Sample records for effector cells responsible

  1. Effector CD4 cell tolerization is mediated through functional inactivation and involves preferential impairment of TNF-α and IFN-γ expression potentials

    PubMed Central

    Long, Meixiao; Higgins, Amy D.; Mihalyo, Marianne A.; Adler, Adam J.

    2010-01-01

    It has recently been shown that effector/memory T cells can undergo peripheral tolerization in response to self-antigen. In the present study, we found that within 24 h self-antigen profoundly impairs the ability of CD4 effectors to express TNF-α (and to a lesser extent IFN-γ); however, several days of self-antigen exposure is required to impair non-effector functions such as IL-2 expression and proliferation. Since only half of the initial effector CD4 cell population expresses effector cytokines following brief antigenic stimulation, tolerization might have been mediated either through functional inactivation of effector-competent cells, or alternatively by the selective deletion of competent and expansion of non-competent cells. When briefly stimulated effectors were fractionated based on their expression of IFN-γ, the IFN-γ− sub-population was able to express IFN-γ following secondary stimulation, indicating that all effector CD4 cells are functionally competent. Furthermore, both IFN-γ+ and IFN-γ− sub-populations underwent tolerization in response to self-HA (although the former was slightly more prone to deletion at later time points). Thus, effector CD4 cell tolerization is mediated primarily through the functional inactivation of effector-competent cells. PMID:14609577

  2. Non-replicating adenovirus vectors expressing avian influenza virus hemagglutinin and nucleocapsid proteins induce chicken specific effector, memory and effector memory CD8+ T lymphocytes

    PubMed Central

    Singh, Shailbala; Toro, Haroldo; Tang, De-Chu; Briles, Worthie E.; Yates, Linda M.; Kopulos, Renee T.; Collisson, Ellen W.

    2010-01-01

    Avian influenza virus (AIV) specific CD8+ T lymphocyte responses stimulated by intramuscular administration of an adenovirus (Ad) vector expressing either HA or NP were evaluated in chickens following ex vivo stimulation by non-professional antigen presenting cells. The CD8+ T lymphocyte responses were AIV specific, MHC-I restricted, and cross-reacted with heterologousH7N2 AIV strain. Specific effector responses, at 10 days post-inoculation (p.i.), were undetectable at 2 weeks p.i., and memory responses were detected from 3 to 8 weeks p.i. Effector memory responses, detected 1 week following a booster inoculation, were significantly greater than the primary responses and, within 7 days, declined to undetectable levels. Inoculation of an Ad-vector expressing human NP resulted in significantly greater MHC restricted, activation of CD8+ T cell responses specific for AIV. Decreases in all responses with time were most dramatic with maximum activation of T cells as observed following effector and effector memory responses. PMID:20557918

  3. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085

  4. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    PubMed

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  5. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    PubMed

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  6. Developmental Regulation of Effector and Resident Memory T Cell Generation during Pediatric Viral Respiratory Tract Infection.

    PubMed

    Connors, Thomas J; Baird, J Scott; Yopes, Margot C; Zens, Kyra D; Pethe, Kalpana; Ravindranath, Thyyar M; Ho, Siu-Hong; Farber, Donna L

    2018-05-30

    Viral respiratory tract infections (VRTI) remain a leading cause of morbidity and mortality among infants and young children. In mice, optimal protection to VRTI is mediated by recruitment of effector T cells to the lungs and respiratory tract, and subsequent establishment of tissue resident memory T cells (Trm), which provide long-term protection. These critical processes of T cell recruitment to the respiratory tract, their role in disease pathogenesis, and establishment of local protective immunity remain undefined in pediatric VRTI. In this study, we investigated T cell responses in the upper respiratory tract (URT) and lower respiratory tract (LRT) of infants and young children with VRTI, revealing developmental regulation of T cell differentiation and Trm generation in situ. We show a direct concurrence between T cell responses in the URT and LRT, including a preponderance of effector CD8 + T cells that was associated with disease severity. During infant VRTI, there was an accumulation of terminally differentiated effector cells (effector memory RA + T cells) in the URT and LRT with reduced Trm in the early neonatal period, and decreased effector memory RA + T cell and increased Trm formation with age during the early years of childhood. Moreover, human infant T cells exhibit increased expression of the transcription factor T-bet compared with adult T cells, suggesting a mechanism for preferential generation of effector over Trm. The developmental regulation of respiratory T cell responses as revealed in the present study is important for diagnosing, monitoring, and treating VRTI in the critical early life stages. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    PubMed Central

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963

  8. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.

    PubMed

    Layman, Awo A K; Oliver, Paula M

    2016-05-15

    The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    PubMed Central

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  10. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response.

    PubMed

    Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K

    2013-03-01

    The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.

  11. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected].

    PubMed

    Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing

    2014-01-01

    Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.

  12. A novel role for autologous tumour cell vaccination in the immunotherapy of the poorly immunogenic B16-BL6 melanoma.

    PubMed

    Geiger, J D; Wagner, P D; Shu, S; Chang, A E

    1992-06-01

    The growth of immunogenic tumours stimulates the generation of tumour-sensitized, but not functional, pre-effector T cells in the draining lymph nodes. These pre-effector cells can mature into effector cells upon in-vitro stimulation with anti-CD3 and IL-2. In the current study, using a defined, poorly immunogenic tumour, B16-BL6 melanoma, the pre-effector cell response was not evident during progressive tumour growth but was elicited by vaccination with irradiated tumour cells admixed with Corynebacterium parvum. After anti-CD3/IL-2 activation, these cells were capable of mediating the regression of established pulmonary metastases. The efficacy of the vaccine depended on the doses of both tumour cells and the adjuvant. While higher numbers of tumour cells were more effective, an optimal dose (12.5 micrograms) of C. parvum was required. The dose of irradiation was not a critical factor. After vaccination, kinetic studies revealed that the pre-effector cell response was evident 4 days later and declined after 14 days. These observations illustrate the potential role of active immunization in the cellular therapy of cancer.

  13. Spatiotemporal Monitoring of Pseudomonas syringae Effectors via Type III Secretion Using Split Fluorescent Protein Fragments[OPEN

    PubMed Central

    2017-01-01

    Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS. Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th β-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 β-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses. PMID:28619883

  14. Postthymic maturation influences the CD8 T cell response to antigen.

    PubMed

    Makaroff, Lydia E; Hendricks, Deborah W; Niec, Rachel E; Fink, Pamela J

    2009-03-24

    Complete T cell development requires postthymic maturation, and we investigated the influence of this ontological period on the CD8 T cell response to infection by comparing responses of mature CD8 T cells with those of recent thymic emigrants (RTEs). When activated with a noninflammatory stimulus or a bacterial or viral pathogen, CD8 RTEs generated a lower proportion of cytokine-producing effector cells and long-lived memory precursors compared with their mature counterparts. Although peripheral T cell maturation is complete within several weeks after thymic egress, RTE-derived memory cells continued to express inappropriate levels of memory cell markers and display an altered pattern of cytokine production, even 8 weeks after infection. When rechallenged, RTE-derived memory cells generated secondary effector cells that were phenotypically and functionally equivalent to those generated by their mature counterparts. The defects at the effector and memory stages were not associated with differences in the expression of T cell receptor-, costimulation-, or activation-associated cell surface markers yet were associated with lower Ly6C expression levels at the effector stage. This work demonstrates that the stage of postthymic maturation influences cell fate decisions and cytokine profiles of stimulated CD8 T cells, with repercussions that are apparent long after cells have progressed from the RTE compartment.

  15. A Plethora of Virulence Strategies Hidden Behind Nuclear Targeting of Microbial Effectors

    PubMed Central

    Rivas, Susana; Genin, Stéphane

    2011-01-01

    Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great variety of analyzed plant–pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins. PMID:22639625

  16. Bcl-2 Allows Effector and Memory CD8+ T Cells To Tolerate Higher Expression of Bim

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Moreno-Fernandez, Maria E.; Sholl, Allyson; Katz, Jonathan D.; Grimes, H. Leighton; Hildeman, David A.

    2014-01-01

    As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate. PMID:21451108

  17. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    PubMed

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection[OPEN

    PubMed Central

    Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent

    2017-01-01

    To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390

  19. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects.

    PubMed

    Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C

    2018-04-03

    The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins. Copyright © 2018 Naor et al.

  20. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells

    PubMed Central

    Wells, Alexandria C; Daniels, Keith A; Angelou, Constance C; Fagerberg, Eric; Burnside, Amy S; Markstein, Michele; Alfandari, Dominique; Welsh, Raymond M; Pobezinskaya, Elena L; Pobezinsky, Leonid A

    2017-01-01

    The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses. DOI: http://dx.doi.org/10.7554/eLife.26398.001 PMID:28737488

  1. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    PubMed

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.

    PubMed

    Anderson, Ryan G; Casady, Megan S; Fee, Rachel A; Vaughan, Martha M; Deb, Devdutta; Fedkenheuer, Kevin; Huffaker, Alisa; Schmelz, Eric A; Tyler, Brett M; McDowell, John M

    2012-12-01

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR-like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non-pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen's host. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  3. Go in for the kill

    PubMed Central

    Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing

    2014-01-01

    Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review. PMID:25513772

  4. Acute virus control mediated by licensed NK cells sets primary CD8+ T cell dependence on CD27 costimulation1,2,3

    PubMed Central

    Teoh, Jeffrey J.; Gamache, Awndre E.; Gillespie, Alyssa L.; Stadnisky, Michael D.; Yagita, Hideo; Bullock, Timothy N.J.; Brown, Michael G.

    2016-01-01

    Natural killer (NK) cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate both supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC I Dk, a major MCMV resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against murine (M)CMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T-cell effectors in response to MCMV. However, relatively little is known about the NK-cell effect on co-stimulatory ligand patterns displayed by DCs, or ensuing effector and memory T-cell responses. Here we found that CD27-dependent CD8+ T-cell priming and differentiation is shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC co-stimulatory patterns. Nonetheless, while CD27 deficiency did not impede licensed NK-mediated resistance, both CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T-cell differentiation in response to MCMV, which eventually resulted in biased memory T-cell precursor formation in Dk mice. In contrast, CD8+ T-cells accrued more slowly in non-Dk mice, and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC co-stimulatory signals needed to prime CD8+ T cells and eventual T-cell fate decisions. PMID:27798162

  5. Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA.

    PubMed

    Junking, Mutita; Grainok, Janya; Thepmalee, Chutamas; Wongkham, Sopit; Yenchitsomanus, Pa-Thai

    2017-10-01

    Cholangiocarcinoma is a malignancy of bile duct epithelia with an increasing in incidence rate worldwide. Surgery is the only curative treatment, while adjuvant chemotherapy and radiotherapy render poor responses. Cell-based immunotherapy is a potential strategy for cholangiocarcinoma treatment. However, variation of tumor antigens in cholangiocarcinoma leads to the ineffectiveness of cell-based immunotherapy. In this study, we examined the activation of effector T-cells by dendritic cells pulsed with protein lysate or total RNA from cholangiocarcinoma cell lines for their cytolytic activity against cholangiocarcinoma. Broad-spectrum antigen types with respect to RNA antigen sources were obtained from combination of three cholangiocarcinoma cell lines (KKU-213, KKU-100, and KKU-055). Compared with protein lysate-pulsed dendritic cells, total RNA-pulsed dendritic cells induced anti-tumor effector T-cell response with higher killing ability to KKU-100 and KKU-213 cells compared with protein lysate-pulsed dendritic cells. Moreover, pooled messenger RNA from three cholangiocarcinoma cell lines significantly increased the specific killing capacity of activated lymphocytes against KKU-213 cells. These results suggest that activation of anti-tumor effector T-cells against cholangiocarcinoma by RNA-pulsed dendritic cells is more effective than that by protein lysate-pulsed dendritic cells. In addition, pulsing dendritic cells with pooled messenger RNA from multiple cell lines enhanced the efficacy of a cellular immune response against cholangiocarcinoma.

  6. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.

    PubMed

    Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar

    2010-07-01

    Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.

  7. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis. PMID:26981193

  8. Memory T cells and vaccines.

    PubMed

    Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W

    2003-01-17

    T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.

  9. CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response

    PubMed Central

    Peixoto, António; Evaristo, César; Munitic, Ivana; Monteiro, Marta; Charbit, Alain; Rocha, Benedita; Veiga-Fernandes, Henrique

    2007-01-01

    To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen. PMID:17485515

  10. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma

    PubMed Central

    Quezada, Sergio A.; Peggs, Karl S.; Simpson, Tyler R.; Shen, Yuelei; Littman, Dan R.; Allison, James P.

    2008-01-01

    Interference with inhibitory immunological checkpoints controlling T cell activation provides new opportunities to augment cancer immunotherapies. Whereas cytotoxic T lymphocyte–associated antigen-4 blockade has shown promising preclinical and clinical results, therapeutic CD4+CD25+ T reg cell depletion has failed to consistently enhance immune-based therapies. Using B16/BL6, a transplantable murine melanoma model, we show a dichotomy between the effects of T reg cell depletion on tumor rejection dependent on whether depletion occurs before (prophylactic) or after (therapeutic) tumor engraftment. Failure to promote rejection with therapeutic depletion is not related to lack of T reg cell depletion, to elimination of CD25+ effector T cells, or to a failure to enhance systemic antitumor T cell responses, but correlates with failure of effector cells to infiltrate the tumor and increase the intratumor ratio of effector T cell/T reg cell. Finally, systemic antitumor responses generated upon therapeutic T reg cell depletion are significantly stronger than those generated in the presence of T reg cells, and are capable of eliciting rejection of established tumors after transfer into immunoablated recipients receiving combination immunotherapy. The data demonstrate a dissociation between measurable systemic responses and tumor rejection during CD25-directed T reg cell depletion, and suggest an alternative, clinically applicable strategy for the treatment of established tumors. PMID:18725522

  11. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    USDA-ARS?s Scientific Manuscript database

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  12. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    PubMed

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Exploring a regulatory role for mast cells: 'MCregs'?

    PubMed

    Frossi, Barbara; Gri, Giorgia; Tripodo, Claudio; Pucillo, Carlo

    2010-03-01

    Regulatory cells can mould the fate of the immune response by direct suppression of specific subsets of effector cells, or by redirecting effectors against invading pathogens and infected or neoplastic cells. These functions have been classically, although not exclusively, ascribed to different subsets of T cells. Recently, mast cells have been shown to regulate physiological and pathological immune responses, and thus to act at the interface between innate and adaptive immunity assuming different functions and behaviors at discrete stages of the immune response. Here, we focus on these poorly defined, and sometimes apparently conflicting, functions of mast cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins.

    PubMed

    Hewezi, Tarek

    2015-10-01

    Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins

    PubMed Central

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553

  16. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.

    PubMed

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.

  17. Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells.

    PubMed

    Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A

    2018-03-01

    We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions.

    PubMed

    Swee, Lee Kim; Tan, Zhen Wei; Sanecka, Anna; Yoshida, Nagisa; Patel, Harshil; Grotenbreg, Gijsbert; Frickel, Eva-Maria; Ploegh, Hidde L

    2016-11-01

    T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2 b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 L d -restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds. © 2016 The Authors.

  19. Steady State Dendritic Cells Present Parenchymal Self-Antigen and Contribute to, but Are Not Essential for, Tolerization of Naive and Th1 Effector CD4 Cells1

    PubMed Central

    Hagymasi, Adam T.; Slaiby, Aaron M.; Mihalyo, Marianne A.; Qui, Harry Z.; Zammit, David J.; Lefrançois, Leo; Adler, Adam J.

    2010-01-01

    Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4+CD25+ regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC. PMID:17641018

  20. Intestinal Effector T Cells in Health and Disease

    PubMed Central

    Maynard, Craig L.; Weaver, Casey T.

    2011-01-01

    Summary Crohn’s disease and ulcerative colitis are the two major forms of chronic relapsing inflammatory disorders of the human intestines collectively referred to as inflammatory bowel disease (IBD). Though a complex set of autoinflammatory disorders that can be precipitated by diverse genetic and environmental factors, a feature that appears common to IBD pathogenesis is a dysregulated effector T cell response to the commensal microbiota. Due to the heightened effector T cell activity in IBD, developmental and functional pathways that give rise to these cells are potential targets for therapeutic intervention. In this review, we highlight recent advances in our understanding of effector T cell biology in the context of intestinal immune regulation and speculate on their potential clinical significance. PMID:19766082

  1. Application of long-term cultured interferon-gamma enzyme-linked immunospot assay for assessing effector and memory T cell responses in cattle

    USDA-ARS?s Scientific Manuscript database

    Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled, up to 95% of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a l...

  2. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8+ T Lymphocyte Fates

    PubMed Central

    Metz, Patrick J.; Lopez, Justine; Kim, Stephanie H.; Akimoto, Kazunori; Ohno, Shigeo; Chang, John T.

    2016-01-01

    Naïve CD8+ T lymphocytes responding to microbial pathogens give rise to effector T cells that provide acute defense and memory T cells that provide long-lived immunity. Upon activation, CD8+ T lymphocytes can undergo asymmetric division, unequally distributing factors to the nascent daughter cells that influence their eventual fate towards the effector or memory lineages. Individual loss of either atypical protein kinase C (aPKC) isoform, PKCζ or PKCλ/ι, partially impairs asymmetric divisions and increases CD8+ T lymphocyte differentiation toward a long-lived effector fate at the expense of memory T cell formation. Here, we show that deletion of both aPKC isoforms resulted in a deficit in asymmetric divisions, increasing the proportion of daughter cells that inherit high amounts of effector fate-associated molecules, IL-2Rα, T-bet, IFNγR, and interferon regulatory factor 4 (IRF4). However, unlike CD8+ T cells deficient in only one aPKC isoform, complete loss of aPKC unexpectedly increased CD8+ T cell differentiation toward a short-lived, terminal effector fate, as evidenced by increased rates of apoptosis and decreased expression of Eomes and Bcl2 early during the immune response. Together, these results provide evidence for an important role for asymmetric division in CD8+ T lymphocyte fate specification by regulating the balance between effector and memory precursors at the initiation of the adaptive immune response. PMID:26765121

  3. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    PubMed

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R

    2014-02-01

    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  4. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    PubMed

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti-transplant, autoimmune, or anti-tumor immune responses in vivo and in vitro.

  5. Human Cytomegalovirus (HCMV)-Specific CD4+ T Cells Are Polyfunctional and Can Respond to HCMV-Infected Dendritic Cells In Vitro

    PubMed Central

    Sedikides, George X.; Mason, Gavin M.; Okecha, Georgina

    2017-01-01

    ABSTRACT Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8+ T cell response to HCMV has been extensively studied, the HCMV-specific CD4+ T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4+ T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4+ T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4+ T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro, we observed that the CD4+ T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4+ T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4+ T cell responses, even those from elderly individuals, are highly functional and are directly antiviral. IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4+ T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4+ T cells is maintained. We also show that CD4+ T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people. PMID:28053099

  6. Human Cytomegalovirus (HCMV)-Specific CD4+ T Cells Are Polyfunctional and Can Respond to HCMV-Infected Dendritic Cells In Vitro.

    PubMed

    Jackson, Sarah E; Sedikides, George X; Mason, Gavin M; Okecha, Georgina; Wills, Mark R

    2017-03-15

    Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8 + T cell response to HCMV has been extensively studied, the HCMV-specific CD4 + T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4 + T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4 + T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4 + T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro , we observed that the CD4 + T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4 + T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4 + T cell responses, even those from elderly individuals, are highly functional and are directly antiviral. IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4 + T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4 + T cells is maintained. We also show that CD4 + T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people. Copyright © 2017 American Society for Microbiology.

  7. Manipulation of intestinal epithelial cell function by the cell contact-dependent type III secretion systems of Vibrio parahaemolyticus

    PubMed Central

    O'Boyle, Nicky; Boyd, Aoife

    2013-01-01

    Vibrio parahaemolyticus elicits gastroenteritis by deploying Type III Secretion Systems (TTSS) to deliver effector proteins into epithelial cells of the human intestinal tract. The bacteria must adhere to the human cells to allow colonization and operation of the TTSS translocation apparatus bridging the bacterium and the host cell. This article first reviews recent advances in identifying the molecules responsible for intercellular adherence. V. parahaemolyticus possesses two TTSS, each of which delivers an exclusive set of effectors and mediates unique effects on the host cell. TTSS effectors primarily target and alter the activation status of host cell signaling proteins, thereby bringing about changes in the regulation of cellular behavior. TTSS1 is responsible for the cytotoxicity of V. parahaemolyticus, while TTSS2 is necessary for the enterotoxicity of the pathogen. Recent publications have elucidated the function of several TTSS effectors and their importance in the virulence of the bacterium. This review will explore the ability of the TTSS to manipulate activities of human intestinal cells and how this modification of cell function favors bacterial colonization and persistence of V. parahaemolyticus in the host. PMID:24455490

  8. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  9. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    PubMed

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  10. Cytokines and the Inception of CD8 T Cell Responses

    PubMed Central

    Cox, Maureen A.; Harrington, Laurie E.; Zajac, Allan J.

    2011-01-01

    The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprised of both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this article we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation and also highlight the potential counterbalancing role of IL-21. PMID:21371940

  11. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  12. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  13. CD4(+) T-cell responses to Epstein-Barr virus (EBV) latent membrane protein 1 in infectious mononucleosis and EBV-associated non-Hodgkin lymphoma: Th1 in active disease but Tr1 in remission.

    PubMed

    Marshall, Neil A; Culligan, Dominic J; Johnston, Peter W; Millar, Colin; Barker, Robert N; Vickers, Mark A

    2007-10-01

    Primary infection with Epstein-Barr virus (EBV) in childhood is usually asymptomatic, whereas infection in adolescence may result in infectious mononucleosis (IM) often followed by a fatigue syndrome. EBV latent membrane protein 1 (LMP1) is expressed in latency and in many EBV-associated tumours, including non-Hodgkin lymphoma (NHL). Given the regulatory nature of the CD4(+) T-cell response against LMP1 previously reported in healthy donors, we investigated whether patients with active EBV-driven disease can nevertheless mount effector [T-helper cell, type 1 (Th1)] anti-LMP1 responses. We therefore performed a longitudinal study of the nature of CD4(+) T-cell responses to LMP1 in four patients with IM, and five patients with NHL. In both groups, responses changed with time. During symptomatic infection or active tumour growth, responses were dominated by a Th1 effector phenotype, but switched to a regulatory interleukin-10 response upon recovery. In addition, the fine specificities of the T cells driving these responses evolved. This study showed the dynamic nature of CD4(+) T-cell responses to LMP1, and demonstrated that, although patients can mount Th1 effector responses, recovery from IM and NHL is associated with regulatory responses.

  14. Vaccinating for natural killer cell effector functions.

    PubMed

    Wagstaffe, Helen R; Mooney, Jason P; Riley, Eleanor M; Goodier, Martin R

    2018-01-01

    Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.

  15. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    PubMed

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  16. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria

    PubMed Central

    Ashida, Hiroshi; Sasakawa, Chihiro

    2016-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections. PMID:26779450

  17. Chronic Dry Eye Disease is Principally Mediated by Effector Memory Th17 Cells

    PubMed Central

    Chen, Yihe; Chauhan, Sunil K.; Lee, Hyun Soo; Saban, Daniel R.; Dana, Reza

    2013-01-01

    Recent experimental and clinical data suggest that there is a link between dry eye disease (DED) and T cell-mediated immunity. However, whether these immune responses are a consequence or cause of ocular surface inflammation remains to be determined. Thus far, only models of acute DED have been used to derive experimental data. This is in contrast to clinical DED which usually presents as a chronic disease. In the present study, using a murine model of chronic DED, it was established that the chronic phase of the disease is accompanied by Th17 responses at the ocular surface, and that a significant memory T cell population can be recovered from chronic DED. This memory response is predominantly mediated by Th17 cells. Moreover, adoptive transfer of this memory T cell population was shown to induce more severe and rapidly progressing DED than did the adoptive transfer of its effector or naïve counterparts. Not only do these results clearly demonstrate that effector memory Th17 cells are primarily responsible for maintaining the chronic and relapsing course of DED, but they also highlight a potentially novel therapeutic strategy for targeting memory immune responses in patients with DED. PMID:23571503

  18. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells.

    PubMed

    Quentin, Michaëel; Abad, Pierre; Favery, Bruno

    2013-01-01

    Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.

  19. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.

    PubMed

    Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J

    2017-11-01

    The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less

  1. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates.

    PubMed

    Picker, Louis J; Reed-Inderbitzin, Edward F; Hagen, Shoko I; Edgar, John B; Hansen, Scott G; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Axthelm, Michael K; Villinger, Francois

    2006-06-01

    HIV infection selectively targets CD4+ effector memory T (T EM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the T EM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ T EM cells with little effect on the naive or central memory T (T CM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. T EM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2'-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ T EM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4 + T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets.

  2. IL-15 induces CD4+ effector memory T cell production and tissue emigration in nonhuman primates

    PubMed Central

    Picker, Louis J.; Reed-Inderbitzin, Edward F.; Hagen, Shoko I.; Edgar, John B.; Hansen, Scott G.; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Axthelm, Michael K.; Villinger, Francois

    2006-01-01

    HIV infection selectively targets CD4+ effector memory T (TEM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the TEM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ TEM cells with little effect on the naive or central memory T (TCM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. TEM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2′-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ TEM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4+ T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets. PMID:16691294

  3. Antigen-Specific Induction of Osteopontin Contributes to the Chronification of Allergic Contact Dermatitis

    PubMed Central

    Seier, Anne M.; Renkl, Andreas C.; Schulz, Guido; Uebele, Tanja; Sindrilaru, Anca; Iben, Sebastian; Liaw, Lucy; Kon, Shigeyuki; Uede, Toshimitsu; Weiss, Johannes M.

    2010-01-01

    Allergic contact dermatitis is a T cell-mediated immune response, which in its relapsing chronic form is of high socioeconomic impact. The phosphoglycoprotein osteopontin (OPN) has chemotactic and Th1 cytokine functions and in various models is essential for robust T cell-mediated immunity. Here we demonstrate that OPN is abundantly expressed by both effector T cells and keratinocytes in allergic contact dermatitis lesions. T cells from nickel-allergic donors secrete high levels of OPN following antigen-specific stimulation. OPN may substitute for missing IFN-γ secretion in T effector cells because low IFN-γ-producing T cell clones secrete high levels of OPN, and OPN down-modulates their interleukin-4 expression. Furthermore, interferon-γ from T effector cells augments OPN in allergic contact dermatitis by inducing OPN in keratinocytes, which in turn polarizes dendritic cells and attracts inflammatory cells. In the murine contact hypersensitivity (CHS) model for allergic contact dermatitis, OPN is strongly induced in antigen-specific proliferating T cells, and OPN null mice display a reduced chronic CHS inflammatory response due to a decreased influx of effector T cells. Importantly, because of its function for chronic allergic contact dermatitis, OPN may well be a therapeutic target, because anti-OPN antibody treatment in part suppresses established chronic CHS. PMID:20008129

  4. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    PubMed

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  5. Analysis of Putative Apoplastic Effectors from the Nematode, Globodera rostochiensis, and Identification of an Expansin-Like Protein That Can Induce and Suppress Host Defenses

    PubMed Central

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855

  6. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    PubMed

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  7. Antigen-dependent proliferation and cytokine induction in respiratory syncytial virus-infected cotton rats reflect the presence of effector-memory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Bettina W.M.; Onuska, Jaya M.; Niewiesk, Stefan

    2005-06-20

    Respiratory syncytial virus (RSV) is a major cause of lower airway disease in infants and children. Immunity to RSV is not long lasting, resulting in re-occurring infections throughout life. Effective long-lived immunity results when central-memory T cells that proliferate vigorously and secrete IL-2 are present. In contrast, effector-memory T cells that mainly produce IFN-{gamma}, facilitate virus clearance but are not long lived. To identify the type of memory response induced after RSV-A (Long) infection, we characterized the kinetics of the antigen-specific immune response and identified the types of cytokines induced. RSV-specific lymphocytic proliferation following primary and secondary infection was similar,more » and in both cases responses waned within a short period of time. In addition, mRNA for IFN-{gamma} but not IL-2 was induced in RSV-specific CD4{sup +} T cells. This supports the idea that the presence of effector-memory rather than central-memory T cells contributes to the ineffectiveness of the immune response to RSV.« less

  8. Type III secretion system effector proteins: double agents in bacterial disease and plant defense.

    PubMed

    Alfano, James R; Collmer, Alan

    2004-01-01

    Many phytopathogenic bacteria inject virulence effector proteins into plant cells via a Hrp type III secretion system (TTSS). Without the TTSS, these pathogens cannot defeat basal defenses, grow in plants, produce disease lesions in hosts, or elicit the hypersensitive response (HR) in nonhosts. Pathogen genome projects employing bioinformatic methods to identify TTSS Hrp regulon promoters and TTSS pathway targeting signals suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of effectors. The Hrp TTSS employs customized cytoplasmic chaperones, conserved export components in the bacterial envelope (also used by the TTSS of animal pathogens), and a more specialized set of TTSS-secreted proteins to deliver effectors across the plant cell wall and plasma membrane. Many effectors can act as molecular double agents that betray the pathogen to plant defenses in some interactions and suppress host defenses in others. Investigations of the functions of effectors within plant cells have demonstrated the plasma membrane and nucleus as subcellular sites for several effectors, revealed some effectors to possess cysteine protease or protein tyrosine phosphatase activity, and provided new clues to the coevolution of bacterium-plant interactions.

  9. Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

    PubMed

    Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe

    2017-03-22

    Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination.

    PubMed

    Belz, Gabrielle T; Kallies, Axel

    2010-06-01

    CD8(+) T cells play a key role in protecting the body against invading microorganisms. Their capacity to control infection relies on the development of peripheral effector and memory T cells. Much of our current knowledge has been gained by tracking alterations of the phenotype of CD8(+) T cells but the molecular understanding of the events that underpin the emergence of heterogeneous effector and memory CD8(+) T cells in response to infection has remained limited. This review focuses on the recent progress in our understanding of the molecular wiring of this differentiation process. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Blockade of PD-1/B7-H1 Interaction Restores Effector CD8+ T Cell Responses in a Hepatitis C Virus Core Murine Model1

    PubMed Central

    Lukens, John R.; Cruise, Michael W.; Lassen, Matthew G.; Hahn, Young S.

    2010-01-01

    The impaired function of CD8+ T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8+ T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8+ T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8+ T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-γ, TNF-α, and granzyme B production by CD8+ T cells. In addition, the impaired CD8+ T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8+ T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8+ T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection. PMID:18354211

  12. Characterization of Effector and Memory T Cell Subsets in the Immune Response to Bovine Tuberculosis in Cattle

    PubMed Central

    Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; Vordermeier, H. Martin; Waters, W. Ray

    2015-01-01

    Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection. PMID:25879774

  13. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    PubMed

    Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie J M; Caillaud, Marie-Cécile; Furzer, Oliver J; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D G

    2014-10-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Evan A.; Birch, M. Eileen; Yadav, Jagjit S., E-mail: Jagjit.Yadav@uc.edu

    Carbon nanotubes (CNTs) are rapidly emerging as high-priority occupational toxicants. CNT powders contain fibrous particles that aerosolize readily in places of manufacture and handling, posing an inhalation risk for workers. Studies using animal models indicate that lung exposure to CNTs causes prolonged inflammatory responses and diffuse alveolar injury. The mechanisms governing CNT-induced lung inflammation are not fully understood but have been suggested to involve alveolar macrophages (AMs). In the current study, we sought to systematically assess the effector role of AMs in vivo in the induction of lung inflammatory responses to CNT exposures and investigate their cell type-specific mechanisms. Multi-wallmore » CNTs characterized for various physicochemical attributes were used as the CNT type. Using an AM-specific depletion and repopulation approach in a mouse model, we unambiguously demonstrated that AMs are major effector cells necessary for the in vivo elaboration of CNT-induced lung inflammation. We further investigated in vitro AM responses and identified molecular targets which proved critical to pro-inflammatory responses in this model, namely MyD88 as well as MAPKs and Ca{sup 2} {sup +}/CamKII. We further demonstrated that MyD88 inhibition in donor AMs abrogated their capacity to reconstitute CNT-induced inflammation when adoptively transferred into AM-depleted mice. Taken together, this is the first in vivo demonstration that AMs act as critical effector cell types in CNT-induced lung inflammation and that MyD88 is required for this in vivo effector function. AMs and their cell type-specific mechanisms may therefore represent potential targets for future therapeutic intervention of CNT-related lung injury. - Highlights: • Demonstrated in vivo effector role of alveolar macrophages (AMs) in CNT toxicity • MyD88, MAPKs, and Ca{sup 2} {sup +}/CamKII are required for AM inflammatory responses in vitro. • MyD88 signaling is required for in vivo effector function of AMs. • MyD88 may be a potential target for intervention in CNT lung exposures.« less

  15. Brief Report: CD14brightCD16- monocytes and sCD14 level negatively associate with CD4-memory T-cell frequency and predict HCV-decline on therapy.

    PubMed

    Judge, Chelsey J; Sandberg, Johan K; Funderburg, Nicholas T; Sherman, Kenneth E; Butt, Adeel A; Kang, Minhee; Landay, Alan L; Lederman, Michael M; Anthony, Donald D

    2016-11-01

    During HIV+ hepatitis C virus (HCV)+ coinfection CD14CD16 monocytes produce soluble immune-activation markers that predict disease progression and poor response to interferon (IFN)-α treatment. We evaluated relationships among immune activation, monocyte phenotype, CD4-memory T cells, and HCV-, cytomegalovirus-, and cytomegalovirus/Epstein-Barr virus/influenza-specific IFN-γ-response before and during IFN-α treatment. Effector-memory and central-memory CD4 T-cell frequencies were lower in HCV+ HIV+ donors than in uninfected donors and correlated negatively with HCV level, CD14CD16 monocytes, and plasma sCD14. sCD14 and CD14CD16 monocytes negatively correlated with IFN-α-dependent HCV decline. CD4 effector-memory T cells positively associated with cytomegalovirus/Epstein-Barr virus/influenza(CEF)-specific IFN-γ response, while sCD14 negatively associated with both CD4 effector-memory T cells and CEF-specific IFN-γ response. These data support a role for memory-CD4 T cells in HCV containment and link immune activation and CD14CD16-monocyte frequency to the failure of IFN-dependent HCV clearance.

  16. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition

    PubMed Central

    Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily

    2016-01-01

    B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040

  17. Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and overt disease in chronic SIV infection.

    PubMed

    Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M; Hagen, Shoko I; Walker, Joshua M; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B; Planer, Shannon L; Legasse, Alfred; Sylwester, Andrew W; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Sodora, Donald L; Douek, Daniel C; Axthelm, Michael K; Grossman, Zvi; Picker, Louis J

    2007-09-03

    Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4(+) CCR5(+) effector-memory T (T(EM)) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4(+) memory T cell proliferation appears to prevent collapse of effector site CD4(+) T(EM) cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4(+) T(EM) cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4(+) T(EM) cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4(+) T(EM) cells from central-memory T (T(CM)) cell precursors. The instability of effector site CD4(+) T(EM) cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5(-) CD4(+) T(CM) cells. These data suggest that although CD4(+) T(EM) cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4(+) T(CM) cells.

