle changes. These results will also certainly lead to novel insights into the evolution and emergence of the various diseases caused by different Xanthomonas species and pathovars. Copyright © 2015 Marini Ferreira et al.
Structural Basis for Rab1 De-AMPylation by the Legionella pneumophila Effector SidD
Neunuebel, M. Ramona; Pallara, Chiara; Brady, Jacqueline; Kinch, Lisa N.; Fernández-Recio, Juan; Rojas, Adriana L.; Machner, Matthias P.; Hierro, Aitor
2013-01-01
The covalent attachment of adenosine monophosphate (AMP) to proteins, a process called AMPylation (adenylylation), has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses. PMID:23696742
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauthammer, Michael; Kong, Yong; Ha, Byung Hak
We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequentmore » in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.« less
Wirthmueller, Lennart; Zhang, Yan; Jones, Jonathan D G; Parker, Jane E
2007-12-04
Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death. The sites and modes of action of NB-LRR receptors are, however, poorly understood. Arabidopsis Toll/Interleukin-1 (TIR) type NB-LRR receptor RPS4 recognizes the bacterial type III effector AvrRps4. We show that epitope-tagged RPS4 expressed under its native regulatory sequences distributes between endomembranes and nuclei in healthy and AvrRps4-triggered tissues. RPS4 accumulation in the nucleus, mediated by a bipartite nuclear localization sequence (NLS) at its C terminus, is necessary for triggering immunity through authentic activation by AvrRps4 in Arabidopsis or as an effector-independent "deregulated" receptor in tobacco. A strikingly conserved feature of TIR-NB-LRR receptors is their recruitment of the nucleocytoplasmic basal-defense regulator EDS1 in resistance to diverse pathogens. We find that EDS1 is an indispensable component of RPS4 signaling and that it functions downstream of RPS4 activation but upstream of RPS4-mediated transcriptional reprogramming in the nucleus.
Non-coding RNAs—Novel targets in neurotoxicity
Tal, Tamara L.; Tanguay, Robert L.
2012-01-01
Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481
The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.
Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj
2018-02-01
Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.
Takeshita, Yuji; Hashimoto, Yuichi; Nawa, Mikiro; Uchino, Hiroyuki; Matsuoka, Masaaki
2013-01-01
Humanin is a secreted bioactive peptide that suppresses cell toxicity caused by a variety of insults. The neuroprotective effect of Humanin against Alzheimer disease (AD)-related death is mediated by the binding of Humanin to its heterotrimeric Humanin receptor composed of ciliary neurotrophic receptor α, WSX-1, and gp130, as well as the activation of intracellular signaling pathways including a JAK2 and STAT3 signaling axis. Despite the elucidation of the signaling pathways by which Humanin mediates its neuroprotection, the transcriptional targets of Humanin that behaves as effectors of Humanin remains undefined. In the present study, Humanin increased the mRNA and protein expression of SH3 domain-binding protein 5 (SH3BP5), which has been known to be a JNK interactor, in neuronal cells. Similar to Humanin treatment, overexpression of SH3BP5 inhibited AD-related neuronal death, while siRNA-mediated knockdown of endogenous SH3BP5 expression attenuated the neuroprotective effect of Humanin. These results indicate that SH3BP5 is a downstream effector of Humanin. Furthermore, biochemical analysis has revealed that SH3BP5 binds to JNK and directly inhibits JNK through its two putative mitogen-activated protein kinase interaction motifs (KIMs). PMID:23861391
Regulation of broad by the Notch pathway affects timing of follicle cell development
Jia, Dongyu; Tamori, Yoichiro; Pyrowolakis, George; Deng, Wu-Min
2014-01-01
During Drosophila oogenesis, activation of Notch signaling in the follicular epithelium (FE) around stage 6 of oogenesis is essential for entry into the endocycle and a series of other changes such as cell differentiation and migration of subsets of the follicle cells. Notch induces the expression of zinc finger protein Hindsight and suppresses homeodomain protein Cut to regulate the mitotic/endocycle (ME) switch. Here we report that broad (br), encoding a small group of zinc-finger transcription factors resulting from alternative splicing, is a transcriptional target of Notch nuclear effector Suppressor of Hairless (Su(H)). The early pattern of Br in the FE, uniformly expressed except in the polar cells, is established by Notch signaling around stage 6, through the binding of Su(H) to the br early enhancer (brE) region. Mutation of the Su(H) binding site leads to a significant reduction of brE reporter expression in follicle cells undergoing the endocycle. Chromatin immunoprecipitation results further confirm Su(H) binding to the br early enhancer. Consistent with its expression in follicle cells during midoogenesis, loss of br function results in a delayed entry into the endocycle. Our findings suggest an important role of br in the timing of follicle cell development, and its transcriptional regulation by the Notch pathway. PMID:24815210
Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.
Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok
2017-09-16
Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulated expression of the Ras effector Rin1 in forebrain neurons
Dzudzor, Bartholomew; Huynh, Lucia; Thai, Minh; Bliss, Joanne M.; Nagaoka, Yoshiko; Wang, Ying; Ch'ng, Toh Hean; Jiang, Meisheng; Martin, Kelsey C.; Colicelli, John
2009-01-01
The Ras effector Rin1 is induced concomitant with synaptogenesis in forebrain neurons, where it inhibits fear conditioning and amygdala LTP. In epithelial cells, lower levels of Rin1 orchestrate receptor endocytosis. A 945bp Rin1 promoter fragment was active in hippocampal neurons and directed accurate tissue-specific and temporal expression in transgenic mice. Regulated expression in neurons and epithelial cells was mediated in part by Snail transcriptional repressors: mutation of a conserved Snail site increased expression and endogenous Snai1 was detected at the Rin1 promoter. We also describe an element closely related to, but distinct from, the consensus site for REST, a master repressor of neuronal genes. Conversion to a consensus REST sequence reduced expression in both cell types. These results provide insight into regulated expression of a neuronal Ras effector, define a promoter useful in telencephalic neuron studies, and describe a novel REST site variant directing expression to mature neurons. PMID:19837165
2014-01-01
Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498
Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.
Kim, Moon-Soo; Kini, Anu Ganesh
2017-08-01
Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.
Lewis, Aurélia E.; Sommer, Lilly; Arntzen, Magnus Ø.; Strahm, Yvan; Morrice, Nicholas A.; Divecha, Nullin; D'Santos, Clive S.
2011-01-01
Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn = 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions. PMID:21048195
Role of Rac1 in Escherichia coli K1 invasion of human brain microvascular endothelial cells.
Rudrabhatla, Rajyalakshmi S; Selvaraj, Suresh K; Prasadarao, Nemani V
2006-02-01
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.
Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A
2016-10-17
CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rasoolizadeh, Aliyeh; Labbé, Caroline; Sonah, Humira; Deshmukh, Rupesh K; Belzile, François; Menzies, James G; Bélanger, Richard R
2018-05-30
Silicon (Si) is known to protect against biotrophic and hemibiotrophic plant pathogens; however, the mechanisms by which it exerts its prophylactic role remain unknown. In an attempt to obtain unique insights into the mode of action of Si, we conducted a full comparative transcriptomic analysis of soybean (Glycine max) plants and Phytophthora sojae, a hemibiotroph that relies heavily on effectors for its virulence. Supplying Si to inoculated plants provided a strong protection against P. sojae over the course of the experiment (21 day). Our results showed that the response of Si-free (Si - ) plants to inoculation was characterized early (4 dpi) by a high expression of defense-related genes, including plant receptors, which receded over time as the pathogen progressed into the roots. The infection was synchronized with a high expression of effectors by P. sojae, the nature of which changed over time. By contrast, the transcriptomic response of Si-fed (Si + ) plants was remarkably unaffected by the presence of P. sojae, and the expression of effector-coding genes by the pathogen was significantly reduced. Given that the apoplast is a key site of interaction between effectors and plant defenses and receptors in the soybean-P. sojae complex, as well as the site of amorphous-Si accumulation, our results indicate that Si likely interferes with the signaling network between P. sojae and the plant, preventing or decreasing the release of effectors reaching plant receptors, thus creating a form of incompatible interaction.
Uittenbogaard, Martine; Martinka, Debra L.; Johnson, Peter F.; Vinson, Charles; Chiaramello, Anne
2009-01-01
Expression of the bHLH transcription factor Nex1/MATH-2/NeuroD6, a member of the NeuroD subfamily, parallels overt neuronal differentiation and synaptogenesis during brain development. Our previous studies have shown that Nex1 is a critical effector of the NGF pathway and promotes neuronal differentiation and survival of PC12 cells in the absence of growth factors. In this study, we investigated the transcriptional regulation of the Nex1 gene during NGF-induced neuronal differentiation. We found that Nex1 expression is under the control of two conserved promoters, Nex1-P1 and Nex1-P2, located in two distinct non-coding exons. Both promoters are TATA-less with multiple transcription start sites, and are activated on NGF or cAMP exposure. Luciferase-reporter assays showed that the Nex1-P2 promoter activity is stronger than the Nex1-P1 promoter activity, which supports the previously reported differential expression levels of Nex1 transcripts throughout brain development. Using a combination of DNaseI footprinting, EMSA assays, and site-directed mutagenesis, we identified the essential regulatory elements within the first 2 kb of the Nex1 5′UTR. The Nex1-P1 promoter is mainly regulated by a conserved CRE element, whereas the Nex1-P2 promoter is under the control of a conserved C/EBP binding site. Overexpression of wild-type C/EBPβ resulted in increased Nex1-P2 promoter activity in NGF-differentiated PC12 cells. The fact that Nex1 is a target gene of C/EBPβ provides new insight into the C/EBP transcriptional cascade known to promote neurogenesis, while repressing gliogenesis. PMID:17075921
Figueroa-Romero, Claudia; Iñiguez-Lluhí, Jorge A.; Stadler, Julia; Chang, Chuang-Rung; Arnoult, Damien; Keller, Peter J.; Hong, Yu; Blackstone, Craig; Feldman, Eva L.
2009-01-01
Dynamin-related protein (Drp) 1 is a key regulator of mitochondrial fission and is composed of GTP-binding, Middle, insert B, and C-terminal GTPase effector (GED) domains. Drp1 associates with mitochondrial fission sites and promotes membrane constriction through its intrinsic GTPase activity. The mechanisms that regulate Drp1 activity remain poorly understood but are likely to involve reversible post-translational modifications, such as conjugation of small ubiquitin-like modifier (SUMO) proteins. Through a detailed analysis, we find that Drp1 interacts with the SUMO-conjugating enzyme Ubc9 via multiple regions and demonstrate that Drp1 is a direct target of SUMO modification by all three SUMO isoforms. While Drp1 does not harbor consensus SUMOylation sequences, our analysis identified2 clusters of lysine residues within the B domain that serve as noncanonical conjugation sites. Although initial analysis indicates that mitochondrial recruitment of ectopically expressed Drp1 in response to staurosporine is unaffected by loss of SUMOylation, we find that Drp1 SUMOylation is enhanced in the context of the K38A mutation. This dominant-negative mutant, which is deficient in GTP binding and hydrolysis, does not associate with mitochondria and prevents normal mitochondrial fission. This finding suggests that SUMOylation of Drp1 is linked to its activity cycle and is influenced by Drp1 localization.—Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C.-R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C., Feldman, E. L. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. PMID:19638400
Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora.
Castiblanco, Luisa F; Triplett, Lindsay R; Sundin, George W
2018-01-01
Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora .
Zhang, Lei; Davies, Laura J; Elling, Axel A
2015-01-01
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Regulation of 2-carboxyarabinitol 1-phosphatase.
Holbrook, G P; Galasinski, S C; Salvucci, M E
1991-11-01
The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A(0.5) value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A(0.5) was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased V(max) but did not appreciably alter K(m) (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a K(i) of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35 degrees C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30 degrees C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole.
Regulation of 2-Carboxyarabinitol 1-Phosphatase 1
Holbrook, Gabriel P.; Galasinski, Scott C.; Salvucci, Michael E.
1991-01-01
The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A0.5 value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A0.5 was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased Vmax but did not appreciably alter Km (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a Ki of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35°C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30°C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole. PMID:16668528
Determination of Rab5 activity in the cell by effector pull-down assay.
Qi, Yaoyao; Liang, Zhimin; Wang, Zonghua; Lu, Guodong; Li, Guangpu
2015-01-01
Rab5 targets to early endosomes and is a master regulator of early endosome fusion and endocytosis in all eukaryotic cells. Like other GTPases, Rab5 functions as a molecular switch by alternating between GTP-bound and GDP-bound forms, with the former being biologically active via interactions with multiple effector proteins. Thus the Rab5-GTP level in the cell reflects Rab5 activity in promoting endosome fusion and endocytosis and is indicative of cellular endocytic activity. In this chapter, we describe a Rab5 activity assay by using GST fusion proteins with the Rab5 effectors such as Rabaptin-5, Rabenosyn-5, and EEA1 that specifically bind to GTP-bound Rab5. We compare the efficiencies of the three GST fusion proteins in the pull-down of mammalian and fungal Rab5 proteins.
Jaouannet, Maëlle; Rosso, Marie-Noëlle
2013-09-01
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.
USDA-ARS?s Scientific Manuscript database
Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...
NASA Astrophysics Data System (ADS)
Pan, Jinhong
The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were identified as competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-induced diseases, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). Among those 13 compounds, compounds 3, 4 and 11 with novel druggable structural features, strongly bound to ctRAGE with Kd values reaching to 18, 2 and 2 nM, respectively. There were 28 quinoline acetamide analogues of compound 11, and 20 carbazole/benzimidazole/indole 1,3-diamino-2-propanol analogues of compounds 3 and 4 were selected for SAR study by 15N-HSQC NMR. Native tryptophan fluorescence titration studies quantified the binding affinity and confirmed that tryptophan is involved in this interaction. The binding affinity tests found 19 compounds binding to ctRAGE with nanomolar binding affinities. They would be developed into lead compounds for in vitro and in vivo studies. The site directed mutagenesis was adopted to verify the interaction mode, in which the amino acid residues at the binding sites (Q3 and Q6) were knocked out individually and replaced with one alanine, resulting in weaker binding to the selective small molecule inhibitors across these knock-out sites. Therefore, it is confirmed that the amino acid residues of ctRAGE, Q3, and Q6, were involved in binding with R24, R102, R108, R 166, R167 and R208. Mutation modeling verified the established binding models for ctRAGE-R25 and ctRAGE-compound 3. Mapping the binding sites by NMR and CYANA calculation which established three-dimensional structure models of the ctRAGE-compound 3 complex and the ctRAGE-R25 complex, found the interactions between ctRAGE and compound 3 take place at W2, Q3 and Q6, while the interactions between ctRAGE and R25 take place W2, Q3, Q6 and E11. Their binding sites overlap the binding sites of ctRAGE-DIAPH1, which results that these two inhibitors bind to ctRAGE by replacing DIAPH1, and thus inhibit RAGE signaling.
Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S
2014-05-29
Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.
2014-01-01
Background Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. Results We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Conclusions Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT. PMID:24884430
Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon
2017-04-01
Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.
den Hartog, Gerco; Jacobino, Shamir; Bont, Louis; Cox, Linda; Ulfman, Laurien H; Leusen, Jeanette H W; van Neerven, R J Joost
2014-01-01
Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins. To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV. ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated. bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV. The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.
Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M. F.; Downes, C. Peter; Batty, Ian H.
2012-01-01
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105–107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules. PMID:22493426
IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Miles J.; Gray, Alexander; Schenning, Martijn
2012-10-16
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those ofmore » the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.« less
X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornholdt, Zachary A.; Prasad, B.V. Venkataram
2009-04-08
The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less
Transcription factors as readers and effectors of DNA methylation.
Zhu, Heng; Wang, Guohua; Qian, Jiang
2016-08-01
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.
Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.
Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika
2013-05-17
Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.
Transcription factors as readers and effectors of DNA methylation
Zhu, Heng; Wang, Guohua; Qian, Jiang
2017-01-01
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease. PMID:27479905
Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan
2014-06-01
The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemčovičová, Ivana; Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava; Zajonc, Dirk M., E-mail: dzajonc@liai.org
2014-03-01
The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155more » as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host–receptor interactions are evolutionary conserved.« less
Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E
2008-01-18
Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.
Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition
Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily
2016-01-01
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040
Functions of galectins as 'self/non-self'-recognition and effector factors.
Vasta, Gerardo R; Feng, Chiguang; González-Montalbán, Nuria; Mancini, Justin; Yang, Lishi; Abernathy, Kelsey; Frost, Graeme; Palm, Cheyenne
2017-07-31
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations
Weinkam, Patrick; Sali, Andrej
2014-01-01
Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820
Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia
2013-01-01
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714
Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity
Heidrich, Katharina; Tsuda, Kenichi; Blanvillain-Baufumé, Servane; Wirthmueller, Lennart; Bautor, Jaqueline; Parker, Jane E.
2013-01-01
In plant effector-triggered immunity (ETI), intracellular nucleotide binding-leucine rich repeat (NLR) receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll-Interleukin-1 receptor domain)-NLR (denoted TNL) gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst) strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4, and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal “WRKY” transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4Ws/RRS1Ws allelic pair governs resistance to Pst/AvrRps4 accompanied by host programed cell death (pcd). In accession Col-0, RPS4Col/RRS1Col effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4Col (in a 35S:RPS4-HS line) confers temperature-conditioned EDS1-dependent auto-immunity. Here we show that a high (28°C, non-permissive) to moderate (19°C, permissive) temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4Col auto-immunity depends entirely on EDS1 and partially on RRS1Col. Examination of gene expression microarray data over 24 h after temperature shift reveals a mainly quantitative RRS1Col contribution to up- or down-regulation of a small subset of RPS4Col-reprogramed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1Col contributes to temperature-conditioned RPS4Col auto-immunity and are consistent with activated RPS4Col engaging RRS1Col for resistance signaling. PMID:24146667
2013-05-28
uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env... vaccine re- cipients in the case control study. There was a significantly greater number of infected vaccinees with IgA/IgG ratio >1e-02 (A1 Congp140 Env... vaccine efficacy. Second, we demonstrated that IgA mAbs isolated from RV144 vaccinees can both inhibit Env binding and block ADCC function of vaccine
Peng, Hsuan-Chieh; Hicks, Glenn R.; Kaloshian, Isgouhi
2016-01-01
Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261
The Oncogenic Role of RhoGAPs in Basal-Like Breast Cancer
2016-04-01
somatic mutations of RhoA in peripheral T cell lymphomas (PTCLs) (16-18) and in diffuse-type gastric carcinomas (19-21). Surprisingly, unlike Rac1...Diffuse-type gastric cancers exhibited mutations in the effector binding domain of RhoA, most commonly Y42C (19-21), which prevents binding to the...Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas . Nat Genet 2014;46
Functional Domains of the TOL Plasmid Transcription Factor XylS
Kaldalu, Niilo; Toots, Urve; de Lorenzo, Victor; Ustav, Mart
2000-01-01
The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions. PMID:10648539
Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N.; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola
2013-01-01
Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors. PMID:23383002
Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E
2011-07-15
Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.
Mesarich, Carl H.; Rees-George, Jonathan; Gardner, Paul P.; Ghomi, Fatemeh Ashari; Gerth, Monica L.; Andersen, Mark T.; Rikkerink, Erik H. A.; Fineran, Peter C.
2017-01-01
Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a ‘phenotype of interest’ (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with ‘Fuzzy-Spreader’-like morphologies were also identified through a visual screen. The second, a ‘mutant of interest’ (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA-binding proteins or by the architecture of the nucleoid. PMID:28249011
2015-01-01
Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (β) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the β subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the β subunit to the active site of α. PMID:26727048
Cooper, Colin A; Zhang, Kun; Andres, Sara N; Fang, Yuan; Kaniuk, Natalia A; Hannemann, Mandy; Brumell, John H; Foster, Leonard J; Junop, Murray S; Coombes, Brian K
2010-02-05
Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.
Flaugnatti, Nicolas; Le, Thi Thu Hang; Canaan, Stéphane; Aschtgen, Marie-Stéphanie; Nguyen, Van Son; Blangy, Stéphanie; Kellenberger, Christine; Roussel, Alain; Cambillau, Christian; Cascales, Eric; Journet, Laure
2016-03-01
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath-like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero-aggregative Escherichia coli Sci-1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self-protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C-terminal extension domain of VgrG1, including a transthyretin-like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C-terminus of VgrG proteins. © 2015 John Wiley & Sons Ltd.
GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.
Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide
2015-01-01
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Nicaise, Valerie; Joe, Anna; Jeong, Byeong-ryool; Korneli, Christin; Boutrot, Freddy; Westedt, Isa; Staiger, Dorothee; Alfano, James R; Zipfel, Cyril
2013-03-06
Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.
A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering
Sanjana, Neville E.; Cong, Le; Zhou, Yang; Cunniff, Margaret M.; Feng, Guoping; Zhang, Feng
2013-01-01
Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA binding proteins found in the plant pathogen Xanthomonas sp. The DNA binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within one week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using, respectively, qRT-PCR and Surveyor nuclease. The TALE toolbox described here will enable a broad range of biological applications. PMID:22222791
Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred
2015-02-01
Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J.; Salomon, Arthur R.
2012-01-01
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway. PMID:23071622
Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J; Salomon, Arthur R
2012-01-01
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.
