QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically
Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel
2015-01-01
Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082
High-resolution definition of humoral immune response correlates of effective immunity against HIV.
Alter, Galit; Dowell, Karen G; Brown, Eric P; Suscovich, Todd J; Mikhailova, Anastassia; Mahan, Alison E; Walker, Bruce D; Nimmerjahn, Falk; Bailey-Kellogg, Chris; Ackerman, Margaret E
2018-03-26
Defining correlates of immunity by comprehensively interrogating the extensive biological diversity in naturally or experimentally protected subjects may provide insights critical for guiding the development of effective vaccines and antibody-based therapies. We report advances in a humoral immunoprofiling approach and its application to elucidate hallmarks of effective HIV-1 viral control. Systematic serological analysis for a cohort of HIV-infected subjects with varying viral control was conducted using both a high-resolution, high-throughput biophysical antibody profiling approach, providing unbiased dissection of the humoral response, along with functional antibody assays, characterizing antibody-directed effector functions such as complement fixation and phagocytosis that are central to protective immunity. Profiles of subjects with varying viral control were computationally analyzed and modeled in order to deconvolute relationships among IgG Fab properties, Fc characteristics, and effector functions and to identify humoral correlates of potent antiviral antibody-directed effector activity and effective viral suppression. The resulting models reveal multifaceted and coordinated contributions of polyclonal antibodies to diverse antiviral responses, and suggest key biophysical features predictive of viral control. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.
Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark
2018-05-31
In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.
Nakhaei-Rad, Saeideh; Nakhaeizadeh, Hossein; Kordes, Claus; Cirstea, Ion C; Schmick, Malte; Dvorsky, Radovan; Bastiaens, Philippe I H; Häussinger, Dieter; Ahmadian, Mohammad Reza
2015-06-19
E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Richardson, Simone I; Chung, Amy W; Natarajan, Harini; Mabvakure, Batsirai; Mkhize, Nonhlanhla N; Garrett, Nigel; Abdool Karim, Salim; Moore, Penny L; Ackerman, Margaret E; Alter, Galit; Morris, Lynn
2018-04-01
While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.
Richardson, Simone I.; Mabvakure, Batsirai; Mkhize, Nonhlanhla N.; Moore, Penny L.; Alter, Galit
2018-01-01
While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies. PMID:29630668
Functional classification of memory CD8(+) T cells by CX3CR1 expression.
Böttcher, Jan P; Beyer, Marc; Meissner, Felix; Abdullah, Zeinab; Sander, Jil; Höchst, Bastian; Eickhoff, Sarah; Rieckmann, Jan C; Russo, Caroline; Bauer, Tanja; Flecken, Tobias; Giesen, Dominik; Engel, Daniel; Jung, Steffen; Busch, Dirk H; Protzer, Ulrike; Thimme, Robert; Mann, Matthias; Kurts, Christian; Schultze, Joachim L; Kastenmüller, Wolfgang; Knolle, Percy A
2015-09-25
Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory.
Swee, Lee Kim; Tan, Zhen Wei; Sanecka, Anna; Yoshida, Nagisa; Patel, Harshil; Grotenbreg, Gijsbert; Frickel, Eva-Maria; Ploegh, Hidde L
2016-11-01
T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2 b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 L d -restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds. © 2016 The Authors.
Modulation of hemoglobin dynamics by an allosteric effector
Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; ...
2016-12-15
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb andmore » HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo (NSE) measurements accompanied by wideangle x-ray scattering (WAXS) to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. Furthermore, these observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.« less
Choi, Ickwon; Chung, Amy W; Suscovich, Todd J; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J; Francis, Donald; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Alter, Galit; Ackerman, Margaret E; Bailey-Kellogg, Chris
2015-04-01
The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.
Choi, Ickwon; Chung, Amy W.; Suscovich, Todd J.; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J.; Francis, Donald; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Alter, Galit; Ackerman, Margaret E.; Bailey-Kellogg, Chris
2015-01-01
The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates. PMID:25874406
Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao
2017-04-01
Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Verdier, Valérie; Triplett, Lindsay R; Hummel, Aaron W; Corral, Rene; Cernadas, R Andres; Schmidt, Clarice L; Bogdanove, Adam J; Leach, Jan E
2012-12-01
Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood. Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties. Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence. SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine
2015-01-01
The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. Copyright © 2015 Elsevier GmbH. All rights reserved.