  18. Role of the glucocorticoid-induced TNFR-related protein (GITR)-GITR ligand pathway in innate and adaptive immunity.

    PubMed

    Azuma, Miyuki

    2010-01-01

    Glucocorticoid-induced TNF receptor-related protein (GITR) is expressed in regulatory T cells at high levels, but is also inducible in conventional effector T cells after activation. Initial studies using an agonistic anti- GITR mAb mislead this line of research with respect to the contribution of GITR stimulation on the function of regulatory T cells. In fact, GITR acts as a costimulatory receptor for both effector and regulatory T cells by enhancing effector and regulatory functions, respectively. Unlike other costimulatory ligands, GITR ligand (GITRL) expression on mature myeloid dendritic cells (DCs) is extremely limited and the GITR-GITRL pathway does not contribute markedly to direct interactions with T cells and antigen-presenting cells in the secondary lymphoid tissues. Rather, GITRL is constitutively expressed on parenchymal tissue cells and interacts with GITR expressed on tissue-infiltrating macrophages and DCs, or effector and regulatory T cells. Interactions with GITR and GITRL at local inflammatory sites induce site-specific production of cytokines and chemokines, resulting in control activation of tissue-infiltrating effector or regulatory cells and their migration. This review summarizes recent reports on the GITR-GITRL pathway, which controls both innate and adaptive immune responses.

  19. The Yin and Yang aspects of IL-27 in induction of cancer-specific T-cell responses and immunotherapy.

    PubMed

    Li, Ming-Song; Liu, Zhenzhen; Liu, Jin-Qing; Zhu, Xiaotong; Liu, Zhihao; Bai, Xue-Feng

    2015-01-01

    Accumulating evidences from animal studies have indicated that both endogenous and exogenous IL-27, an IL-12 family of cytokine, can increase antitumor T-cell activities and inhibit tumor growth. IL-27 can modulate Treg responses, and program effector T cells into a unique T-effector stem cell (TSEC) phenotype, which enhances T-cell survival in the tumor microenvironment. However, animal studies also suggest that IL-27 induces molecular pathways such as IL-10, PD-L1 and CD39, which may downregulate tumor-specific T-cell responses. In this review paper, we will discuss the Yin and Yang aspects of IL-27 in the induction of tumor-specific T-cell responses, and the potential impacts of these functions of IL-27 in the design of cancer immunotherapy.

  20. Oral Vaccination with Lipid-Formulated BCG Induces a Long-lived, Multifunctional CD4+ T Cell Memory Immune Response

    PubMed Central

    Ancelet, Lindsay R.; Aldwell, Frank E.; Rich, Fenella J.; Kirman, Joanna R.

    2012-01-01

    Oral delivery of BCG in a lipid formulation (Liporale™-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4+ T cell response, evident by the detection of effector CD4+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines. PMID:23049885

  1. Effector-triggered defence against apoplastic fungal pathogens

    PubMed Central

    Stotz, Henrik U.; Mitrousia, Georgia K.; de Wit, Pierre J.G.M.; Fitt, Bruce D.L.

    2014-01-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed ‘effector-triggered defence’ (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287

  2. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation.

    PubMed

    Chow, Zachary; Mueller, Scott N; Deane, James A; Hickey, Michael J

    2013-09-15

    Regulatory T cells (Tregs) are important in controlling skin inflammation, an effect dependent on their ability to home to this organ. However, little is known regarding their behavior in the skin. In this study, we used multiphoton imaging in Foxp3-GFP mice to examine the behavior of endogenous Tregs in resting and inflamed skin. Although Tregs were readily detectable in the uninflamed dermis, most were nonmotile. Induction of contact sensitivity increased the proportion of motile Tregs, and also induced Treg recruitment. This response was significantly blunted in mice challenged with an irrelevant hapten, or by inhibition of effector cell recruitment, indicating a role for T cell-dependent inflammation in induction of Treg migration. Moreover, induction of Treg migration was inhibited by local injection of a CCR4 antagonist, indicating a role for CCR4 in this response. Exposure of naive mice to hapten also induced an increase in the proportion of migratory Tregs, demonstrating that innate signals can also induce Treg migration. Simultaneous examination of the migration of CD4⁺ effector cells and Tregs in the same region of uninflamed skin demonstrated that effector cells behaved differently, being uniformly highly migratory. These findings indicate that Treg behavior in skin differs from that of CD4⁺ effector cells, in that only a low proportion of Tregs is migratory under resting conditions. However, in response to both adaptive and innate inflammation, the proportion of migratory Tregs increases, raising the possibility that this response is important in multiple forms of skin inflammation.

  3. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults.

    PubMed

    Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine; Mehta, Aneesh; Mulligan, Mark; Whitaker, Jennifer A; Levin, Myron J

    2017-07-15

    The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4 + and CD8 + T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8 + CD57 + senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4 + CD69 + CD57 + PD1 + and CD8 + CD69 + CD57 + PD1 + T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8 + effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4 + and CD8 + proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.

    PubMed

    Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara

    2010-04-01

    Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.

  5. Evaluation of profile and functionality of memory T cells in pulmonary tuberculosis.

    PubMed

    Tonaco, Marcela M; Moreira, Jôsimar D; Nunes, Fernanda F C; Loures, Cristina M G; Souza, Larissa R; Martins, Janaina M; Silva, Henrique R; Porto, Arthur Henrique R; Toledo, Vicente Paulo C P; Miranda, Silvana S; Guimarães, Tânia Mara P D

    2017-12-01

    The cells T CD4+ T and CD8+ can be subdivided into phenotypes naïve, T of central memory, T of effector memory and effector, according to the expression of surface molecules CD45RO and CD27. The T lymphocytes are cells of long life with capacity of rapid expansion and function, after a new antigenic exposure. In tuberculosis, it was found that specific memory T cells are present, however, gaps remain about the role of such cells in the disease immunology. In this study, the phenotypic profile was analyzed and characterized the functionality of CD4+ T lymphocytes and CD8+ T cells of memory and effector, in response to specific stimuli in vitro, in patients with active pulmonary TB, compared to individuals with latent infection with Mycobacterium tuberculosis the ones treated with pulmonary TB. It was observed that the group of patients with active pulmonary tuberculosis was the one which presented the highest proportion of cells T CD4+ of central memory IFN-ɣ+ e TNF-α+, suggesting that in TB, these T of central memory cells would have a profile of protective response, being an important target of study for the development of more effective vaccines; this group also developed lower proportion of CD8+ T effector lymphocytes than the others, a probable cause of specific and less effective response against the bacillus in these individuals; the ones treated for pulmonary tuberculosis were those who developed higher proportion of T CD4+ of memory central IL-17+ cells, indicating that the stimulation of long duration, with high antigenic load, followed by elimination of the pathogen, contribute to more significant generation of such cells; individuals with latent infection by M. tuberculosis and treated for pulmonary tuberculosis, showed greater response of CD8+ T effector lymphocytes IFN-ɣ+ than the controls, suggesting that these cells, as well as CD4+ T lymphocytes, have crucial role of protection against M. tuberculosis. These findings have contributed to a better understanding of the immunologic changes in M. tuberculosis infection and the development of new strategies for diagnosis and prevention of tuberculosis. Copyright © 2017. Published by Elsevier B.V.

  6. Potential Function of Granulysin, Other Related Effector Molecules and Lymphocyte Subsets in Patients with TB and HIV/TB Coinfection

    PubMed Central

    Pitabut, Nada; Sakurada, Shinsaku; Tanaka, Takahiro; Ridruechai, Chutharut; Tanuma, Junko; Aoki, Takahiro; Kantipong, Pacharee; Piyaworawong, Surachai; Kobayashi, Nobuyuki; Dhepakson, Panadda; Yanai, Hideki; Yamada, Norio; Oka, Shinichi; Okada, Masaji; Khusmith, Srisin; Keicho, Naoto

    2013-01-01

    Background: Host effector mechanism against Mycobacterium tuberculosis (Mtb) infection is dependent on innate immune response by macrophages and neutrophils and the alterations in balanced adaptive immunity. Coordinated release of cytolytic effector molecules from NK cells and effector T cells and the subsequent granule-associated killing of infected cells have been documented; however, their role in clinical tuberculosis (TB) is still controversy. Objective: To investigate whether circulating granulysin and other effector molecules are associated with the number of NK cells, iNKT cells, Vγ9+Vδ2+ T cells, CD4+ T cells and CD8+ T cells, and such association influences the clinical outcome of the disease in patients with pulmonary TB and HIV/TB coinfection. Methods: Circulating granulysin, perforin, granzyme-B and IFN-γ levels were determined by ELISA. The isoforms of granulysin were analyzed by Western blot analysis. The effector cells were analyzed by flow cytometry. Results: Circulating granulysin and perforin levels in TB patients were lower than healthy controls, whereas the granulysin levels in HIV/TB coinfection were much higher than in any other groups, TB and HIV with or without receiving HAART, which corresponded to the number of CD8+ T cells which kept high, but not with NK cells and other possible cellular sources of granulysin. In addition, the 17kDa, 15kDa and 9kDa isoforms of granulysin were recognized in plasma of HIV/TB coinfection. Increased granulysin and decreased IFN-γ levels in HIV/TB coinfection and TB after completion of anti-TB therapy were observed. Conclusion: The results suggested that the alteration of circulating granulysin has potential function in host immune response against TB and HIV/TB coinfection. This is the first demonstration so far of granulysin in HIV/TB coinfection. PMID:23801887

  7. Bacterial effectors target the plant cell nucleus to subvert host transcription.

    PubMed

    Canonne, Joanne; Rivas, Susana

    2012-02-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.

  8. Enhanced Requirement for TNFR2 in Graft Rejection Mediated by Low Affinity Memory CD8+ T Cells During Heterologous Immunity

    PubMed Central

    Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.

    2016-01-01

    The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849

  9. Fine-Needle Aspiration Biopsy of the Lymph Node: A Novel Tool for the Monitoring of Immune Responses after Skin Antigen Delivery.

    PubMed

    Tatovic, Danijela; Young, Philippa; Kochba, Efrat; Levin, Yotam; Wong, F Susan; Dayan, Colin M

    2015-07-01

    Assessment of immune responses in lymph nodes (LNs) is routine in animals, but rarely done in humans. We have applied minimally invasive ultrasound-guided fine-needle aspiration of the LN to a before-and-after study of the immune response to intradermally delivered Ag in healthy volunteers (n = 25). By comparison with PBMCs from the same individual, LN cells (LNCs) were characterized by reduced numbers of effector memory cells, especially CD8(+) TEMRA cells (3.37 ± 1.93 in LNCs versus 22.53 ± 7.65 in PBMCs; p = 0.01) and a marked increased in CD69 expression (27.67 ± 7.49 versus 3.49 ± 2.62%, LNCs and PBMCs, respectively; p < 0.0001). At baseline, there was a striking absence of IFN-γ ELISPOT responses to recall Ags (purified protein derivative, Tetanus toxoid, or flu/EBV/CMV viral mix) in LN, despite strong responses in the peripheral blood. However, 48 h after tuberculin purified protein derivative administration in the ipsilateral forearm resulting in a positive skin reaction, a clear increase in IFN-γ ELISPOT counts was seen in the draining LN but not in PBMCs. This response was lost by 5 d. These data suggest that the low levels of effector memory cells in the LN may explain the low background of baseline ELISPOT responses in LNs as compared with PBMCs, and the appearance of a response after 48 h is likely to represent migration of effector memory cells from the skin to the LN. Hence, it appears that the combination of intradermal Ag administration and draining LN sampling can be used as a sensitive method to probe the effector memory T cell repertoire in the skin. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Effector cell signature in peripheral blood following nasal allergen challenge in grass pollen allergic individuals.

    PubMed

    Shamji, M H; Bellido, V; Scadding, G W; Layhadi, J A; Cheung, D K M; Calderon, M A; Asare, A; Gao, Z; Turka, L A; Tchao, N; Togias, A; Phippard, D; Durham, S R

    2015-02-01

    Several studies have demonstrated the time course of inflammatory mediators in nasal fluids following nasal allergen challenge (NAC), whereas the effects of NAC on cells in the periphery are unknown. We examined the time course of effector cell markers (for basophils, dendritic cells and T cells) in peripheral blood after nasal grass pollen allergen challenge. Twelve participants with seasonal allergic rhinitis underwent a control (diluent) challenge followed by NAC after an interval of 14 days. Nasal symptoms and peak nasal inspiratory flow (PNIF) were recorded along with peripheral basophil, T-cell and dendritic cell responses (flow cytometry), T-cell proliferative responses (thymidine incorporation), and cytokine expression (FluoroSpot assay). Robust increases in nasal symptoms and decreases in PNIF were observed during the early (0-1 h) response and modest significant changes during the late (1-24 h) response. Sequential peaks in peripheral blood basophil activation markers were observed (CD107a at 3 h, CD63 at 6 h, and CD203c(bright) at 24 h). T effector/memory cells (CD4(+) CD25(lo) ) were increased at 6 h and accompanied by increases in CD80(+) and CD86(+) plasmacytoid dendritic cells (pDCs). Ex vivo grass antigen-driven T-cell proliferative responses and the frequency of IL-4(+) CD4(+) T cells were significantly increased at 6 h after NAC when compared to the control day. Basophil, T-cell, and dendritic cell activation increased the frequency of allergen-driven IL-4(+) CD4(+) T cells, and T-cell proliferative responses are detectable in the periphery after NAC. These data confirm systemic cellular activation following a local nasal provocation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Generals die in friendly fire, or modeling immune response to HIV

    NASA Astrophysics Data System (ADS)

    Rouzine, Igor M.; Murali-Krishna, Kaja; Ahmed, Rafi

    2005-12-01

    We develop a kinetic model for CD8 T lymphocytes (CTL) whose purpose is to kill cells infected with viruses and intracellular parasites. Using a set of first-order nonlinear differential equations, the model predicts how numbers of different cell types involved in CTL response depend on time. The model postulates that CTL response requires continuous presence of professional antigen-presenting cells (APC) comprised of macrophages and dendritic cells. It assumes that any virus present in excess of a threshold level activates APC that, in turn, activate CTL that expand in number and become armed "effector" cells. In the end, APC are deactivated after virus is cleared. The lack of signal from APC causes effector cells to differentiate, by default, into "transitory cells" that either die, or, in a small part, become long-lived memory cells. Viruses capable of infecting APC will cause premature retirement of effector CTL. If transitory cells encounter virus, which takes place after the premature depletion, CTL become anergic (unresponsive to external stimuli). The model is designed to fit recent experiments on primary CTL response to simian immunodeficiency virus closely related to HIV and lymphocytic choriomeningitis virus. The two viruses are known to infect APC and make them targets for CTL they are supposed to control. Both viruses cause premature depletion and anergy of CTL and persist in the host for life.

  12. Platelets as Cellular Effectors of Inflammation in Vascular Diseases

    PubMed Central

    Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217

  13. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression.

    PubMed

    Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao

    2017-04-01

    Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Evidence of the immunomodulatory role of dual PI3K/mTOR inhibitors in transplantation: an experimental study in mice.

    PubMed

    Vilchez, Valery; Turcios, Lilia; Butterfield, David A; Mitov, Mihail I; Coquillard, Cristin L; Brandon, Ja Anthony; Cornea, Virgilius; Gedaly, Roberto; Marti, Francesc

    2017-10-01

    The PI3K/mTOR signaling cascade is fundamental in T-cell activation and fate decisions. We showed the distinct regulation of PI3K/mTOR in regulatory and effector T-cells and proposed the potential therapeutic benefit of targeting this pathway to control the balance between effector and regulatory T-cell activities. Substantial adverse effects in long-term clinical usage of rapamycin suggest the use of alternative treatments in restraining effector T-cell function in transplant patients. We hypothesize that dual PI3K/mTOR inhibitors may represent an immunosuppressant alternative. Here we show that dual PI3K/mTOR PI-103 and PKI-587 inhibitors interfered IL-2-dependent responses in T-cells. However, in contrast to the inhibitory effects in non-Treg T-cell proliferation and effector functions, dual inhibitors increased the differentiation, preferential expansion, and suppressor activity of iTregs. Rapamycin, PI-103, and PKI-587 targeted different signaling events and induced different metabolic patterns in primary T-cells. Similar to rapamycin, in vivo administration of PI-103 and PKI-587 controlled effectively the immunological response against allogeneic skin graft. These results characterize specific regulatory mechanisms of dual PI3K/mTOR inhibitors in T-cells and support their potential as a novel therapeutic option in transplantation. © 2017 Steunstichting ESOT.

  15. CD4+ T cells are required to contain early extrathoracic TB dissemination and sustain multi-effector functions of CD8+ T and CD3− lymphocytes

    PubMed Central

    Yao, Shuyu; Huang, Dan; Chen, Crystal Y.; Halliday, Lisa; Wang, Richard C.; Chen, Zheng W.

    2014-01-01

    The possibility that CD4+ T cells can act as “innate-like” cells to contain very-early M. tuberculosis (Mtb) dissemination and function as master helpers to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes during development of adaptive immunity against primary tuberculosis(TB) has not been demonstrated. We showed that pulmonary Mtb infection of CD4-depleted macaques surprisingly led to very-early extrathoracic Mtb dissemination, whereas CD4 deficiency clearly resulted in rapid TB progression. CD4 depletion during Mtb infection revealed the ability of CD8+ T cells to compensate and rapidly differentiate to Th17-like/Th1-like, and cytotoxic-like effectors, but these effector functions were subsequently unsustainable due to CD4 deficiency. While CD3-negative non-T lymphocytes in presence of CD4+ T cells developed predominant Th22-like and NK-like (perforin production) responses to Mtb infection, CD4 depletion abrogated these Th22-/NK-like effector functions and favored IL-17 production by CD3-negative lymphocytes. CD4-depleted macaques exhibited no or few pulmonary T effector cells constitutively producing IFN-γ, TNFα, IL-17, IL-22, and perforin at the endpoint of more severe TB, but presented pulmonary IL-4+ T effectors. TB granulomas in CD4-depleted macaques contained fewer IL-22+ and perforin+ cells despite presence of IL-17+ and IL-4+ cells. These results implicate previously-unknown “innate-like” ability of CD4+ T cells to contain extrathoracic Mtb dissemination at very early stage. Data also suggest that CD4+ T cells are required to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes and to prevent rapid TB progression during Mtb infection of nonhuman primates. PMID:24489088

  16. Immune Checkpoint Blockade for Breast Cancer.

    PubMed

    Swoboda, April; Nanda, Rita

    An effective antitumor immune response requires interaction between cells of the adaptive and innate immune system. Three key elements are required: generation of activated tumor-directed T cells, infiltration of activated T cells into the tumor microenvironment, and killing of tumor cells by activated T cells. Tumor immune evasion can occur as a result of the disruption of each of these three key T cell activities, resulting in three distinct cancer-immune phenotypes. The immune inflamed phenotype, characterized by the presence of a robust tumor immune infiltrate, suggests impaired activated T cell killing of tumor cells related to the presence of inhibitory factors. Programmed death receptor-1 (PD-1) is an inhibitory transmembrane protein expressed on T cells, B cells, and NK cells. The interaction between PD-1 and its ligands (PD-L1/L2) functions as an immune checkpoint against unrestrained cytotoxic T effector cell activity-it promotes peripheral T effector cell exhaustion and conversion of T effector cells to immunosuppressive T regulatory (Treg) cells. Immune checkpoint inhibitors, which block the PD-1/PD-L1 axis and reactivate cytotoxic T effector cell function, are actively being investigated for the treatment of breast cancer.

  17. The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells

    PubMed Central

    Awerkiew, Sabine; Schmidt, Annette; Hombach, Andreas A.; Pfister, Herbert; Abken, Hinrich

    2012-01-01

    Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter. PMID:22292024

  18. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    PubMed Central

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  19. Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein

    PubMed Central

    Rehm, Markus; Huber, Heinrich J; Dussmann, Heiko; Prehn, Jochen H M

    2006-01-01

    Activation of effector caspases is a final step during apoptosis. Single-cell imaging studies have demonstrated that this process may occur as a rapid, all-or-none response, triggering a complete substrate cleavage within 15 min. Based on biochemical data from HeLa cells, we have developed a computational model of apoptosome-dependent caspase activation that was sufficient to remodel the rapid kinetics of effector caspase activation observed in vivo. Sensitivity analyses predicted a critical role for caspase-3-dependent feedback signalling and the X-linked-inhibitor-of-apoptosis-protein (XIAP), but a less prominent role for the XIAP antagonist Smac. Single-cell experiments employing a caspase fluorescence resonance energy transfer substrate verified these model predictions qualitatively and quantitatively. XIAP was predicted to control this all-or-none response, with concentrations as high as 0.15 μM enabling, but concentrations >0.30 μM significantly blocking substrate cleavage. Overexpression of XIAP within these threshold concentrations produced cells showing slow effector caspase activation and submaximal substrate cleavage. Our study supports the hypothesis that high levels of XIAP control caspase activation and substrate cleavage, and may promote apoptosis resistance and sublethal caspase activation in vivo. PMID:16932741

  20. Intervention of PKC-θ as an immunosuppressive regimen

    PubMed Central

    Sun, Zuoming

    2012-01-01

    PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regulatory T cells (Treg) that inhibits the inflammatory T cells is enhanced. Therefore, the manipulation of PKC-θ activity can shift the ratio between inflammatory effector T cells and inhibitory Tregs, to control T cell-mediated immune responses that are responsible for autoimmunity and allograft rejection. Indeed, PKC-θ-deficient mice are resistant to the development of several Th2 and Th17-dependent autoimmune diseases and are defective in mounting alloimmune responses required for rejection of transplanted allografts and graft-versus-host disease. Selective inhibition of PKC-θ is therefore considered as a potential treatment for prevention of autoimmune diseases and allograft rejection. PMID:22876242

  1. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    PubMed Central

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  2. Regulatory T cells in the control of host-microorganism interactions (*).

    PubMed

    Belkaid, Yasmine; Tarbell, Kristin

    2009-01-01

    Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.

  3. Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach.

    PubMed

    Teper, Doron; Burstein, David; Salomon, Dor; Gershovitz, Michael; Pupko, Tal; Sessa, Guido

    2016-04-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xcv) is the causal agent of bacterial spot disease in pepper and tomato. Xcv pathogenicity depends on a type III secretion (T3S) system that delivers effector proteins into host cells to suppress plant immunity and promote disease. The pool of known Xcv effectors includes approximately 30 proteins, most identified in the 85-10 strain by various experimental and computational techniques. To identify additional Xcv 85-10 effectors, we applied a genome-wide machine-learning approach, in which all open reading frames (ORFs) were scored according to their propensity to encode effectors. Scoring was based on a large set of features, including genomic organization, taxonomic dispersion, hypersensitive response and pathogenicity (hrp)-dependent expression, 5' regulatory sequences, amino acid composition bias and GC content. Thirty-six predicted effectors were tested for translocation into plant cells using the hypersensitive response (HR)-inducing domain of AvrBs2 as a reporter. Seven proteins (XopAU, XopAV, XopAW, XopAP, XopAX, XopAK and XopAD) harboured a functional translocation signal and their translocation relied on the HrpF translocon, indicating that they are bona fide T3S effectors. Remarkably, four belong to novel effector families. Inactivation of the xopAP gene reduced the severity of disease symptoms in infected plants. A decrease in cell death and chlorophyll content was observed in pepper leaves inoculated with the xopAP mutant when compared with the wild-type strain. However, populations of the xopAP mutant in infected leaves were similar in size to those of wild-type bacteria, suggesting that the reduction in virulence was not caused by impaired bacterial growth. © 2015 BSPP and John Wiley & Sons Ltd.

  4. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  5. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.

    PubMed

    Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R

    2014-01-01

    The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. Structure and biophysics of type III secretion in bacteria.

    PubMed

    Chatterjee, Srirupa; Chaudhury, Sukanya; McShan, Andrew C; Kaur, Kawaljit; De Guzman, Roberto N

    2013-04-16

    Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus.

  7. Naïve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus.

    PubMed

    Vescovini, Rosanna; Fagnoni, Francesco Fausto; Telera, Anna Rita; Bucci, Laura; Pedrazzoni, Mario; Magalini, Francesca; Stella, Adriano; Pasin, Federico; Medici, Maria Cristina; Calderaro, Adriana; Volpi, Riccardo; Monti, Daniela; Franceschi, Claudio; Nikolich-Žugich, Janko; Sansoni, Paolo

    2014-04-01

    Alterations in the circulating CD8+ T cell pool, with a loss of naïve and accumulation of effector/effector memory cells, are pronounced in older adults. However, homeostatic forces that dictate such changes remain incompletely understood. This observational cross-sectional study explored the basis for variability of CD8+ T cell number and composition of its main subsets: naïve, central memory and effector memory T cells, in 131 cytomegalovirus (CMV) seropositive subjects aged over 60 years. We found great heterogeneity of CD8+ T cell numbers, which was mainly due to variability of the CD8 + CD28- T cell subset regardless of age. Analysis, by multiple regression, of distinct factors revealed that age was a predictor for the loss in absolute number of naïve T cells, but was not associated with changes in central or effector memory CD8+ T cell subsets. By contrast, the size of CD8+ T cells specific to pp65 and IE-1 antigens of CMV, predicted CD28 - CD8+ T cell, antigen-experienced CD8+ T cell, and even total CD8+ T cell numbers, but not naïve CD8+ T cell loss. These results indicate a clear dichotomy between the homeostasis of naïve and antigen-experienced subsets of CD8+ T cells which are independently affected, in human later life, by age and antigen-specific responses to CMV, respectively.

  8. The Shigella flexneri OspB effector: an early immunomodulator.

    PubMed

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Sympathetic neural signaling via the β2-adrenergic receptor suppresses T-cell receptor-mediated human and mouse CD8(+) T-cell effector function.

    PubMed

    Estrada, Leonardo D; Ağaç, Didem; Farrar, J David

    2016-08-01

    Postganglionic sympathetic neurons innervate secondary lymphoid organs and secrete norepinephrine (NE) as the primary neurotransmitter. NE binds and signals through five distinct members of the adrenergic receptor family. In this study, we show elevated expression of the β2-adrenergic receptor (ADRB2) on primary human CD8(+) effector memory T cells. Treatment of both human and murine CD8(+) T cells with NE decreased IFN-γ and TNF-α secretion and suppressed their cytolytic capacity in response to T-cell receptor (TCR) activation. The effects of NE were specifically reversed by β2-specific antagonists. Adrb2(-/-) CD8(+) T cells were completely resistant to the effects of NE. Further, the ADRB2-specific pharmacological ligand, albuterol, significantly suppressed effector functions in both human and mouse CD8(+) T cells. While both TCR activation and stimulation with IL-12 + IL-18 were able to induce inflammatory cytokine secretion, NE failed to suppress IFN-γ secretion in response to IL-12 + IL18. Finally, the long-acting ADRB2-specific agonist, salmeterol, markedly reduced the cytokine secretion capacity of CD8(+) T cells in response to infection with vesicular stomatitis virus. This study reveals a novel intrinsic role for ADRB2 signaling in CD8(+) T-cell function and underscores the novel role this pathway plays in adaptive T-cell responses to infection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions.

    PubMed

    Rahman, Sayma; Gudetta, Berhanu; Fink, Joshua; Granath, Anna; Ashenafi, Senait; Aseffa, Abraham; Derbew, Milliard; Svensson, Mattias; Andersson, Jan; Brighenti, Susanna Grundström

    2009-06-01

    Immune responses were assessed at the single-cell level in lymph nodes from children with tuberculous lymphadenitis. Tuberculosis infection was associated with tissue remodeling of lymph nodes as well as altered cellular composition. Granulomas were significantly enriched with CD68+ macrophages expressing the M. tuberculosis complex-specific protein antigen MPT64 and inducible nitric oxide synthase. There was a significant increase in CD8+ cytolytic T cells surrounding the granuloma; however, CD8+ T cells expressed low levels of the cytolytic and antimicrobial effector molecules perforin and granulysin in the granulomatous lesions. Quantitative real-time mRNA analysis revealed that interferon-gamma, tumor necrosis factor-alpha, and interleukin-17 were not up-regulated in infected lymph nodes, but there was a significant induction of both transforming growth factor-beta and interleukin-13. In addition, granulomas contained an increased number of CD4+FoxP3+ T cells co-expressing the immunoregulatory cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumor necrosis factor receptor molecules. Low numbers of CD8+ T cells in the lesions correlated with high levels of transforming growth factor-beta and FoxP3+ regulatory T cells, suggesting active immunosuppression at the local infection site. Compartmentalization and skewing of the immune response toward a regulatory phenotype may result in an uncoordinated effector T-cell response that reduces granule-mediated killing of M. tuberculosis-infected cells and subsequent disease control.

  11. B7-H1 limits the entry of effector CD8(+) T cells to the memory pool by upregulating Bim.

    PubMed

    Gibbons, Rachel M; Liu, Xin; Pulko, Vesna; Harrington, Susan M; Krco, Christopher J; Kwon, Eugene D; Dong, Haidong

    2012-10-01

    Protective T‑cell immunity against cancer and infections is dependent on the generation of a durable effector and memory T‑cell pool. Studies from cancer and chronic infections reveal that B7-H1 (PD-L1) engagement with its receptor PD-1 promotes apoptosis of effector T cells. It is not clear how B7-H1 regulates T‑cell apoptosis and the subsequent impact of B7-H1 on the generation of memory T cells. In immunized B7-H1-deficient mice, we detected an increased expansion of effector CD8(+) T cells and a delayed T‑cell contraction followed by the emergence of a protective CD8(+) T‑cell memory capable of completely rejecting tumor metastases in the lung. Intracellular staining revealed that antigen-primed CD8(+) T cells in B7-H1-deficient mice express lower levels of the pro-apoptotic molecule Bim. The engagement of activated CD8(+) T cells by a plate-bound B7-H1 fusion protein led to the upregulation of Bim and increased cell death. Assays based on blocking antibodies determined that both PD-1 and CD80 are involved in the B7-H1-mediated regulation of Bim in activated CD8(+) T cells. Our results suggest that B7-H1 may negatively regulate CD8(+) T‑cell memory by enhancing the depletion of effector CD8(+) T cells through the upregulation of Bim. Our findings may provide a new strategy for targeting B7-H1 signaling in effector CD8(+) T cells to achieve protective antitumor memory responses.

  12. Global impact of Salmonella type III secretion effector SteA on host cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. Thesemore » systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.« less

  13. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses.

    PubMed

    Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E

    2011-12-09

    Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.

  14. Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment

    PubMed Central

    Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704

  15. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.

    PubMed

    Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.

  16. Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation

    PubMed Central

    Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.

    2014-01-01

    Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617

  17. Effector and memory T cell subsets in the response to bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays of peripheral blood mononuclear cells (PBMC) are used to access T cell central memory (Tcm) responses in both cattle and humans. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT response correlates with protection; how...

  18. Impaired Subset Progression and Polyfunctionality of T Cells in Mice Exposed to Methamphetamine during Chronic LCMV Infection

    PubMed Central

    Sriram, Uma; Hill, Beth L.; Cenna, Jonathan M.; Gofman, Larisa; Fernandes, Nicole C.; Haldar, Bijayesh; Potula, Raghava

    2016-01-01

    Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host’s innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses. PMID:27760221

  19. Impaired Subset Progression and Polyfunctionality of T Cells in Mice Exposed to Methamphetamine during Chronic LCMV Infection.

    PubMed

    Sriram, Uma; Hill, Beth L; Cenna, Jonathan M; Gofman, Larisa; Fernandes, Nicole C; Haldar, Bijayesh; Potula, Raghava

    2016-01-01

    Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host's innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses.

  20. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants.

    PubMed

    Nakano, Masahito; Oda, Kenji; Mukaihara, Takafumi

    2017-07-01

    Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects more than 70 effector proteins into host plant cells via the Hrp type III secretion system to cause a successful infection. However, the function of these effectors in plant cells, especially in the suppression of plant immunity, remains largely unknown. In this study, we characterized two Ralstonia solanacearum effectors, RipAW and RipAR, which share homology with the IpaH family of effectors from animal and plant pathogenic bacteria, that have a novel E3 ubiquitin ligase (NEL) domain. Recombinant RipAW and RipAR show E3 ubiquitin ligase activity in vitro. RipAW and RipAR localized to the cytoplasm of plant cells and significantly suppressed pattern-triggered immunity (PTI) responses such as the production of reactive oxygen species and the expression of defence-related genes when expressed in leaves of Nicotiana benthamiana. Mutation in the conserved cysteine residue in the NEL domain of RipAW completely abolished the E3 ubiquitin ligase activity in vitro and the ability to suppress PTI responses in plant leaves. These results indicate that RipAW suppresses plant PTI responses through the E3 ubiquitin ligase activity. Unlike other members of the IpaH family of effectors, RipAW and RipAR had no leucine-rich repeat motifs in their amino acid sequences. A conserved C-terminal region of RipAW is indispensable for PTI suppression. Transgenic Arabidopsis plants expressing RipAW and RipAR showed increased disease susceptibility, suggesting that RipAW and RipAR contribute to bacterial virulence in plants.

  1. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT,more » NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of action.« less

  2. Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of Pseudomonas and Ralstonia1[W][OA

    PubMed Central

    Wroblewski, Tadeusz; Caldwell, Katherine S.; Piskurewicz, Urszula; Cavanaugh, Keri A.; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K.; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A.; Blumenthal, Daniel; Vinatzer, Boris A.; Greenberg, Jean T.; Michelmore, Richard W.

    2009-01-01

    Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308

  3. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  4. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency.

    PubMed

    Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim

    2013-04-01

    Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.

  5. Detailed analysis of Epstein–Barr virus-specific CD4+ and CD8+ T cell responses during infectious mononucleosis

    PubMed Central

    Scherrenburg, J; Piriou, E R W A N; Nanlohy, N M; van Baarle, D

    2008-01-01

    We studied simultaneously Epstein–Barr virus (EBV)-specific CD4+ and CD8+ T cell responses during and after infectious mononucleosis (IM), using a previously described 12-day stimulation protocol with EBNA1 or BZLF1 peptide pools. Effector function of EBV-specific T cells was determined after restimulation by measuring intracellular interferon-γ production. During IM, BZLF1-specifc CD4+ T cell responses were dominant compared with CD8+ T cell responses. EBNA1-specific CD4+ and CD8+ T cell responses were low and remained similar for 6 months. However, 6 months after IM, BZLF1-specific CD4+ T cell responses had declined, but CD8+ T cell responses had increased. At diagnosis, EBV-specific CD8+ T cells as studied by human leucocyte antigen class I tetramer staining comprised a tetramerbrightCD8bright population consisting mainly of CD27+ memory T cells and a tetramerdimCD8dim population consisting primarily of CD27- effector T cells. The remaining EBV-specific CD8+ T cell population 6 months after the diagnosis of IM consisted mainly of tetramerbrightCD8bright CD27+ T cells, suggesting preferential preservation of memory T cells after contraction of the EBV-specific T cell pool. PMID:18549439

  6. Origin and differentiation of human memory CD8 T cells after vaccination.

    PubMed

    Akondy, Rama S; Fitch, Mark; Edupuganti, Srilatha; Yang, Shu; Kissick, Haydn T; Li, Kelvin W; Youngblood, Ben A; Abdelsamed, Hossam A; McGuire, Donald J; Cohen, Kristen W; Alexe, Gabriela; Nagar, Shashi; McCausland, Megan M; Gupta, Satish; Tata, Pramila; Haining, W Nicholas; McElrath, M Juliana; Zhang, David; Hu, Bin; Greenleaf, William J; Goronzy, Jorg J; Mulligan, Mark J; Hellerstein, Marc; Ahmed, Rafi

    2017-12-21

    The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen.

  7. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana.

    PubMed

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium -mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa , Psa -NZ V13 and Psa -NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana . Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium -mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1 , NDR1 , or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana . In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta .

  8. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana

    PubMed Central

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta. PMID:29326748

  9. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling.

    PubMed

    Han, Sang Wook; Hwang, Byung Kook

    2017-02-01

    Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.

  10. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr atmore » 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.« less

  11. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  12. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    PubMed

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  13. Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia.

    PubMed

    Naglak, Elizabeth K; Morrison, Sandra G; Morrison, Richard P

    2017-10-01

    Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia -specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo , natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response. Copyright © 2017 Naglak et al.

  14. Tight regulation of plant immune responses by combining promoter and suicide exon elements

    DOE PAGES

    Gonzalez, Tania L.; Liang, Yan; Nguyen, Bao N.; ...