ZNF750 is a p63 Target Gene that Induces KLF4 to Drive Terminal Epidermal Differentiation
Sen, George L.; Boxer, Lisa D.; Webster, Dan E.; Bussat, Rose T.; Qu, Kun; Zarnegar, Brian J.; Johnston, Danielle; Siprashvili, Zurab; Khavari, Paul A.
2012-01-01
SUMMARY Disrupted epidermal differentiation characterizes numerous diseases that impact >25% of the population. In a search for dominant mediators of differentiation, we defined a requirement for ZNF750 in terminal epidermal differentiation. ZNF750 controlled genes mutated in numerous human skin diseases, including FLG, LOR, LCE3B, ALOXE3, and SPINK5. ZNF750 induced progenitor differentiation via an evolutionarily conserved C2H2 zinc finger motif. The epidermal master regulator, p63, bound the ZNF750 promoter and was necessary for its induction. ZNF750 restored differentiation to p63-deficient tissue, suggesting it acts downstream of p63. A search for functionally important ZNF750 targets via analysis of ZNF750-regulated genes identified KLF4, a transcription factor that activates late epidermal differentiation. ZNF750 binds to KLF4 at multiple sites flanking the transcriptional start site and controls its expression. ZNF750 thus directly links a tissue-specifying factor, p63, to an effector of terminal differentiation, KLF4, and represents a potential future target for disorders of this process. PMID:22364861
Allosteric Inhibition via R-state Destabilization in ATP Sulfurylase from Penicillium chrysogenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, I. J.
2002-01-01
The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 {angstrom} resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 {angstrom} movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition bymore » destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.« less
Bantug, Glenn R; Fischer, Marco; Grählert, Jasmin; Balmer, Maria L; Unterstab, Gunhild; Develioglu, Leyla; Steiner, Rebekah; Zhang, Lianjun; Costa, Ana S H; Gubser, Patrick M; Burgener, Anne-Valérie; Sauder, Ursula; Löliger, Jordan; Belle, Réka; Dimeloe, Sarah; Lötscher, Jonas; Jauch, Annaïse; Recher, Mike; Hönger, Gideon; Hall, Michael N; Romero, Pedro; Frezza, Christian; Hess, Christoph
2018-03-20
Glycolysis is linked to the rapid response of memory CD8 + T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8 + T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8 + T cells to rapidly acquire effector function. Copyright © 2018 Elsevier Inc. All rights reserved.
Moore, Gregory L; Chen, Hsing; Karki, Sher
2010-01-01
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens. PMID:20150767
Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng
2014-04-01
Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.
Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection.
Coursey, Tami; Milutinovic, Milica; Regedanz, Elizabeth; Brkljacic, Jelena; Bisaro, David M
2018-06-06
Histone post-translational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 and 3 (EML1 and EML3), which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible ( eml1 ) and tolerant ( eml3 ) responses to CaLCuV infection, and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Further, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting. IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter chromatin structure or activity. In this study, CaLCuV was used to characterize the activities of two Arabidopsis Agenet domain histone readers, EML1 and EML3. We show that eml1 mutants are hypersusceptible to CaLCuV, whereas eml3 plants are more tolerant of infection than wild type plants. We also demonstrate that EML1 and EML3 associate with histones and viral chromatin in planta , and that both proteins bind peptides containing H3K36, a PTM associated with active gene expression. Consistent with antiviral activity, EML1 suppresses CaLCuV gene expression and reduces Pol II access to viral chromatin. By linking EML1 and EML3 to pathogenesis, these studies have expanded our knowledge of histone reader proteins and uncovered an additional level of viral chromatin regulation. Copyright © 2018 American Society for Microbiology.
Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I
2017-05-01
Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target. Copyright © 2017 Elsevier Ltd. All rights reserved.
Newer Gene Editing Technologies toward HIV Gene Therapy
Manjunath, N.; Yi, Guohua; Dang, Ying; Shankar, Premlata
2013-01-01
Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy. PMID:24284874
Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors.
Thakore, Pratiksha I; Gersbach, Charles A
2016-01-01
Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.
Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael
2013-01-01
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53–Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4–Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53–Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity. PMID:23564203
Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael
2013-06-01
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less
Matthews, Lindsay A.; Selvaratnam, Rajeevan; Jones, Darryl R.; Akimoto, Madoka; McConkey, Brendan J.; Melacini, Giuseppe; Duncker, Bernard P.; Guarné, Alba
2014-01-01
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules. PMID:24285546
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation.
Rathi, Preeti; Maurer, Sara; Summerer, Daniel
2018-06-05
The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N 4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).
Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila.
Hing, H; Xiao, J; Harden, N; Lim, L; Zipursky, S L
1999-06-25
The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.
Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment
Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.
2015-01-01
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704
Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.
Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J
2015-01-01
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.
Chakravorty, David; Trusov, Yuri; Botella, José Ramón
2012-03-01
Heterotrimeric G proteins are integral components of signal transduction in humans and other mammals and have been therefore extensively studied. However, while they are known to mediate many processes, much less is currently known about the effector pathways and molecular mechanisms used by these proteins to regulate effectors in plants. We designed a complementation strategy to study G protein signaling in Arabidopsis thaliana, particularly the mechanism of action of AGB1, the sole identified β subunit. We used biochemical and effector regulation data from human G protein studies to identify four potentially important residues for site-directed mutagenesis (T65, M111, D250 and W361 of AGB1). Each residue was individually mutated and the resulting mutated protein introduced in the agb1-2 mutant background under the control of the native AGB1 promoter. Interestingly, even though these mutations have been shown to have profound effects on effector signaling in humans, all the mutated subunits were able to restore thirteen of the fifteen Gβ-deficient phenotypes characterized in this study. Only one mutated protein, T65A was unable to complement the hypersensitivity to mannitol during germination observed in agb1 mutants; while only D250A failed to restore lateral root numbers in the agb1 mutant to wild-type levels. Our results suggest that the mechanisms used in mammalian G protein signaling are not well conserved in plant G protein signaling, and that either the effectors used by plant G proteins, or the mechanisms used to activate them, are at least partially divergent from the well-studied mammalian G proteins.
Guidotti, A; Forchetti, C M; Corda, M G; Konkel, D; Bennett, C D; Costa, E
1983-01-01
A brain polypeptide termed diazepam-binding inhibitor (DBI) and thought to be chemically and functionally related to the endogenous effector of the benzodiazepine recognition site was purified to homogeneity. This peptide gives a single band of protein on NaDodSO4 and acidic urea gel electrophoresis. A single UV-absorbing peak was obtained by HPLC using three different columns and solvent systems. DBI has a molecular mass of approximately equal to 11,000 daltons. Carboxyl-terminus analysis shows that tyrosine is the only residue while the amino-terminus was blocked. Cyanogen bromide treatment of DBI yields three polypeptide fragments, and the sequences of two of them have been determined for a total of 45 amino acids. DBI is a competitive inhibitor for the binding of [3H]diazepam, [3H]flunitrazepam, beta-[3H]carboline propyl esters, and 3H-labeled Ro 15-1788. The Ki for [3H]-diazepam and beta-[3H]carboline binding were 4 and 1 microM, respectively. Doses of DBI that inhibited [3H]diazepam binding by greater than 50% fail to change [3H]etorphine, gamma-amino[3H]butyric acid, [3H]-quinuclidinyl benzilate, [3H]dihydroalprenolol, [3H]adenosine, and [3H]imipramine binding tested at their respective Kd values. DBI injected intraventricularly at doses of 5-10 nmol completely reversed the anticonflict action of diazepam on unpunished drinking and, similar to the anxiety-inducing beta-carboline derivative FG 7142 (beta-carboline-3-carboxylic acid methyl ester), facilitated the shock-induced suppression of drinking by lowering the threshold for this response. Images PMID:6304714
Granovsky, A E; Artemyev, N O
2000-12-29
Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.