Schoch, Justine; Rohrer, Tilman R; Kaestner, Michael; Abdul-Khaliq, Hashim; Gortner, Ludwig; Sester, Urban; Sester, Martina; Schmidt, Tina
2017-05-15
Infections and autoimmune disorders are more frequent in Down syndrome, suggesting abnormality of adaptive immunity. Although the role of B cells and antibodies is well characterized, knowledge regarding T cells is limited. Lymphocyte subpopulations of 40 children and adolescents with Down syndrome and 51 controls were quantified, and phenotype and functionality of antigen-specific effector T cells were analyzed with flow cytometry after polyclonal and pathogen-specific stimulation (with varicella-zoster virus [VZV] and cytomegalovirus [CMV]). Results were correlated with immunoglobulin (Ig) G responses. Apart from general alterations in the percentage of lymphocytes, regulatory T cells, and T-helper 1 and 17 cells, all major T-cell subpopulations showed higher expression of the inhibitory receptor PD-1. Polyclonally stimulated effector CD4+ T-cell frequencies were significantly higher in subjects with Down syndrome, whereas their inhibitory receptor expression (programmed cell death 1 [PD-1] and cytotoxic T-lymphocyte antigen 4 [CTLA-4]) was similar to that of controls and cytokine expression profiles were only marginally altered. Pathogen-specific immunity showed age-appropriate levels of endemic infection, with correlation of CMV-specific cellular and humoral immunity in all subjects. Among VZV IgG-positive individuals, a higher percentage of VZV-specific T-cell-positive subjects was seen in those with Down syndrome. Despite alterations in lymphocyte subpopulations, individuals with Down syndrome can mount effector T-cell responses with similar phenotype and functionality as controls but may require higher effector T-cell frequencies to ensure pathogen control. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia
Mace, Thomas A.; Zhong, Lingwen; Kokolus, Kathleen M.; Repasky, Elizabeth A.
2012-01-01
Purpose Clinical trials combining hyperthermia with radiation and/or chemotherapy for cancer treatment have resulted in improved overall survival and control of local recurrences. The contribution of thermally enhanced anti-immune function in these effects is of considerable interest, but not understood; studies on the fundamental effects of elevated temperature on immune effector cells are needed. The goal of this study is to investigate the potential of mild hyperthermia to impact tumor antigen-specific (Ag) effector CD8+ T cell functions. Method Pmel-1 Ag-specific CD8+ T cells were exposed to mild hyperthermia and tested for changes in IFN-γ production and cytotoxicity. Additionally, overall plasma membrane organization and the phosphorylation of signaling proteins were also investigated following heat treatment. Results Exposing effector Pmel-1 specific CD8+ T cells to mild hyperthermia (39.5°C) resulted in significantly enhanced Ag-specific IFN-γ production and tumor target cell killing compared to that seen using lower temperatures (33 and 37°C). Further, inhibition of protein synthesis during hyperthermia did not reduce subsequent Ag-induced IFN-γ production by CD8+ T cells. Correlated with these effects, we observed a distinct clustering of GM1+ lipid microdomains at the plasma membrane and enhanced phosphorylation of LAT and PKCθ which may be related to an observed enhancement of Ag-specific effector CD8+ T cell IFN-γ gene transcription following mild hyperthermia. However, mitogen–mediated production of IFN-γ, which bypasses T cell receptor activation with antigen, was not enhanced. Conclusions Antigen-dependent effector T cell activity is enhanced following mild hyperthermia. These effects could potentially occur in patients being treated with thermal therapies. These data also provide support for the use of thermal therapy as an adjuvant for immunotherapies to improve CD8+ effector cell function. PMID:22235780
Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.
Cressman, William J; Beckett, Dorothy
2016-01-19
Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.