    2015-07-02

    Effector-triggered immunity (ETI) is activated when plant disease resistance (R) proteins recognize the presence of pathogen effector proteins delivered into host cells. The ETI response generally encompasses a defensive ‘hypersensitive response’ (HR) that involves programmed cell death at the site of pathogen recognition. While many R protein and effector protein pairs are known to trigger HR, other components of the ETI signaling pathway remain elusive. Effector genes regulated by inducible promoters cause background HR due to leaky protein expression, preventing the generation of relevant transgenic plant lines. By employing the HyP5SM suicide exon, we have developed a strategy to tightlymore » regulate effector proteins such that HR is chemically inducible and non-leaky. This alternative splicing-based gene regulation system was shown to successfully control Bs2/AvrBs2-dependent and RPP1/ATR1Δ51-dependent HR in Nicotiana benthamiana and Nicotiana tabacum, respectively. It was also used to generate viable and healthy transgenic Arabidopsis thaliana plants that inducibly initiate HR. In conclusion, beyond enabling studies on the ETI pathway, our regulatory strategy is generally applicable to reduce or eliminate undesired background expression of transgenes.« less

  15. Tight regulation of plant immune responses by combining promoter and suicide exon elements

    PubMed Central

    Gonzalez, Tania L.; Liang, Yan; Nguyen, Bao N.; Staskawicz, Brian J.; Loqué, Dominique; Hammond, Ming C.

    2015-01-01

    Effector-triggered immunity (ETI) is activated when plant disease resistance (R) proteins recognize the presence of pathogen effector proteins delivered into host cells. The ETI response generally encompasses a defensive ‘hypersensitive response’ (HR) that involves programmed cell death at the site of pathogen recognition. While many R protein and effector protein pairs are known to trigger HR, other components of the ETI signaling pathway remain elusive. Effector genes regulated by inducible promoters cause background HR due to leaky protein expression, preventing the generation of relevant transgenic plant lines. By employing the HyP5SM suicide exon, we have developed a strategy to tightly regulate effector proteins such that HR is chemically inducible and non-leaky. This alternative splicing-based gene regulation system was shown to successfully control Bs2/AvrBs2-dependent and RPP1/ATR1Δ51-dependent HR in Nicotiana benthamiana and Nicotiana tabacum, respectively. It was also used to generate viable and healthy transgenic Arabidopsis thaliana plants that inducibly initiate HR. Beyond enabling studies on the ETI pathway, our regulatory strategy is generally applicable to reduce or eliminate undesired background expression of transgenes. PMID:26138488

  16. Tight regulation of plant immune responses by combining promoter and suicide exon elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Tania L.; Liang, Yan; Nguyen, Bao N.

    Effector-triggered immunity (ETI) is activated when plant disease resistance (R) proteins recognize the presence of pathogen effector proteins delivered into host cells. The ETI response generally encompasses a defensive ‘hypersensitive response’ (HR) that involves programmed cell death at the site of pathogen recognition. While many R protein and effector protein pairs are known to trigger HR, other components of the ETI signaling pathway remain elusive. Effector genes regulated by inducible promoters cause background HR due to leaky protein expression, preventing the generation of relevant transgenic plant lines. By employing the HyP5SM suicide exon, we have developed a strategy to tightlymore » regulate effector proteins such that HR is chemically inducible and non-leaky. This alternative splicing-based gene regulation system was shown to successfully control Bs2/AvrBs2-dependent and RPP1/ATR1Δ51-dependent HR in Nicotiana benthamiana and Nicotiana tabacum, respectively. It was also used to generate viable and healthy transgenic Arabidopsis thaliana plants that inducibly initiate HR. In conclusion, beyond enabling studies on the ETI pathway, our regulatory strategy is generally applicable to reduce or eliminate undesired background expression of transgenes.« less

  17. pMHC affinity controls duration of CD8+ T cell–DC interactions and imprints timing of effector differentiation versus expansion

    PubMed Central

    Sharpe, James; Zehn, Dietmar; Kreutzfeldt, Mario

    2016-01-01

    During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity–primed T cells acquired cytotoxic activity earlier than high affinity–primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity–stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment. PMID:27799622

  18. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    PubMed

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  19. Identification of Pertussis-Specific Effector Memory T Cells in Preschool Children

    PubMed Central

    Schure, Rose-Minke; Öztürk, Kemal; Berbers, Guy; Sanders, Elisabeth; van Twillert, Inonge; Carollo, Maria; Mascart, Françoise; Ausiello, Clara M.; van Els, Cecile A. C. M.; Smits, Kaat; Buisman, Anne-Marie

    2015-01-01

    Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4+ and CD8+ T-cell fractions (CFSEdim) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4+ effector memory cells (CD45RA− CCR7−) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4+ and CD8+ effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age. PMID:25787136

  20. Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses

    PubMed Central

    Hurt, Aeron C.; Oshansky, Christine M.; Oh, Ding Yuan; Reading, Patrick C.; Chua, Brendon Y.; Sun, Yilun; Tang, Li; Handel, Andreas; Jackson, David C.; Turner, Stephen J.; Thomas, Paul G.; Kedzierska, Katherine

    2015-01-01

    CD8+ T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8+ T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8+ T cell responses and the establishment of immunological CD8+ T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8+ T cell responses. Importantly, functional memory CD8+ T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4+ T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8+ T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves. PMID:26086392

  1. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India

    PubMed Central

    Chandele, Anmol; Sewatanon, Jaturong; Gunisetty, Sivaram; Singla, Mohit; Onlamoon, Nattawat; Akondy, Rama S.; Kissick, Haydn Thomas; Nayak, Kaustuv; Reddy, Elluri Seetharami; Kalam, Haroon; Kumar, Dhiraj; Verma, Anil; Panda, HareKrushna; Wang, Siyu; Angkasekwinai, Nasikarn; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Lodha, Rakesh; Kabra, Sushil; Ahmed, Rafi

    2016-01-01

    ABSTRACT Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR− CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro. Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects. PMID:27707928

  2. Dissecting the T Cell Response: Proliferation Assays vs. Cytokine Signatures by ELISPOT

    PubMed Central

    Anthony, Donald D.; Milkovich, Kimberly A.; Zhang, Wenji; Rodriguez, Benigno; Yonkers, Nicole L.; Tary-Lehmann, Magdalena; Lehmann, Paul V.

    2012-01-01

    Chronic allograft rejection is in part mediated by host T cells that recognize allogeneic antigens on transplanted tissue. One factor that determines the outcome of a T cell response is clonal size, while another is the effector quality. Studies of alloimmune predictors of transplant graft survival have most commonly focused on only one measure of the alloimmune response. Because differing qualities and frequencies of the allospecific T cell response may provide distinctly different information we analyzed the relationship between frequency of soluble antigen and allo-antigen specific memory IFN-γ secreting CD4 and CD8 T cells, their ability to secrete IL-2, and their proliferative capacity, while accounting for cognate and bystander proliferation. The results show proliferative responses primarily reflect on IL-2 production by antigen-specific T cells, and that proliferating cells in such assays entail a considerable fraction of bystander cells. On the other hand, proliferation (and IL-2 production) did not reflect on the frequency of IFN-γ producing memory cells, a finding particularly accentuated in the CD8 T cell compartment. These data provide rationale for considering both frequency and effector function of pre-transplant T cell reactivity when analyzing immune predictors of graft rejection. PMID:24710419

  3. FOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity.

    PubMed

    Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L

    2017-10-17

    The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.

  4. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole-animal model system will contribute greatly to the study of molecular mechanisms involved in the interaction of the host innate immune system with fungal spores during mucormycosis. © 2015. Published by The Company of Biologists Ltd.

  5. Role of effector cells (CCR7(-)CD27(-)) and effector-memory cells (CCR7(-)CD27(+)) in drug-induced maculopapular exanthema.

    PubMed

    Fernandez, T D; Torres, M J; Lopez, S; Antunez, C; Gomez, E; Del Prado, M F; Canto, G; Blanca, M; Mayorga, C

    2010-01-01

    Maculopapular exanthema (MPE) induced by drugs is a T-cell mediated reaction and effector cells may play an important role in its development. We assessed the effector and cutaneous homing phenotype in peripheral blood cells from allergic patients after drug stimulation. This study included 10 patients and 10 controls. The effector phenotype (CCR7(-)CD27(+/-)), chemokine receptors (CCR4 and CCR10), and activation (CD25(low)) and regulatory markers (CD25(high)) were measured by flow cytometry in both peripheral blood mononuclear cells (PBMCs) and CD4-T-lymphocytes. Proliferation was determined by 5-(-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) assay and the migratory capacity by a chemotaxis assay using CCL17 and CCL27. Compared to controls, CCR7(-)CD27(-) cells were increased in patients without (p=0.003) and with drug stimulation (p less than 0.001) and had significantly higher proliferation (p=0.010). CCR10 expression was increased in patients after drug stimulation in total and memory CD27(+) T-cells. Lymphocyte migration with CCL27 was higher in patients with drug stimulation (p=0.048), with a decrease in CCR7(-)CD27(-) (p less than 0.0001) and an increase in CCR7(-)CD27(+) (p=0.017). In patients, CD4-T-lymphocytes were significantly activated after drug stimulation (p less than 0.001). In conclusion, we show that effector memory CD4(+) T-cells (CCR7(-)CD27(+)) respond specifically to the drug responsible for MPE and confirm previous data about the involvement of CCR10 in cell trafficking to the skin.

  6. An assay for entry of secreted fungal effectors into plant cells.

    PubMed

    Lo Presti, Libera; Zechmann, Bernd; Kumlehn, Jochen; Liang, Liang; Lanver, Daniel; Tanaka, Shigeyuki; Bock, Ralph; Kahmann, Regine

    2017-01-01

    Successful colonization of plants by prokaryotic and eukaryotic pathogens requires active effector-mediated suppression of defense responses and host tissue reprogramming. Secreted effector proteins can either display their activity in the apoplast or translocate into host cells and function therein. Although characterized in bacteria, the molecular mechanisms of effector delivery by fungal phytopathogens remain elusive. Here we report the establishment of an assay that is based on biotinylation of effectors in the host cytoplasm as hallmark of uptake. The assay exploits the ability of the bacterial biotin ligase BirA to biotinylate any protein that carries a short peptide (Avitag). It is based on the stable expression of BirA in the cytoplasm of maize plants and on engineering of Ustilago maydis strains to secrete Avitagged effectors. We demonstrate translocation of a number of effectors in the U. maydis-maize system and show data that suggest that the uptake mechanism could be rather nonspecific The assay promises to be a powerful tool for the classification of effectors as well as for the functional study of effector uptake mechanism not only in the chosen system but more generally for systems where biotrophic interactions are established. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Donor-Specific Indirect Pathway Analysis Reveals a B-Cell-Independent Signature Which Reflects Outcomes in Kidney Transplant Recipients

    PubMed Central

    Haynes, L. D.; Jankowska-Gan, E.; Sheka, A.; Keller, M. R.; Hernandez-Fuentes, M. P.; Lechler, R. I.; Seyfert-Margolis, V.; Turka, L. A.; Newell, K. A.; Burlingham, W. J.

    2012-01-01

    To investigate the role of donor-specific indirect pathway T cells in renal transplant tolerance, we analyzed responses in peripheral blood of 45 patients using the trans-vivo delayed-type hypersensitivity assay. Subjects were enrolled into five groups—identical twin, clinically tolerant (TOL), steroid monotherapy (MONO), standard immunosuppression (SI) and chronic rejection (CR)—based on transplant type, posttransplant immunosuppression and graft function. The indirect pathway was active in all groups except twins but distinct intergroup differences were evident, corresponding to clinical status. The antidonor indirect pathway T effector response increased across patient groups (TOL < MONO < SI < CR; p < 0.0001) whereas antidonor indirect pathway T regulatory response decreased (TOL > MONO = SI > CR; p < 0.005). This pattern differed from that seen in circulating naïve B-cell numbers and in a cross-platform biomarker analysis, where patients on monotherapy were not ranked closest to TOL patients, but rather were indistinguishable from chronically rejecting patients. Cross-sectional analysis of the indirect pathway revealed a spectrum in T-regulatory:T-effector balance, ranging from TOL patients having predominantly regulatory responses to CR patients having predominantly effector responses. Therefore, the indirect pathway measurements reflect a distinct aspect of tolerance from the recently reported elevation of circulating naïve B cells, which was apparent only in recipients off immunosuppression. PMID:22151236

  8. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells

    PubMed Central

    Frencher, James T.; Shen, Hongbo; Yan, Lin; Wilson, Jessica O.; Freitag, Nancy E.; Rizzo, Alicia N.; Chen, Crystal Y.; Chen, Zheng W.

    2014-01-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactAΔgcpE prfA* mutant. The HMBPP-deficient ΔgcpE mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. PMID:25114162

  9. T cells expanded in presence of IL-15 exhibit increased antioxidant capacity and innate effector molecules

    PubMed Central

    Kaur, Navtej; Naga, Osama S.; Norell, Håkan; Al-Khami, Amir A.; Scheffel, Matthew J.; Chakraborty, Nitya G.; Voelkel-Johnson, Christina; Mukherji, Bijay; Mehrotra, Shikhar

    2011-01-01

    Persistence of effector cytotoxic T lymphocytes (CTLs) during an immunological response is critical for successfully controlling a viral infection or tumor growth. Various cytokines are known to play an important part in regulating the immune response. The IL-2 family of cytokines that includes IL-2 and IL-15 are known to function as growth and survival factors for antigen-experienced T cells. IL-2 and IL-15 possess similar properties, including the ability to induce T cell proliferation. Whereas long term IL-2 exposure has been shown to promote apoptosis and limit CD8+ memory T cell survival and proliferation, it is widely believed that IL-15 can inhibit apoptosis and helps maintain a memory CD8+ T-cell population. However, mechanisms for superior outcomes for IL-15 as compared to IL-2 are still under investigation. Our data shows that human T cells cultured in the presence of IL-15 exhibit increased expression of anti-oxidant molecules Glutathione reductase (GSR), Thioredoxin reductase 1 (TXNDR1), Peroxiredoxin (PRDX), Superoxide dismutase (SOD). An increased expression of cell-surface thiols, intracellular glutathione, and thioredoxins was also noted in IL-15 cultured T cells. Additionally, IL-15 cultured T cells also showed an increase in cytolytic effector molecules. Apart from increased level of Granzyme A and Granzyme B, IL-15 cultured T cells exhibit increased accumulation of reactive oxygen (ROS) and reactive nitrogen (RNS) species as compared to IL-2 cultured T cells. Overall, this study suggests that T cells cultured in IL-15 show increase persistence not only due to increased anti-apoptotic proteins but also due to increased anti-oxidant levels, which is further complimented by increased cytolytic effector functions. PMID:21602054

  10. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals.

    PubMed

    Salmond, Robert J; Brownlie, Rebecca J; Morrison, Vicky L; Zamoyska, Rose

    2014-09-01

    T cells must be tolerant of self antigens to avoid autoimmunity but responsive to foreign antigens to provide protection against infection. We found that in both naive T cells and effector T cells, the tyrosine phosphatase PTPN22 limited signaling via the T cell antigen receptor (TCR) by weak agonists and self antigens while not impeding responses to strong agonist antigens. T cells lacking PTPN22 showed enhanced formation of conjugates with antigen-presenting cells pulsed with weak peptides, which led to activation of the T cells and their production of inflammatory cytokines. This effect was exacerbated under conditions of lymphopenia, with the formation of potent memory T cells in the absence of PTPN22. Our data address how loss-of-function PTPN22 alleles can lead to the population expansion of effector and/or memory T cells and a predisposition to human autoimmunity.

  11. Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection

    PubMed Central

    Carbo, Adria; Bassaganya-Riera, Josep; Pedragosa, Mireia; Viladomiu, Monica; Marathe, Madhav; Eubank, Stephen; Wendelsdorf, Katherine; Bisset, Keith; Hoops, Stefan; Deng, Xinwei; Alam, Maksudul; Kronsteiner, Barbara; Mei, Yongguo; Hontecillas, Raquel

    2013-01-01

    T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the induction of mucosal effector and regulatory pathways controlled by PPARγ during H. pylori infection affecting disease outcomes. PMID:24039925

  12. Progressive CD4+ central–memory T cell decline results in CD4+ effector–memory insufficiency and overt disease in chronic SIV infection

    PubMed Central

    Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M.; Hagen, Shoko I.; Walker, Joshua M.; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B.; Planer, Shannon L.; Legasse, Alfred; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Sodora, Donald L.; Douek, Daniel C.; Axthelm, Michael K.; Grossman, Zvi; Picker, Louis J.

    2007-01-01

    Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells. PMID:17724130

  13. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    PubMed

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  14. Quantitative, Phenotypical, and Functional Characterization of Cellular Immunity in Children and Adolescents With Down Syndrome.

    PubMed

    Schoch, Justine; Rohrer, Tilman R; Kaestner, Michael; Abdul-Khaliq, Hashim; Gortner, Ludwig; Sester, Urban; Sester, Martina; Schmidt, Tina

    2017-05-15

    Infections and autoimmune disorders are more frequent in Down syndrome, suggesting abnormality of adaptive immunity. Although the role of B cells and antibodies is well characterized, knowledge regarding T cells is limited. Lymphocyte subpopulations of 40 children and adolescents with Down syndrome and 51 controls were quantified, and phenotype and functionality of antigen-specific effector T cells were analyzed with flow cytometry after polyclonal and pathogen-specific stimulation (with varicella-zoster virus [VZV] and cytomegalovirus [CMV]). Results were correlated with immunoglobulin (Ig) G responses. Apart from general alterations in the percentage of lymphocytes, regulatory T cells, and T-helper 1 and 17 cells, all major T-cell subpopulations showed higher expression of the inhibitory receptor PD-1. Polyclonally stimulated effector CD4+ T-cell frequencies were significantly higher in subjects with Down syndrome, whereas their inhibitory receptor expression (programmed cell death 1 [PD-1] and cytotoxic T-lymphocyte antigen 4 [CTLA-4]) was similar to that of controls and cytokine expression profiles were only marginally altered. Pathogen-specific immunity showed age-appropriate levels of endemic infection, with correlation of CMV-specific cellular and humoral immunity in all subjects. Among VZV IgG-positive individuals, a higher percentage of VZV-specific T-cell-positive subjects was seen in those with Down syndrome. Despite alterations in lymphocyte subpopulations, individuals with Down syndrome can mount effector T-cell responses with similar phenotype and functionality as controls but may require higher effector T-cell frequencies to ensure pathogen control. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  15. Effector and memory T cell subsets in the response to bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14d) cultured IFN-gamma ELISPOT assays of PBMC are used as a correlate of T cell central memory (Tcm) responses in cattle and humans. With bovine tuberculosis, vaccine-elicited Tcm responses correlate with protection against experimental Mycobacterium bovis infection. The objective ...

  16. Simultaneous coexpression of memory-related and effector-related genes by individual human CD8 T cells depends on antigen specificity and differentiation.

    PubMed

    Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie

    2012-07-01

    Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

  17. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    PubMed Central

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating TFR success. However, a major goal remains in CML to identify the most effective pathways to target to maximize an advantageous immune response and promote TFR success. PMID:28484463

  18. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells.

    PubMed

    Sharma, Shailendra; Sharma, Shiveta; Hirabuchi, Akiko; Yoshida, Kentaro; Fujisaki, Koki; Ito, Akiko; Uemura, Aiko; Terauchi, Ryohei; Kamoun, Sophien; Sohn, Kee Hoon; Jones, Jonathan D G; Saitoh, Hiromasa

    2013-05-01

    Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery.

    PubMed

    Flaugnatti, Nicolas; Le, Thi Thu Hang; Canaan, Stéphane; Aschtgen, Marie-Stéphanie; Nguyen, Van Son; Blangy, Stéphanie; Kellenberger, Christine; Roussel, Alain; Cambillau, Christian; Cascales, Eric; Journet, Laure

    2016-03-01

    The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath-like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero-aggregative Escherichia coli Sci-1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self-protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C-terminal extension domain of VgrG1, including a transthyretin-like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C-terminus of VgrG proteins. © 2015 John Wiley & Sons Ltd.

  20. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation

    PubMed Central

    Pearson, Jaclyn S; Riedmaier, Patrice; Marchès, Olivier; Frankel, Gad; Hartland, Elizabeth L

    2011-01-01

    Many bacterial pathogens utilize a type III secretion system (T3SS) to inject virulence effector proteins into host cells during infection. Previously, we found that enteropathogenic Escherichia coli (EPEC) uses the type III effector, NleE, to block the inflammatory response by inhibiting IκB degradation and nuclear translocation of the p65 subunit of NF-κB. Here we screened further effectors with unknown function for their capacity to prevent p65 nuclear translocation. We observed that ectopic expression of GFP–NleC in HeLa cells led to the degradation of p65. Delivery of NleC by the T3SS of EPEC also induced degradation of p65 in infected cells as well as other NF-κB components, c-Rel and p50. Recombinant His6-NleC induced p65 and p50 cleavage in HeLa cell lysates and mutation of a consensus zinc metalloprotease motif, HEIIH, abrogated NleC proteolytic activity. NleC inhibited IL-8 production during prolonged EPEC infection of HeLa cells in a protease activity-dependent manner. A double nleE/nleC mutant was further impaired for its ability to inhibit IL-8 secretion than either a single nleE or a single nleC mutant. We conclude that NleC is a type III effector protease that degrades NF-κB thereby contributing the arsenal of bacterial effectors that inhibit innate immune activation. PMID:21306441

  1. Control of regulatory T cell lineage commitment and maintenance.

    PubMed

    Josefowicz, Steven Z; Rudensky, Alexander

    2009-05-01

    Foxp3-expressing regulatory T (Treg) cells suppress pathology mediated by immune responses against self and foreign antigens and commensal microorganisms. Sustained expression of the transcription factor Foxp3, a key distinguishing feature of Treg cells, is required for their differentiation and suppressor function. In addition, Foxp3 expression prevents deviation of Treg cells into effector T cell lineages and confers dependence of Treg cell survival and expansion on growth factors, foremost interleukin-2, provided by activated effector T cells. In this review we discuss Treg cell differentiation and maintenance with a particular emphasis on molecular regulation of Foxp3 expression, arguably a key to mechanistic understanding of biology of regulatory T cells.

  2. Visualization of novel virulence activities of the Xanthomonas type III effectors AvrBs1, AvrBs3 and AvrBs4.

    PubMed

    Gürlebeck, Doreen; Jahn, Simone; Gürlebeck, Norman; Szczesny, Robert; Szurek, Boris; Hahn, Simone; Hause, Gerd; Bonas, Ulla

    2009-03-01

    Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.

  3. PC61 (Anti-CD25) Treatment Inhibits Influenza A Virus-Expanded Regulatory T Cells and Severe Lung Pathology during a Subsequent Heterologous Lymphocytic Choriomeningitis Virus Infection

    PubMed Central

    Kraft, Anke R. M.; Wlodarczyk, Myriam F.; Kenney, Laurie L.

    2013-01-01

    Prior immunity to influenza A virus (IAV) in mice changes the outcome to a subsequent lymphocytic choriomeningitis virus (LCMV) infection and can result in severe lung pathology, similar to that observed in patients that died of the 1918 H1N1 pandemic. This pathology is induced by IAV-specific memory CD8+ T cells cross-reactive with LCMV. Here, we discovered that IAV-immune mice have enhanced CD4+ Foxp3+ T-regulatory (Treg) cells in their lungs, leading us to question whether a modulation in the normal balance of Treg and effector T-cell responses also contributes to enhancing lung pathology upon LCMV infection of IAV-immune mice. Treg cell and interleukin-10 (IL-10) levels remained elevated in the lungs and mediastinal lymph nodes (mLNs) throughout the acute LCMV response of IAV-immune mice. PC61 treatment, used to decrease Treg cell levels, did not change LCMV titers but resulted in a surprising decrease in lung pathology upon LCMV infection in IAV-immune but not in naive mice. Associated with this decrease in pathology was a retention of Treg in the mLN and an unexpected partial clonal exhaustion of LCMV-specific CD8+ T-cell responses only in IAV-immune mice. PC61 treatment did not affect cross-reactive memory CD8+ T-cell proliferation. These results suggest that in the absence of IAV-expanded Treg cells and in the presence of cross-reactive memory, the LCMV-specific response was overstimulated and became partially exhausted, resulting in a decreased effector response. These studies suggest that Treg cells generated during past infections can influence the characteristics of effector T-cell responses and immunopathology during subsequent heterologous infections. Thus, in humans with complex infection histories, PC61 treatment may lead to unexpected results. PMID:24049180

  4. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells

    PubMed Central

    Shan, Qiang; Xue, Hai-Hui; Harty, John T.

    2017-01-01

    Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM) and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM) provide robust protection in a variety of infectious models. TRM rapidly ‘sense’ infection in non-lymphoid tissues and ‘alarm’ the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production) intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their ‘sensing and alarming’ functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9) on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM antigen recognition. Thus, sepsis has the capacity to alter skin TRM anamnestic responses without directly impacting TRM number and/or function, an observation that helps to further define the immunoparalysis phase in sepsis survivors. PMID:28910403

  5. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    PubMed

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  6. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity

    PubMed Central

    Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.

    2018-01-01

    Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444

  7. HIV-TB coinfection impairs CD8(+) T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses.

    PubMed

    Suarez, Guadalupe V; Angerami, Matías T; Vecchione, María B; Laufer, Natalia; Turk, Gabriela; Ruiz, Maria J; Mesch, Viviana; Fabre, Bibiana; Maidana, Patricia; Ameri, Diego; Cahn, Pedro; Sued, Omar; Salomón, Horacio; Bottasso, Oscar A; Quiroga, María F

    2015-09-01

    Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection

    NASA Astrophysics Data System (ADS)

    Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.

    2004-06-01

    Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.

  9. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  10. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  11. Blocking Virus Replication during Acute Murine Cytomegalovirus Infection Paradoxically Prolongs Antigen Presentation and Increases the CD8+ T Cell Response by Preventing Type I IFN-Dependent Depletion of Dendritic Cells.

    PubMed

    Loo, Christopher P; Snyder, Christopher M; Hill, Ann B

    2017-01-01

    Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Tolerogenic dendritic cells inhibit antiphospholipid syndrome derived effector/memory CD4⁺ T cell response to β2GPI.

    PubMed

    Torres-Aguilar, Honorio; Blank, Miri; Kivity, Shaye; Misgav, Mudi; Luboshitz, Jacob; Pierangeli, Silvia S; Shoenfeld, Yehuda

    2012-01-01

    The importance of β(2)-glycoprotein I (β(2)GPI)-specific CD4(+) T cells in the development of pathogenic processes in patients with antiphospholipid syndrome (APS) and APS mouse models is well established. Therefore, our objective is to manipulate the β2GPI specific CD4(+) T cells using tolerogenic dendritic cells (tDCs) to induce tolerance. We aim to evaluate the capability of tDCs to induce antigen-specific tolerance in effector/memory T cells from patients with APS and to elucidate the involved mechanism. DCs and tDCs were produced from patients with APS peripheral-blood-monocytes, using specific cytokines. β(2)GPI-specific tolerance induction was investigated by coculturing control DC (cDC) or tDC, β(2)GPI-loaded, with autologous effector/memory T cells, evaluating the proliferative response, phenotype, cytokines secretion, viability and regulatory T cells. Human monocyte-derived DCs treated with interleukin (IL)-10 and transforming growth factor β-1 (10/TGF-DC) induced β(2)GPI-specific-unresponsiveness in effector/memory CD4(+) T cells (46.5% ± 26.0 less proliferation) in 16 of 20 analysed patients with APS, without affecting the proliferative response to an unrelated candidin. In five analysed patients, 10/TGF-DC-stimulated T cells acquired an IL-2(low)interferon γ(low)IL-10(high) cytokine profile, with just a propensity to express higher numbers of Foxp3(+)CTLA-4(+) cells, but with an evident suppressive ability. In four of 10 analysed patients, 10/TGF-DC-stimulated T cell hyporesponsiveness could not be reverted and showed higher percentages of late apoptosis, p<0.02. The inherent tolerance induction resistance of activated T cells present during the development of autoimmune diseases has delayed the application of tDC as an alternative therapy. This study highlights the 10/TGF-DC feasibility to induce antigen-specific unresponsiveness in autoreactive T cells generated in patients with APS by inducing apoptosis or T cells with regulatory abilities.

  13. Visualization of T Cell-Regulated Monocyte Clusters Mediating Keratinocyte Death in Acquired Cutaneous Immunity.

    PubMed

    Liu, Zheng; Yang, Fei; Zheng, Hao; Fan, Zhan; Qiao, Sha; Liu, Lei; Tao, Juan; Luo, Qingming; Zhang, Zhihong

    2018-06-01

    It remains unclear how monocytes are mobilized to amplify inflammatory reactions in T cell-mediated adaptive immunity. Here, we investigate dynamic cellular events in the cascade of inflammatory responses through intravital imaging of a multicolor-labeled murine contact hypersensitivity model. We found that monocytes formed clusters around hair follicles in the contact hypersensitivity model. In this process, effector T cells encountered dendritic cells under regions of monocyte clusters and secreted IFN-γ, which mobilizes CCR2-dependent monocyte interstitial migration and CXCR2-dependent monocyte cluster formation. We showed that hair follicles shaped the inflammatory microenvironment for communication among the monocytes, keratinocytes, and effector T cells. After disrupting the T cell-mobilized monocyte clusters through CXCR2 antagonization, monocyte activation and keratinocyte apoptosis were significantly inhibited. Our study provides a new perspective on effector T cell-regulated monocyte behavior, which amplifies the inflammatory reaction in acquired cutaneous immunity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Modulation of human Th17 cell responses through complement receptor 3 (CD11 b/CD18) ligation on monocyte-derived dendritic cells.

    PubMed

    Nowatzky, Johannes; Manches, Olivier; Khan, Shaukat Ali; Godefroy, Emmanuelle; Bhardwaj, Nina

    2018-06-13

    Apoptotic cell receptors contribute to the induction of tolerance by modulating dendritic cell function following the uptake of apoptotic cells or microparticles. Dendritic cells that have bound or ingested apoptotic cells produce only low amounts of pro-inflammatory cytokines and fail to prime effector T cell responses. Specifically, ligation of the apoptotic cell receptor CR3 (CD11 b/CD18) on human monocyte-derived dendritic cells (moDC) down-modates proinflammatory cytokine secretion, but the consequences for human Th17 cell homeostasis and effector responses remain unknown. Here, we aimed to establish whether CD11b-ligated moDC modulate Th17 cell effector reponses to assess their potential for future use in moDC-based suppressive immunotherapy. We generated a bead-based surrogate system to target CD11b on monocyte-derived human dendritic cells and examined the effects of CD11b ligation on Th17-skewing cytokine secretion, priming, expansion and functional plasticity in DC/T cell co-culture systems at the poly- and monoclonal level. We show that Th17 cell expansion within the human memory CD4 + T cell compartment was efficiently constricted by targeting the CD11b receptor on moDC. This tolerogenic capacity was primarily dependent on cytokine skewing. Furthermore, ligation of CD11b on healthy homozygous carriers of the rs11143679 (ITGAM) variant - a strong genetic susceptibility marker for human systemic lupus erythematosus - also down-modulated the secretion of Th17-skewing cytokines. Overall, our findings underline the potential of targeted CD11b ligation on human dendritic cells for the engineering of suppressive immunotherapy for Th17-related autoimmune disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies

    PubMed Central

    Lazzaro, Martina; Feldman, Mario F.

    2017-01-01

    ABSTRACT The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. PMID:28830939

  16. Activated Tissue-Resident Mesenchymal Stromal Cells Regulate Natural Killer Cell Immune and Tissue-Regenerative Function.

    PubMed

    Petri, Robert Michael; Hackel, Alexander; Hahnel, Katrin; Dumitru, Claudia Alexandra; Bruderek, Kirsten; Flohe, Stefanie B; Paschen, Annette; Lang, Stephan; Brandau, Sven

    2017-09-12

    The interaction of mesenchymal stromal cells (MSCs) with natural killer (NK) cells is traditionally thought of as a static inhibitory model, whereby resting MSCs inhibit NK cell effector function. Here, we use a dynamic in vitro system of poly(I:C) stimulation to model the interaction of NK cells and tissue-resident MSCs in the context of infection or tissue injury. The experiments suggest a time-dependent system of regulation and feedback, where, at early time points, activated MSCs secrete type I interferon to enhance NK cell effector function, while at later time points TGF-β and IL-6 limit NK cell effector function and terminate inflammatory responses by induction of a regulatory senescent-like NK cell phenotype. Importantly, feedback of these regulatory NK cells to MSCs promotes survival, proliferation, and pro-angiogenic properties. Our data provide additional insight into the interaction of stromal cells and innate immune cells and suggest a model of time-dependent MSC polarization and licensing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. In vitro generation of viral-antigen dependent cytotoxic T-cells from ginbuna crucian carp, Carassius auratus langsdorfii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somamoto, Tomonori, E-mail: somamoto@agr.kyushu-u.ac.j; Okamoto, Nobuaki; Nakanishi, Teruyuki

    2009-06-20

    Little is known about antigen-specific T-cell responses to viruses in teleosts due to a lack of a suitable experimental system using inbred or clonal animals. In the present study we have successfully induced an in vitro generation of virus-specific cytotoxic T-cells (CTLs) from isogeneic ginbuna crucian carp. Responder cells (primarily lymphocytes) from crucian carp haematopoietic necrosis virus (CHNV)-infected fish were capable of proliferating after stimulation in vitro with CHNV-infected syngeneic stimulator cells (primarily lymphocytes and macrophages). The effector cells collected 8 and 12 days after the in vitro stimulation efficiently lysed CHNV-infected syngeneic cells, but not CHNV-infected allogeneic cells ormore » different virus (EVA)-infected syngeneic cells. Furthermore, in situ hybridization analysis showed that some effector cells binding to a CHNV-infected target were TCRbeta or CD8alpha positive. These results provide evidence that the teleost effector cells generated in vitro correspond to virus-specific CTL and they recognize virus-infected target cells in a similar manner of mammalian counterparts.« less

  18. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir

    PubMed Central

    Montaner, Luis J.

    2017-01-01

    Abstract Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. PMID:28520969

  19. Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection.

    PubMed

    Ferrari, Guido; Pollara, Justin; Tomaras, Georgia D; Haynes, Barton F

    2017-03-15

    Human immunodeficiency virus (HIV) type 1 uses the CD4 molecule as its principal receptor to infect T cells. HIV-1 integrates its viral genome into the host cell, leading to persistent infection wherein HIV-1 can remain transcriptionally silent in latently infected CD4+ T cells. On reactivation of replication-competent provirus, HIV-1 envelope glycoproteins (Env) are expressed and accumulate on the cell surface, allowing infected cells to be detected and targeted by endogenous immune responses or immune interventions. HIV-1 Env-specific antibodies have the potential to bind HIV-1 cell surface Env and promote elimination of infected CD4+ T cells by recruiting cytotoxic effector cells, such as natural killer cells, monocytes, and polymorphonuclear cells. Harnessing humoral and innate cellular responses has become one focus of research to develop innovative strategies to recruit and redirect cytotoxic effector cells to eliminate the HIV-1 latently infected CD4+ T-cell reservoir. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus.

    PubMed

    Mafurah, Joseph Juma; Ma, Huifei; Zhang, Meixiang; Xu, Jing; He, Feng; Ye, Tingyue; Shen, Danyu; Chen, Yanyu; Rajput, Nasir Ahmed; Dou, Daolong

    2015-01-01

    Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses.

  1. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    PubMed

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was functional when any one of these effector mechanisms was completely absent, except some noticeably reduced penetrance, but not abolishment, of the phenotype in the male background in comparison to female background. These results also indicate that some other effector mechanism(s) of granulocytes may be involved in the killing of cancer cells in SR/CR mice.