Ruh, Mylène; Briand, Martial; Bonneau, Sophie; Jacques, Marie-Agnès; Chen, Nicolas W G
2017-08-30
Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages.
Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.
Layman, Awo A K; Oliver, Paula M
2016-05-15
The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function. Copyright © 2016 by The American Association of Immunologists, Inc.
Ruiz, Federico M; Scholz, Barbara A; Buzamet, Eliza; Kopitz, Jürgen; André, Sabine; Menéndez, Margarita; Romero, Antonio; Solís, Dolores; Gabius, Hans-Joachim
2014-03-01
Natural amino acid substitution by single-site nucleotide polymorphism can become a valuable tool for structure-activity correlations, especially if evidence for association to disease parameters exists. Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of this family of cellular effectors. We apply a strategically combined set of structural and cell biological techniques for comparing properties of the wild-type and variant proteins. The overall hydrodynamic behavior of the full-length protein and of the separate N-domain is not noticeably altered, but displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further comparison of the influence on proliferation, the variant proved to be more active as growth regulator in the six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle structural change identified here thus has functional implications in vitro, encouraging further analysis in autoimmune regulation and, in a broad context, in work with other natural single-site variants, using the documented combined strategy. The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein Data Bank. © 2014 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovinger, D.M.; White, G.; Weight, F.F.
1990-02-26
Recent studies indicate that intoxicating concentrations of EtOH inhibit neuronal responses to activation of NMDA-type glutamate receptors. The authors have observed that the potency of different alcohols for inhibiting NMDA-activated ion current in hippocampal neurons increases as a function of increasing hydrophobicity, suggesting that EtOH acts at a hydrophobic site. To further characterize the mechanisms of this effect, the authors examined the voltage-dependence of the EtOH inhibition of NMDA-activated ion current as well as potential interactions of EtOH with other effectors of the NMDA receptor/ionophore complex. The amount of inhibition of peak NMDA-activated current by 50 mM EtOH did notmore » differ over a range of membrane potentials from {minus}60 to +60 mV, and EtOH did not alter the reversal potential of NMDA-activated current. The percent inhibition observed in the presence of 10-100 mM EtOH did not differ with NMDA concentrations from 10-100 {mu}M. The percent inhibition by 50 mM EtOH (30-48%) did not differ in the absence or presence of the channel blockers Mg{sup 2+} (50-500 {mu}M), Zn{sup 2+} (5 and 20 {mu}M) or ketamine (2 and 10 {mu}M), or with increasing concentrations of the NMDA receptor cofactor glycine (0.01-1 {mu}M). These data indicate that: (i) EtOH does not change the ion selectivity of the ionophore, and (ii) EtOH does not appear to interact with previously described binding sites on the NMDA receptor/ionophore complex.« less
Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido
2018-05-21
The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas species and elucidate evolution of the Xanthomonas euvesicatoria xopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multi-domains gene into two ORFs that conserved the original domain function. Analysis of xopAE 85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE 85-10 is an XL-box E3 ubiquitin ligase and provide insights into structure and function of this effector family. Copyright © 2018 American Society for Microbiology.
Piekarska, B; Roterman, I; Rybarska, J; Koniczny, L; Kaszuba, J
1994-03-01
The nature of structural changes in IgG molecules associated with the binding to antigen and/or heat aggregation was studied using bis azo dye (Congo Red) as the specific probe. It was found, that protein conformation responsible for binding the dye represents an unfolding intermediate with properties corresponding to a molten globule state. The properties of the dye-protein complex reveal the signs of an unfolding of the peptide chain with simultaneously preserved relatively compact packing. Immunoglobulins which were induced by heating, or binding to antigen in order to form the complex with dye ligands, become more susceptible for digestion. The main peptide of molecular weight 30,000 D which appears in products was suggested to originate from a heavy chain after its splitting in the region of CH1 domain. The energetic evaluation of stability of IgG domains also indicates that CH1 is the least stable fragment of the heavy chain and its conformation may be destabilized first. It was concluded that destabilized tertiary packing of antibodies bound to antigen may favour the association of closely situated immunoglobulin molecules increasing the stability of the immune complex and influencing in the result its effector activity.
MSE55, a Cdc42 effector protein, induces long cellular extensions in fibroblasts
Burbelo, Peter D.; Snow, Dianne M.; Bahou, Wadie; Spiegel, Sarah
1999-01-01
Cdc42 is a member of the Rho GTPase family that regulates multiple cellular activities, including actin polymerization, kinase-signaling activation, and cell polarization. MSE55 is a nonkinase CRIB (Cdc42/Rac interactive-binding) domain-containing molecule of unknown function. Using glutathione S-transferase-capture experiments, we show that MSE55 binds to Cdc42 in a GTP-dependent manner. MSE55 binding to Cdc42 required an intact CRIB domain, because a MSE55 CRIB domain mutant no longer interacted with Cdc42. To study the function of MSE55 we transfected either wild-type MSE55 or a MSE55 CRIB mutant into mammalian cells. In Cos-7 cells, wild-type MSE55 localized at membrane ruffles and increased membrane actin polymerization, whereas expression of the MSE55 CRIB mutant showed fewer membrane ruffles. In contrast to these results, MSE55 induced the formation of long, actin-based protrusions in NIH 3T3 cells as detected by immunofluorescence and live-cell video microscopy. MSE55-induced protrusion formation was blocked by expression of dominant-negative N17Cdc42, but not by expression of dominant-negative N17Rac. These findings indicate that MSE55 is a Cdc42 effector protein that mediates actin cytoskeleton reorganization at the plasma membrane. PMID:10430899
Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa
2014-04-15
The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.
SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells.
Stephen, Tom L; Payne, Kyle K; Chaurio, Ricardo A; Allegrezza, Michael J; Zhu, Hengrui; Perez-Sanz, Jairo; Perales-Puchalt, Alfredo; Nguyen, Jenny M; Vara-Ailor, Ana E; Eruslanov, Evgeniy B; Borowsky, Mark E; Zhang, Rugang; Laufer, Terri M; Conejo-Garcia, Jose R
2017-01-17
Despite the importance of programmed cell death-1 (PD-1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT-rich sequence-binding protein-1 (Satb1) restrains PD-1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40-fold increase in PD-1 expression. Tumor-derived transforming growth factor β (Tgf-β) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1-NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1-mediated repression, Satb1-deficient tumor-reactive T cells lost effector activity more rapidly than wild-type lymphocytes at tumor beds expressing PD-1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor-infiltrating T cells results in diminished anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.