Long, Meixiao; Higgins, Amy D.; Mihalyo, Marianne A.; Adler, Adam J.
2010-01-01
It has recently been shown that effector/memory T cells can undergo peripheral tolerization in response to self-antigen. In the present study, we found that within 24 h self-antigen profoundly impairs the ability of CD4 effectors to express TNF-α (and to a lesser extent IFN-γ); however, several days of self-antigen exposure is required to impair non-effector functions such as IL-2 expression and proliferation. Since only half of the initial effector CD4 cell population expresses effector cytokines following brief antigenic stimulation, tolerization might have been mediated either through functional inactivation of effector-competent cells, or alternatively by the selective deletion of competent and expansion of non-competent cells. When briefly stimulated effectors were fractionated based on their expression of IFN-γ, the IFN-γ− sub-population was able to express IFN-γ following secondary stimulation, indicating that all effector CD4 cells are functionally competent. Furthermore, both IFN-γ+ and IFN-γ− sub-populations underwent tolerization in response to self-HA (although the former was slightly more prone to deletion at later time points). Thus, effector CD4 cell tolerization is mediated primarily through the functional inactivation of effector-competent cells. PMID:14609577
Sharpe, James; Zehn, Dietmar; Kreutzfeldt, Mario
2016-01-01
During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity–primed T cells acquired cytotoxic activity earlier than high affinity–primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity–stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment. PMID:27799622
Repeat-containing protein effectors of plant-associated organisms
Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.
2015-01-01
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126
Repeat-containing protein effectors of plant-associated organisms.
Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D
2015-01-01
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Uncovering the Legionella genus effector repertoire - strength in diversity and numbers
Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil
2016-01-01
Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266
EffectorP: predicting fungal effector proteins from secretomes using machine learning.
Sperschneider, Jana; Gardiner, Donald M; Dodds, Peter N; Tini, Francesco; Covarelli, Lorenzo; Singh, Karam B; Manners, John M; Taylor, Jennifer M
2016-04-01
Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au. © 2015 CSIRO New Phytologist © 2015 New Phytologist Trust.
Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites
Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens
2013-01-01
Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program. PMID:23526890
Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn
2014-04-02
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.
Wiestler, Tobias; Waters-Metenier, Sheena
2014-01-01
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723
Shao, Lingyun; Zhang, Xinyun; Gao, Yan; Xu, Yunya; Zhang, Shu; Yu, Shenglei; Weng, Xinhua; Shen, Hongbo; Chen, Zheng W; Jiang, Weimin; Zhang, Wenhong
2016-01-01
Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue. 164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses. There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001). Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.
Immune Modules Shared by Innate Lymphoid Cells and T Cells
Robinette, Michelle L.; Colonna, Marco
2016-01-01
In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core “immune modules” that encompass transcriptional circuitry and effector functions, while utilizing non-redundant, complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. PMID:27817796
Roth, Michael D; Whittaker, Katherine; Salehi, Ken; Tashkin, Donald P; Baldwin, Gayle C
2004-02-01
Lung macrophages provide a first line of host defense against inhaled pathogens and their function is impaired in the lungs of inhaled substance abusers. In order to investigate the mechanism for this impairment, alveolar macrophages (AM) were recovered from nonsmokers (NS), regular tobacco smokers (TS), marijuana smokers (MS), or crack cocaine smokers (CS), and evaluated for their production of nitric oxide (NO) and the role of NO as an antimicrobial effector molecule. AM from NS and TS efficiently killed Staphylococcus aureus and their antibacterial activity correlated closely with the production of nitrite and the expression of mRNA encoding for inducible nitric oxide synthase (iNOS). In contrast, AM collected from MS and CS exhibited limited antimicrobial activity that was not affected by an inhibitor of iNOS, or associated with expression of iNOS. Treatment with either granulocyte/macrophage colony-stimulating factor (GM-CSF) or interferon-gamma restored the ability of these cells to produce NO and to kill bacteria. These findings confirm a significant role for NO as an antibacterial effector molecule used by normal human AM and suggest that this host defense mechanism is suppressed by habitual exposure to inhaled marijuana or crack cocaine in vivo.