  2. Characterization of effector and memory T cell subsets in the immune response to bovine tuberculosis in cattle

    USDA-ARS?s Scientific Manuscript database

    Vaccine-elicited long-term cultured IFN-gamma ELISPOT responses correlate with protection against bovine tuberculosis in cattle. With humans, cultured IFN-gamma ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses; however, this important subset of lymphocytes is poorly ch...

  3. T cell source of type 1 cytokines determines illness patterns in respiratory syncytial virus-infected mice.

    PubMed Central

    Tang, Y. W.; Graham, B. S.

    1997-01-01

    Manipulation of the cytokine microenvironment at the time of vaccination can influence immune responses to remote challenge, providing a strategy to study the molecular pathogenesis of respiratory syncytial virus (RSV) vaccine-enhanced disease in the mouse model. Although treatment with antibody against IL-4 or recombinant IL-12 (rIL-12) at the time of formalin-inactivated RSV vaccination induced a similar shift in the pattern of cytokine mRNA expression upon live virus challenge, anti-IL-4 treated mice had increased CD8+ cytotoxic T lymphocyte activity and reduced illness compared with rIL-12-treated mice. To define effector mechanisms responsible for these patterns, CD4+ and/or CD8+ T lymphocytes were selectively depleted in vivo at the time of RSV challenge. In rIL-12-treated mice, CD4+ lymphocytes made the largest contribution to IFN-gamma mRNA, RSV clearance, and illness, while in anti-IL-4 treated mice, CD8+ lymphocytes were the major effector. The effector responsible for virus clearance also mediated illness, suggesting that efficiency of virus clearance determined disease expression. These results demonstrate that the phenotype of effector cells involved in the immune response to virus challenge may be a more important determinant of disease than patterns of cytokine expression classically assigned to Th1 and Th2 lymphocytes. PMID:9151790

  4. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    PubMed

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    PubMed Central

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  6. Nodulation outer proteins: double-edged swords of symbiotic rhizobia.

    PubMed

    Staehelin, Christian; Krishnan, Hari B

    2015-09-15

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research. © 2015 Authors; published by Portland Press Limited.

  7. CD4 T Cell Responses in Latent and Chronic Viral Infections

    PubMed Central

    Walton, Senta; Mandaric, Sanja; Oxenius, Annette

    2013-01-01

    The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter. PMID:23717308

  8. The transcription factors Thpok and LRF are necessary and partly redundant for T helper cell differentiation

    PubMed Central

    Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy

    2014-01-01

    Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065

  9. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli

    PubMed Central

    Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L

    2016-01-01

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917

  10. A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology

    PubMed Central

    Liu, Jie; Haddad, Elias K.; Marceau, Joshua; Morabito, Kaitlyn M.; Rao, Srinivas S.; Filali-Mouhim, Ali; Sekaly, Rafick-Pierre; Graham, Barney S.

    2016-01-01

    CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV) infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity. PMID:26943673

  11. Mutual antagonism of TGF-beta and Interleukin-2 in cell survival and lineage commitment of induced regulatory T cells

    PubMed Central

    Tischner, D; Wiegers, G J; Fiegl, H; Drach, M; Villunger, A

    2012-01-01

    Transforming growth factor beta (TGF-β)- and Interleukin-2 (IL-2)-mediated signaling enables the generation and expansion of induced regulatory T (iTreg) cells that carry high hopes for the treatment of chronic inflammatory and autoimmune diseases. Knowledge about factors stabilizing their lineage commitment and lifespan, however, is limited. Here, we investigated the behavior of iTreg cells, derived from apoptosis-defective mouse mutants, during activated cell autonomous cell death, triggered by cytokine-deprivation, or activation-induced cell death (AICD) after restimulation of the T-cell receptor, and compared these responses with those of effector T cells. We observed that iTreg cells were much more sensitive to IL-2-deprivation but poorly susceptible to AICD. In fact, when apoptosis was compromised, T-cell receptor (TCR)-religation resulted in methylation-independent, ERK- and PI3K/mTOR-mediated loss of Foxp3 expression, impaired suppressive capacity and effector cytokine production. Although iTreg cells prevented colitis induction they rapidly lost Foxp3-GFP expression and gained ability to produce effector cytokines thereby imposing Th1 cell fate on resident effector cells. Surprisingly, iTreg cell conversion itself was limited by TGF-β-mediated Bim/Bcl2L11-dependent apoptosis. Hence, the very same cytokine that drives the generation of iTreg cells can trigger their demise. Our results provide novel insights in iTreg cell biology that will assist optimization of iTreg-based therapy. PMID:22322859

  12. Effector and central memory T helper 2 cells respond differently to peptide immunotherapy

    PubMed Central

    Mackenzie, Karen J.; Nowakowska, Dominika J.; Leech, Melanie D.; McFarlane, Amanda J.; Wilson, Claire; Fitch, Paul M.; O’Connor, Richard A.; Howie, Sarah E. M.; Schwarze, Jürgen; Anderton, Stephen M.

    2014-01-01

    Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62Llo) and central memory (CD62Lhi) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62Lhi and CD62Llo Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4+ T cells to PIT. Most notably, allergen-reactive CD62Llo Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62Lhi Th2 cells. Despite this, PIT was most potent against CD62Llo Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62Lhi Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios. PMID:24516158

  13. Ras-Related Small GTPases RalA and RalB Regulate Cellular Survival After Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidd, Ambrose R.; Snider, Jared L.; Martin, Timothy D.

    2010-09-01

    Purpose: Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. Methods and Materials: RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expressionmore » of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, {gamma}H2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. Results: Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. Conclusions: Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.« less

  14. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function.

    PubMed

    Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang

    2017-07-21

    B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.

  15. Independently evolved virulence effectors converge onto hubs in a plant immune system network.

    PubMed

    Mukhtar, M Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T; Pevzner, Samuel J; Donovan, Susan E; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M; Gebreab, Fana; Gutierrez, Bryan J; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P; Hill, David E; Ecker, Joseph R; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L

    2011-07-29

    Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.

  16. Dynamics of the cytotoxic T cell response to a model of acute viral infection.

    PubMed

    DeWitt, William S; Emerson, Ryan O; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H; McElrath, Juliana; Makar, Karen W; Wald, Anna; Robins, Harlan S

    2015-04-01

    A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Dynamics of the Cytotoxic T Cell Response to a Model of Acute Viral Infection

    PubMed Central

    DeWitt, William S.; Emerson, Ryan O.; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M.; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H.; McElrath, Juliana; Makar, Karen W.; Wald, Anna

    2015-01-01

    ABSTRACT A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8+ T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8+ T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼2,000 CD8+ T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy. PMID:25653453

  18. The peripheral action of hexamethonium and of pentolinium

    PubMed Central

    Mantegazza, P.; Tyler, Christine; Zaimis, Eleanor

    1958-01-01

    The influence of hexamethonium and pentolinium on the responses of certain peripheral effector cells to adrenaline, noradrenaline or postganglionic stimulation was studied in the cat. The actions of adrenaline and noradrenaline on the blood vessels of a limb and of adrenaline and postganglionic stimulation on the nictitating membrane were increased after the administration of hexamethonium and pentolinium. This effect was considered to be due to sensitization of the peripheral effector cells. The possible significance of these findings is discussed. PMID:13618555

  19. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resultedmore » in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.« less

  20. Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana.

    PubMed

    Betsuyaku, Shigeyuki; Katou, Shinpei; Takebayashi, Yumiko; Sakakibara, Hitoshi; Nomura, Nobuhiko; Fukuda, Hiroo

    2018-01-01

    The innate immune response is, in the first place, elicited at the site of infection. Thus, the host response can be different among the infected cells and the cells surrounding them. Effector-triggered immunity (ETI), a form of innate immunity in plants, is triggered by specific recognition between pathogen effectors and their corresponding plant cytosolic immune receptors, resulting in rapid localized cell death known as hypersensitive response (HR). HR cell death is usually limited to a few cells at the infection site, and is surrounded by a few layers of cells massively expressing defense genes such as Pathogenesis-Related Gene 1 (PR1). This virtually concentric pattern of the cellular responses in ETI is proposed to be regulated by a concentration gradient of salicylic acid (SA), a phytohormone accumulated around the infection site. Recent studies demonstrated that jasmonic acid (JA), another phytohormone known to be mutually antagonistic to SA in many cases, is also accumulated in and required for ETI, suggesting that ETI is a unique case. However, the molecular basis for this uniqueness remained largely to be solved. Here, we found that, using intravital time-lapse imaging, the JA signaling pathway is activated in the cells surrounding the central SA-active cells around the infection sites in Arabidopsis thaliana. This distinct spatial organization explains how these two phythormone pathways in a mutually antagonistic relationship can be activated simultaneously during ETI. Our results re-emphasize that the spatial consideration is a key strategy to gain mechanistic insights into the apparently complex signaling cross-talk in immunity. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  1. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming

    PubMed Central

    Wagner, Julia A.; Berrien-Elliott, Melissa M.; Schneider, Stephanie E.; Leong, Jeffrey W.; Sullivan, Ryan P.; Jewell, Brea A.; Becker-Hapak, Michelle; Abdel-Latif, Sara; Ireland, Aaron R.; Jaishankar, Devika; King, Justin A.; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C.; Fehniger, Todd A.

    2017-01-01

    NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15–based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1–, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy. PMID:28972539

  2. Cytomegalovirus-Responsive CD8+ T Cells Expand After Solid Organ Transplantation in the Absence of CMV Disease.

    PubMed

    Higdon, L E; Trofe-Clark, J; Liu, S; Margulies, K B; Sahoo, M K; Blumberg, E; Pinsky, B A; Maltzman, J S

    2017-08-01

    Cytomegalovirus (CMV) is a major cause of morbidity and mortality in solid organ transplant recipients. Approximately 60% of adults are CMV seropositive, indicating previous exposure. Following resolution of the primary infection, CMV remains in a latent state. Reactivation is controlled by memory T cells in healthy individuals; transplant recipients have reduced memory T cell function due to chronic immunosuppressive therapies. In this study, CD8 + T cell responses to CMV polypeptides immediate-early-1 and pp65 were analyzed in 16 CMV-seropositive kidney and heart transplant recipients longitudinally pretransplantation and posttransplantation. All patients received standard of care maintenance immunosuppression, antiviral prophylaxis, and CMV viral load monitoring, with approximately half receiving T cell-depleting induction therapy. The frequency of CMV-responsive CD8 + T cells, defined by the production of effector molecules in response to CMV peptides, increased during the course of 1 year posttransplantation. The increase commenced after the completion of antiviral prophylaxis, and these T cells tended to be terminally differentiated effector cells. Based on this small cohort, these data suggest that even in the absence of disease, antigenic exposure may continually shape the CMV-responsive T cell population posttransplantation. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    PubMed Central

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  4. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response

    PubMed Central

    Feinerman, Ofer; Jentsch, Garrit; Tkach, Karen E; Coward, Jesse W; Hathorn, Matthew M; Sneddon, Michael W; Emonet, Thierry; Smith, Kendall A; Altan-Bonnet, Grégoire

    2010-01-01

    Understanding how the immune system decides between tolerance and activation by antigens requires addressing cytokine regulation as a highly dynamic process. We quantified the dynamics of interleukin-2 (IL-2) signaling in a population of T cells during an immune response by combining in silico modeling and single-cell measurements in vitro. We demonstrate that IL-2 receptor expression levels vary widely among T cells creating a large variability in the ability of the individual cells to consume, produce and participate in IL-2 signaling within the population. Our model reveals that at the population level, these heterogeneous cells are engaged in a tug-of-war for IL-2 between regulatory (Treg) and effector (Teff) T cells, whereby access to IL-2 can either increase the survival of Teff cells or the suppressive capacity of Treg cells. This tug-of-war is the mechanism enforcing, at the systems level, a core function of Treg cells, namely the specific suppression of survival signals for weakly activated Teff cells but not for strongly activated cells. Our integrated model yields quantitative, experimentally validated predictions for the manipulation of Treg suppression. PMID:21119631

  5. Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing1

    PubMed Central

    Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel

    2010-01-01

    CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization. PMID:18322193

  6. L-selectin Is Essential for Delivery of Activated CD8+ T Cells to Virus-Infected Organs for Protective Immunity

    PubMed Central

    Mohammed, Rebar N.; Watson, H. Angharad; Vigar, Miriam; Ohme, Julia; Thomson, Amanda; Humphreys, Ian R.; Ager, Ann

    2016-01-01

    Summary Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. PMID:26804910

  7. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    PubMed

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions

    PubMed Central

    Jotova, Iveta; Wu, T. C.; Wang, Chenguang; Desmarais, Cindy; Boyer, Jean D.; Tycko, Benjamin; Robins, Harlan S.; Clark, Rachael A.; Trimble, Cornelia L.

    2014-01-01

    About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation. PMID:24477000

  9. Blocking Glycolytic Metabolism Increases Memory T Cells and Antitumor Function | Center for Cancer Research

    Cancer.gov

    CD8+ T cells are a major component of the cellular immune response, which is necessary to control a variety of bacterial and viral infections. CD8+ T cells also play a major role in the cell-mediated antitumor immune response. After encountering antigen, naïve CD8+ T cells undergo an extensive period of proliferation and expansion, and differentiate into effector cells and

  10. [The role of regulatory T cells in the modulation of anti-tumor immune response].

    PubMed

    Radosavljević, Gordana D; Jovanović, Ivan P; Kanjevac, Tatjana V; Arsenijević, Nebojsa N

    2013-01-01

    Regulatory T cells (Treg) represent a subset of CD4+T cells whose function is to suppress immune responses. Treg lymphocytes can be divided into two subsets: natural nTreg lymphocytes that are developed in the thymus and inducible iTreg lymphocytes, which originate from conventional T lymphocytes on the periphery.The majority of Treg lymphocytes express high levels of interleukin-2 (IL-2) receptor a chain (CD25) and transcription factor FoxP3 (critical for the development and suppressor activity of iTreg lymphocytes). Cancer cells can modulate anti-tumor immune response indirectly, through the activation of Treg lymphocytes. It has been shown that the loss of regulatory function by depletion of tumor-induced Treg lymphocytes may enhance effectors response, resulting in tumor rejection, while the increased number of Treg lymphocytes effectively prevents tumor destruction. nTreg lymphocytes express increasingly CTLA-4 and membrane-bound TGF-beta, which inhibits cytokine production and responses of effectors lymphocytes.iTreg lymphocytes secrete immunosuppressive cytokines such as ILreg-10 and TGF-beta.Treg lymphocytes represent one of important obstruction in anti-tumor immunity.

  11. Effector CD8 T cells dedifferentiate into long-lived memory cells.

    PubMed

    Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi

    2017-12-21

    Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.

  12. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    PubMed

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  13. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    PubMed

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Neem leaf glycoprotein enhances carcinoembryonic antigen presentation of dendritic cells to T and B cells for induction of anti-tumor immunity by allowing generation of immune effector/memory response.

    PubMed

    Sarkar, Koustav; Goswami, Shyamal; Roy, Soumyabrata; Mallick, Atanu; Chakraborty, Krishnendu; Bose, Anamika; Baral, Rathindranath

    2010-08-01

    Vaccination with neem leaf glycoprotein matured carcinoembryonic antigen (CEA) pulsed dendritic cells (DCs) enhances antigen-specific humoral and cellular immunity against CEA and restricts the growth of CEA(+) murine tumors. NLGP helps better CEA uptake, processing and presentation to T/B cells. This vaccination (DCNLGPCEA) elicits mitogen induced and CEA specific T cell proliferation, IFN gamma secretion and induces specific cytotoxic reactions to CEA(+) colon tumor cells. In addition to T cell response, DCNLGPCEA vaccine generates anti-CEA antibody response, which is principally IgG2a in nature. This antibody participates in cytotoxicity of CEA(+) cells in antibody-dependent manner. This strong anti-CEA cellular and humoral immunity protects mice from tumor development and these mice remained tumor free following second tumor inoculation, indicating generation of effector memory response. Evaluation of underlying mechanism suggests vaccination generates strong CEA specific CTL and antibody response that can completely prevent the tumor growth following adoptive transfer. In support, significant upregulation of CD44 on the surface of lymphocytes from DCNLGPCEA immunized mice was noticed with a substantial reduction in L-selectin (CD62L). (c) 2010 Elsevier B.V. All rights reserved.

  15. Type IV secretion system of Brucella spp. and its effectors

    PubMed Central

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis. PMID:26528442

  16. Type IV secretion system of Brucella spp. and its effectors.

    PubMed

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  17. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor.

    PubMed

    Liu, Jun; Elmore, James Mitch; Lin, Zuh-Jyh Daniel; Coaker, Gitta

    2011-02-17

    Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Large-Scale Identification and Characterization of Heterodera avenae Putative Effectors Suppressing or Inducing Cell Death in Nicotiana benthamiana

    PubMed Central

    Chen, Changlong; Chen, Yongpan; Jian, Heng; Yang, Dan; Dai, Yiran; Pan, Lingling; Shi, Fengwei; Yang, Shanshan; Liu, Qian

    2018-01-01

    Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana. PMID:29379510

  19. Acquisition of Pneumococci Specific Effector and Regulatory Cd4+ T Cells Localising within Human Upper Respiratory-Tract Mucosal Lymphoid Tissue

    PubMed Central

    Pido-Lopez, Jeffrey; Kwok, William W.; Mitchell, Timothy J.; Heyderman, Robert S.; Williams, Neil A.

    2011-01-01

    The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4+ T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4+ T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25hi T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4+ T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines. PMID:22144893

  20. HIV-specific CD8+ T cells: serial killers condemned to die?

    PubMed

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  1. ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.

    PubMed

    Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B

    2018-05-31

    Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.

  2. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges

    PubMed Central

    Selin, Carrie; de Kievit, Teresa R.; Belmonte, Mark F.; Fernando, W. G. Dilantha

    2016-01-01

    Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930

  3. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    PubMed

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  4. Developmental control of integrin expression regulates Th2 effector homing

    USDA-ARS?s Scientific Manuscript database

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  5. Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.

    PubMed

    Kim, Chang H

    2018-02-01

    Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.

  6. The Absence of Interleukin 1 Receptor–Related T1/St2 Does Not Affect T Helper Cell Type 2 Development and Its Effector Function

    PubMed Central

    Hoshino, Katsuaki; Kashiwamura, Shin-ichiro; Kuribayashi, Kozo; Kodama, Taku; Tsujimura, Tohru; Nakanishi, Kenji; Matsuyama, Tomohiro; Takeda, Kiyoshi; Akira, Shizuo

    1999-01-01

    T1/ST2, an orphan receptor with homology with the interleukin (IL)-1 receptor family, is expressed constitutively and stably on the surface of T helper type 2 (Th2) cells, but not on Th1 cells. T1/ST2 is also expressed on mast cells, which are critical for Th2-mediated effector responses. To evaluate whether T1/ST2 is required for Th2 responses and mast cell function, we have generated T1/ST2-deficient (T1/ST2−/−) mice and examined the roles of T1/ST2. Naive CD4+ T cells isolated from T1/ST2−/− mice developed to Th2 cells in response to IL-4 in vitro. T1/ST2−/− mice showed normal Th2 responses after infection with the helminthic parasite Nippostrongylus brasiliensis as well as in the mouse model of allergen-induced airway inflammation. In addition, differentiation and function of bone marrow–derived cultured mast cells were unaffected. These findings demonstrate that T1/ST2 does not play an essential role in development and function of Th2 cells and mast cells. PMID:10562328

  7. Effector-Triggered Self-Replication in Coupled Subsystems.

    PubMed

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-01-05

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. © 2015 The Authors.

  9. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response

    PubMed Central

    Hemann, Emily A.; Sjaastad, Louisa E.; Langlois, Ryan A.

    2015-01-01

    ABSTRACT Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α+ DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IMPORTANCE IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies. PMID:26719269

  10. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    PubMed

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  11. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer

    PubMed Central

    Gu-Trantien, Chunyan; Migliori, Edoardo; de Wind, Alexandre; Brohée, Sylvain; Garaud, Soizic; Noël, Grégory; Dang Chi, Vu Luan; Lodewyckx, Jean-Nicolas; Naveaux, Céline; Duvillier, Hugues; Larsimont, Denis

    2017-01-01

    T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5–) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment. PMID:28570278

  12. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity

    PubMed Central

    Sohn, Kee Hoon; Hughes, Richard K.; Piquerez, Sophie J.; Jones, Jonathan D. G.; Banfield, Mark J.

    2012-01-01

    Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding–leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4C, residues 134–221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4C required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4C, and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem. PMID:22988101

  13. Persistence of viral infection despite similar killing efficacy of antiviral CD8(+) T cells during acute and chronic phases of infection.

    PubMed

    Ganusov, Vitaly V; Lukacher, Aron E; Byers, Anthony M

    2010-09-15

    Why some viruses establish chronic infections while others do not is poorly understood. One possibility is that the host's immune response is impaired during chronic infections and is unable to clear the virus from the host. In this report, we use a recently proposed framework to estimate the per capita killing efficacy of CD8(+) T cells, specific for the polyoma virus (PyV), which establishes a chronic infection in mice. Surprisingly, the estimated per cell killing efficacy of PyV-specific effector CD8(+) T cells during the acute phase of the infection was very similar to the efficacy of effector CD8(+) T cells specific to lymphocytic choriomeningitis virus (LCMV-Armstrong), which is cleared from the host. Our results suggest that persistence of PyV does not result from the generation of an inefficient PyV-specific CD8(+) T cell response, and that other host or viral factors are responsible for the ability of PyV to establish chronic infection. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Cellular and humoral immune responses during tuberculosis infection: useful knowledge in the era of biological agents.

    PubMed

    Matucci, Andrea; Maggi, Enrico; Vultaggio, Alessandra

    2014-05-01

    In this review, recent insights into innate and adaptive cellular and humoral immune response to Mycobacterium tuberculosis (Mtb) are discussed and the role of specific cytokines such as tumor necrosis factor-α (TNF-α) is highlighted. According to recent findings, the immune system plays a key role in avoiding mycobacteria dissemination. The importance of different cell types (macrophages, dendritic cells, interferon-γ-producing T cells) as well as the production of proinflammatory cytokines such as interleukin 6 (IL-6), IL-12, and IL-23/IL-17 have been demonstrated. Alveolar macrophages are considered the first cells infected by Mtb during respiratory infection. Mtb proliferates within alveolar macrophages and dendritic cells and induces the release of cytokines such as TNF-α, IL-1, IL-6, and IL-12. Toll-like receptors-stimulated dendritic cells link innate and adaptive immunity by promoting polarization of effector T cells. The efficient induction of Th1 immunity is decisive in defense against Mtb. In fact, host effector immune response against Mtb is related to the presence of a Th1 response. The definition of the cellular and molecular mechanisms involved in the immune response to Mtb can be helpful in developing new preventive strategies to avoid infection relapse, particularly in patients treated with biological agents.

  15. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir.

    PubMed

    Riley, James L; Montaner, Luis J

    2017-03-15

    Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. The CDK inhibitor p21 is a novel target gene of ATF4 and contributes to cell survival under ER stress.

    PubMed

    Inoue, Yasumichi; Kawachi, Shiori; Ohkubo, Tsubasa; Nagasaka, Mai; Ito, Shogo; Fukuura, Keishi; Itoh, Yuka; Ohoka, Nobumichi; Morishita, Daisuke; Hayashi, Hidetoshi

    2017-11-01

    Activating transcription factor 4 (ATF4) is well known for its role in the endoplasmic reticulum (ER) stress response. ATF4 also transcriptionally induces multiple effectors that determine cell fate depending on cellular context. In addition, ATF4 can communicate both pro-apoptotic and pro-survival signals. How ATF4 mediates its prosurvival roles, however, requires further investigation. Here, we report that the CDK inhibitor p21 is a novel target gene of ATF4. We identified two ATF4-responsive elements, one of which directly binds ATF4, within the first intron of the p21 gene. Importantly, overexpression of p21 enhances cell survival following ER stress induction, while p21 knockdown increases cell death. These results suggest that p21 induction plays a vital role in the cellular response to ER stress and indicate that p21 is a prosurvival effector of ATF4. © 2017 Federation of European Biochemical Societies.

  17. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.

    PubMed

    Lebar, Tina; Jerala, Roman

    2018-01-01

    Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.

  18. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.

    PubMed

    Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla

    2012-09-01

    The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. Alternative Effector-Function Profiling Identifies Broad HIV-Specific T-Cell Responses in Highly HIV-Exposed Individuals Who Remain Uninfected

    PubMed Central

    Ruiz-Riol, Marta; Llano, Anuska; Ibarrondo, Javier; Zamarreño, Jennifer; Yusim, Karina; Bach, Vanessa; Mothe, Beatriz; Perez-Alvarez, Susana; Fernandez, Marco A.; Requena, Gerard; Meulbroek, Michael; Pujol, Ferran; Leon, Agathe; Cobarsi, Patricia; Korber, Bette T.; Clotet, Bonaventura; Ganoza, Carmela; Sanchez, Jorge; Coll, Josep; Brander, Christian

    2015-01-01

    The characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays. Importantly, this approach also allows detection of broad and strong virus-specific T-cell responses in HESN individuals that are characterized by a T-helper type 1 cytokine–like effector profile and produce cytokines that have been associated with potential control of HIV infection, including interleukin 10, interleukin 13, and interleukin 22. These results establish a novel approach to improve the current understanding of HIV-specific T-cell immunity and identify cellular immune responses and individual cytokines as potential markers of relative HIV resistance. As such, the findings also help develop similar strategies for more-comprehensive assessments of host immune responses to other human infections and immune-mediated disorders. PMID:25249264

  20. Cell adhesion and the immune system: a case study using earthworms.

    PubMed

    Cooper, E L; Cossarizza, A; Kauschke, E; Franceschi, C

    1999-02-15

    In the earthworm's immune system, cell adhesion, which occurs by putative receptors on leukocytes, is essential after recognition of self vs. non-self. Confrontation with foreign antigens is a normal event in the environment, replete with microbial pathogens that pose a threat to survival. To better understand what happens when an effector cell first recognizes a foreign target followed by its adhesion to it, isolated leukocytes, in sufficient quantities to be subjected to various analyses, have been extremely beneficial. In vitro approaches when accompanied by biochemical, immunological, and molecular technologies, have opened up new vistas concerning the immune response of earthworms and other invertebrates. The most recent discovery includes the preliminary identification of cell differentiation (CD) markers that play vital roles in recognitive and adhesive events. Certain leukocyte effectors show characteristics of natural killer (NK) cells that may act differently depending upon their source, whether autogeneic, allogeneic, xenogeneic, or expressed under normal or varying environmental conditions including exposure to xenobiotics. At the level of earthworm evolution, there is apparently a dissociation of phagocytosis from the process of killing by NK-like effectors. There are at least three future challenges. First, it is essential to determine the precise nature of the CD markers with respect to their molecular structure. Second, once their molecular and biochemical characteristics have been defined, the role of these markers in cellular and humoral mechanisms must be clarified in order to define effector cell products and resulting immune responses. Third, there is a need to differentiate between the several lytic factors that have been found in earthworms with respect to molecular structure, and biochemical and functional characterization.

  1. The Rab27a effector exophilin7 promotes fusion of secretory granules that have not been docked to the plasma membrane.

    PubMed

    Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro

    2013-02-01

    Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.

  2. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees.

    PubMed

    Choi, Ickwon; Chung, Amy W; Suscovich, Todd J; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J; Francis, Donald; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Alter, Galit; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-04-01

    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.

  3. Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees

    PubMed Central

    Choi, Ickwon; Chung, Amy W.; Suscovich, Todd J.; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J.; Francis, Donald; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Alter, Galit; Ackerman, Margaret E.; Bailey-Kellogg, Chris

    2015-01-01

    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates. PMID:25874406

  4. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer.

    PubMed

    Paul, Sourav; Lal, Girdhari

    2016-09-01

    γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy. © 2016 UICC.

  5. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness. PMID:23441216

  6. Host-microbiota interactions in the intestine.

    PubMed

    Elson, Charles O; Alexander, Katie L

    2015-01-01

    The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether dysbiosis can be reversed in immune-mediated disease, thus restoring health, is a question of intense interest for this active area of research. © 2015 S. Karger AG, Basel.

  7. The Transcription Factor T-Bet Is Regulated by MicroRNA-155 in Murine Anti-Viral CD8+ T Cells via SHIP-1.

    PubMed

    Hope, Jennifer L; Stairiker, Christopher J; Spantidea, Panagiota I; Gracias, Donald T; Carey, Alison J; Fike, Adam J; van Meurs, Marjan; Brouwers-Haspels, Inge; Rijsbergen, Laurine C; Fraietta, Joseph A; Mueller, Yvonne M; Klop, Rosemarieke C; Stelekati, Erietta; Wherry, E John; Erkeland, Stefan J; Katsikis, Peter D

    2017-01-01

    We report here that the expression of the transcription factor T-bet, which is known to be required for effector cytotoxic CD8 + T lymphocytes (CTL) generation and effector memory cell formation, is regulated in CTL by microRNA-155 (miR-155). Importantly, we show that the proliferative effect of miR-155 on CD8 + T cells is mediated by T-bet. T-bet levels in CTL were controlled in vivo by miR-155 via SH2 (Src homology 2)-containing inositol phosphatase-1 (SHIP-1), a known direct target of miR-155, and SHIP-1 directly downregulated T-bet. Our studies reveal an important and unexpected signaling axis between miR-155, T-bet, and SHIP-1 in in vivo CTL responses and suggest an important signaling module that regulates effector CTL immunity.

  8. Molecular regulation of effector and memory T cell differentiation

    PubMed Central

    Chang, John T; Wherry, E John; Goldrath, Ananda W

    2015-01-01

    Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352

  9. PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1.

    PubMed

    Cabrera, E; Hernández-Pérez, S; Koundrioukoff, S; Debatisse, M; Kim, D; Smolka, M B; Freire, R; Gillespie, D A

    2017-02-02

    Stresses such as hypoxia, nutrient deprivation and acidification disturb protein folding in the endoplasmic reticulum (ER) and activate the Unfolded Protein Response (UPR) to trigger adaptive responses through the effectors, PERK, IRE1 and ATF6. Most of these responses relate to ER homoeostasis; however, here we show that the PERK branch of the UPR also controls DNA replication. Treatment of cells with the non-genotoxic UPR agonist thapsigargin led to a rapid inhibition of DNA synthesis that was attributable to a combination of DNA replication fork slowing and reduced replication origin firing. DNA synthesis inhibition was dependent on the UPR effector PERK and was associated with phosphorylation of the checkpoint adaptor protein Claspin and activation of the Chk1 effector kinase, both of which occurred in the absence of detectable DNA damage. Remarkably, thapsigargin did not inhibit bulk DNA synthesis or activate Chk1 in cells depleted of Claspin, or when Chk1 was depleted or subject to chemical inhibition. In each case thapsigargin-resistant DNA synthesis was due to an increase in replication origin firing that compensated for reduced fork progression. Taken together, our results unveil a new aspect of PERK function and previously unknown roles for Claspin and Chk1 as negative regulators of DNA replication in the absence of genotoxic stress. Because tumour cells proliferate in suboptimal environments, and frequently show evidence of UPR activation, this pathway could modulate the response to DNA replication-targeted chemotherapies.

  10. Antigen expression level threshold tunes the fate of CD8 T cells during primary hepatic immune responses.

    PubMed

    Tay, Szun Szun; Wong, Yik Chun; McDonald, David M; Wood, Nicole A W; Roediger, Ben; Sierro, Frederic; Mcguffog, Claire; Alexander, Ian E; Bishop, G Alex; Gamble, Jennifer R; Weninger, Wolfgang; McCaughan, Geoffrey W; Bertolino, Patrick; Bowen, David G

    2014-06-24

    CD8 T-cell responses to liver-expressed antigens range from deletional tolerance to full effector differentiation resulting in overt hepatotoxicity. The reasons for these heterogeneous outcomes are not well understood. To identify factors that govern the fate of CD8 T cells activated by hepatocyte-expressed antigen, we exploited recombinant adenoassociated viral vectors that enabled us to vary potential parameters determining these outcomes in vivo. Our findings reveal a threshold of antigen expression within the liver as the dominant factor determining T-cell fate, irrespective of T-cell receptor affinity or antigen cross-presentation. Thus, when a low percentage of hepatocytes expressed cognate antigen, high-affinity T cells developed and maintained effector function, whereas, at a high percentage, they became functionally exhausted and silenced. Exhaustion was not irreversibly determined by initial activation, but was maintained by high intrahepatic antigen load during the early phase of the response; cytolytic function was restored when T cells primed under high antigen load conditions were transferred into an environment of low-level antigen expression. Our study reveals a hierarchy of factors dictating the fate of CD8 T cells during hepatic immune responses, and provides an explanation for the different immune outcomes observed in a variety of immune-mediated liver pathologic conditions.

  11. T cell Bim levels reflect responses to anti–PD-1 cancer therapy

    PubMed Central

    Dronca, Roxana S.; Liu, Xin; Harrington, Susan M.; Chen, Lingling; Cao, Siyu; Kottschade, Lisa A.; McWilliams, Robert R.; Block, Matthew S.; Nevala, Wendy K.; Thompson, Michael A.; Mansfield, Aaron S.; Park, Sean S.; Markovic, Svetomir N.

    2016-01-01

    Immune checkpoint therapy with PD-1 blockade has emerged as an effective therapy for many advanced cancers; however, only a small fraction of patients achieve durable responses. To date, there is no validated blood-based means of predicting the response to PD-1 blockade. We report that Bim is a downstream signaling molecule of the PD-1 pathway, and its detection in T cells is significantly associated with expression of PD-1 and effector T cell markers. High levels of Bim in circulating tumor-reactive (PD-1+CD11ahiCD8+) T cells were prognostic of poor survival in patients with metastatic melanoma who did not receive anti–PD-1 therapy and were also predictive of clinical benefit in patients with metastatic melanoma who were treated with anti–PD-1 therapy. Moreover, this circulating tumor-reactive T cell population significantly decreased after successful anti–PD-1 therapy. Our study supports a crucial role of Bim in both T cell activation and apoptosis as regulated by PD-1 and PD-L1 interactions in effector CD8+ T cells. Measurement of Bim levels in circulating T cells of patients with cancer may provide a less invasive strategy to predict and monitor responses to anti–PD-1 therapy, although future prospective analyses are needed to validate its utility. PMID:27182556

  12. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire

    PubMed Central

    Liu, Yunxiao; Lan, Xia; Song, Shiren; Yin, Ling; Dry, Ian B.; Qu, Junjie; Xiang, Jiang; Lu, Jiang

    2018-01-01

    Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs) were cloned from the P. viticola isolate “JL-7-2” genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83) could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria. PMID:29706971

  13. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes

    PubMed Central

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization–contraction–secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an ‘emergency response’ to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory–effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. PMID:26598726

  14. Induction of gamma delta T cells using zoledronate plus interleukin-2 in patients with metastatic cancer.

    PubMed

    Nagamine, Ichiro; Yamaguchi, Yoshiyuki; Ohara, Masahiro; Ikeda, Takuhiro; Okada, Morihito

    2009-03-01

    A loss of human leukocyte antigen (HLA) expression in clinical tumors is one of their escape mechanisms from immune attack by HLA-restricted effector cells. In this study, the induction of HLA-unrestricted effector cells, gamma delta T cells, using zoledronate (ZOL) and interleukin (IL)-2 in vitro was investigated in patients with metastatic cancer. Peripheral blood mononuclear cells (PBMCs) from 10 cancer patients (8 colorectal and 2 esophageal) with multiple metastases and ascites lymphocytes from 3 cancer patients (1 gastric and 2 colorectal) were stimulated with varied concentrations of ZOL plus 100 U/ml IL-2 for 48 hr followed by culturing with IL-2 alone for 12 days. Lymphocyte proliferative responses were determined using 3H-TdR uptakes and interferon (IFN)-gamma production was evaluated using enzyme-linked immunosorbent assay. Surface phenotyping was performed using flow cytometry. Cytotoxic activity of effector cells was determined using 51Cr-releasing assay. It was found that proliferative responses of PBMCs were significantly stimulated with ZOL plus IL-2 when compared with IL-2 alone, showing 200 to 500-fold expansions for 2 weeks, although ZOL alone induced no response. The optimal concentration of ZOL was 1-5 microM. Ascites lymphocytes could also be stimulated with ZOL plus IL-2. The proliferative responses were remarkable in patients whose PBMCs could produce high levels of IFN-gamma during an initial 48-hr stimulation using ZOL plus IL-2. Removal of an adherent cell fraction before the induction augmented the proliferative responses in patients who otherwise had low-grade proliferative responses. Generated cells comprising approximately 90 or 20% in PBMCs from healthy donors or cancer patients, respectively, expressed gamma delta-type T-cell receptor. Gamma delta T cells showed high cytotoxic activity against CD166-positive TE12 and TE13 cancer cells but not against CD166-negative MKN45 cells. The cytotoxic activity against TE13 cells was augmented when target cells were pre-treated overnight with ZOL. These results suggest that ZOL in the presence of IL-2 can efficiently stimulate the proliferation of gamma delta T cells, which have cytotoxic properties against cancer cells. The use of zoledronate-activated killer (ZAK) cells should be encouraged in possible adoptive immunotherapy trials for patients with incurable cancer.