Sayyed-Ahmad, Abdallah; Cho, Kwang-Jin; Hancock, John F; Gorfe, Alemayehu A
2016-08-25
Dimer formation is believed to have a substantial impact on regulating K-Ras function. However, the evidence for dimerization and the molecular details of the process are scant. In this study, we characterize a K-Ras pseudo-C2-symmetric dimerization interface involving the effector interacting β2-strand. We used structure matching and all-atom molecular dynamics (MD) simulations to predict, refine, and investigate the stability of this interface. Our MD simulation suggested that the β2-dimer is potentially stable and remains relatively close to its initial conformation due to the presence of a number of hydrogen bonds, ionic salt bridges, and other favorable interactions. We carried out potential of mean force calculations to determine the relative binding strength of the interface. The results of these calculations indicated that the β2 dimerization interface provides a weak binding free energy in solution and a dissociation constant that is close to 1 mM. Analyses of Brownian dynamics simulations suggested an association rate kon ≈ 10(5)-10(6) M(-1) s(-1). Combining these observations with available literature data, we propose that formation of auto-inhibited β2 K-Ras dimers is possible but its fraction in cells is likely very small under normal physiologic conditions.
Shan, Qiang; Xue, Hai-Hui; Harty, John T.
2017-01-01
Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM) and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM) provide robust protection in a variety of infectious models. TRM rapidly ‘sense’ infection in non-lymphoid tissues and ‘alarm’ the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production) intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their ‘sensing and alarming’ functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9) on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM antigen recognition. Thus, sepsis has the capacity to alter skin TRM anamnestic responses without directly impacting TRM number and/or function, an observation that helps to further define the immunoparalysis phase in sepsis survivors. PMID:28910403
Luo, Lin; Tong, Samuel J; Wall, Adam A; Khromykh, Tatiana; Sweet, Matthew J; Stow, Jennifer L
2017-07-01
Protein tyrosine phosphorylation guides many molecular interactions for cellular functions. SCIMP is a transmembrane adaptor protein (TRAP) family member that mediates selective proinflammatory cytokine responses generated by pathogen-activated Toll-like receptor (TLR) pathways in macrophages. TLR activation triggers SCIMP phosphorylation and selective phosphorylation of distinct tyrosine residues on this adaptor offers the potential for regulating or biasing inflammatory responses. To analyze site-specific phosphorylation events, we developed three probes based on the SH2 domains of known SCIMP effectors, and used them for pull-downs from macrophage extracts. CRISPR-mediated SCIMP-deficient RAW264.7 macrophage-like cells were reconstituted with various phosphorylation-deficient (Y58F, Y96F, Y120F) SCIMPs, and used to demonstrate the specificity of LPS/TLR4-induced, site-specific phosphorylation of SCIMP for the temporal recruitment of the effectors Grb2, Csk and SLP65. Our findings reveal potential for differential SCIMP phosphorylation and specific effectors to influence TLR signaling and inflammatory programs. Furthermore, the use of Csk-SH2 pull-downs to identify additional known and new Csk targets in LPS-activated macrophages reveals the wider utility of our SH2 probes.
Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding
NASA Astrophysics Data System (ADS)
Sarvazyan, Noune A.; Neubig, Richard R.
1998-05-01
We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.
Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors.
Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois
We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.
Lamers, Ideke J C; Reijnders, Margot R F; Venselaar, Hanka; Kraus, Alison; Jansen, Sandra; de Vries, Bert B A; Houge, Gunnar; Gradek, Gyri Aasland; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; van der Burgt, Ineke; Pfundt, Rolph; Letteboer, Stef J F; van Beersum, Sylvia E C; Dusseljee, Simone; Brunner, Han G; Doherty, Dan; Kleefstra, Tjitske; Roepman, Ronald
2017-11-02
The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors
Thakore, Pratiksha I.; Gersbach, Charles A.
2016-01-01
Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy. PMID:26443215
Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit
2016-04-01
Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Mekler, Vladimir; Minakhin, Leonid; Semenova, Ekaterina; Kuznedelov, Konstantin; Severinov, Konstantin
2016-01-01
CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3′-terminal segments. This result implies that the 3′-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3′-terminal stem loops leads to reduced activity during genomic editing. PMID:26945042
A type III effector antagonizes death receptor signalling during bacterial gut infection.
Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L
2013-09-12
Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.
TBC-8, a putative RAB-2 GAP, regulates dense core vesicle maturation in Caenorhabditis elegans.
Hannemann, Mandy; Sasidharan, Nikhil; Hegermann, Jan; Kutscher, Lena M; Koenig, Sabine; Eimer, Stefan
2012-01-01
Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2-specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation.
Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A; Koller, Antonius; Strowig, Till; Flavell, Richard A; Brodsky, Igor E; Bliska, James B
2014-07-01
YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert caspase-1-dependent responses through the action of effector proteins. For example, the Yersinia effector YopM inhibits caspase-1 activation by arresting inflammasome formation. This caspase-1 inhibitory activity has been studied in a specific YopM isoform, and in this case, the protein was shown to act as a pseudosubstrate to bind and inhibit caspase-1. Different Yersinia strains encode distinct YopM isoforms, many of which lack the pseudosubstrate motif. We studied additional isoforms and found that these YopM proteins inhibit caspase-1 activation independently of a pseudosubstrate motif. We also identified IQGAP1 as a novel binding partner of the Yersinia pestis YopM(KIM) isoform and demonstrated that IQGAP1 is important for caspase-1 activation in macrophages infected with Yersinia. Thus, this study reveals new insights into inflammasome regulation during Yersinia infection. Copyright © 2014 Chung et al.
Live cell imaging of phosphoinositide dynamics during Legionella infection.
Weber, Stephen; Hilbi, Hubert
2014-01-01
The "accidental" pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia; ...
2016-10-13
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis
Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.
2013-01-01
SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840
Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.
Konermann, Silvana; Lotfy, Peter; Brideau, Nicholas J; Oki, Jennifer; Shokhirev, Maxim N; Hsu, Patrick D
2018-04-19
Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development. Copyright © 2018 Elsevier Inc. All rights reserved.
Webb, Claire; Upadhyay, Abhishek; Giuntini, Francesca; Eggleston, Ian; Furutani-Seiki, Makoto; Ishima, Rieko; Bagby, Stefan
2011-04-26
The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT.
The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function.
Mohr, Juliane; Dash, Banaja P; Schnoeder, Tina M; Wolleschak, Denise; Herzog, Carolin; Tubio Santamaria, Nuria; Weinert, Sönke; Godavarthy, Sonika; Zanetti, Costanza; Naumann, Michael; Hartleben, Björn; Huber, Tobias B; Krause, Daniela S; Kähne, Thilo; Bullinger, Lars; Heidel, Florian H
2018-05-01
Cell fate determinants influence self-renewal potential of hematopoietic stem cells. Scribble and Llgl1 belong to the Scribble polarity complex and reveal tumor-suppressor function in drosophila. In hematopoietic cells, genetic inactivation of Llgl1 leads to expansion of the stem cell pool and increases self-renewal capacity without conferring malignant transformation. Here we show that genetic inactivation of its putative complex partner Scribble results in functional impairment of hematopoietic stem cells (HSC) over serial transplantation and during stress. Although loss of Scribble deregulates transcriptional downstream effectors involved in stem cell proliferation, cell signaling, and cell motility, these effectors do not overlap with transcriptional targets of Llgl1. Binding partner analysis of Scribble in hematopoietic cells using affinity purification followed by mass spectometry confirms its role in cell signaling and motility but not for binding to polarity modules described in drosophila. Finally, requirement of Scribble for self-renewal capacity also affects leukemia stem cell function. Thus, Scribble is a regulator of adult HSCs, essential for maintenance of HSCs during phases of cell stress.