  15. Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation

    DTIC Science & Technology

    2015-08-01

    T - cells in allogeneic hematopoietic stem - cell transplant (HSCT) recipients and identify the role of chemokine receptors in...immune responses after allogeneic hematopoietic stem - cell transplantation (HSCT) in humans. Control of donor T - cells recruitment into target organs...effector T - cells after allogeneic stem - cell transplantation (Aim 1). To characterize the clonal diversity that correlates with

  16. Host response to Candida albicans bloodstream infection and sepsis

    PubMed Central

    Duggan, Seána; Leonhardt, Ines; Hünniger, Kerstin; Kurzai, Oliver

    2015-01-01

    Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management. PMID:25785541

  17. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy.

    PubMed

    Porcelli, Letizia; Guida, Gabriella; Quatrale, Anna E; Cocco, Tiziana; Sidella, Letizia; Maida, Immacolata; Iacobazzi, Rosa M; Ferretta, Anna; Stolfa, Diana A; Strippoli, Sabino; Guida, Stefania; Tommasi, Stefania; Guida, Michele; Azzariti, Amalia

    2015-01-27

    The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment.

  18. Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

    PubMed Central

    Curran, Michael A.; Kim, Myoungjoo; Montalvo, Welby; Al-Shamkhani, Aymen; Allison, James P.

    2011-01-01

    Background The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents. Methodology/Principal Findings We find that combining αCTLA-4 and α4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-γ production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with α4-1BB alone. Conclusions/Significance This study shows that combining T-cell co-inhibitory blockade with αCTLA-4 and active co-stimulation with α4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by this therapy. These findings should aid in the design of future trials for the immunotherapy of melanoma. PMID:21559358

  19. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  20. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors

    PubMed Central

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-01-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884

  1. The bacterial type III-secreted protein AvrRps4 is a bipartite effector

    PubMed Central

    Spears, Benjamin J.; Garner, Christopher M.; Rogan, Conner J.; Su, Jianbin; Bhattacharjee, Saikat

    2018-01-01

    Bacterial effector proteins secreted into host plant cells manipulate those cells to the benefit of the pathogen, but effector-triggered immunity (ETI) occurs when effectors are recognized by host resistance proteins. The RPS4/RRS1 pair recognizes the Pseudomonas syringae pv. pisi effector AvrRps4. AvrRps4 is processed in planta into AvrRps4N (133 amino acids), homologous to the N-termini of other effectors including the native P. syringae pv. tomato strain DC3000 effector HopK1, and AvrRps4C (88 amino acids). Previous data suggested that AvrRps4C alone is necessary and sufficient for resistance when overexpressed in heterologous systems. We show that delivering AvrRps4C from DC3000, but not from a DC3000 hopK1- strain, triggers resistance in the Arabidopsis accession Col-0. Delivering AvrRps4C in tandem with AvrRps4N, or as a chimera with HopK1N, fully complements AvrRps4-triggered immunity. AvrRps4N in the absence of AvrRps4C enhances virulence in Col-0. In addition, AvrRps4N triggers a hypersensitive response in lettuce that is attenuated by coexpression of AvrRps4C, further supporting the role of AvrRps4N as a bona fide effector domain. Based on these results we propose that evolutionarily, fusion of AvrRps4C to AvrRps4N may have counteracted recognition of AvrRps4N, and that the plant RPS4/RRS1 resistance gene pair was selected as a countermeasure. We conclude that AvrRps4 represents an unusual chimeric effector, with recognition in Arabidopsis by RPS4/RRS1 requiring the presence of both processed effector moieties. PMID:29601603

  2. The bacterial type III-secreted protein AvrRps4 is a bipartite effector.

    PubMed

    Halane, Morgan K; Kim, Sang Hee; Spears, Benjamin J; Garner, Christopher M; Rogan, Conner J; Okafor, Elizabeth C; Su, Jianbin; Bhattacharjee, Saikat; Gassmann, Walter

    2018-03-01

    Bacterial effector proteins secreted into host plant cells manipulate those cells to the benefit of the pathogen, but effector-triggered immunity (ETI) occurs when effectors are recognized by host resistance proteins. The RPS4/RRS1 pair recognizes the Pseudomonas syringae pv. pisi effector AvrRps4. AvrRps4 is processed in planta into AvrRps4N (133 amino acids), homologous to the N-termini of other effectors including the native P. syringae pv. tomato strain DC3000 effector HopK1, and AvrRps4C (88 amino acids). Previous data suggested that AvrRps4C alone is necessary and sufficient for resistance when overexpressed in heterologous systems. We show that delivering AvrRps4C from DC3000, but not from a DC3000 hopK1- strain, triggers resistance in the Arabidopsis accession Col-0. Delivering AvrRps4C in tandem with AvrRps4N, or as a chimera with HopK1N, fully complements AvrRps4-triggered immunity. AvrRps4N in the absence of AvrRps4C enhances virulence in Col-0. In addition, AvrRps4N triggers a hypersensitive response in lettuce that is attenuated by coexpression of AvrRps4C, further supporting the role of AvrRps4N as a bona fide effector domain. Based on these results we propose that evolutionarily, fusion of AvrRps4C to AvrRps4N may have counteracted recognition of AvrRps4N, and that the plant RPS4/RRS1 resistance gene pair was selected as a countermeasure. We conclude that AvrRps4 represents an unusual chimeric effector, with recognition in Arabidopsis by RPS4/RRS1 requiring the presence of both processed effector moieties.

  3. Recombinant immunotoxins and retargeted killer cells: employing engineered antibody fragments for tumor-specific targeting of cytotoxic effectors.

    PubMed

    Wels, Winfried; Biburger, Markus; Müller, Tina; Dälken, Benjamin; Giesübel, Ulrike; Tonn, Torsten; Uherek, Christoph

    2004-03-01

    Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells' potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.

  4. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL.

    PubMed

    Schuelein, Ralf; Spencer, Hugh; Dagley, Laura F; Li, Peng Fei; Luo, Lin; Stow, Jennifer L; Abraham, Gilu; Naderer, Thomas; Gomez-Valero, Laura; Buchrieser, Carmen; Sugimoto, Chihiro; Yamagishi, Junya; Webb, Andrew I; Pasricha, Shivani; Hartland, Elizabeth L

    2018-04-24

    The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localizes to the nucleus where they subvert host cell transcriptional responses to infection. Here we identified Lpg2519 (Lpp2587/Lpw27461), as a new nuclear-localized effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localization by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, SUPT5H/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex (DSIF complex) that regulates RNA polymerase II (Pol II) dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central KOW motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression. This article is protected by copyright. All rights reserved.

  5. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions.

    PubMed

    Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka

    2017-09-15

    During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals.

    PubMed

    Stoycheva, Diana; Deiser, Katrin; Stärck, Lilian; Nishanth, Gopala; Schlüter, Dirk; Uckert, Wolfgang; Schüler, Thomas

    2015-01-15

    In response to primary Ag contact, naive mouse CD8(+) T cells undergo clonal expansion and differentiate into effector T cells. After pathogen clearance, most effector T cells die, and only a small number of memory T cell precursors (TMPs) survive to form a pool of long-lived memory T cells (TMs). Although high- and low-affinity CD8(+) T cell clones are recruited into the primary response, the TM pool consists mainly of high-affinity clones. It remains unclear whether the more efficient expansion of high-affinity clones and/or cell-intrinsic processes exclude low-affinity T cells from the TM pool. In this article, we show that the lack of IFN-γR signaling in CD8(+) T cells promotes TM formation in response to weak, but not strong, TCR agonists. The IFN-γ-sensitive accumulation of TMs correlates with reduced mammalian target of rapamycin activation and the accumulation of long-lived CD62L(hi)Bcl-2(hi)Eomes(hi) TMPs. Reconstitution of mammalian target of rapamycin or IFN-γR signaling is sufficient to block this process. Hence, our data suggest that IFN-γR signaling actively blocks the formation of TMPs responding to weak TCR agonists, thereby promoting the accumulation of high-affinity T cells finally dominating the TM pool. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.

    PubMed

    Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E

    2018-04-17

    This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.

  8. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    PubMed Central

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  9. Identification of legionella effectors using bioinformatic approaches.

    PubMed

    Segal, Gil

    2013-01-01

    Legionella pneumophila the causative agent of Legionnaires' disease, actively manipulates host cell processes to establish a replication niche inside host cells. The establishment of its replication niche requires a functional Icm/Dot type IV secretion system which translocates about 300 effector proteins into host cells during infection. Many of these effectors were first identified as effector candidates by several bioinformatic approaches, and these predicted effectors were later examined experimentally for translocation and a large number of which were validated as effector proteins. Here, I summarized the bioinformatic approaches that were used to identify these effectors.

  10. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity.

    PubMed

    Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji

    2016-04-12

    The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation. Copyright © 2016 Mukaihara et al.

  11. Regulation of IgE-Mediated Food Allergy by IL-9 Producing Mucosal Mast Cells and Type 2 Innate Lymphoid Cells.

    PubMed

    Lee, Jee-Boong

    2016-08-01

    Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.

  12. TCR Signal Strength Alters T–DC Activation and Interaction Times and Directs the Outcome of Differentiation

    PubMed Central

    van Panhuys, Nicholas

    2016-01-01

    The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor-induced activation of CD4+ T cells, both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naive CD4+ T cells in addition to co-stimulatory and cytokine-based signals. Recently, advances in two-­photon microscopy and tetramer-based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review, we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T–DC interactions and the implications for this in mediating the downstream signaling events, which influence the transcriptional and epigenetic regulation of effector differentiation. PMID:26834747

  13. Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability.

    PubMed

    Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.

  14. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    PubMed Central

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  15. Induction of cell-mediated cytotoxicity by lipoprotein containing histocompatibility antigens.

    PubMed Central

    Dennert, G

    1979-01-01

    Lipoprotein was isolated from tumour cells by sonication and ultracentrifugal flotation on KBr gradients. It contained H-2 antigen detectable by antibody binding and induced a primary or secondary cell-mediated cytotoxic response in vitro which was H-2 specific. In a syngeneic model only a secondary cell-mediated response was stimulated and no competitive inhibition of the effector step of cell-mediated lysis could be demonstrated. The implications of these findings are discussed. PMID:521060

  16. Major role for CD8 T cells in the protection against Toxoplasma gondii following dendritic cell vaccination.

    PubMed

    Guiton, R; Zagani, R; Dimier-Poisson, I

    2009-10-01

    Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.

  17. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins.

    PubMed

    James, Eddie A; LaFond, Rebecca E; Gates, Theresa J; Mai, Duy T; Malhotra, Uma; Kwok, William W

    2013-12-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8(+) T cell responses, less is known about YFV-specific CD4(+) T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4(+) T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4(+) T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4(+) T cell responses that contract, forming a detectable memory population.

  18. Yellow Fever Vaccination Elicits Broad Functional CD4+ T Cell Responses That Recognize Structural and Nonstructural Proteins

    PubMed Central

    James, Eddie A.; LaFond, Rebecca E.; Gates, Theresa J.; Mai, Duy T.; Malhotra, Uma

    2013-01-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8+ T cell responses, less is known about YFV-specific CD4+ T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4+ T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4+ T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4+ T cell responses that contract, forming a detectable memory population. PMID:24049183

  19. Cytotoxic CD4 T Cells—Friend or Foe during Viral Infection?

    PubMed Central

    Juno, Jennifer A.; van Bockel, David; Kent, Stephen J.; Kelleher, Anthony D.; Zaunders, John J.; Munier, C. Mee Ling

    2017-01-01

    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections. PMID:28167943

  20. Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs.

    PubMed

    Ham, Jong Hyun; Majerczak, Doris R; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L

    2009-06-01

    The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well.

  1. Mast cell: an emerging partner in immune interaction.

    PubMed

    Gri, Giorgia; Frossi, Barbara; D'Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo

    2012-01-01

    Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell-cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell-cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.

  2. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    PubMed

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.

    PubMed

    Liu, Tingli; Ye, Wenwu; Ru, Yanyan; Yang, Xinyu; Gu, Biao; Tao, Kai; Lu, Shan; Dong, Suomeng; Zheng, Xiaobo; Shan, Weixing; Wang, Yuanchao; Dou, Daolong

    2011-01-01

    Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.

  4. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion

    USDA-ARS?s Scientific Manuscript database

    The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...

  5. B cell and T cell immunity in the female genital tract: potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells.

    PubMed

    Anjuère, F; Bekri, S; Bihl, F; Braud, V M; Cuburu, N; Czerkinsky, C; Hervouet, C; Luci, C

    2012-10-01

    The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore, mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and non-immune cells that can act as 'natural adjuvants' or negative immune modulators. The functions of these cells have to be taken into account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sublingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital immunity that may influence the development of vaccine strategies against genital infections. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  6. CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal1

    PubMed Central

    Chaix, Julie; Nish, Simone A.; Lin, Wen-Hsuan W.; Rothman, Nyanza J.; Ding, Lei; Wherry, E. John; Reiner, Steven L.

    2014-01-01

    Central memory (CM) CD8+ T cells “remember” prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal) as well as reproduce the central memory fate while manufacturing effector cells during secondary antigen encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow (BM) homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8+ T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the central memory pool while producing secondary effector cells. The critical BM-derived signals essential for CD8+ T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge. PMID:24973450

  7. CMV drives the expansion of highly functional memory T cells expressing NK-cell receptors in renal transplant recipients.

    PubMed

    Makwana, Nandini; Foley, Bree; Fernandez, Sonia; Lee, Silvia; Irish, Ashley; Pircher, Hanspeter; Price, Patricia

    2017-08-01

    Cytomegalovirus (CMV) is a common opportunistic infection encountered in renal transplant recipients (RTRs) and may be reactivated without symptoms at any time post-transplant. We describe how active and latent CMV affect T-cell subsets in RTRs who are stable on maintenance therapy. T-cell responses to CMV were assessed in RTRs (n = 54) >2 years post-transplant, and healthy controls (n = 38). Seven RTRs had CMV DNA detectable in plasma. CMV antibody and DNA aligned with increased proportions of CD8 + T cells and reduced CD4/CD8 ratios. This paralleled an expansion of effector memory T-cell (T EM ), terminally differentiated T-cell (T EMRA ) and CD57 + T EMRA cell populations. Expression of NK-cell receptors, LIR-1 and KLRG1 on CD4 + and CD8 + CD57 + T EM and T EMRA cells correlated with elevated interferon-γ and cytotoxic responses to anti-CD3 and increased cytotoxic responses to CMV phosphoprotein (pp) 65 in RTRs who carried CMV DNA. CD8 + T cells from all CMV seropositive RTRs responded efficiently to CMV immediate early (IE) -1 peptides. The data show that latent and active CMV infection can alter T-cell subsets in RTRs many years after transplantation, and up-regulate T-cell expression of NK-cell receptors. This may enhance effector responses of CD4 + and CD8 + T cells against CMV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling.

    PubMed

    Teper, Doron; Girija, Anil Madhusoodana; Bosis, Eran; Popov, Georgy; Savidor, Alon; Sessa, Guido

    2018-01-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.

  9. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.

  10. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    PubMed Central

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  11. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response.

    PubMed

    Hemann, Emily A; Sjaastad, Louisa E; Langlois, Ryan A; Legge, Kevin L

    2015-12-30

    Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α(+) DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. [Adoptive Cell Therapy with Immune Checkpoint Blockade].

    PubMed

    Aruga, Atsushi

    2017-09-01

    Cancer immunotherapy are taking a leading role of cancer therapy due to the development of the immune checkpoint blockade. To date, however, only about 20% of patients have clinical responses and the cancer-specific T cells in cancer site are required to obtain beneficial effects. There has been an innovative development in the field of adoptive cell therapy, especially receptor gene-modified T cells in recent years. The effector cells mostly express PD-1, therefore the cytotoxic reactivity of the effector cells are inhibited by PD-L1. The combination of the adoptive cell therapy and the immune checkpoint blockade is expected to enhance efficacy. On the other hand, the immune-related adverse events may also be enhanced, therefore, it is needed to develop the combination therapy carefully, improving the cancer antigen-specificity or dealing with the cytokine release syndrome.

  13. Th17 cell cytokine secretion profile in host defense and autoimmunity.

    PubMed

    Graeber, Kristen E; Olsen, Nancy J

    2012-02-01

    The goal of this review is to examine the effector functions of Th17 cells in host defense and autoimmunity. Published literature on Th17 cells was reviewed with a focus on the secreted products that mediate effector activities of these cells. Th17 cells secrete an array of cytokines that contribute to host defense and that bridge the innate and adaptive arms of the immune response. When this subset of T cells is dysregulated, autoimmune phenomena develop that contribute to the manifestations of many autoimmune diseases. Th17 cells are positioned at a crossroads between innate and adaptive immunity and provide mediators that are essential for host defense. Current interest in harnessing this system for treatment of autoimmune disease will be challenged by the need to avoid abrogating these many protective functions.

  14. T cell receptor-driven transendothelial migration of human effector memory CD4 T cells involves Vav, Rac and Myosin IIA

    PubMed Central

    Manes, Thomas D.; Pober, Jordan S.

    2013-01-01

    Human effector memory (EM) CD4 T cells may be recruited from the blood into a site of inflammation in response either to inflammatory chemokines displayed on or specific antigen presented by venular endothelial cells (ECs), designated as chemokine-driven or TCR-driven transendothelial migration (TEM), respectively. We have previously described differences in the morphological appearance of transmigrating T cells as well as in the molecules that mediate T cell-EC interactions distinguishing these two pathways. Here we report that TCR-driven TEM requires ZAP-70-dependent activation of a pathway involving Vav, Rac and myosin IIA. Chemokine-driven TEM also utilizes ZAP-70, albeit in a quantitatively and spatially different manner of activation, and is independent of Vav, Rac and mysosin IIA, depending instead on an as yet unidentified GTP exchange factor that activates Cdc42. The differential use of small Rho family GTPases to activate the cytoskeleton is consistent with the morphological differences observed in T cells that undergo TEM in response to these distinct recruitment signals. PMID:23420881

  15. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    PubMed Central

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  16. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  17. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells.

    PubMed

    Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M

    2010-07-23

    Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.

  18. CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection.

    PubMed

    O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H

    2017-05-15

    Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells

    PubMed Central

    Herrmann, Andreas; Kortylewski, Marcin; Kujawski, Maciej; Zhang, Chunyan; Reckamp, Karen; Armstrong, Brian; Wang, Lin; Kowolik, Claudia; Deng, Jiehui; Robert, Figlin; Yu, Hua

    2010-01-01

    Improving effector T cell functions is highly desirable for preventive or therapeutic interventions of diverse diseases. Stat3 in the myeloid compartment constrains Th-1 type immunity, dampening natural and induced antitumor immune responses. We have recently developed an in vivo siRNA delivery platform by conjugating a TLR9 agonist with siRNA that efficiently targets myeloid and B cells. Here we show that either ablating the Stat3 alleles in the myeloid compartment and B cells combined with CpG triggering or administrating the CpG-Stat3siRNA conjugates drastically augments effector functions of adoptively transferred CD8+ T cells. Specifically, we demonstrate that both approaches are capable of increasing dendritic cell and CD8+ T cell engagement in tumor draining lymph nodes. Furthermore, both approaches can significantly activate the transferred CD8+ T cells in vivo, upregulating effector molecules such as perforin, granzyme B and IFN-γ. Intravital multiphoton microscopy reveals that Stat3 silencing combined with CpG triggering greatly increases killing activity and tumor infiltration of transferred T cells. These results suggest the use of CpG-Stat3siRNA, and possibly other Stat3 inhibitors, as a potent adjuvant to improve T cell therapies. PMID:20841481

  20. The basis of distinctive IL-2- and IL-15-dependent signaling: weak CD122-dependent signaling favors CD8+ T central-memory cell survival but not T effector-memory cell development.

    PubMed

    Castro, Iris; Yu, Aixin; Dee, Michael J; Malek, Thomas R

    2011-11-15

    Recent work suggests that IL-2 and IL-15 induce distinctive levels of signaling through common receptor subunits and that such varied signaling directs the fate of Ag-activated CD8(+) T cells. In this study, we directly examined proximal signaling by IL-2 and IL-15 and CD8(+) T cell primary and memory responses as a consequence of varied CD122-dependent signaling. Initially, IL-2 and IL-15 induced similar p-STAT5 and p-S6 activation, but these activities were only sustained by IL-2. Transient IL-15-dependent signaling is due to limited expression of IL-15Rα. To investigate the outcome of varied CD122 signaling for CD8(+) T cell responses in vivo, OT-I T cells were used from mouse models where CD122 signals were attenuated by mutations within the cytoplasmic tail of CD122 or intrinsic survival function was provided in the absence of CD122 expression by transgenic Bcl-2. In the absence of CD122 signaling, generally normal primary response occurred, but the primed CD8(+) T cells were not maintained. In marked contrast, weak CD122 signaling supported development and survival of T central-memory (T(CM)) but not T effector-memory (T(EM)) cells. Transgenic expression of Bcl-2 in CD122(-/-) CD8(+) T cells also supported the survival and persistence of T(CM) cells but did not rescue T(EM) development. These data indicate that weak CD122 signals readily support T(CM) development largely through providing survival signals. However, stronger signals, independent of Bcl-2, are required for T(EM) development. Our findings are consistent with a model whereby low, intermediate, and high CD122 signaling support T(CM) memory survival, T(EM) programming, and terminal T effector cell differentiation, respectively.

  1. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  2. Selective CD28 blockade attenuates CTLA-4–dependent CD8+ memory T cell effector function and prolongs graft survival

    PubMed Central

    Liu, Danya; Badell, I. Raul; Ford, Mandy L.

    2018-01-01

    Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling. PMID:29321374

  3. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    PubMed

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  4. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    PubMed

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  5. Immunization-induced anaplasma marginale-specific T lymphocyte reponses impaired by A. marginale infection are restored after eliminating the infection with tetracycline

    USDA-ARS?s Scientific Manuscript database

    Infection of cattle with Anaplasma marginale fails to prime sustained effector/memory T-cell responses, and high bacterial load may induce antigen-specific CD4 T exhaustion and deletion. We tested the hypothesis that clearance of persistent infection restores the exhausted T-cell response. We show t...

  6. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  7. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility.

    PubMed

    Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G

    2012-01-01

    Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  8. Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.

    2014-01-01

    Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines. PMID:25211344

  9. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.

    PubMed

    Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S

    2015-09-08

    A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Histone Acetylation at the Ifng Promoter in Tolerized CD4 Cells Is Associated with Increased IFN-γ Expression during Subsequent Immunization to the Same Antigen1

    PubMed Central

    Long, Meixiao; Slaiby, Aaron M.; Wu, Shuang; Hagymasi, Adam T.; Mihalyo, Marianne A.; Bandyopadhyay, Suman; Vella, Anthony T.; Adler, Adam J.

    2010-01-01

    When naive CD4+ Th cells encounter cognate pathogen-derived Ags they expand and develop the capacity to express the appropriate effector cytokines for neutralizing the pathogen. Central to this differentiation process are epigenetic modifications within the effector cytokine genes that allow accessibility to the transcriptional machinery. In contrast, when mature self-reactive CD4 cells encounter their cognate epitopes in the periphery they generally undergo a process of tolerization in which they become hyporesponsive/anergic to antigenic stimulation. In the current study, we used a TCR transgenic adoptive transfer system to demonstrate that in a dose-dependent manner parenchymal self-Ag programs cognate naive CD4 cells to acetylate histones bound to the promoter region of the Ifng gene (which encodes the signature Th1 effector cytokine) during peripheral tolerization. Although the Ifng gene gains transcriptional competence, these tolerized CD4 cells fail to express substantial amounts of IFN-γ in response to antigenic stimulation apparently because a blockage in TCR-mediated signaling also develops. Nevertheless, responsiveness to antigenic stimulation is partially restored when self-Ag-tolerized CD4 cells are retransferred into mice infected with a virus expressing the same Ag. Additionally, there is preferential boosting in the ability of these CD4 cells to express IFN-γ relative to other cytokines with expression that also becomes impaired. Taken together, these results suggest that epigenetic modification of the Ifng locus during peripheral CD4 cell tolerization might allow for preferential expression of IFN-γ during recovery from tolerance. PMID:17947638

  11. Mast Cell: An Emerging Partner in Immune Interaction

    PubMed Central

    Gri, Giorgia; Frossi, Barbara; D’Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo

    2012-01-01

    Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners. PMID:22654879

  12. Emerging concepts on the role of innate immunity in the prevention and control of HIV infection.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; Alter, Galit

    2012-01-01

    While neutralizing antibodies can provide sterilizing protection from HIV infection via their variable domains, the antibody constant domain provides a functional link between innate and adaptive immunity and offers a means to harness the potent antiviral properties of a wide spectrum of innate immune effector cells. There has been a growing appreciation of the role of these effector mechanisms across fields from cancer immunotherapy to autoimmunity and infectious disease, as well as speculation that this mechanism may be responsible for the protection observed in the RV144 HIV vaccine trial. This review summarizes these extraneutralizing humoral immune activities, progress in defining the importance of these effector mechanisms during progression in HIV infection, and the potential impact that such vaccine-induced immune responses may have on protection from infection.

  13. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients.

    PubMed

    Fallen, P R; McGreavey, L; Madrigal, J A; Potter, M; Ethell, M; Prentice, H G; Guimarães, A; Travers, P J

    2003-11-01

    The factors affecting T cell reconstitution post haematopoietic cell transplantation (HCT) are not well characterised. We carried out a longitudinal analysis of T cell reconstitution in 32 HCT recipients during the first 12 months post transplant. We analysed reconstitution of naïve, memory and effector T cells, their diversity and monitored thymic output using TCR rearrangement excision circles (TRECs). Thymic-independent pathways were responsible for the rapid reconstitution of memory and effector T cells less than 6 months post HCT. Thymic-dependent pathways were activated between 6 and 12 months in the majority of patients with naïve T cell numbers increasing in parallel with TREC levels. Increasing patient age, chronic GVHD and T cell depletion (with or without pretransplant Campath-1H) predicted low TREC levels and slow naïve T cell recovery. Furthermore, increasing patient age also predicted high memory and effector T cell numbers. The effects of post HCT immunosuppression, total body irradiation, donor leucocyte infusions, T cell dose and post HCT infections on T cell recovery were also analysed. However, no effects of these single variables across a variety of different age, GVHD and T cell depletion groups were apparent. This study suggests that future analysis of the factors affecting T cell reconstitution and studies aimed at reactivating the thymus through therapeutic intervention should be analysed in age-, GVHD- and TCD-matched patient groups.

  14. Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets.

    PubMed

    Dudda, Jan C; Simon, Jan C; Martin, Stefan

    2004-01-15

    The effector/memory T cell pool branches in homing subsets selectively trafficking to organs such as gut or skin. Little is known about the critical factors in the generation of skin-homing CD8+ T cells, although they are crucial effectors in skin-restricted immune responses such as contact hypersensitivity and melanoma defense. In this study, we show that intracutaneous, but not i.v. injection of bone marrow-derived dendritic cells induced skin-homing CD8+ T cells with up-regulated E-selectin ligand expression and effector function in contact hypersensitivity. The skin-homing potential and E-selectin ligand expression remained stable in memory phase without further Ag contact. In contrast, i.p. injection induced T cells expressing the gut-homing integrin alpha(4)beta(7). Although differential expression of these adhesion molecules was strictly associated with the immunization route, the postulated skin-homing marker CCR4 was transiently up-regulated in all conditions. Interestingly, dendritic cells from different tissues effectively induced the corresponding homing markers on T cells in vitro. Our results suggest a crucial role for the tissue microenvironment and dendritic cells in the instruction of T cells for tissue-selective homing and demonstrate that Langerhans cells are specialized to target T cells to inflamed skin.

  15. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines.

    PubMed

    Dias, Joana; Leeansyah, Edwin; Sandberg, Johan K

    2017-07-03

    Mucosa-associated invariant T (MAIT) cells are a large innate-like T-cell subset in humans defined by invariant TCR Vα7.2 use and expression of CD161. MAIT cells recognize microbial riboflavin metabolites of bacterial or fungal origin presented by the monomorphic MR1 molecule. The extraordinary level of evolutionary conservation of MR1 and the limited known diversity of riboflavin metabolite antigens have suggested that MAIT cells are relatively homogeneous and uniform in responses against diverse microbes carrying the riboflavin biosynthesis pathway. The ability of MAIT cells to exhibit microbe-specific functional specialization has not been thoroughly investigated. Here, we found that MAIT cell responses against Escherichia coli and Candida albicans displayed microbe-specific polyfunctional response profiles, antigen sensitivity, and response magnitudes. MAIT cell effector responses against E. coli and C. albicans displayed differential MR1 dependency and TCR β-chain bias, consistent with possible divergent antigen subspecificities between these bacterial and fungal organisms. Finally, although the MAIT cell immunoproteome was overall relatively homogenous and consistent with an effector memory-like profile, it still revealed diversity in a set of natural killer cell-associated receptors. Among these, CD56, CD84, and CD94 defined a subset with higher expression of the transcription factors promyelocytic leukemia zinc finger (PLZF), eomesodermin, and T-bet and enhanced capacity to respond to IL-12 and IL-18 stimulation. Thus, the conserved and innate-like MAIT cells harbor multiple layers of functional heterogeneity as they respond to bacterial or fungal organisms or innate cytokines and adapt their antimicrobial response patterns in a stimulus-specific manner.

  16. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses.

    PubMed

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  17. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    PubMed

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.

  18. A Systems Biology Approach Reveals that Tissue Tropism to West Nile Virus Is Regulated by Antiviral Genes and Innate Immune Cellular Processes

    PubMed Central

    Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael

    2013-01-01

    The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010

  19. Hierarchy Low CD4+/CD8+ T-Cell Counts and IFN-γ Responses in HIV-1+ Individuals Correlate with Active TB and/or M.tb Co-Infection.

    PubMed

    Shao, Lingyun; Zhang, Xinyun; Gao, Yan; Xu, Yunya; Zhang, Shu; Yu, Shenglei; Weng, Xinhua; Shen, Hongbo; Chen, Zheng W; Jiang, Weimin; Zhang, Wenhong

    2016-01-01

    Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue. 164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses. There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001). Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.

  20. Antigen presenting cells (APCs) from thermally injured and/or septic rats modulate CD4+ T cell responses of naive rat.

    PubMed

    Fazal, Nadeem; Raziuddin, Syed; Khan, Mehdi; Al-Ghoul, Walid M

    2006-01-01

    Regulation of immune response is marked by complex interactions among the cells that recognize and present antigens. Antigen presenting cells (APCs), the antigen presenting cell component of the innate immune response plays an important role in effector CD4+ T cell response. Thermal injury and/or superimposed sepsis in rats' leads to suppressed CD4+ T cell functions. We investigated modulations of CD4+ T cell function by APCs (purified non-T cells) from thermally injured and/or septic rats. Rats were subjected to 30% total body surface area scald burn or exposed to 37 degrees C water (Sham burn) and sepsis was induced by cecal-ligation and puncture (CLP) method. At day 3 post-injury animals were sacrificed and CD4+ T cells and APCs from mesenteric lymph nodes (MLN) were obtained using magnetic microbead isolation procedure. APCs from injured rats were co-cultured with sham rat MLN CD4+ T cells and proliferative responses (thymidine incorporation), phenotypic changes (Flow cytometry), IL-2 production (ELISA) and CTLA-4 mRNA (RT-PCR) were determined in naive rat CD4+ T cells. The data indicate that APCs from thermally injured and/or septic rats when co-cultured with CD4+ T cells suppressed CD4+ T cell effector functions. This lack of CD4+ T cell activation was accompanied with altered co-stimulatory molecules, i.e., CD28 and/or CTLA-4 (CD152). In conclusion, our studies indicated that defective APCs from thermally injured and/or septic rats modulate CD4+ T cell functions via changes in co-stimulatory molecules expressed on naive CD4+ T cells. This altered APC: CD4+ T cell interaction leads to suppressed CD4+ T cell activation of healthy animals.

  1. At the Frontier; RXLR Effectors Crossing the Phytophthora-Host Interface.

    PubMed

    Bouwmeester, Klaas; Meijer, Harold J G; Govers, Francine

    2011-01-01

    Plants are constantly beset by pathogenic organisms. To successfully infect their hosts, plant pathogens secrete effector proteins, many of which are translocated to the inside of the host cell where they manipulate normal physiological processes and undermine host defense. The way by which effectors cross the frontier to reach the inside of the host cell varies among different classes of pathogens. For oomycete plant pathogens - like the potato late blight pathogen Phytophthora infestans - it has been shown that effector translocation to the host cell cytoplasm is dependent on conserved amino acid motifs that are present in the N-terminal part of effector proteins. One of these motifs, known as the RXLR motif, has a strong resemblance with a host translocation motif found in effectors secreted by Plasmodium species. These malaria parasites, that reside inside specialized vacuoles in red blood cells, make use of a specific protein translocation complex to export effectors from the vacuole into the red blood cell. Whether or not also oomycete RXLR effectors require a translocation complex to cross the frontier is still under investigation. For one P. infestans RXLR effector named IPI-O we have found a potential host target that could play a role in establishing the first contact between this effector and the host cell. This membrane spanning lectin receptor kinase, LecRK-I.9, interacts with IPI-O via the tripeptide RGD that overlaps with the RXLR motif. In animals, RGD is a well-known cell adhesion motif; it binds to integrins, which are membrane receptors that regulate many cellular processes and which can be hijacked by pathogens for either effector translocation or pathogen entry into host cells.

  2. Major Histocompatibilty Complex-Restricted Adaptive Immune Responses to CT26 Colon Cancer Cell Line in Mixed Allogeneic Chimera.

    PubMed

    Lee, K W; Choi, B; Kim, Y M; Cho, C W; Park, H; Moon, J I; Choi, G-S; Park, J B; Kim, S J

    2017-06-01

    Although the induction of mixed allogeneic chimera shows promising clinical tolerance results in organ transplantation, its clinical relevance as an anti-cancer therapy is yet unknown. We introduced a mixed allogenic chimera setting with the use of a murine colon cancer cell line, CT26, by performing double bone marrow transplantation. We analyzed donor- and recipient-restricted anti-cancer T-cell responses, and phenotypes of subpopulations of T cells. The protocol involves challenging 1 × 10 5 cells of CT26 cells intra-hepatically on day 50 after bone marrow transplantation, and, by use of CT26 lysates and an H-2L d -restricted AH1 pentamer, flow cytometric analysis was performed to detect the generation of cancer-specific CD4 + and CD8 + T cells at various time points. We found that immunocompetence against tumors depends heavily on cancer-specific CD8 + T-cell responses in a major histocompatibility complex-restricted manner; the evidence was further supported by the increase of interferon-γ-secreting CD4 + T cells. Moreover, we demonstrated that during the effector immune response to CT26 cancer challenge, there was a presence of central memory cells (CD62L hi CCR7 + ) as well as effector memory cells (CD62L lo CCR7 - ). Moreover, mixed allogeneic chimeras (BALB/c to C56BL/6 or vice versa) showed similar or heightened immune responses to CT26 cells compared with that of wild-type mice. Our results suggest that the responses of primary immunocompetency and of pre-existing memory T cells against allogeneic cancer are sustained and preserved long-term in a mixed allogeneic chimeric environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response

    PubMed Central

    2014-01-01

    Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens. PMID:24564253

  4. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

    PubMed

    Pereira, Andre L A; Carazzolle, Marcelo F; Abe, Valeria Y; de Oliveira, Maria L P; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E

    2014-02-25

    Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.

  5. Regulation of Asymmetric Division and CD8+ T Lymphocyte Fate Specification by PKCζ and PKCλ/ι

    PubMed Central

    Metz, Patrick J.; Arsenio, Janilyn; Kakaradov, Boyko; Kim, Stephanie H.; Remedios, Kelly A.; Oakley, Katherine; Akimoto, Kazunori; Ohno, Shigeo; Yeo, Gene W.; Chang, John T.

    2015-01-01

    During an immune response against a microbial pathogen, activated naïve T lymphocytes give rise to effector cells that provide acute host defense and memory cells that provide long-lived immunity. It has been shown that T lymphocytes can undergo asymmetric division, enabling the daughter cells to inherit unequal amounts of fate-determining proteins and thereby acquire distinct fates from their inception. Here, we show that the absence of the atypical protein kinase C (aPKC) isoforms, PKCζ and PKCλ/ι, disrupts asymmetric CD8+ T lymphocyte division. These alterations were associated with aberrant acquisition of a ‘pre-effector’ transcriptional program, detected by single-cell gene expression analyses, in lymphocytes that had undergone their first division in vivo and enhanced differentiation toward effector fates at the expense of memory fates. Together, these results demonstrate a role for aPKC in regulating asymmetric division and the specification of divergent CD8+ T lymphocyte fates early during an immune response. PMID:25617472

  6. Regulation of Effector Treg Cells in Murine Lupus.

    PubMed

    Chandrasekaran, Uma; Yi, Woelsung; Gupta, Sanjay; Weng, Chien-Huan; Giannopoulou, Eugenia; Chinenov, Yurii; Jessberger, Rolf; Weaver, Casey T; Bhagat, Govind; Pernis, Alessandra B

    2016-06-01

    Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development. © 2016, American College of Rheumatology.

  7. Functional heterogeneity of human effector CD8+ T cells.

    PubMed

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  8. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells

    PubMed Central

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ. PMID:29467768

  9. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    PubMed

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  10. Host Th1/Th2 immune response to Taenia solium cyst antigens in relation to cyst burden of neurocysticercosis.

    PubMed

    Tharmalingam, J; Prabhakar, A T; Gangadaran, P; Dorny, P; Vercruysse, J; Geldhof, P; Rajshekhar, V; Alexander, M; Oommen, A

    2016-10-01

    Neurocysticercosis (NCC), Taenia solium larval infection of the brain, is an important cause of acquired seizures in endemic countries, which relate to number, location and degenerating cysts in the brain. Multicyst infections are common in endemic countries although single-cyst infection prevails in India. Single-cyst infections in an endemic country suggest a role for host immunity limiting the infection. This study examined ex vivo CD4(+) T cells and in vitro Th1 and Th2 cytokine responses to T. solium cyst antigens of peripheral blood mononuclear cells of healthy subjects from endemic and nonendemic regions and of single- and multicyst-infected patients for association with cyst burden of NCC. T. solium cyst antigens elicited a Th1 cytokine response in healthy subjects of T. solium-endemic and T. solium-non-endemic regions and those with single-cyst infections and a Th2 cytokine response from subjects with multicyst neurocysticercosis. Multicyst neurocysticercosis subjects also exhibited low levels of effector memory CD4(+) T cells. Th1 cytokine response of T. solium exposure and low infectious loads may aid in limiting cyst number. Th2 cytokines and low effector T cells may enable multiple-cyst infections to establish and persist. © 2016 John Wiley & Sons Ltd.

  11. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis.

    PubMed

    Shaler, Christopher R; Horvath, Carly; Lai, Rocky; Xing, Zhou

    2012-01-01

    Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.

  12. Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses1

    PubMed Central

    Andersson, Mats X.; Nilsson, Anders K.; Johansson, Oskar N.; Boztaş, Gülin; Adolfsson, Lisa E.; Pinosa, Francesco; Petit, Christel Garcia; Aronsson, Henrik; Mackey, David; Tör, Mahmut; Hamberg, Mats; Ellerström, Mats

    2015-01-01

    Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that these compounds also trigger local defense responses in Arabidopsis tissue. PMID:25371552

  13. A DNA prime-oral Listeria boost vaccine in rhesus macaques induces a SIV-specific CD8 T cell mucosal response characterized by high levels of α4β7 integrin and an effector memory phenotype

    PubMed Central

    Neeson, Paul; Boyer, Jean; Kumar, Sanjeev; Lewis, Mark G.; Veazey, Lennox MattiasRon; Weiner, David; Paterson, Yvonne

    2006-01-01

    In this study in Rhesus macaques, we tested whether IL-12 or IL-15 in a DNA prime-oral Listeria boost amplifies the SIV-Gag specific CD8 mucosal response. SIV-specific CD8 T cells were demonstrated in the peripheral blood (PB) in all test vaccine groups, but not the control group. SIV Gag-specific CD8 T cells in the PB expressed α4β7 integrin, the gut-homing receptor; a minor subset co-express αEβ7 integrin. SIV Gag-specific CD8 T cells were also detected in the gut tissue, intraepithelial (IEL) and lamina propria lymphocytes (LPL) of the duodenum and ileum. These cells were characterized by high levels of β7 integrin expression and a predominance of the effector memory phenotype. Neither Il-12 nor IL-15 amplified the frequency of SIV-specific CD8 T cells in the gut. Thus, the DNA prime oral Listeria boost strategy induced a mucosal SIV-Gag specific CD8 T cell response characterized by expression of the α4β7 integrin gut-homing receptor. PMID:16904153

  14. The sympathetic mechanism in the isolated pulmonary artery of the rabbit

    PubMed Central

    Bevan, J. A.; Su, C.

    1964-01-01

    The nature of postganglionic sympathetic nervous transmission to vascular muscle in vitro was studied using the recurrent cardiac nerve-pulmonary artery preparation of the rabbit. Experiments, similar to those which in other tissues have provided evidence to support a role for acetylcholine at the sympathetic postganglionic nerve-effector cell junction, were carried out. The contractile response of the isolated artery to acetylcholine was blocked completely by atropine. High concentrations of acetylcholine and of hemicholinium had no effect on the contractile response to sympathetic nerve stimulation. Physostigmine, atropine and hemicholinium were without influence on the relationship between nerve stimulus frequency and response. Yohimbine, bretylium and reserpine blocked completely the response to nerve stimulation but did not affect that to applied acetylcholine. These results support the view that transmission in this preparation at the sympathetic postganglionic nerve-effector cell junction is mediated by an adrenaline-like transmitter and provide no evidence for the view that acetylcholne is involved at this site. PMID:14126048

  15. Neural control of the kidney: functionally specific renal sympathetic nerve fibers.

    PubMed

    DiBona, G F

    2000-11-01

    The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs via mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers in addition to an innervation that is shared among all the effectors. This arrangement permits the maximum flexibility in the coordination of physiologically appropriate responses of the tubules, the blood vessels, and the juxtaglomerular granular cells to a variety of homeostatic requirements.

  16. Functionally specific renal sympathetic nerve fibers: role in cardiovascular regulation.

    PubMed

    DiBona, G F

    2001-06-01

    The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs through mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers and an innervation that is shared among all the effectors. This arrangement facilitates maximum flexibility in the coordination of the tubules, the blood vessels, and the juxtaglomerular granular cells so as to produce physiologically appropriate responses to a variety of homeostatic requirements.

  17. Neutrophil trails guide influenza-specific CD8+ T cells in the airways

    PubMed Central

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J.; Kim, Minsoo

    2016-01-01

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells is unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8+ T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditional knock-out mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8+ T cell recruitment and effector functions. Collectively, these results suggest neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8+ T cell migration and localization in influenza-infected tissues. PMID:26339033

  18. Neutrophil trails guide influenza-specific CD8⁺ T cells in the airways.

    PubMed

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J; Kim, Minsoo

    2015-09-04

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells are unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8(+) T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditionally depleted mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8(+) T cell recruitment and effector functions. Collectively, these results suggest that neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8(+) T cell migration and localization in influenza-infected tissues. Copyright © 2015, American Association for the Advancement of Science.

  19. Cervical cancer cells suppress effector functions of cytotoxic T cells through the adenosinergic pathway.

    PubMed

    Mora-García, M L; Ávila-Ibarra, L R; García-Rocha, R; Weiss-Steider, B; Hernández-Montes, J; Don-López, C A; Gutiérrez-Serrano, V; Titla-Vilchis, I J; Fuentes-Castañeda, M C; Monroy-Mora, A; Jave-Suárez, L F; Chacón-Salinas, R; Vallejo-Castillo, L; Pérez-Tapia, S M; Monroy-García, A

    2017-10-01

    The expression of CD73 in tumor cells plays a significant role in the production of adenosine (Ado) that suppresses antitumor effector cells. In this study we analyzed the capability of HPV-positive (HPV+) cervical cancer (CeCa) cell lines CaSki, SiHa, HeLa, and RoVa; and HPV-negative (HPV-) cell lines C33A and ViBo to produce Ado and inhibit effector functions of CD8+ T cells. HPV+ CeCa cells expressed significantly higher levels of CD73 in the membrane (p<0.01) than HPV- CeCa cells and this expression was associated with the production of larger amounts of Ado (>400μM) compared to HPV-CeCa cells (<200μM) in the presence of AMP, as well asa stronger inhibition of (>50%) proliferation, activation, and cytotoxic activity of CD8+ T cells via interaction with A2A adenosine receptor. We also provide evidence that silenced E6/E7 expression in CeCa cells, strongly reduced its CD73 expression level and its capability to generate Ado. This results suggest that HPV infection, which is associated with more than 99% of CeCa cases, may present an increased constitutive expression of CD73 in cervical neoplasia to contribute to the suppression of the immune response mediated by the production of large amounts of Ado. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. PD-1 inhibits antiviral immunity at the effector phase in the liver.

    PubMed

    Iwai, Yoshiko; Terawaki, Seigo; Ikegawa, Masaya; Okazaki, Taku; Honjo, Tasuku

    2003-07-07

    Unlike naive T cells, effector T cells can be activated by either T cell receptor signal or costimulatory signal alone and therefore the absence of costimulatory molecules on tissue cells cannot explain the tolerance mechanism at the effector phase. Here we report that PD-L1, the ligand for the immunoinhibitory receptor PD-1, was expressed on vascular endothelium in peripheral tissues. Liver nonparenchymal cells including sinusoidal endothelial cells and Kupffer cells constitutively expressed PD-L1 and inhibited proliferation and cell division of activated T cells expressing PD-1. The absence of PD-1 induced proliferation of effector T cells in the adenovirus-infected liver and resulted in rapid clearance of the virus. These results indicate that PD-1 plays an important role in T cell tolerance at the effector phase and the blockade of the PD-1 pathway can augment antiviral immunity.

  1. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades

    PubMed Central

    Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448

  2. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells.

    PubMed

    Hu, Xinli; Kim, Hyun; Raj, Towfique; Brennan, Patrick J; Trynka, Gosia; Teslovich, Nikola; Slowikowski, Kamil; Chen, Wei-Min; Onengut, Suna; Baecher-Allan, Clare; De Jager, Philip L; Rich, Stephen S; Stranger, Barbara E; Brenner, Michael B; Raychaudhuri, Soumya

    2014-06-01

    Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM) cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance, proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative response (p=4.75 × 10-8). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for understanding pathogenic mechanisms of disease variants.

  3. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    PubMed

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  4. Chemical Genetics Reveals Bacterial and Host Cell Functions Critical for Type IV Effector Translocation by Legionella pneumophila

    PubMed Central

    Charpentier, Xavier; Gabay, Joëlle E.; Reyes, Moraima; Zhu, Jing W.; Weiss, Arthur; Shuman, Howard A.

    2009-01-01

    Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions. PMID:19578436

  5. Keeping STATs on memory CD8+ T cells.

    PubMed

    Olson, Janelle A; Jameson, Stephen C

    2011-11-23

    The CD8(+) T cell response is characterized by generation of a population of effector cells and establishment of a persistent memory pool. In this issue, Cui et al. (2011) and Siegel et al. (2011) show that cytokine receptor signaling through the transcription factor STAT3 establishes stable memory CD8(+) T cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Integration of oxygen signaling at the consensus HRE.

    PubMed

    Wenger, Roland H; Stiehl, Daniel P; Camenisch, Gieri

    2005-10-18

    The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.

  7. Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10

    PubMed Central

    Sojka, Dorothy K.; Fowell, Deborah J.

    2011-01-01

    CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707

  8. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilden, A.B.; Cauda, R.; Grossi, C.E.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar tomore » those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.« less

  9. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    PubMed

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  10. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    PubMed

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reduced generation of lung tissue–resident memory T cells during infancy

    PubMed Central

    Zens, Kyra D.; Chen, Jun Kui; Wu, Felix L.; Cvetkovski, Filip

    2017-01-01

    Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant–T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet–regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage. PMID:28855242

  12. The Frustrated Host Response to Legionella pneumophila Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines

    PubMed Central

    Asrat, Seblewongel; Dugan, Aisling S.; Isberg, Ralph R.

    2014-01-01

    Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1β, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response. PMID:25058342

  13. Long-distance endosome trafficking drives fungal effector production during plant infection

    PubMed Central

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero

    2014-01-01

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249

  14. Long-distance endosome trafficking drives fungal effector production during plant infection.

    PubMed

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero

    2014-10-06

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.

  15. Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.

    PubMed

    Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje

    2011-11-01

    Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    PubMed

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  17. Allorecognition pathways in transplant rejection and tolerance.

    PubMed

    Ali, Jason M; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J

    2013-10-27

    With the advent of cellular therapies, it has become clear that the success of future therapies in prolonging allograft survival will require an intimate understanding of the allorecognition pathways and effector mechanisms that are responsible for chronic rejection and late graft loss.Here, we consider current understanding of T-cell allorecognition pathways and discuss the most likely mechanisms by which these pathways collaborate with other effector mechanisms to cause allograft rejection. We also consider how this knowledge may inform development of future strategies to prevent allograft rejection.Although both direct and indirect pathway CD4 T cells appear active immediately after transplantation, it has emerged that indirect pathway CD4 T cells are likely to be the dominant alloreactive T-cell population late after transplantation. Their ability to provide help for generating long-lived alloantibody is likely one of the main mechanisms responsible for the progression of allograft vasculopathy and chronic rejection.Recent work has suggested that regulatory T cells may be an effective cellular therapy in transplantation. Given the above, adoptive therapy with CD4 regulatory T cells with indirect allospecificity is a rational first choice in attempting to attenuate the development and progression of chronic rejection; those with additional properties that enable inhibition of germinal center alloantibody responses hold particular appeal.

  18. B cells as multi-functional players during Mycobacterium tuberculosis infection and disease.

    PubMed

    du Plessis, Willem J; Walzl, Gerhard; Loxton, André G

    2016-03-01

    Immunity to tuberculosis is still understood to be driven and maintained by T-cell derived immune responses. With a steady influx of data, it is becoming clear that B cells, the mediators of humoral immunity, have the capacity to function in roles not previously appreciated within the traditional B cell dogma. In this review we aim to discuss B cells, from its generation through to its functioning as effectors in both the innate and adaptive immune response, within the tuberculosis domain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadurihauck, Anjuli; Li, Lei; Li, Qianqian

    Adoptive cell transfer therapy (ACT) is one of the most promising immunotherapies against cancer, using tumor-infiltrating lymphocytes (TILs) expanded in vitro. Tumor-infiltrating cytotoxic T lymphocytes (TICTLs) play a prominent role in cancer control. TILs terminally differentiate in response to immunosuppressive environments within tumors, and thus are slow to expand and challenging to maintain both in vitro and in patients. To reverse this exhaustion, we utilize a nuclear protein delivery system that exposes TICTLs to the SOX2, Oct-4, and NANOG (SON) proteins. Unlike activated naïve CTLs (effector CTLs), TICTLs respond favorably to SON treatment, exhibiting steady proliferation and extended survivability independent of cytokinemore » and antigen stimulation. Though TICTLs treated with SON (STICTLs) still express T cell receptors as well as other critical downstream components, they are unresponsive to antigen challenge, suggesting that SON treatment regresses TICTLs into a state similar to that of an early double negative T cell. Our findings indicate the TICTL response to SON proteins is unique when compared to effector CTLs, suggesting TICTLs may be sensitive to regulation by other lineage-specific transcription factors and opening a promising new avenue into cancer immunotherapy. To our knowledge, this is the first report on lineage reprogramming of TILs using protein stem cell transcription factors delivered directly to the nucleus. -- Highlights: •TICTLs are sensitive to reprogramming by proteins of stem cell transcription factors, but effector CTLs were not. •TICTLs are regressed back to an early double negative T cell stage. •TCR signaling is deregulated by these transcription factors.« less

  20. High immunosuppressive burden in advanced hepatocellular carcinoma patients: Can effector functions be restored?

    PubMed

    Lugade, Amit A; Kalathil, Suresh; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-07-01

    The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.

  1. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients

    PubMed Central

    Radvanyi, Laszlo G.; Bernatchez, Chantale; Zhang, Minying; Fox, Patricia S.; Miller, Priscilla; Chacon, Jessica; Wu, Richard; Lizee, Gregory; Mahoney, Sandy; Alvarado, Gladys; Glass, Michelle; Johnson, Valen E.; McMannis, John D.; Shpall, Elizabeth; Prieto, Victor; Papadopoulos, Nicholas; Kim, Kevin; Homsi, Jade; Bedikian, Agop; Hwu, Wen-Jen; Patel, Sapna; Ross, Merrick I.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Lucci, Anthony; Royal, Richard; Cormier, Janice N.; Davies, Michael A.; Mansaray, Rahmatu; Fulbright, Orenthial J.; Toth, Christopher; Ramachandran, Renjith; Wardell, Seth; Gonzalez, Audrey; Hwu, Patrick

    2012-01-01

    Purpose Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) is a promising treatment for metastatic melanoma unresponsive to conventional therapies. We report here on the results of an ongoing Phase II clinical trial testing the efficacy of ACT using TIL in metastatic melanoma patients and the association of specific patient clinical characteristics and the phenotypic attributes of the infused TIL with clinical response. Experimental Design Altogether, 31 transiently lymphodepleted patients were treated with their expanded TIL followed by two cycles of high-dose (HD) IL-2 therapy. The effects of patient clinical features and the phenotypes of the T-cells infused on clinical response were determined. Results Overall, 15/31 (48.4%) patients had an objective clinical response using immune-related response criteria (irRC), with two patients (6.5%) having a complete response. Progression-free survival of >12 months was observed for 9/15 (60%) of the responding patients. Factors significantly associated with objective tumor regression included a higher number of TIL infused, a higher proportion of CD8+ T-cells in the infusion product, a more differentiated effector phenotype of the CD8+ population and a higher frequency of CD8+ T-cells co-expressing the negative costimulation molecule “B- and T-lymphocyte attenuator” (BTLA). No significant difference in telomere lengths of TIL between responders and non-responders was identified. Conclusion These results indicate that immunotherapy with expanded autologous TIL is capable of achieving durable clinical responses in metastatic melanoma patients and that CD8+ T-cells in the infused TIL, particularly differentiated effectors cells and cells expressing BTLA, are associated with tumor regression. PMID:23032743

  2. T cells which proliferate in response to concanavalin A include cells which proliferate in mixed leucocyte reactions.

    PubMed

    Watanabe, T; Fathman, C G; Coutinho, A

    1977-09-01

    Selection in long-term culture of alloreactive T cells, by successive in vitro restimulation with semi-allogeneic cells, results in primed responder cell populations which maintain full proliferative reactivity to allogeneic cells as well as to the T cell mitogens concanavalin A (Con A) and phytohemagglutinin (PHA) but are depleted of cells which can effect target cell destruction in either a specific or nonspecific manner. Con A-induced T cell blasts (selected by velocity sedimentation) can revert to small resting lymphocytes in the presence of inert "filler" cells. Con A blasts which have reverted, readily proliferate in response to Con A or allogeneic stimulator cells but are largely depleted of effector killer cells and PHA-responsive cells.

  3. Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15.

    PubMed

    Liu, Qing; Gao, Wen-Wei; Elsheikha, Hany M; He, Jun-Jun; Li, Fa-Cai; Yang, Wen-Bin; Zhu, Xing-Quan

    2018-06-19

    Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15 I ) or type II PRU strain (GRA15 II ). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15 I and GRA15 II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15 II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15 I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.

  4. The Breadth of Synthetic Long Peptide Vaccine-Induced CD8+ T Cell Responses Determines the Efficacy against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Redeker, Anke; van Duikeren, Suzanne; Franken, Kees LMC; Drijfhout, Jan Wouter; van der Burg, Sjoerd H.

    2016-01-01

    There is an ultimate need for efficacious vaccines against human cytomegalovirus (HCMV), which causes severe morbidity and mortality among neonates and immunocompromised individuals. In this study we explored synthetic long peptide (SLP) vaccination as a platform modality to protect against mouse CMV (MCMV) infection in preclinical mouse models. In both C57BL/6 and BALB/c mouse strains, prime-booster vaccination with SLPs containing MHC class I restricted epitopes of MCMV resulted in the induction of strong and polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD8+ T cell responses, equivalent in magnitude to those induced by the virus itself. SLP vaccination initially led to the formation of effector CD8+ T cells (KLRG1hi, CD44hi, CD127lo, CD62Llo), which eventually converted to a mixed central and effector-memory T cell phenotype. Markedly, the magnitude of the SLP vaccine-induced CD8+ T cell response was unrelated to the T cell functional avidity but correlated to the naive CD8+ T cell precursor frequency of each epitope. Vaccination with single SLPs displayed various levels of long-term protection against acute MCMV infection, but superior protection occurred after vaccination with a combination of SLPs. This finding underlines the importance of the breadth of the vaccine-induced CD8+ T cell response. Thus, SLP-based vaccines could be a potential strategy to prevent CMV-associated disease. PMID:27637068

  5. Regulatory roles of mast cells in immune responses.

    PubMed

    Morita, Hideaki; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2016-09-01

    Mast cells are important immune cells for host defense through activation of innate immunity (via toll-like receptors or complement receptors) and acquired immunity (via FcεRI). Conversely, mast cells also act as effector cells that exacerbate development of allergic or autoimmune disorders. Yet, several lines of evidence show that mast cells act as regulatory cells to suppress certain inflammatory diseases. Here, we review the mechanisms by which mast cells suppress diseases.

  6. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible.

    PubMed

    Tyler, Brett M; Kale, Shiv D; Wang, Qunqing; Tao, Kai; Clark, Helen R; Drews, Kelly; Antignani, Vincenzo; Rumore, Amanda; Hayes, Tristan; Plett, Jonathan M; Fudal, Isabelle; Gu, Biao; Chen, Qinghe; Affeldt, Katharyn J; Berthier, Erwin; Fischer, Gregory J; Dou, Daolong; Shan, Weixing; Keller, Nancy P; Martin, Francis; Rouxel, Thierry; Lawrence, Christopher B

    2013-06-01

    A wide diversity of pathogens and mutualists of plant and animal hosts, including oomycetes and fungi, produce effector proteins that enter the cytoplasm of host cells. A major question has been whether or not entry by these effectors can occur independently of the microbe or requires machinery provided by the microbe. Numerous publications have documented that oomycete RxLR effectors and fungal RxLR-like effectors can enter plant and animal cells independent of the microbe. A recent reexamination of whether the RxLR domain of oomycete RxLR effectors is sufficient for microbe-independent entry into host cells concluded that the RxLR domains of Phytophthora infestans Avr3a and of P. sojae Avr1b alone are NOT sufficient to enable microbe-independent entry of proteins into host and nonhost plant and animal cells. Here, we present new, more detailed data that unambiguously demonstrate that the RxLR domain of Avr1b does show efficient and specific entry into soybean root cells and also into wheat leaf cells, at levels well above background nonspecific entry. We also summarize host cell entry experiments with a wide diversity of oomycete and fungal effectors with RxLR or RxLR-like motifs that have been independently carried out by the seven different labs that coauthored this letter. Finally we discuss possible technical reasons why specific cell entry may have been not detected by Wawra et al. (2013).

  7. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance.

    PubMed

    Rogel, Anne; Willoughby, Jane E; Buchan, Sarah L; Leonard, Henry J; Thirdborough, Stephen M; Al-Shamkhani, Aymen

    2017-02-14

    Memory CD8 + T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8 + T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8 + T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8 + T cells from pdk1 K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3) lo CD43 lo effector-like memory cells. Consequently, antitumor immunity by CD8 + T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8 + T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8 + T-cell responses.

  8. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance

    PubMed Central

    Rogel, Anne; Willoughby, Jane E.; Buchan, Sarah L.; Leonard, Henry J.; Thirdborough, Stephen M.; Al-Shamkhani, Aymen

    2017-01-01

    Memory CD8+ T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8+ T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8+ T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8+ T cells from pdk1K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)loCD43lo effector-like memory cells. Consequently, antitumor immunity by CD8+ T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8+ T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8+ T-cell responses. PMID:28137869

  9. Deep sequencing and flow cytometric characterization of expanded effector memory CD8+CD57+ T cells frequently reveals T-cell receptor Vβ oligoclonality and CDR3 homology in acquired aplastic anemia.

    PubMed

    Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S

    2018-05-01

    Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.

  10. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    PubMed

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a cancer vaccine in a mouse model.

    PubMed

    Dyck, Lydia; Wilk, Mieszko M; Raverdeau, Mathilde; Misiak, Alicja; Boon, Louis; Mills, Kingston H G

    2016-12-01

    The co-inhibitory molecule PD-1 suppresses T cell responses and has been targeted in the treatment of cancer. Here, we examined the role of PD-1 in regulating the balance between regulatory and effector T cells and whether blocking PD-1 could enhance tumour vaccine-induced protective immunity. A significantly higher proportion of tumour-resident T cells expressed PD-1 and Foxp3 compared with T cells in the tumour circulation or draining lymph nodes, and this correlated with a lower frequency of IFN-γ- and TNF-secreting CD8 T cells. Blocking PD-1 with a specific antibody reduced Foxp3 + regulatory T (Treg) cell induction and enhanced proliferation, cytokine production, and tumour killing by CD8 T cells. Treatment of CT26 tumour-bearing mice with anti-PD-1 in combination with a vaccine, comprising heat-shocked irradiated tumour cells and a TLR 7/8 agonist, significantly reduced tumour growth and enhanced survival. Furthermore, surviving mice resisted tumour re-challenge. The rejection of tumours in mice treated with the anti-PD-1 vaccine combination was associated with a reduction in tumour-infiltrating Treg cells and enhancement of IFN-γ-secreting CD8 T cells. Our findings demonstrate that high PD-1 expression correlates with increased tumour-infiltrating Treg cells and reduced effector T cells and that when combined with a potent antigen-adjuvant combination, blocking PD-1 effectively enhances anti-tumour immunity.

  12. Adoptive T-cell Therapy Using Autologous Tumor-infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future Outlook

    PubMed Central

    Wu, Richard; Forget, Marie-Andree; Chacon, Jessica; Bernatchez, Chantale; Haymaker, Cara; Chen, Jie Qing; Hwu, Patrick; Radvanyi, Laszlo

    2012-01-01

    Immunotherapy using autologous T-cells has emerged to be a powerful treatment option for patients with metastatic melanoma. These include the adoptive transfer of autologous tumor-infiltrating lymphocytes (TIL), T-cells transduced with high-affinity T-cell receptors (TCR) against major melanosomal tumor antigens, and T cells transduced with chimeric antigen receptors (CAR) composed of hybrid immunoglobulin light chains with endo-domains of T-cell signaling molecules. Among these and other options for T-cell therapy, TIL together with high-dose IL-2 has had the longest clinical history with multiple clinical trials in centers across the world consistently demonstrating durable clinical response rates near 50% or more. A distinct advantage of TIL therapy making it still the T-cell therapy of choice is the broad nature of the T-cell recognition against both defined as well as un-defined tumors antigens against all possible MHC, rather than the single specificity and limited MHC coverage of the newer TCR and CAR transduction technologies. In the past decade, significant inroads have been made in defining the phenotypes of T cells in TIL mediating tumor regression. CD8+ T cells are emerging to be critical, although the exact subset of CD8+ T cells exhibiting the highest clinical activity in terms of memory and effector markers is still controversial. We present a model in which both effector-memory and more differentiated effector T cells ultimately may need to cooperate to mediate long-term tumor control in responding patients. Although TIL therapy has shown great potential to treat metastatic melanoma, a number of issues have emerged that need to be addressed to bring it more into the mainstream of melanoma care. First, we have a reached the point where a pivotal phase II or phase III trials are needed in an attempt to gain regulatory approval of TIL as standard-of-care. Second, improvements in how we expand TIL for therapy are needed, that minimize the time the T-cells are in culture and improve the memory and effector characteristics of the T cells for longer persistence and enhanced anti-tumor activity in vivo. Third, there is a critical need to identify surrogate and predictive biomarkers in order to better select suitable patients for TIL therapy in order to improve response rate and duration. Overall, the outlook for TIL therapy for melanoma is very bright. We predict that TIL will indeed emerge to become an approved treatment in the upcoming years through pivotal clinical trials. Moreover, new approaches combining TIL with targeted signaling pathway drugs, such as mutant B-RAF inhibitors, and synergistic immunomodulatory interventions enhancing T-cell costimulation and preventing negative regulation, should further increase therapeutic efficacy and durable complete response rates. PMID:22453018

  13. Caspase-3 Is Transiently Activated without Cell Death during Early Antigen Driven Expansion of CD8+ T Cells In Vivo

    PubMed Central

    McComb, Scott; Mulligan, Rebecca; Sad, Subash

    2010-01-01

    Background CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined. Methods and Findings We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase. Conclusions Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3. PMID:21203525

  14. Silymarin inhibits ultraviolet radiation-induced immune suppression through DNA repair-dependent activation of dendritic cells and stimulation of effector T cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Elmets, Craig A.; Xu, Hui; Katiyar, Santosh K.

    2013-01-01

    Silymarin inhibits UVB-induced immunosuppression in mouse skin. To identify the molecular mechanisms underlying this effect, we used an adoptive transfer approach in which dendritic cells (DCs) from the draining lymph nodes of donor mice that had been UVB-exposed and sensitized to 2,4,-dinitrofluorobenzene (DNFB) were transferred into naïve recipient mice. The contact hypersensitivity (CHS) response of the recipient mice to DNFB was then measured. When DCs were obtained from UVB-exposed donor mice that were not treated with silymarin, the CHS response was suppressed confirming the role of DCs in the UVB-induced immunosuppression. Silymarin treatment of UVB-exposed donor mice relieved this suppression of the CHS response in the recipients. Silymarin treatment was associated with rapid repair of UVB-induced cyclobutane pyrimidine dimers (CPDs) in DCs and silymarin treatment did not prevent UV-induced immunosuppression in XPA-deficient mice which are unable to repair UV-induced DNA damage. The CHS response in mice receiving DCs from silymarin-treated UV-exposed donor mice also was associated with enhanced secretion of Th1-type cytokines and stimulation of T cells. Adoptive transfer of T cells revealed that transfer of either CD8+ or CD4+ cells from silymarin-treated, UVB-exposed donors resulted in enhancement of the CHS response. Cell culture study showed enhanced secretion of IL-2 and IFNγ by CD8+ T cells, and reduced secretion of Th2 cytokines by CD4+ cells, obtained from silymarin-treated UVB-exposed mice. These data suggest that DNA repair-dependent functional activation of DCs, a reduction in CD4+ regulatory T-cell activity, and stimulation of CD8+ effector T cells contribute to silymarin-mediated inhibition of UVB-induced immunosuppression. PMID:23395695

  15. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.

    PubMed

    Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang

    2017-01-01

    Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.

  16. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    PubMed

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias; Zekeng, Elsa Gayle; Cowley, Lauren; Garcia Dorival, Isabel; Doerrbecker, Juliane; Hetzelt, Nicole; Baum, Jonathan H J; Portmann, Jasmine; Wölfel, Roman; Gabriel, Martin; Miranda, Osvaldo; Díaz, Graciliano; Díaz, José E; Fleites, Yoel A; Piñeiro, Carlos A; Castro, Carlos M; Koivogui, Lamine; Magassouba, N'Faly; Diallo, Boubacar; Ruibal, Paula; Oestereich, Lisa; Wozniak, David M; Lüdtke, Anja; Becker-Ziaja, Beate; Capobianchi, Maria R; Ippolito, Giuseppe; Carroll, Miles W; Günther, Stephan; Di Caro, Antonino; Muñoz-Fontela, César; Agrati, Chiara

    2017-05-01

    Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome. Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  17. Legionella and Coxiella effectors: strength in diversity and activity.

    PubMed

    Qiu, Jiazhang; Luo, Zhao-Qing

    2017-10-01

    Legionella pneumophila and Coxiella burnetii are two evolutionarily related intracellular pathogens that use the Dot/Icm type IV secretion system to translocate effectors into host cells. These effectors are essential for the establishment of membrane-bound compartments known as replication vacuoles, which enable the survival and replication of bacteria inside host cells. The effectors interfere with diverse signalling pathways to co-opt host processes, such as vesicle trafficking, ubiquitylation, gene expression and lipid metabolism, to promote pathogen survival. In this Review, we explore Dot/Icm effectors from L. pneumophila and C. burnetii as key virulence factors, and we examine the biochemical and cell biological functions of these effectors and their roles in our understanding of bacterial virulence.

  18. PolyI:C and mouse survivin artificially embedding human 2B peptide induce a CD4+ T cell response to autologous survivin in HLA-A*2402 transgenic mice.