Transcription factor-based biosensors enlightened by the analyte
Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel
2015-01-01
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047
Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE.
Sun, Qingxiang; Yong, Xin; Sun, Xiaodong; Yang, Fan; Dai, Zhonghua; Gong, Yanqiu; Zhou, Liming; Zhang, Xia; Niu, Dawen; Dai, Lunzhi; Liu, Jia-Jia; Jia, Da
2017-01-01
The endosomal trafficking pathways are essential for many cellular activities. They are also important targets by many intracellular pathogens. Key regulators of the endosomal trafficking include the retromer complex and sorting nexins (SNXs). Chlamydia trachomatis effector protein IncE directly targets the retromer components SNX5 and SNX6 and suppresses retromer-mediated transport, but the exact mechanism has remained unclear. We present the crystal structure of the PX domain of SNX5 in complex with IncE, showing that IncE binds to a highly conserved hydrophobic groove of SNX5. The unique helical hairpin of SNX5/6 is essential for binding, explaining the specificity of SNX5/6 for IncE. The SNX5/6-IncE interaction is required for cellular localization of IncE and its inhibitory function. Mechanistically, IncE inhibits the association of CI-MPR cargo with retromer-containing endosomal subdomains. Our study provides new insights into the regulation of retromer-mediated transport and illustrates the intricate competition between host and pathogens in controlling cellular trafficking.
Transcription factor-based biosensors enlightened by the analyte.
Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel
2015-01-01
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Bogers, Willy M.; Yates, Nicole L.; Ferrari, Guido; Dey, Antu K.; Williams, William T.; Jaeger, Frederick H.; Wiehe, Kevin; Sawant, Sheetal; Alam, S. Munir; LaBranche, Celia C.; Montefiori, David C.; Martin, Loic; Srivastava, Indresh; Heeney, Jonathan; Barnett, Susan W.
2017-01-01
ABSTRACT Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions. IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization. PMID:28490585
Structure activity relationship of synaptic and junctional neurotransmission.
Goyal, Raj K; Chaudhury, Arun
2013-06-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. Published by Elsevier B.V.
Structure activity relationship of synaptic and junctional neurotransmission
Goyal, Raj K; Chaudhury, Arun
2013-01-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140
Reinartz, Michael T; Kälble, Solveig; Wainer, Irving W; Seifert, Roland
2015-05-01
The specific interaction between G-protein-coupled receptors and ligand is the starting point for downstream signaling. Fenoterol stereoisomers were successfully used to probe ligand-specific activation (functional selectivity) of the β2-adrenoceptor (β2AR) (Reinartz et al. 2015). In the present study, we extended the pharmacological profile of fenoterol stereoisomers using β2AR-Gsα fusion proteins in agonist and antagonist competition binding assays. Dissociations between binding affinities and effector potencies were found for (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol. Our data corroborate former studies on the importance of the aminoalkyl moiety of fenoterol derivatives for functional selectivity.
Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.
2016-01-01
Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824
Shantharaj, Deepak; Römer, Patrick; Figueiredo, Jose F L; Minsavage, Gerald V; Krönauer, Christina; Stall, Robert E; Moore, Gloria A; Fisher, Latanya C; Hu, Yang; Horvath, Diana M; Lahaye, Thomas; Jones, Jeffrey B
2017-09-01
Xanthomonas citri ssp. citri (X. citri), causal agent of citrus canker, uses transcription activator-like effectors (TALEs) as major pathogenicity factors. TALEs, which are delivered into plant cells through the type III secretion system (T3SS), interact with effector binding elements (EBEs) in host genomes to activate the expression of downstream susceptibility genes to promote disease. Predictably, TALEs bind EBEs in host promoters via known combinations of TALE amino acids to DNA bases, known as the TALE code. We introduced 14 EBEs, matching distinct X. citri TALEs, into the promoter of the pepper Bs3 gene (ProBs3 1EBE ), and fused this engineered promoter with multiple EBEs (ProBs3 14EBE ) to either the β-glucuronidase (GUS) reporter gene or the coding sequence (cds) of the pepper gene, Bs3. TALE-induced expression of the Bs3 cds in citrus leaves resulted in no visible hypersensitive response (HR). Therefore, we utilized a different approach in which ProBs3 1EBE and ProBs3 14EBE were fused to the Xanthomonas gene, avrGf1, which encodes a bacterial effector that elicits an HR in grapefruit and sweet orange. We demonstrated, in transient assays, that activation of ProBs3 14EBE by X. citri TALEs is T3SS dependent, and that the expression of AvrGf1 triggers HR and correlates with reduced bacterial growth. We further demonstrated that all tested virulent X. citri strains from diverse geographical locations activate ProBs3 14EBE . TALEs are essential for the virulence of X. citri strains and, because the engineered promoter traps are activated by multiple TALEs, this concept has the potential to confer broad-spectrum, durable resistance to citrus canker in stably transformed plants. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Mengistu, Meron; Ray, Krishanu; Lewis, George K; DeVico, Anthony L
2015-03-01
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Alex J; Song, Jikui; Cheung, Peggie
The recognition of distinctly modified histones by specialized 'effector' proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1 - a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing - contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present withinmore » diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier-Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1-H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.« less
Wawra, Stephan; Djamei, Armin; Albert, Isabell; Nürnberger, Thorsten; Kahmann, Regine; van West, Pieter
2013-05-01
Plant-pathogenic oomycetes have a large set of secreted effectors that can be translocated into their host cells during infection. One group of these effectors are the RxLR effectors for which it has been shown, in a few cases, that the RxLR motif is important for their translocation. It has been suggested that the RxLR-leader sequences alone are enough to translocate the respective effectors into eukaryotic cells through binding to surface-exposed phosphoinositol-3-phosphate. These conclusions were primary based on translocation experiments conducted with recombinant fusion proteins whereby the RxLR leader of RxLR effectors (i.e., Avr1b from Phytophthora sojae) were fused to the green fluorescent protein reporter-protein. However, we failed to observe specific cellular uptake for a comparable fusion protein where the RxLR leader of the P. infestans AVR3a was fused to monomeric red fluorescent protein. Therefore, we reexamined the ability of the reported P. sojae AVR1b RxLR leader to enter eukaryotic cells. Different relevant experiments were performed in three independent laboratories, using fluorescent reporter fusion constructs of AVR3a and Avr1b proteins in a side-by-side comparative study on plant tissue and human and animal cells. We report that we were unable to obtain conclusive evidence for specific RxLR-mediated translocation.
The Novel Poly(A) Polymerase Star-PAP is a Signal-Regulated Switch at the 3′-end of mRNAs
Li, Weimin; Laishram, Rakesh S.; Anderson, Richard A.
2013-01-01
The mRNA 3′-untranslated region (3′-UTR) modulates message stability, transport, intracellular location and translation. We have discovered a novel nuclear poly(A) polymerase termed Star-PAP (nuclear speckle targeted PIPKIα regulated-poly(A) polymerase) that couples with the transcriptional machinery and is regulated by the phosphoinositide lipid messenger phosphatidylinositol-4,5-bisphosphate (PI4,5P2), the central lipid in phosphoinositide signaling. PI4,5P2 is generated primarily by type I phosphatidylinositol phosphate kinases (PIPKI). Phosphoinositides are present in the nucleus including at nuclear speckles compartments separate from known membrane structures. PIPKs regulate cellular functions by interacting with PI4,5P2 effectors where PIPKs generate PI4,5P2 that then modulates the activity of the associated effectors. Nuclear PIPKIα interacts with and regulates Star-PAP, and PI4,5P2 specifically activates Star-PAP in a gene- and signaling-dependent manner. Importantly, other select signaling molecules integrated into the Star-PAP complex seem to regulate Star-PAP activities and processivities toward RNA substrates, and unique sequence elements around the Star-PAP binding sites within the 3′-UTR of target genes contribute to Star-PAP specificity for processing. Therefore, Star-PAP and its regulatory molecules form a signaling nexus at the 3′-end of target mRNAs to control the expression of select group of genes including the ones involved in stress responses. PMID:23306079
Holub, Jan; Vantomme, Ghislaine; Lehn, Jean-Marie
2016-09-14
Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes.
Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang
2012-01-01
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945
Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang
2012-07-27
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.
Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor
Landry, Mélissa; Pomerleau, Véronique; Saucier, Caroline
2016-01-01
Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure–function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met–p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc–Grb2–Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor. PMID:27048591
Biegel, Jason M; Henderson, Eric; Cox, Erica M; Bonenfant, Gaston; Netzband, Rachel; Kahn, Samantha; Eager, Rachel; Pager, Cara T
2017-07-01
Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication. Because DDX6 is an effector protein of the microRNA pathway, we also investigated its role in miR-122-directed HCV gene expression. Similar to sequestering miR-122, depletion of DDX6 modulated HCV RNA stability. Interestingly, miR-122-HCV RNA interaction assays with mutant HCV genomes sites and compensatory exogenous miR-122 showed that DDX6 affects the function of miR-122 at one particular binding site. We propose that DDX6 facilitates the miR-122 interaction with HCV 5' UTR, which is necessary for stabilizing the viral genome and the switch between translation and replication. Copyright © 2017 Elsevier Inc. All rights reserved.
An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters
Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong
2015-01-01
Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters. PMID:26714171
Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses
Boesch, Austin W.; Osei-Owusu, Nana Yaw; Crowley, Andrew R.; Chu, Thach H.; Chan, Ying N.; Weiner, Joshua A.; Bharadwaj, Pranay; Hards, Rufus; Adamo, Mark E.; Gerber, Scott A.; Cocklin, Sarah L.; Schmitz, Joern E.; Miles, Adam R.; Eckman, Joshua W.; Belli, Aaron J.; Reimann, Keith A.; Ackerman, Margaret E.
2016-01-01
Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies. PMID:28018355
An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.
Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong
2015-12-01
Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.
Dalio, Ronaldo José Durigan; Máximo, Heros José; Oliveira, Tiago Silva; Azevedo, Thamara de Medeiros; Felizatti, Henrique Leme; Campos, Magnólia de Araújo; Machado, Marcos Antonio
2018-03-01
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa
2014-01-01
The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function. PMID:24736845
Valladares, Ana; Flores, Enrique; Herrero, Antonia
2008-09-01
In Anabaena sp. strain PCC 7120, differentiation of heterocysts takes place in response to the external cue of combined nitrogen deprivation, allowing the organism to fix atmospheric nitrogen in oxic environments. NtcA, a global transcriptional regulator of cyanobacteria, is required for activation of the expression of multiple genes involved in heterocyst differentiation, including key regulators that are specific to the process. We have set up a fully defined in vitro system, which includes the purified Anabaena RNA polymerase, and have studied the effects of NtcA and its signaling effector 2-oxoglutarate on RNA polymerase binding, open complex formation, and transcript production from promoters of the hetC, nrrA, and devB genes that are activated by NtcA at different stages of heterocyst differentiation. Both RNA polymerase and NtcA could specifically bind to the target DNA in the absence of any effector. 2-Oxoglutarate had a moderate positive effect on NtcA binding, and NtcA had a limited positive effect on RNA polymerase recruitment at the promoters. However, a stringent requirement of both NtcA and 2-oxoglutarate was observed for the detection of open complexes and transcript production at the three investigated promoters. These results support a key role for 2-oxoglutarate in transcription activation in the developing heterocyst.
Modeling Tight Junction Dynamics and Oscillations
Kassab, Fuad; Marques, Ricardo Paulino; Lacaz-Vieira, Francisco
2002-01-01
Tight junction (TJ) permeability responds to changes of extracellular Ca2+ concentration. This can be gauged through changes of the transepithelial electrical conductance (G) determined in the absence of apical Na+. The early events of TJ dynamics were evaluated by the fast Ca2+ switch assay (FCSA) (Lacaz-Vieira, 2000), which consists of opening the TJs by removing basal calcium (Ca2+ bl) and closing by returning Ca2+ bl to normal values. Oscillations of TJ permeability were observed when Ca2+ bl is removed in the presence of apical calcium (Ca2+ ap) and were interpreted as resulting from oscillations of a feedback control loop which involves: (a) a sensor (the Ca2+ binding sites of zonula adhaerens), (b) a control unit (the cell signaling machinery), and (c) an effector (the TJs). A mathematical model to explain the dynamical behavior of the TJs and oscillations was developed. The extracellular route (ER), which comprises the paracellular space in series with the submucosal interstitial fluid, was modeled as a continuous aqueous medium having the TJ as a controlled barrier located at its apical end. The ER was approximated as a linear array of cells. The most apical cell is separated from the apical solution by the TJ and this cell bears the Ca2+ binding sites of zonula adhaerens that control the TJs. According to the model, the control unit receives information from the Ca2+ binding sites and delivers a signal that regulates the TJ barrier. Ca2+ moves along the ER according to one-dimensional diffusion following Fick's second law. Across the TJ, Ca2+ diffusion follows Fick's first law. Our first approach was to simulate the experimental results in a semiquantitative way. The model tested against experiment results performed in the frog urinary bladder adequately predicts the responses obtained in different experimental conditions, such as: (a) TJ opening and closing in a FCSA, (b) opening by the presence of apical Ca2+ and attainment of a new steady-state, (c) the escape phase which follows the halt of TJ opening induced by apical Ca2+, (d) the oscillations of TJ permeability, and (e) the effect of Ca2+ ap concentration on the frequency of oscillations. PMID:12149284
Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors
Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois
2016-01-01
ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765
Ta, H T; Prabhu, S; Leitner, E; Jia, F; von Elverfeldt, D; Jackson, Katherine E; Heidt, T; Nair, A K N; Pearce, H; von Zur Muhlen, C; Wang, X; Peter, K; Hagemeyer, C E
2011-08-05
Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.
The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*
Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut
2015-01-01
Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157
What Mutagenesis Can and Cannot Reveal About Allostery.
Carlson, Gerald M; Fenton, Aron W
2016-05-10
Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors
Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther
2015-01-01
The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589