    PubMed

    Kasamatsu, Jun; Takahashi, Shojiro; Azuma, Masahiro; Matsumoto, Misako; Morii-Sakai, Akiko; Imamura, Masahiro; Teshima, Takanori; Takahashi, Akari; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Sato, Noriyuki; Seya, Tsukasa

    2015-01-01

    CD4(+) T cell effectors are crucial for establishing antitumor immunity. Dendritic cell maturation by immune adjuvants appears to facilitate subset-specific CD4(+) T cell proliferation, but the adjuvant effect for CD4 T on induction of cytotoxic T lymphocytes (CTLs) is largely unknown. Self-antigenic determinants with low avidity are usually CD4 epitopes in mutated proteins with tumor-associated class I-antigens (TAAs). In this study, we made a chimeric version of survivin, a target of human CTLs. The chimeric survivin, where human survivin-2B containing a TAA was embedded in the mouse survivin frame (MmSVN2B), was used to immunize HLA-A-2402/K(b)-transgenic (HLA24(b)-Tg) mice. Subcutaneous administration of MmSVN2B or xenogeneic human survivin (control HsSNV2B) to HLA24(b)-Tg mice failed to induce an immune response without co-administration of an RNA adjuvant polyI:C, which was required for effector induction in vivo. Although HLA-A-2402/K(b) presented the survivin-2B peptide in C57BL/6 mice, 2B-specific tetramer assays showed that no CD8(+) T CTLs specific to survivin-2B proliferated above the detection limit in immunized mice, even with polyI:C treatment. However, the CD4(+) T cell response, as monitored by IFN-γ, was significantly increased in mice given polyI:C+MmSVN2B. The Th1 response and antibody production were enhanced in the mice with polyI:C. The CD4 epitope responsible for effector function was not Hs/MmSNV13-27, a nonconserved region between human and mouse survivin, but region 53-67, which was identical between human and mouse survivin. These results suggest that activated, self-reactive CD4(+) helper T cells proliferate in MmSVN2B+polyI:C immunization and contribute to Th1 polarization followed by antibody production, but hardly participate in CTL induction. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Delayed Expansion and Contraction of CD8+ T Cell Response during Infection with Virulent Salmonella typhimurium1

    PubMed Central

    Luu, Rachel A.; Gurnani, Komal; Dudani, Renu; Kammara, Rajagopal; van Faassen, Henk; Sirard, Jean-Claude; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Ag presentation to CD8+ T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (~7 days), resistant mice (129×1SvJ) harbor a chronic infection lasting ~60–90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8+ T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62LhighIL-7RαhighCD44high) CD8+ T cells. However, by day 14–21, majority of the primed CD8+ T cells display an effector phenotype (CD62LlowIL-7RαlowCD44high). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62LlowIL-7RαhighCD44high) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8+ T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8+ T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8+ T cell recognition, conferring a survival advantage to the pathogen. PMID:16849458

  20. Diversity in T cell memory: An embarrassment of riches

    PubMed Central

    Jameson, Stephen C.; Masopust, David

    2010-01-01

    The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens, but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review we focus on the generation, maintenance and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets. PMID:20064446

  1. mTOR at the Transmitting and Receiving Ends in Tumor Immunity

    PubMed Central

    Guri, Yakir; Nordmann, Thierry M.; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis. PMID:29662490

  2. mTOR at the Transmitting and Receiving Ends in Tumor Immunity.

    PubMed

    Guri, Yakir; Nordmann, Thierry M; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  3. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    PubMed

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    PubMed

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  5. Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity.

    PubMed

    Phan, Anthony T; Goldrath, Ananda W; Glass, Christopher K

    2017-05-16

    Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Metabolic and epigenetic coordination of T cell and Macrophage immunity

    PubMed Central

    Phan, Anthony T.; Goldrath, Ananda W.; Glass, Christopher K.

    2017-01-01

    Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. PMID:28514673

  7. Multipronged CD4 T cell effector and memory responses cooperate to provide potent immunity against respiratory virus

    PubMed Central

    Strutt, Tara M.; McKinstry, K. Kai; Marshall, Nikki B.; Vong, Allen M.; Dutton, Richard W.; Swain, Susan L.

    2014-01-01

    Summary Over the last decade, the known spectrum of CD4 T cell effect or subsets has become much broader and it has become clear that there are multiple dimensions by which subsets with a particular cytokine commitment can be further defined, including their stage of differentiation, their location and most importantly, their ability to carryout discrete functions. Here we focus on our studies that highlight the synergy among discrete subsets, especially those defined by helper and cytotoxic function, in mediating viral protection and on distinctions between CD4 T cell effectors located in spleen, draining lymph node, and in tissue sites of infection. What emerges is a surprising multiplicity of CD4 T cell functions that indicate a large arsenal of mechanisms by which CD4 T cells act to combat viruses. PMID:23947353

  8. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification.

    PubMed

    Breckpot, Karine; Escors, David

    2009-12-01

    Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.

  9. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  10. T regulatory cells in contact hypersensitivity.

    PubMed

    Cavani, Andrea

    2008-08-01

    The review summarizes the recent investigations focused on T regulatory cells in hapten diseases. Multiple mechanisms ensure tolerance to small chemicals penetrating the skin. Among these, specific T regulatory cells play a major role in controlling harmful immune responses to environmental antigens. Most of the T regulatory cells involved in this process belongs to the CD4 subset and suppress hapten-specific immune response through the release of IL-10 and through direct interaction with effector T cells, blocking their function. Methods for in-vitro and in-vivo expansion of specific T regulatory cells may represent an innovative approach for the cure of contact hypersensitivity.

  11. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  12. [Effector proteins of Clamidia].

    PubMed

    Kariagina, A S; Alekseevskiĭ, A V; Spirin, S A; Zigangirova, N A; Gintsburg, A L

    2009-01-01

    The review summarizes the recent published data on molecular mechanisms of Chlamidiae - host cell interaction, first of all on chlamydial effector proteins. Such proteins as well as III transport system proteins that transfer many effector proteins into host cytoplasm are attractive targets for drug therapy of chlamydial infections. The majority of the data concerns two species, Chlamydia trachomatis and Chlamydophila pneumoniae. C. trachomatis protein TARP, which is presynthesized in elementary bodies, plays an essential role in the initial stages of the infection. Patogen proteins participating in the next stage, that is the intracellular inclusion traffic to the centrosome, are CT229 of C. trachomatis and Cpn0585 of C. pneumoniae, which interact with cellular Rab GTPases. In C. trachomatis, IncA protein plays a key role in chlamydial inclusions fusion, CT847 modulates life cycle of the host cell, LDA3 is essential in acquisition of nutrients. CPAF protease and inclusion membrane proteins IncG and CADD participate in suppression of apoptosis of infected cells. The proteases CPAF and CT441, as well as deubiquitinating ChlaDub1 protein, contribute to avoiding the immune response.

  13. IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis

    PubMed Central

    Grabie, Nir; Delfs, Michael W.; Westrich, Jason R.; Love, Victoria A.; Stavrakis, George; Ahmad, Ferhaan; Seidman, Christine E.; Seidman, Jonathan G.; Lichtman, Andrew H.

    2003-01-01

    Cardiac antigen–specific CD8+ T cells are involved in the autoimmune component of human myocarditis. Here, we studied the differentiation and migration of pathogenic CD8+ T cell effector cells in a new mouse model of autoimmune myocarditis. A transgenic mouse line was derived that expresses cardiac myocyte restricted membrane-bound ovalbumin (CMy-mOva). The endogenous adaptive immune system of CMy-mOva mice displays tolerance to ovalbumin. Adoptive transfer of naive CD8+ T cells from the ovalbumin-specific T cell receptor–transgenic (TCR-transgenic) OT-I strain induces myocarditis in CMy-mOva mice only after subsequent inoculation with ovalbumin-expressing vesicular stomatitis virus (VSV-Ova). OT-I effector T cells derived in vitro in the presence or absence of IL-12 were adoptively transferred into CMy-mOva mice, and the consequences were compared. Although IL-12 was not required for the generation of cytolytic and IFN-γ–producing effector T cells, only effectors primed in the presence of IL-12 infiltrated CMy-mOva hearts in significant numbers, causing lethal myocarditis. Furthermore, analysis of OT-I effectors collected from a mediastinal draining lymph node indicated that only effectors primed in vitro in the presence of IL-12 proliferated in vivo. These data demonstrate the importance of IL-12 in the differentiation of pathogenic CD8+ T cells that can cause myocarditis. PMID:12618521

  14. Implication of Interleukin-12/15/18 and Ruxolitinib in the Phenotype, Proliferation, and Polyfunctionality of Human Cytokine-Preactivated Natural Killer Cells.

    PubMed

    Terrén, Iñigo; Mikelez, Idoia; Odriozola, Irati; Gredilla, Andrea; González, Javier; Orrantia, Ane; Vitallé, Joana; Zenarruzabeitia, Olatz; Borrego, Francisco

    2018-01-01

    A brief in vitro stimulation of natural killer (NK) cells with interleukin (IL)-12, IL-15, and IL-18 endow them a memory-like behavior, characterized by higher effector responses when they are restimulated after a resting period of time. These preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have several properties that make them a promising tool in cancer immunotherapy. In the present study, we have described the effect that different combinations of IL-12, IL-15, and IL-18 have on the generation of human CIML NK cells. Our data points to a major contribution of IL-15 to CIML NK cell-mediated cytotoxicity against target cells. However, the synergistic effect of the three cytokines grant them the best polyfunctional profile, that is, cells that simultaneously degranulate (CD107a) and produce multiple cytokines and chemokines such as interferon γ, tumor necrosis factor α, and C-C motif chemokine ligand 3. We have also analyzed the involvement of each cytokine and their combinations in the expression of homing receptors CXCR4 and CD62L, as well as the expression of CD25 and IL-2-induced proliferation. Furthermore, we have tested the effects of the Jak1/2 inhibitor ruxolitinib in the generation of CIML NK cells. We found that ruxolitinib-treated CIML NK cells expressed lower levels of CD25 than non-treated CIML NK cells, but exhibited similar proliferation in response to IL-2. In addition, we have also found that ruxolitinib-treated NK cells displayed reduced effector functions after the preactivation, which can be recovered after a 4 days expansion phase in the presence of low doses of IL-2. Altogether, our results describe the impact that each cytokine and the Jak1/2 pathway have in the phenotype, IL-2-induced proliferation, and effector functions of human CIML NK cells.

  15. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy.

    PubMed

    Espada, Margarida; Silva, Ana Cláudia; Eves van den Akker, Sebastian; Cock, Peter J A; Mota, Manuel; Jones, John T

    2016-02-01

    The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plant-parasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection. We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  16. Mechanotransduction and the functional response of bone to mechanical strain

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Turner, C. H.

    1995-01-01

    Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.

  17. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  18. Deciphering Interplay between Salmonella Invasion Effectors

    PubMed Central

    Koronakis, Vassilis

    2008-01-01

    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. PMID:18389058

  19. Programmed cell death 1 inhibits inflammatory helper T-cell development through controlling the innate immune response

    PubMed Central

    Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke

    2013-01-01

    Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1−/−) develop spontaneous autoimmune diseases. PD-1−/− mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1−/− mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1−/− recombination activating gene (RAG)2−/− mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1+/+ RAG2−/− mice. This result suggested PD-1’s involvement in the regulation of innate immune responses. Mice reconstituted with PD-1−/− RAG2−/− bone marrow and PD-1+/+ CD4+ T cells developed more severe EAE compared with the ones reconstituted with PD-1+/+ RAG2−/− bone marrow and PD-1+/+ CD4+ T cells. We found that upon recognition of HKMTB, CD11b+ macrophages from PD-1−/− mice produced very high levels of IL-6, which helped promote naive CD4+ T-cell differentiation into IL-17–producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779

  20. The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells.

    PubMed

    Shane, Hillary L; Reagin, Katie L; Klonowski, Kimberly D

    2018-06-01

    Our understanding of memory CD8 + T cells has been largely derived from acute, systemic infection models. However, memory CD8 + T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8 + T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.n.) or i.v. The i.n. infection resulted in greater peak expansion of VSV-specific CD8 + T cells. However, this numerical advantage was rapidly lost during the contraction phase of the immune response, resulting in memory CD8 + T cell numerical deficiencies when compared with i.v. infection. Interestingly, the antiviral CD8 + T cells generated in response to i.n. VSV exhibited a biased and sustained proportion of early effector cells (CD127 lo KLRG1 lo ) akin to the developmental program favored after i.n. influenza infection, suggesting that respiratory infection broadly favors an incomplete memory differentiation program. Correspondingly, i.n. VSV infection resulted in lower CD122 expression and eomesodermin levels by VSV-specific CD8 + T cells, further indicative of an inferior transition to bona fide memory. These results may be due to distinct (CD103 + CD11b + ) dendritic cell subsets in the i.n. versus i.v. T cell priming environments, which express molecules that regulate T cell signaling and the balance between tolerance and immunity. Therefore, we propose that distinct immunization routes modulate both the quality and quantity of antiviral effector and memory CD8 + T cells in response to an identical pathogen and should be considered in CD8 + T cell-based vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8+ T cells.

    PubMed

    Sales, Natiely S; Silva, Jamile R; Aps, Luana R M M; Silva, Mariângela O; Porchia, Bruna F M M; Ferreira, Luís Carlos S; Diniz, Mariana O

    2017-12-19

    In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8 + T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8 + T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.

    PubMed

    Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen

    2016-06-01

    Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.

  3. Cognate interactions between helper T cells and B cells. IV. Requirements for the expression of effector phase activity by helper T cells.

    PubMed

    Bartlett, W C; McCann, J; Shepherd, D M; Roy, M; Noelle, R J

    1990-12-15

    After activation with anti-CD3, activated Th (THCD3), but not resting Th, fixed with paraformaldehyde induce B cell RNA synthesis when co-cultured with resting B cells. This activity is expressed by Th of both Th1 and Th2 subtypes, as well as a third Th clone that is not classified into either subtype. It is proposed that anti-CD3 activation of Th results in the expression of Th membrane proteins that trigger B cell cycle entry. Kinetic studies reveal that 4 to 8 h of activation with anti-CD3 is sufficient for ThCD3 to express B cell-activating function. However, activation of Th with anti-CD3 for extended periods of time results in reduced Th effector activity. Inhibition of Th RNA synthesis during the anti-CD3 activation period ablates the ability of ThCD3 to induce B cell cycle entry. This indicates that de novo synthesis of proteins is required for ThCD3 to express effector function. The ability of fixed ThCD3 to induce entry of B cell into cycle is not due to an increase in expression of CD3, CD4, LFA-1, ICAM-1, class I MHC or Thy-1. Other forms of Th activation (PMA and A23187, Con A) also induced Th effector function. Furthermore, purified plasma membranes from anti-CD3 activated, but not resting Th, induced resting B cells to enter cycle. The addition of IL-4, but not IL-2, IL-5, or IFN-gamma amplified the DNA synthetic response of B cells stimulated with PM from activated Th. Taken together these data indicate that de novo expression of Th surface proteins on activated Th is required for Th to induce B cell cycle entry into G1 and the addition of IL-4 is required for the heightened progression into S phase.

  4. CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against Pulmonary Mycobacterium tuberculosis Infection

    PubMed Central

    Sayes, Fadel; Pawlik, Alexandre; Frigui, Wafa; Gröschel, Matthias I.; Crommelynck, Samuel; Fayolle, Catherine; Cia, Felipe; Bancroft, Gregory J.; Bottai, Daria; Leclerc, Claude; Brosch, Roland; Majlessi, Laleh

    2016-01-01

    Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. PMID:27467705

  5. AllergoOncology - the impact of allergy in oncology: EAACI position paper.

    PubMed

    Jensen-Jarolim, E; Bax, H J; Bianchini, R; Capron, M; Corrigan, C; Castells, M; Dombrowicz, D; Daniels-Wells, T R; Fazekas, J; Fiebiger, E; Gatault, S; Gould, H J; Janda, J; Josephs, D H; Karagiannis, P; Levi-Schaffer, F; Meshcheryakova, A; Mechtcheriakova, D; Mekori, Y; Mungenast, F; Nigro, E A; Penichet, M L; Redegeld, F; Saul, L; Singer, J; Spicer, J F; Siccardi, A G; Spillner, E; Turner, M C; Untersmayr, E; Vangelista, L; Karagiannis, S N

    2017-06-01

    Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment. © 2016 John Wiley & Sons A/S . Published by John Wiley & Sons Ltd.

  6. AllergoOncology - The impact of Allergy in Oncology. EAACI Position Paper

    PubMed Central

    Jensen-Jarolim, E; Bax, HJ; Bianchini, R; Capron, M; Corrigan, C; Castells, M; Dombrowicz, D; Daniels-Wells, TR; Fazekas, J; Fiebiger, E; Gatault, S; Gould, HJ; Janda, J; Josephs, DH; Karagiannis, P; Levi-Schaffer, F; Meshcheryakova, A; Mechtcheriakova, D; Mekori, Y; Mungenast, F; Nigro, EA; Penichet, ML; Redegeld, F; Saul, L; Singer, J; Spicer, JF; Siccardi, AG; Spillner, E; Turner, MC; Untersmayr, E; Vangelista, L; Karagiannis, SN

    2017-01-01

    Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both anti-tumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Co-incident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intra-tumoural innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the cross-talk between allergic response and cancer is paving the way for new avenues of treatment. PMID:28032353

  7. Oomycetes, effectors, and all that jazz.

    PubMed

    Bozkurt, Tolga O; Schornack, Sebastian; Banfield, Mark J; Kamoun, Sophien

    2012-08-01

    Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, notably, the elucidation of the 3D structures of five RXLR effectors, and novel insights into how cytoplasmic effectors subvert host cells. In this review, we discuss these and other recent advances and highlight the most important open questions in oomycete effector biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity

    PubMed Central

    Hewitson, James P.; Grainger, John R.; Maizels, Rick M.

    2009-01-01

    Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory” products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system. PMID:19406170

  9. E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Smith, F. Donelson; Daurie, Angela

    Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A cocrystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes anmore » active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.« less

  10. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    PubMed

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  11. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3

    PubMed Central

    2014-01-01

    Background Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. Results We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Conclusions Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT. PMID:24884430

  12. Persistent viral infection in humans can drive high frequency low-affinity T-cell expansions

    PubMed Central

    Khan, Naeem; Cobbold, Mark; Cummerson, Joanne; Moss, Paul A H

    2010-01-01

    CD8 T cells that recognize cytomegalovirus (CMV) -encoded peptides can be readily detected by staining with human leucocyte antigen (HLA) –peptide tetramers. These cells are invariably highly differentiated effector memory cells with high avidity T-cell receptors (TCR). In this report we demonstrate an HLA-A*0201 restricted CMV-specific CD8 T-cell response (designated YVL) that represents several percent of the CD8 T-cell subset, yet fails to bind tetrameric major histocompatibility complex (MHC) ligands. However, these tetramer-negative cells are both phenotypically and functionally similar to other CMV-specific CD8 T cells. YVL peptide-specific CD8 T-cell clones were generated and found to be of high avidity in both cytotoxicity and interferon-γ (IFN-γ) assays, and comparable with other CMV peptide-specific CD8 T-cell clones. However, under conditions of CD8 blockade, the response was almost nullified even at very high ligand concentrations. This was also the case in IFN-γ experiments using peripheral blood mononuclear cells stimulated with peptide ex vivo. In contrast, all other CMV specificities (tetramer-positive) displayed minimal or only partial CD8 dependence. This suggests that YVL-specific responses depict a low-affinity TCR–MHC–peptide interaction, that is compensated by substantial CD8 involvement for functional purposes, yet cannot engage multivalent soluble ligands for ex vivo analysis. It is interesting that such a phenomenon is apparent in the face of a persistent virus infection such as CMV, where the responding cells represent an immunodominant response in that individual and may present a highly differentiated effector phenotype. PMID:20722762

  13. The IL23R R381Q Gene Variant Protects against Immune-Mediated Diseases by Impairing IL-23-Induced Th17 Effector Response in Humans

    PubMed Central

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C.; Peris, Ketty; Nestle, Frank O.

    2011-01-01

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies. PMID:21364948

  14. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    PubMed

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C; Peris, Ketty; Nestle, Frank O

    2011-02-22

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  15. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  16. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  17. Functions of tissue-resident eosinophils.

    PubMed

    Weller, Peter F; Spencer, Lisa A

    2017-12-01

    Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.

  18. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  19. Key role of T cell defects in age-related vulnerability to West Nile virus.

    PubMed

    Brien, James D; Uhrlaub, Jennifer L; Hirsch, Alec; Wiley, Clayton A; Nikolich-Zugich, Janko

    2009-11-23

    West Nile virus (WNV) infection causes a life-threatening meningoencephalitis that becomes increasingly more prevalent over the age of 50 and is 40-50x more prevalent in people over the age of 70, compared with adults under the age of 40. In a mouse model of age-related vulnerability to WNV, we demonstrate that death correlates with increased viral titers in the brain and that this loss of virus control with age was the result of defects in the CD4 and CD8 T cell response against WNV. Specific age-related defects in T cell responses against dominant WNV epitopes were detected at the level of cytokine and lytic granule production, each of which are essential for resistance against WNV, and in the ability to generate multifunctional anti-WNV effector T cells, which are believed to be critical for robust antiviral immunity. In contrast, at the peak of the response, old and adult T cells exhibited superimposable peptide sensitivity. Most importantly, although the adult CD4 or CD8 T cells readily protected immunodeficient mice upon adoptive transfer, old T cells of either subset were unable to provide WNV-specific protection. Consistent with a profound qualitative and quantitative defect in T cell immunity, old brains contained at least 12x fewer total effector CD8 T cells compared with adult mice at the peak of brain infection. These findings identify potential targets for immunomodulation and treatment to combat lethal WNV infection in the elderly.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.

    To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less

  1. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation

    PubMed Central

    Patsoukis, Nikolaos; Bardhan, Kankana; Chatterjee, Pranam; Sari, Duygu; Liu, Bianling; Bell, Lauren N.; Karoly, Edward D.; Freeman, Gordon J.; Petkova, Victoria; Seth, Pankaj; Li, Lequn; Boussiotis, Vassiliki A.

    2015-01-01

    During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade. PMID:25809635

  2. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    PubMed Central

    Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.

    2017-01-01

    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635

  3. Immunologic memory in cutaneous leishmaniasis.

    PubMed

    Scott, Phillip

    2005-12-01

    Leishmania major infections induce solid immunity to reinfection. Experimental studies in mice indicate that the CD4+ T cells responsible for this immunity include two populations: parasite-dependent T effector cells and parasite-independent central memory T (Tcm) cells. While there currently is no vaccine for leishmaniasis, the existence of a long-lived population of Tcm cells that does not require the continued presence of live parasites suggests that a vaccine that expands these cells might be efficacious.

  4. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice.

    PubMed

    Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning

    2017-12-27

    The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  5. Intrinsic role of FoxO3a in the development of CD8+ T cell memory

    PubMed Central

    Tzelepis, Fanny; Joseph, Julie; Haddad, Elias K.; MacLean, Susanne; Dudani, Renu; Agenes, Fabien; Peng, Stanford L.; Sekaly, Rafick-Pierre; Sad, Subash

    2013-01-01

    CD8+ T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8+ T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8+ T cells are not clear. We show here that the transcription factor, FoxO3a does not influence antigen-presentation and the consequent expansion of CD8+ T cell response during Listeria monocytogenes (LM) infection, but plays a key role in the maintenance of memory CD8+ T cells. The effector function of primed CD8+ T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8+ T cells displayed reduced expression of pro-apoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison to WT cells. A higher number of memory precursor effector cells (MPECs) and memory subsets were detectable in FoxO3a-deficient mice compared to WT mice. Furthermore, FoxO3a-deficient memory CD8+ T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell intrinsic manner to regulate the survival of primed CD8+ T cells. PMID:23277488

  6. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model.

    PubMed

    Vo, Manh-Cuong; Nguyen-Pham, Thanh-Nhan; Lee, Hyun-Ju; Jaya Lakshmi, Thangaraj; Yang, Seoyun; Jung, Sung-Hoon; Kim, Hyeoung-Joon; Lee, Je-Jung

    2017-04-18

    In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.

  7. Differences in TCR-Vβ Repertoire and Effector Phenotype between Tumor Infiltrating Lymphocytes and Peripheral Blood Lymphocytes Increase with Age

    PubMed Central

    Wang, Teng; Shen, Han; Wu, Fenglin; Zhang, Wenfeng; Tao, Changli; Yuan, Yin; Bo, Huaben; Wang, Hui; Huang, Shulin

    2014-01-01

    Tumor infiltrating lymphocytes (TIL) reflect the host's anti-tumor immune response, and can be a valuable predictor of prognosis. However, many properties of TIL are not fully understood. In the present study, TCR-Vβ repertoires of cancer patients were primarily analyzed by flow cytometry. Abnormally expressed TCR-Vβ subfamilies were generally found in both TIL and peripheral blood lymphocytes (PBL) of each patient. Of note, increased patient age was associated with increasingly biased TCR-Vβ repertoire in TIL but not in PBL, and the dispersion degree of the differences of TCR-Vβ subfamilies between TIL and PBL correlated positively with age (P = 0.007). Utilizing immunoscope analysis, we identified the age-related reduction in TCR-Vβ diversity, but polyclonal pattern was predominant in significantly expanded TCR-Vβ subfamilies. In addition, we found that older patients possessed a decreased ratio of CD8+CD62L+ non-effector cells in TIL compared to PBL, implying age-related increase of CD8+CD62L− effector cells in TIL. The colocalization analysis of CD8 and CD3, however, suggested the suppressed activity of these effector cells in tumor microenvironment. These findings further elucidate the properties of TIL, showing an increasing difference between TIL and PBL with age, which may provide insight for the development of effective immunotherapies for cancer patients of different ages. PMID:25019226

  8. Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity.

    PubMed

    Nakagawa, Hidetoshi; Sido, Jessica M; Reyes, Edwin E; Kiers, Valerie; Cantor, Harvey; Kim, Hye-Jung

    2016-05-31

    Expression of the transcription factor Helios by Tregs ensures stable expression of a suppressive and anergic phenotype in the face of intense inflammatory responses, whereas Helios-deficient Tregs display diminished lineage stability, reduced FoxP3 expression, and production of proinflammatory cytokines. Here we report that selective Helios deficiency within CD4 Tregs leads to enhanced antitumor immunity through induction of an unstable phenotype and conversion of intratumoral Tregs into T effector cells within the tumor microenvironment. Induction of an unstable Treg phenotype is associated with enhanced production of proinflammatory cytokines by tumor-infiltrating but not systemic Tregs and significantly delayed tumor growth. Ab-dependent engagement of Treg surface receptors that result in Helios down-regulation also promotes conversion of intratumoral but not systemic Tregs into T effector cells and leads to enhanced antitumor immunity. These findings suggest that selective instability and conversion of intratumoral CD4 Tregs through genetic or Ab-based targeting of Helios may represent an effective approach to immunotherapy.

  9. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    PubMed

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  10. Innate immune responses in central nervous system inflammation.

    PubMed

    Finsen, Bente; Owens, Trevor

    2011-12-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme

    PubMed Central

    Lucca, Liliana E.; Lerner, Benjamin A.; Gunel, Murat; Raddassi, Khadir; Coric, Vlad; Hafler, David A.; Love, J. Christopher

    2017-01-01

    Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM), the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25—CD127+Foxp3—effector cells in healthy subjects and in patients with GBM. In healthy subjects, we found that PD-1+CD4+ effector cells are dysfunctional: they do not proliferate but can secrete large quantities of IFNγ. Strikingly, blocking antibodies against PD-1 did not rescue proliferation. RNA-sequencing revealed features of exhaustion in PD-1+ CD4 effectors. In the context of GBM, tumors were enriched in PD-1+ CD4+ effectors that were similarly dysfunctional and unable to proliferate. Furthermore, we found enrichment of PD-1+TIM-3+ CD4+ effectors in tumors, suggesting that co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. RNA-sequencing of blood and tumors from GBM patients revealed distinct differences between CD4+ effectors from both compartments with enrichment in multiple gene sets from tumor infiltrating PD-1—CD4+ effectors cells. Enrichment of these gene sets in tumor suggests a more metabolically active cell state with signaling through other co-receptors. PD-1 expression on CD4 cells identifies a dysfunctional subset refractory to rescue with PD-1 blocking antibodies, suggesting that the influence of immune checkpoint inhibitors may involve recovery of function in the PD-1—CD4+ T cell compartment. Additionally, co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. PMID:28880903

  12. The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro.

    PubMed

    Krusch, Matthias; Salih, Julia; Schlicke, Manuela; Baessler, Tina; Kampa, Kerstin Maria; Mayer, Frank; Salih, Helmut Rainer

    2009-12-15

    Sunitinib and Sorafenib are protein kinase inhibitors (PKI) approved for treatment of patients with advanced renal cell cancer (RCC). However, long-term remissions of advanced RCC have only been observed after IL-2 treatment, which underlines the importance of antitumor immune responses in RCC patients. Because PKI, besides affecting tumor cells, also may inhibit signaling in immune effector cells, we determined how Sunitinib and Sorafenib influence antitumor immunity. We found that cytotoxicity and cytokine production of resting and IL-2-activated PBMC are inhibited by pharmacological concentrations of Sorafenib but not Sunitinib. Analysis of granule-mobilization within PBMC revealed that this was due to impaired reactivity of NK cells, which substantially contribute to antitumor immunity by directly killing target cells and shaping adaptive immune responses by secreting cytokines like IFN-gamma. Analyses with resting and IL-2-activated NK cells revealed that both PKI concentration dependently inhibit cytotoxicity and IFN-gamma production of NK cells in response to tumor targets. This was due to impaired PI3K and ERK phosphorylation which directly controls NK cell reactivity. However, while Sorafenib inhibited NK cell effector functions and signaling at levels achieved upon recommended dosing, pharmacological concentrations of Sunitinib had no effect, and this was observed upon stimulation of NK cell reactivity by tumor target cells and upon IL-2 treatment. In light of the important role of NK cells in antitumor immunity, and because multiple approaches presently aim to combine PKI treatment with immunotherapeutic strategies, our data demonstrate that choice and dosing of the most suitable PKI in cancer treatment requires careful consideration.

  13. Interleukin-4-dependent innate collaboration between iNKT cells and B-1 B cells controls adaptative contact sensitivity

    PubMed Central

    Campos, Regis A; Szczepanik, Marian; Itakura, Atsuko; Lisbonne, Mariette; Dey, Neelendu; Leite-de-Moraes, Maria C; Askenase, Philip W

    2006-01-01

    We showed that hepatic Vα14+ invariant natural killer T (iNKT) cells, via their rapid interleukin (IL)-4 production, activate B-1 cells to initiate contact sensitivity (CS). This innate collaboration was absent in IL-4–/– and signal transducer and activator of transcription (STAT)-6–/– mice and was inhibited by anti-IL-4 treatment. These mice have defective CS because they fail to locally recruit the sensitized effector T cells of acquired immunity. Their CS is reconstituted by transfer of downstream-acting 1-day immune B-1 cells from wild-type mice. Responses were not reconstituted with B-1 cells from IL-4 receptor-α–/– or STAT-6–/– mice, nor by IL-4 treatment of B cell-deficient mice at immunization. Finally, IL-4 was preferentially and transiently produced by hepatic iNKT cells within 7 min after sensitization to mediate collaboration between innate-like iNKT cells and the B-1 B cells that participate in the recruitment of effector T cells in vivo. PMID:16556268

  14. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity.

    PubMed

    Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung

    2015-10-20

    Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response.

  15. Protein-Protein Interaction Assays with Effector-GFP Fusions in Nicotiana benthamiana.

    PubMed

    Petre, Benjamin; Win, Joe; Menke, Frank L H; Kamoun, Sophien

    2017-01-01

    Plant parasites secrete proteins known as effectors into host tissues to manipulate host cell structures and functions. One of the major goals in effector biology is to determine the host cell compartments and the protein complexes in which effectors accumulate. Here, we describe a five-step pipeline that we routinely use in our lab to achieve this goal, which consists of (1) Golden Gate assembly of pathogen effector-green fluorescent protein (GFP) fusions into binary vectors, (2) Agrobacterium-mediated heterologous protein expression in Nicotiana benthamiana leaf cells, (3) laser-scanning confocal microscopy assay, (4) anti-GFP coimmunoprecipitation-liquid chromatography-tandem mass spectrometry (coIP/MS) assay, and (5) anti-GFP western blotting. This pipeline is suitable for rapid, cost-effective, and medium-throughput screening of pathogen effectors in planta.

  16. Tier-2 studies on monocrotaline immunotoxicity in C57BL/6 mice.

    PubMed

    Deyo, J A; Kerkvliet, N I

    1991-01-01

    Monocrotaline (MCT) is a member of a class of naturally occurring phytotoxins known as pyrrolizidine alkaloids, and is a toxicological concern to both man and his livestock. The purpose of these studies was to evaluate the effect of a 14-day oral MCT (0-100 mg/kg per day) exposure on the functional integrity of various immunocyte effector systems in C57BL/6 mice, as well as to investigate potential mechanisms for its immunotoxicity. Decreases in lymphoid organ weights and cellularity, and resident peritoneal exudate cell (PEC) number were only observed after exposure to the highest dose of 100 mg/kg MCT. This dose also inhibited NK cell cytotoxicity, while the total number of NK lytic units per spleen was decreased (-53%) after exposure to 50 mg/kg MCT. Following i.p. injection of SRBC, the percentage of PEC macrophages containing engulfed SRBC was significantly increased in MCT-exposed mice, while the percentage of large vacuolated (activated) macrophages was decreased in a dose-dependent manner. Exposure to MCT significantly decreased the total number of Ig+ cells without altering the number of CD4+ and CD8+ cells. The antibody responses (PFC/10(6) spleen cells) to two T cell-independent antigens, TNP-LPS and DNP-Ficoll, were significantly decreased at all MCT doses, and the degree of suppression of both responses was identical at coincident doses. MCT exposure (25 mg/kg) significantly suppressed the blastogenic response to the T cell mitogen concanavalin A (-38%), and to the B cell mitogen lipopolysaccharide (-58%). These results indicate that exposure to MCT can alter the functional integrity of various immune effector responses in a dose-dependent manner, and suggest that the B cell may be a relatively more sensitive target of MCT immunotoxicity compared to T cells, macrophages and NK cells.

  17. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  18. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons.

    PubMed

    Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup

    2016-06-01

    Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.

  19. Programmed Death 1 Regulates Memory Phenotype CD4 T Cell Accumulation, Inhibits Expansion of the Effector Memory Phenotype Subset and Modulates Production of Effector Cytokines

    PubMed Central

    Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis

    2015-01-01

    Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808

  20. Bcl11b is essential for licensing Th2 differentiation during helminth infection and allergic asthma

    USDA-ARS?s Scientific Manuscript database

    Naïve CD4+ T-helper cells differentiate into Th2 effector cells during asthma and helminth (worm) infection. Here we report that mice lacking the transcription factor Bcl11b in mature CD4+ T-cells are incapable of mounting an effective Th2 response in asthma and worm infection with a major reductio...

  1. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications.

    PubMed

    Cabo, Mariona; Offringa, Rienk; Zitvogel, Laurence; Kroemer, Guido; Muntasell, Aura; Galluzzi, Lorenzo

    2017-01-01

    The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.

  2. Involvements of γδT Lymphocytes in Acute and Chronic Skin Wound Repair.

    PubMed

    Xu, Peng; Fu, Xiujun; Xiao, Nin; Guo, Yuanyuan; Pei, Qing; Peng, Yinbo; Zhang, Yifan; Yao, Min

    2017-08-01

    Wound healing involves three stages including inflammation, proliferation, and tissue remodeling. The underlying mechanisms remain to be further elucidated. The inflammation is characterized by spatially and temporally changing patterns of various leukocyte subsets. It is regarded as the most crucial stage since the inflammatory response is instrumental to supplying various factors and cytokines that orchestrate healing events. As a subtype of T lymphocytes, γδ T cells play an important role in skin homeostasis, tumor immunosurveillance, and wound repair. However, either the dynamics of γδ T cells in healing process or the anticipated association of γδ T cells with chronic or refractory wounds were not well understood. In this study, we determine the dynamics of γδ T cells and γδ T cell-produced effectors during acute and chronic wound repair by establishing a third-degree burn model in mice skin or human skin from diabetic patients. Our data show that the involvement of γδ T cells in acute and chronic skin wound healing. The protein levels and mRNA expressions of γδ T cell-produced effectors were increased in acute healing model, whereas those effectors were decreased in chronic repair, suggesting γδ T cells are essential for wound repair. This study probes into the significant relevance of γδ T cells with effective wound repair and provides new enlightenments for the mechanisms of the formation of chronic and/or refractory wounds.

  3. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida.

    PubMed

    Thorpe, Peter; Mantelin, Sophie; Cock, Peter Ja; Blok, Vivian C; Coke, Mirela C; Eves-van den Akker, Sebastian; Guzeeva, Elena; Lilley, Catherine J; Smant, Geert; Reid, Adam J; Wright, Kathryn M; Urwin, Peter E; Jones, John T

    2014-10-23

    The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

  4. Systems Modeling of Molecular Mechanisms Controlling Cytokine-driven CD4+ T Cell Differentiation and Phenotype Plasticity

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Kronsteiner, Barbara; Viladomiu, Monica; Pedragosa, Mireia; Lu, Pinyi; Philipson, Casandra W.; Hoops, Stefan; Marathe, Madhav; Eubank, Stephen; Bisset, Keith; Wendelsdorf, Katherine; Jarrah, Abdul; Mei, Yongguo; Bassaganya-Riera, Josep

    2013-01-01

    Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa. PMID:23592971

  5. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation.

    PubMed

    Piconese, Silvia; Gri, Giorgia; Tripodo, Claudio; Musio, Silvia; Gorzanelli, Andrea; Frossi, Barbara; Pedotti, Rosetta; Pucillo, Carlo E; Colombo, Mario P

    2009-09-24

    The development of inflammatory diseases implies inactivation of regulatory T (Treg) cells through mechanisms that still are largely unknown. Here we showed that mast cells (MCs), an early source of inflammatory mediators, are able to counteract Treg inhibition over effector T cells. To gain insight into the molecules involved in their interplay, we set up an in vitro system in which all 3 cellular components were put in contact. Reversal of Treg suppression required T cell-derived interleukin-6 (IL-6) and the OX40/OX40L axis. In the presence of activated MCs, concomitant abundance of IL-6 and paucity of Th1/Th2 cytokines skewed Tregs and effector T cells into IL-17-producing T cells (Th17). In vivo analysis of lymph nodes hosting T-cell priming in experimental autoimmune encephalomyelitis revealed activated MCs, Tregs, and Th17 cells displaying tight spatial interactions, further supporting the occurrence of an MC-mediated inhibition of Treg suppression in the establishment of Th17-mediated inflammatory responses.

  6. Friends and foes of tuberculosis: modulation of protective immunity.

    PubMed

    Brighenti, Susanna; Joosten, Simone A

    2018-05-27

    Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Analysis of the cytochrome c-dependent apoptosis apparatus in cells from human pancreatic carcinoma

    PubMed Central

    Gerhard, M C; Schmid, R M; Häcker, G

    2002-01-01

    Defects in the apoptotic system are likely to play a role in tumorigenesis. Pancreatic carcinoma cells are extremely resistant to apoptosis induction by chemotherapy suggesting that the apoptosis machinery is faulty. We investigated the integrity of the cytochrome c-dependent apoptotic apparatus in 10 human pancreatic carcinoma cell lines. Expression of Apaf-1, caspase-3, -6, -7, -8 and -9, Hsp-70 and XIAP was detected in all cell lines. The expression levels of Apaf-1 and caspase-8 were homogenous in all cell lines whereas differences in expression of other caspases were seen. In cytosolic fractions, all investigated caspases were processed in response to cytochrome c but the extent of processing varied between the cell lines. No stringent correlation between the amount of processing of caspase-9 and effector caspases was seen. Cytochrome c-induced effector caspase activity was quantitated by enzyme assay. Especially at low concentrations of added cytochrome c, this response varied greatly between the cell lines. These data demonstrate that the apoptotic system downstream of the mitochondria is qualitatively intact in pancreatic carcinoma. They further show that the response to cytochrome c can be quantitated in a cell-free system and that determinants other than mere expression of apoptotic molecules can regulate cytochrome c-induced apoptosis. British Journal of Cancer (2002) 86, 893–898. DOI: 10.1038/sj/bjc/6600171 www.bjcancer.com © 2002 Cancer Research UK PMID:11953820

  8. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function

    PubMed Central

    Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne

    2012-01-01

    Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689

  9. Effectors of root sedentary nematodes target diverse plant cell compartments to manipulate plant functions and promote infection.

    PubMed

    Jaouannet, Maëlle; Rosso, Marie-Noëlle

    2013-09-01

    Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.

  10. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  11. Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways.

    PubMed

    Wang, Shumei; Boevink, Petra C; Welsh, Lydia; Zhang, Ruofang; Whisson, Stephen C; Birch, Paul R J

    2017-10-01

    The potato blight pathogen Phytophthora infestans secretes effector proteins that are delivered inside (cytoplasmic) or can act outside (apoplastic) plant cells to neutralize host immunity. Little is known about how and where effectors are secreted during infection, yet such knowledge is essential to understand and combat crop disease. We used transient Agrobacterium tumefaciens-mediated in planta expression, transformation of P. infestans with fluorescent protein fusions and confocal microscopy to investigate delivery of effectors to plant cells during infection. The cytoplasmic effector Pi04314, expressed as a monomeric red fluorescent protein (mRFP) fusion protein with a signal peptide to secrete it from plant cells, did not passively re-enter the cells upon secretion. However, Pi04314-mRFP expressed in P. infestans was translocated from haustoria, which form intimate interactions with plant cells, to accumulate at its sites of action in the host nucleus. The well-characterized apoplastic effector EPIC1, a cysteine protease inhibitor, was also secreted from haustoria. EPIC1 secretion was inhibited by brefeldin A (BFA), demonstrating that it is delivered by conventional Golgi-mediated secretion. By contrast, Pi04314 secretion was insensitive to BFA treatment, indicating that the cytoplasmic effector follows an alternative route for delivery into plant cells. Phytophthora infestans haustoria are thus sites for delivery of both apoplastic and cytoplasmic effectors during infection, following distinct secretion pathways. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology.

    PubMed

    Szabo, Peter A; Goswami, Ankur; Mazzuca, Delfina M; Kim, Kyoungok; O'Gorman, David B; Hess, David A; Welch, Ian D; Young, Howard A; Singh, Bhagirath; McCormick, John K; Haeryfar, S M Mansour

    2017-04-01

    Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4 + effector memory T (T EM ) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "T EM -17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4 + T EM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Induction of Inhibitory Receptors on T Cells During Plasmodium vivax Malaria Impairs Cytokine Production

    PubMed Central

    Costa, Pedro A. C.; Leoratti, Fabiana M. S.; Figueiredo, Maria M.; Tada, Mauro S.; Pereira, Dhelio B.; Junqueira, Caroline; Soares, Irene S.; Barber, Daniel L.; Gazzinelli, Ricardo T.; Antonelli, Lis R. V.

    2015-01-01

    The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4+ and CD8+ T cells. Higher frequencies of CD4+ express more than 1 regulatory molecule compared to CD8+ T cells. Moreover, lower proportions of CD4+ T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin–3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function. PMID:26019284

  14. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  15. Generation and application of human induced-stem cell memory T (iTSCM ) cells for adoptive immunotherapy.

    PubMed

    Kondo, Taisuke; Imura, Yuuki; Chikuma, Shunsuke; Hibino, Sana; Omata-Mise, Setsuko; Ando, Makoto; Akanuma, Takashi; Iizuka, Mana; Sakai, Ryota; Morita, Rimpei; Yoshimura, Akihiko

    2018-05-23

    Adoptive T cell therapy is an effective strategy for cancer immunotherapy. However, infused T cells frequently become functionally exhausted, and consequently offer a poor prognosis after transplantation into patients. Adoptive transfer of tumor antigen-specific stem cell memory T (T SCM ) cells is expected to overcome this shortcoming since T SCM cells are close to naïve T cells, but are also highly proliferative, long-lived, and produce a large number of effector T cells in response to antigen stimulation. We previously reported that activated effector T cells can be converted into T SCM -like cells (iT SCM ) by co-culturing with OP9 cells expressing Notch ligand, Delta-like 1 (OP9-hDLL1). Here we show the methodological parameters of human CD8 + iT SCM cell generation and their application to adoptive cancer immunotherapy. Regardless of the stimulation by anti-CD3/CD28 antibodies or by antigen-presenting cells, human iT SCM cells were more efficiently induced from central memory type T cells than from effector memory T cells. During the induction phase by co-culture with OP9-hDLL1 cells, IL-7 and IL-15 (but not IL-2 or IL-21) could efficiently generate iT SCM cells. Epstein Barr (EB) virus-specific iT SCM cells showed much stronger antitumor potentials than conventionally activated T cells did in humanized EB virus transformed-tumor model mice. Thus, adoptive T cell therapy with iT SCM offers a promising therapeutic strategy for cancer immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity

    USDA-ARS?s Scientific Manuscript database

    Th2 immunity is essential for the host protection against nematode infection, while detrimental in allergic inflammation or asthma. Although many of the details regarding the cellular and molecular events in Th2 immunity have been described, the specific cell types and effector molecules involved i...

  17. Innovative Strategies for Breast Cancer Immunotherapy

    DTIC Science & Technology

    2014-09-01

    donors, percentages of CD4+ and CD8+ T cells as well as T regulatory cells ( Tregs : FOXP3 and CD25 positive) were determined in K-CAR T cells...obtained from BC patients or normal female donors, since Tregs are a component of the immune system that suppresses immune responses of other cells. A...immunosuppressive mechanisms that inhibit T cell activation (33). Suppression of CD8+ effector cells by CD4+CD25+FoxP3+ regulatory T cells ( Tregs ) plays a key role

  18. Binding of a C-type lectin’s coiled-coil domain to the Domeless receptor directly activates the JAK/STAT pathway in the shrimp immune response to bacterial infection

    PubMed Central

    Zhao, Xiao-Fan; Vasta, Gerardo R.

    2017-01-01

    C-type lectins (CTLs) are characterized by the presence of a C-type carbohydrate recognition domain (CTLD) that by recognizing microbial glycans, is responsible for their roles as pattern recognition receptors in the immune response to bacterial infection. In addition to the CTLD, however, some CTLs display additional domains that can carry out effector functions, such as the collagenous domain of the mannose-binding lectin. While in vertebrates, the mechanisms involved in these effector functions have been characterized in considerable detail, in invertebrates they remain poorly understood. In this study, we identified in the kuruma shrimp (Marsupenaeus japonicus) a structurally novel CTL (MjCC-CL) that in addition to the canonical CTLD, contains a coiled-coil domain (CCD) responsible for the effector functions that are key to the shrimp’s antibacterial response mediated by antimicrobial peptides (AMPs). By the use of in vitro and in vivo experimental approaches we elucidated the mechanism by which the recognition of bacterial glycans by the CTLD of MjCC-CL leads to activation of the JAK/STAT pathway via interaction of the CCD with the surface receptor Domeless, and upregulation of AMP expression. Thus, our study of the shrimp MjCC-CL revealed a striking functional difference with vertebrates, in which the JAK/STAT pathway is indirectly activated by cell death and stress signals through cytokines or growth factors. Instead, by cross-linking microbial pathogens with the cell surface receptor Domeless, a lectin directly activates the JAK/STAT pathway, which plays a central role in the shrimp antibacterial immune responses by upregulating expression of selected AMPs. PMID:28931061

  19. Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice.

    PubMed

    He, Wenqian; Chen, Chi-Jene; Mullarkey, Caitlin E; Hamilton, Jennifer R; Wong, Christine K; Leon, Paul E; Uccellini, Melissa B; Chromikova, Veronika; Henry, Carole; Hoffman, Kevin W; Lim, Jean K; Wilson, Patrick C; Miller, Matthew S; Krammer, Florian; Palese, Peter; Tan, Gene S

    2017-10-10

    The aim of candidate universal influenza vaccines is to provide broad protection against influenza A and B viruses. Studies have demonstrated that broadly reactive antibodies require Fc-Fc gamma receptor interactions for optimal protection; however, the innate effector cells responsible for mediating this protection remain largely unknown. Here, we examine the roles of alveolar macrophages, natural killer cells, and neutrophils in antibody-mediated protection. We demonstrate that alveolar macrophages play a dominant role in conferring protection provided by both broadly neutralizing and non-neutralizing antibodies in mice. Our data also reveal the potential mechanisms by which alveolar macrophages mediate protection in vivo, namely antibody-induced inflammation and antibody-dependent cellular phagocytosis. This study highlights the importance of innate effector cells in establishing a broad-spectrum antiviral state, as well as providing a better understanding of how multiple arms of the immune system cooperate to achieve an optimal antiviral response following influenza virus infection or immunization.Broadly reactive antibodies that recognize influenza A virus HA can be protective, but the mechanism is not completely understood. Here, He et al. show that the inflammatory response and phagocytosis mediated by the interaction between protective antibodies and macrophages are essential for protection.

  20. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma.

    PubMed

    An, Rong; Wang, Yisong; Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-05-17

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients.

  1. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ+ CD83+ Antigen-Presenting Cells.

    PubMed

    Braden, Laura M; Rasmussen, Karina J; Purcell, Sara L; Ellis, Lauren; Mahony, Amelia; Cho, Steven; Whyte, Shona K; Jones, Simon R M; Fast, Mark D

    2018-01-01

    The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ + cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83 + /MHIIβ + Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells ( mhii / cd83 / mcsf ), B cells ( igm / igt ), and cytotoxic T cells ( cd8 / nkl ), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites . Copyright © 2017 American Society for Microbiology.

  2. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.

    PubMed

    Pan, Deng; Kobayashi, Aya; Jiang, Peng; Ferrari de Andrade, Lucas; Tay, Rong En; Luoma, Adrienne M; Tsoucas, Daphne; Qiu, Xintao; Lim, Klothilda; Rao, Prakash; Long, Henry W; Yuan, Guo-Cheng; Doench, John; Brown, Myles; Liu, X Shirley; Wucherpfennig, Kai W

    2018-02-16

    Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including Pbrm1 , Arid2 , and Brd7 , which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex-sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1 -deficient murine melanomas were more strongly infiltrated by cytotoxic T cells. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. B cell function in the immune response to helminths

    PubMed Central

    Harris, Nicola

    2010-01-01

    Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556

  4. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.

    PubMed

    Genga, Ryan M; Kearns, Nicola A; Maehr, René

    2016-05-15

    The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells, including hPSCs. In this review, we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation, gene repression, and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene, demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Application of tissue-specific NK and NKT cell activity for tumor immunotherapy

    PubMed Central

    Subleski, Jeff J.; Wiltrout, Robert H.; Weiss, Jonathan M.

    2009-01-01

    Natural killer (NK) and NKT cells are a first line of defense against pathogens and transformed cells. However, dysregulation of their function can lead to autoimmune disease. A better understanding of the mechanisms controlling NK and NKT effector function should lead to the development of improved strategies for the treatment of many diseases. The site in which NK and NKT cells reside should be taken into account, because accumulating evidence suggests that the tissue microenvironment strongly influences their function. In this regard, the liver represents a unique immunologic organ in which the balance between the need for tolerance and the ability to respond rapidly to pathogens and tissue injury is tightly regulated. NK cells in the liver have augmented cytolytic activity as compared to other organs, which is consistent with a role for liver-associated NK cells in being critical effector cells for inhibiting tumor metastasis in the liver. Several studies also suggest that hepatic NKT cells have different functions than those in other organs. Whereas splenic and thymic NKT cells have been shown to suppress diabetes development, facilitate the induction of systemic tolerance and are regulated by IL-4 and other Th2 cytokines, certain subsets of NKT cells in the liver are important sources of Th1 cytokines such as Interferon gamma, and are the primary mediators of anti-tumor responses. The unique properties and roles as critical effector cells make NK and NKT cells within the liver microenvironment attractive targets of immunotherapeutic approaches that have the goal of controlling tumor metastasis in the liver. PMID:19682859

  6. Increase in activated Treg in TIL in lung cancer and in vitro depletion of Treg by ADCC using an antihuman CCR4 mAb (KM2760).

    PubMed

    Kurose, Koji; Ohue, Yoshihiro; Sato, Eiichi; Yamauchi, Akira; Eikawa, Shingo; Isobe, Midori; Nishio, Yumi; Uenaka, Akiko; Oka, Mikio; Nakayama, Eiichi

    2015-01-01

    Tregs infiltrate tumors and inhibit immune responses against them. We investigated subpopulations of Foxp3 CD4 T cells previously defined by Miyara et al. (Immunity 30, 899-911, 2009) in peripheral blood mononuclear cells (PBMCs) and tumor infiltrating lymphocytes (TILs) in lung cancer. We also showed that Tregs in healthy donors that express CCR4 could be efficiently eliminated in vitro by cotreatment with antihuman (h) CCR4 mAb (KM2760) and NK cells. In lung cancer, the number of activated/effector Tregs and non-Tregs, but not resting/naive Tregs, was increased in TILs compared with the number of those cells in PBMCs. The non-Treg population contained Th2 and Th17. CCR4 expression on activated/effector Tregs and non-Tregs in TILs was down-regulated compared with that on those cells in PBMCs. Chemokinetic migration of CD25 CD4 T cells containing the Treg population sorted from the PBMCs of healthy donors to CCL22/MDC was abrogated by pretreatment with anti-hCCR4 mAb (KM2760). The inhibitory activity of CD25 CD127 CD4 Tregs on the proliferative response of CD4 and CD8 T cells stimulated with anti-CD3/CD28 coated beads was abrogated by adding an anti-hCCR4 mAb (KM2760) and CD56 NK cells to the culture. The findings suggested the CCR4 on activated/effector Tregs and non-Tregs was functionally involved in the chemokinetic migration and accumulation of those cells to the tumor site. In vitro findings of efficient elimination of Tregs may give the basis for implementation of a clinical trial to investigate Treg depletion by administration of an anti-hCCR4 mAb to solid cancer patients.

  7. Zoledronate Triggers Vδ2 T Cells to Destroy and Kill Spheroids of Colon Carcinoma: Quantitative Image Analysis of Three-Dimensional Cultures.

    PubMed

    Varesano, Serena; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    New successful anti-cancer strategies are based on the stimulation of immune reaction against tumors: however, preclinical testing of such treatments is still a challenge. To improve the screening of anti-cancer drugs, three-dimensional (3D) culture systems, including spheroids, have been validated as preclinical models. We propose the spheroid 3D system to test anti-tumor drug-induced immune responses. We show that colorectal carcinoma (CRC) spheroids, generated with the epithelial growth factor (EGF), can be co-cultured with Vδ2 T cells to evaluate the anti-tumor activity of these effector lymphocytes. By computerized image analysis, the precise and unbiased measure of perimeters and areas of tumor spheroids is achievable, beside the calculation of their volume. CRC spheroid size is related to ATP content and cell number, as parameters for cell metabolism and proliferation; in turn, crystal violet staining can check the viability of cells inside the spheroids to detect tumor killing by Vδ2 T cells. In this 3D cultures, we tested (a) zoledronate that is known to activate Vδ2 T cells and (b) the therapeutic anti-EGF receptor humanized antibody cetuximab that can elicit the antibody-dependent cytotoxicity of tumor cells by effector lymphocytes. Zoledronate triggers Vδ2 T cells to kill and degrade CRC spheroids; we detected the T-cell receptor dependency of zoledronate effect, conceivably due to the recognition of phosphoantigens produced as a drug effect on target cell metabolism. In addition, cetuximab triggered Vδ2 T lymphocytes to exert the antibody-dependent cellular cytotoxicity of CRC spheroids. Finally, the system reveals differences in the sensitivity of CRC cell lines to the action of Vδ2 T lymphocytes and in the efficiency of anti-tumor effectors from distinct donors. A limitation of this model is the absence of cells, including fibroblasts, that compose tumor microenvironment and influence drug response. Nevertheless, the system can be improved by setting mixed spheroids, made of stromal and cancer cells. We conclude that this type of spheroid 3D culture is a feasible and reliable system to evaluate and measure anti-tumor drug-induced immune responses beside direct anti-cancer drug effect.

  8. Depletion of Regulatory T Cells Augments a Vaccine-Induced T Effector Cell Response against the Liver-Stage of Malaria but Fails to Increase Memory

    PubMed Central

    Espinoza Mora, Maria del Rosario; Steeg, Christiane; Tartz, Susanne; Heussler, Volker; Sparwasser, Tim; Link, Andreas; Fleischer, Bernhard; Jacobs, Thomas

    2014-01-01

    Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed. PMID:25115805

  9. Developmental plasticity of murine and human Foxp3(+) regulatory T cells.

    PubMed

    Liston, Adrian; Piccirillo, Ciriaco A

    2013-01-01

    Murine and human CD4(+) regulatory T (Treg) cells expressing the Forkhead box p3 (Foxp3) transcription factor represent a distinct, highly differentiated CD4(+) T cell lineage that is programmed for dominant self-tolerance and control of immune responses against a variety of foreign antigens. Sustained Foxp3 expression in these cells drives the differentiation of a regulatory phenotype and ensures the stability of their suppressive functions under a variety of inflammatory settings. Some recent studies have challenged this premise and advanced the notion that Foxp3(+) Treg cells manifest a high degree of functional plasticity that enables them to adapt and reprogram into effector-like T cells in response to various inflammatory stimuli. The concept of Treg cell plasticity remains highly contentious, with a high degree of variation in measured plasticity potential observed under different experimental conditions. In this chapter, we propose a unifying model of Treg cell plasticity, which hypothesizes that the stable fates of regulatory and effector T (Teff) cell lineages allow transient plasticity into the alternative lineage under a discrete set of microenvironmental influences associated with, respectively, the initiation and resolution phases of infection. This model utilizes a theoretical framework consistent with the requirements for effective immune regulation and accounts for both the extraordinary long-term stability of Treg cells and the observed fate plasticity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  11. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  12. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells

    PubMed Central

    Quezada, Sergio A.; Peggs, Karl S.; Curran, Michael A.; Allison, James P.

    2006-01-01

    CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF–transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3– and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy. PMID:16778987

  13. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis.

    PubMed

    Thakker, Paresh; Leach, Michael W; Kuang, Wen; Benoit, Stephen E; Leonard, John P; Marusic, Suzana

    2007-02-15

    Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.

  14. Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors.

    PubMed

    Zhou, Pengfei; L'italien, Lawrence; Hodges, Douglas; Schebye, Xiao Min

    2007-12-01

    Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.

  15. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  16. Therapeutic Vaccination against Adjuvant Arthritis Using Autoimmune T Cells Treated with Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Lider, Ofer; Karin, Nathan; Shinitzky, Meir; Cohen, Irun R.

    1987-07-01

    An ideal treatment for autoimmune diseases would be a nontoxic means of specifically neutralizing the autoreactive lymphocytes responsible for the disease. This goal has been realized in experimental autoimmunity models by immunizing rats or mice against their own autoimmune cells such that the animals generate an immune response specifically repressive to the disease-producing lymphocytes. This maneuver, termed lymphocyte vaccination, was demonstrated to be effective using some, but not all, autoimmune helper T-lymphocyte lines. We now report that T lymphocytes, otherwise incapable of triggering an immune response, can be transformed into effective immunogens by treating the cells in vitro with hydrostatic pressure. Clone A2b, as effector clone that recognized cartilage proteoglycan and caused adjuvant arthritis in Lewis rats, is such a cell. Untreated A2b could not trigger an immune response, but inoculating rats with pressure-treated A2b induced early remission of established adjuvant arthritis as well as resistance to subsequent disease. Specific resistance to arthritis was associated with anti-idiotypic T-cell reactivity to clone A2b and could be transferred from vaccinated rats to naive recipients using donor lymphoid cells. Aggregation of T-lymphocyte membrane components appeared to be important for an immune response because the effects of hydrostatic pressure could be reproduced by treatment of A2b with chemical cross-linkers or with agents disrupting the cytoskeleton. Populations of lymph node cells from antigen-primed rats, when treated with hydrostatic pressure, could also induce suppression of disease. Thus, effective vaccines can be developed without having to isolate the autoimmune T lymphocytes as lines or clones. These results demonstrate that effector T lymphocytes suitably treated may serve as agents for specifically controlling the immune system.

  17. [Immune response induced by HIV DNA vaccine combined with recombinant adeno-associated virus].

    PubMed

    Liu, Yan-zheng; Zhou, Ling; Wang, Qi; Ye, Shu-qing; Li, Hong-xia; Zeng, Yi

    2004-09-01

    HIV-1 DNA vaccine and recombinant adeno-associated virus (rAAV) expressing gagV3 gene of HIV-1 subtype B were constructed and BALB/c mice were immunized by vaccination regimen consisting of consecutive priming with DNA vaccine and boosting with rAAV vaccine; the CTL and antibody response were detected and compared with those induced by DNA vaccine or rAAV vaccine separately. HIV-1 subtype B gagV3 gene was inserted into the polyclonal site of plasmid pCI-neo, DNA vaccine pCI-gagV3 was thereby constructed; pCI-gagV3 was transfected into p815 cells, G-418-resistant cells were obtained through screening transfected cells with G418, the expression of HIV-1 antigen in G-418-resistant cells was detected by EIA; BALB/c mice were immunized with pCI-gagV3 and the immune response was tested; BALB/c mouse immunized with pCI-gagV3 and combined with rAAV expressing the same gagV3 genes were tested for antibody level in sera by EIA method and cytotoxicity response by LDH method. pCI-gagV3 could express HIV-1 gene in p815 cells; pCI-gagV3 could induce HIV-1 specific humoral and cell-mediated immune response in BALB/c mice. The HIV-1 specific antibody level was 1/20; when the ratio of effector cells: target cells was 50:1, the average specific cytotoxicity was 41.7%; there was no evident increase in the antibody level induced by pCI-gagV3 combined with rAAV, but there was increase in CTL response, the average specific cytotoxicity was 61.3% when effector cells: target cells ratio was 50:1. HIV-1 specific cytotoxicity in BALB/c mice can be increased by immunization of BALB/c mice with DNA vaccine combined with rAAV vaccine.

  18. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  19. CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response.

    PubMed

    Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita; Wyatt, Megan W; Dhar, Payal; Selvam, Shanmugam Panneer; Fu, Jianing; Zhang, Jinyu; Nguyen, Hung; Kang, Inhong; Toth, Kyle; Al-Homrani, Mazen; Husain, Mahvash; Beeson, Gyda; Ball, Lauren; Helke, Kristi; Husain, Shahid; Garrett-Mayer, Elizabeth; Hardiman, Gary; Mehrotra, Meenal; Nishimura, Michael I; Beeson, Craig C; Bupp, Melanie Gubbels; Wu, Jennifer; Ogretmen, Besim; Paulos, Chrystal M; Rathmell, Jeffery; Yu, Xue-Zhong; Mehrotra, Shikhar

    2018-01-09

    Heightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumor T cells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD + -dependent activity of the histone deacetylase Sirt1. Pharmacological or genetic inhibition of Sirt1 activity impaired the anti-tumor potential of Th1/17 cells. Importantly, T cells with reduced surface expression of the NADase CD38 exhibited intrinsically higher NAD + , enhanced oxidative phosphorylation, higher glutaminolysis, and altered mitochondrial dynamics that vastly improved tumor control. Lastly, blocking CD38 expression improved tumor control even when using Th0 anti-tumor T cells. Thus, strategies targeting the CD38-NAD + axis could increase the efficacy of anti-tumor adoptive T cell therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths.

    PubMed

    Pelly, Victoria S; Coomes, Stephanie M; Kannan, Yashaswini; Gialitakis, Manolis; Entwistle, Lewis J; Perez-Lloret, Jimena; Czieso, Stephanie; Okoye, Isobel S; Rückerl, Dominik; Allen, Judith E; Brombacher, Frank; Wilson, Mark S

    2017-06-05

    Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4 + Foxp3 + regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex-T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3 + cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus Through selective deletion of Il4ra on Foxp3 + cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell-mediated suppression. © 2017 Pelly et al.

  1. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies.

    PubMed

    Smith, Corinne J; Quinn, Michael; Snyder, Christopher M

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8 + T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8 + T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8 + T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8 + T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  2. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex.

    PubMed

    Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D G

    2013-12-01

    Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.

  3. A Downy Mildew Effector Attenuates Salicylic Acid–Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex

    PubMed Central

    Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D. G.

    2013-01-01

    Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. PMID:24339748

  4. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells

    PubMed Central

    Carrette, Florent; Henriquez, Monique L.; Fujita, Yu

    2018-01-01

    T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007

  5. Three Antagonistic Cyclic di-GMP-Catabolizing Enzymes Promote Differential Dot/Icm Effector Delivery and Intracellular Survival at the Early Steps of Legionella pneumophila Infection

    PubMed Central

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia

    2014-01-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  6. The role of cytokines in T-cell memory in health and disease.

    PubMed

    Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur

    2018-05-01

    Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. T cell responses in senior patients with community-acquired pneumonia related to disease severity.

    PubMed

    Bian, Lu-Qin; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Mao, Ling; Wang, Ling

    2017-12-01

    Senior individuals older than 65 years of age are at a disproportionally higher risk of developing pneumonia. Impaired capacity to defend against airway infections may be one of the reasons. It is generally believed that weaker regulatory T cell responses may be beneficial to host defense against pathogens. In senior patients with community-acquired bacterial pneumonia, we investigated the frequencies and functions of regulatory T cells. Interestingly, we found that compared to age- and sex-matched healthy controls, senior pneumonia patients presented lower frequencies of Foxp3-expressing and Helios-expressing CD4 + T cells. The quantity of Foxp3 and Helios being expressed, measured by their mRNA transcription levels, was also lower in CD4 + T cells from pneumonia patients. Furthermore, following TCR and TGF-β stimulation, pneumonia patients presented impaired capacity to upregulate Foxp3 and Helios. Functional analyses revealed that CD4 + T cells from pneumonia patients secreted lower amounts of IL-10 and TGF-β, two cytokines critical to regulatory T cell-mediated suppression. Also, the expression of granzyme B and perforin, which were cytolytic molecules potentially utilized by regulatory T cells to mediate the elimination of antigen-presenting cells and effector T cells, were reduced in CD4 + CD25 + T cells from senior pneumonia patients. In addition, the CD4 + CD25 + T cells from senior pneumonia patients presented reduced capacity to suppress effector CD4 + and CD8 + T cell proliferation. Moreover, the value of pneumonia severity index was inversely correlated with several parameters of regulatory T cell function. Together, our results demonstrated that senior pneumonia patients presented a counterintuitive impairment in regulatory T cell responses that was associated with worse prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  9. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions.

    PubMed

    de Lourdes Mora-García, María; García-Rocha, Rosario; Morales-Ramírez, Omar; Montesinos, Juan José; Weiss-Steider, Benny; Hernández-Montes, Jorge; Ávila-Ibarra, Luis Roberto; Don-López, Christian Azucena; Velasco-Velázquez, Marco Antonio; Gutiérrez-Serrano, Vianey; Monroy-García, Alberto

    2016-10-26

    In recent years, immunomodulatory mechanisms of mesenchymal stem/stromal cells (MSCs) from bone marrow and other "classic" sources have been described. However, the phenotypic and functional properties of tumor MSCs are poorly understood. The aim of this study was to analyze the immunosuppressive capacity of cervical cancer-derived MSCs (CeCa-MSCs) on effector T lymphocytes through the purinergic pathway. We determined the expression and functional activity of the membrane-associated ectonucleotidases CD39 and CD73 on CeCa-MSCs and normal cervical tissue-derived MSCs (NCx-MSCs). We also analyzed their immunosuppressive capacity to decrease proliferation, activation and effector cytotoxic T (CD8+) lymphocyte function through the generation of adenosine (Ado). We detected that CeCa-MSCs express higher levels of CD39 and CD73 ectonucleotidases in cell membranes compared to NCx-MSCs, and that this feature was associated with the ability to strongly suppress the proliferation, activation and effector functions of cytotoxic T-cells through the generation of large amounts of Ado from the hydrolysis of ATP, ADP and AMP nucleotides. This study suggests that CeCa-MSCs play an important role in the suppression of the anti-tumor immune response in CeCa through the purinergic pathway.

  10. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths

    PubMed Central

    Coomes, Stephanie M.; Kannan, Yashaswini; Entwistle, Lewis J.; Perez-Lloret, Jimena; Czieso, Stephanie

    2017-01-01

    Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4+Foxp3+ regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex–T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3+ cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus. Through selective deletion of Il4ra on Foxp3+ cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell–mediated suppression. PMID:28507062

  11. RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter.

    PubMed

    Burgler, Simone; Mantel, Pierre-Yves; Bassin, Claudio; Ouaked, Nadia; Akdis, Cezmi A; Schmidt-Weber, Carsten B

    2010-06-01

    The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.

  12. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy.

    PubMed

    Shrimali, Rajeev; Ahmad, Shamim; Berrong, Zuzana; Okoev, Grigori; Matevosyan, Adelaida; Razavi, Ghazaleh Shoja E; Petit, Robert; Gupta, Seema; Mkrtichyan, Mikayel; Khleif, Samir N

    2017-08-15

    We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4 + and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment. Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations. We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4 + and CD8 + T cells along with a decrease of inhibitory cells. To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall efficacy of cancer immunotherapy.

  13. Promyelocytic leukemia zinc finger turns on the effector T cell program without requirement for agonist TCR signaling.

    PubMed

    Savage, Adam K; Constantinides, Michael G; Bendelac, Albert

    2011-05-15

    Thymocytes expressing the NKT cell semi-invariant αβ TCR are thought to undergo agonist interactions with CD1d ligands prior to expressing promyelocytic leukemia zinc finger (PLZF), a broad complex, tramtrack, bric-a-brac, poxvirus, and zinc finger transcription factor that directs acquisition of the effector program of these innate-like T cells. Whether PLZF can mediate this effector conversion independently of agonist signaling has not been investigated. We demonstrated that transgenic (Tg) expression of PLZF under the CD4 promoter induced the innate effector program in two different MHC class II-restricted TCR-Tg Rag1(-/-) models examined. In CD4 thymocytes expressing a fixed Tg TCR β-chain, the associated TCRα sequences in wild-type and PLZF-Tg mice overlapped extensively, further demonstrating that PLZF could induce the effector program in most CD4 T cells that would normally be selected as naive cells. In contrast, PLZF altered the negative selection of thymocytes expressing TCR β-chains reactive against several retroviral superantigens. Thus, PLZF is remarkable in that it is a transcription factor capable of inducing an effector program in the absence of T cell agonist interactions or cell division. Its expression may also enhance the survival of agonist-signaled thymocytes.

  14. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis.

    PubMed

    Labra, Álvaro; Arredondo-Zelada, Oscar; Flores-Herrera, Patricio; Marshall, Sergio H; Gómez, Fernando A

    2016-03-01

    Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections

    PubMed Central

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias; Zekeng, Elsa Gayle; Cowley, Lauren; Garcia Dorival, Isabel; Doerrbecker, Juliane; Hetzelt, Nicole; Baum, Jonathan H. J.; Portmann, Jasmine; Wölfel, Roman; Gabriel, Martin; Miranda, Osvaldo; Díaz, Graciliano; Díaz, José E.; Fleites, Yoel A.; Piñeiro, Carlos A.; Castro, Carlos M.; Koivogui, Lamine; Magassouba, N’Faly; Diallo, Boubacar; Ruibal, Paula; Oestereich, Lisa; Wozniak, David M.; Lüdtke, Anja; Becker-Ziaja, Beate; Capobianchi, Maria R.; Ippolito, Giuseppe; Carroll, Miles W.; Günther, Stephan; Di Caro, Antonino; Muñoz-Fontela, César

    2017-01-01

    Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Conclusions/Significances Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells. PMID:28558022

  16. A type III effector antagonizes death receptor signalling during bacterial gut infection.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-09-12

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

  17. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda

    PubMed Central

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J.; Clem, Rollie J.

    2013-01-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. PMID:23474489

  18. Role of Rab family GTPases and their effectors in melanosomal logistics.

    PubMed

    Ohbayashi, Norihiko; Fukuda, Mitsunori

    2012-04-01

    Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.

  19. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors

    PubMed Central

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.

    2011-01-01

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370

  20. Long-range allosteric signaling in red light–regulated diguanylyl cyclases

    PubMed Central

    Gourinchas, Geoffrey; Etzl, Stefan; Göbl, Christoph; Vide, Uršula; Madl, Tobias; Winkler, Andreas

    2017-01-01

    Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light–sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate–producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light–regulated optogenetic tools. PMID:28275738

Top