Marshall, Rosalind; Kombrink, Anja; Motteram, Juliet; Loza-Reyes, Elisa; Lucas, John; Hammond-Kosack, Kim E.; Thomma, Bart P.H.J.; Rudd, Jason J.
2011-01-01
Secreted effector proteins enable plant pathogenic fungi to manipulate host defenses for successful infection. Mycosphaerella graminicola causes Septoria tritici blotch disease of wheat (Triticum aestivum) leaves. Leaf infection involves a long (approximately 7 d) period of symptomless intercellular colonization prior to the appearance of necrotic disease lesions. Therefore, M. graminicola is considered as a hemibiotrophic (or necrotrophic) pathogen. Here, we describe the molecular and functional characterization of M. graminicola homologs of Ecp6 (for extracellular protein 6), the Lysin (LysM) domain-containing effector from the biotrophic tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum, which interferes with chitin-triggered immunity in plants. Three LysM effector homologs are present in the M. graminicola genome, referred to as Mg3LysM, Mg1LysM, and MgxLysM. Mg3LysM and Mg1LysM genes were strongly transcriptionally up-regulated specifically during symptomless leaf infection. Both proteins bind chitin; however, only Mg3LysM blocked the elicitation of chitin-induced plant defenses. In contrast to C. fulvum Ecp6, both Mg1LysM and Mg3LysM also protected fungal hyphae against plant-derived hydrolytic enzymes, and both genes show significantly more nucleotide polymorphism giving rise to nonsynonymous amino acid changes. While Mg1LysM deletion mutant strains of M. graminicola were fully pathogenic toward wheat leaves, Mg3LysM mutant strains were severely impaired in leaf colonization, did not trigger lesion formation, and were unable to undergo asexual sporulation. This virulence defect correlated with more rapid and pronounced expression of wheat defense genes during the symptomless phase of leaf colonization. These data highlight different functions for MgLysM effector homologs during plant infection, including novel activities that distinguish these proteins from C. fulvum Ecp6. PMID:21467214
Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W
2016-12-16
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors
Catz, Sergio Daniel
2013-01-01
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593
Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent
2017-01-01
To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390
Behind the lines–actions of bacterial type III effector proteins in plant cells
Büttner, Daniela
2016-01-01
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715
Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿
Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam
2008-01-01
The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. PMID:18684823
Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka
2017-09-15
During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Moore, Gregory L; Chen, Hsing; Karki, Sher
2010-01-01
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens. PMID:20150767
Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo
2014-12-01
The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.
Immune modules shared by innate lymphoid cells and T cells.
Robinette, Michelle L; Colonna, Marco
2016-11-01
In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Space-based multifunctional end effector systems functional requirements and proposed designs
NASA Technical Reports Server (NTRS)
Mishkin, A. H.; Jau, B. M.
1988-01-01
The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested manipulator systems in time for space stations operations in the early 1990s.
Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa.
Barham, Henry P; Cooper, Sarah E; Anderson, Catherine B; Tizzano, Marco; Kingdom, Todd T; Finger, Tom E; Kinnamon, Sue C; Ramakrishnan, Vijay R
2013-06-01
Solitary chemosensory cells (SCCs) are specialized cells in the respiratory epithelium that respond to noxious chemicals including bacterial signaling molecules. SCCs express components of bitter taste transduction including the taste receptor type 2 (TAS2R) bitter taste receptors and downstream signaling effectors: α-Gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential cation channel subfamily M member 5 (TRPM5). When activated, SCCs evoke neurogenic reflexes, resulting in local inflammation. The purpose of this study was to test for the presence SCCs in human sinonasal epithelium, and to test for a correlation with inflammatory disease processes such as allergic rhinitis and chronic rhinosinusitis. Patient demographics and biopsies of human sinonasal mucosa were obtained from control patients (n = 7) and those with allergic rhinitis and/or chronic rhinosinusitis (n = 15). Reverse transcription polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), and immunohistochemistry were used to determine whether expression of signaling effectors was altered in diseased patients. RT-PCR demonstrated that bitter taste receptors TAS2R4, TAS2R14, and TAS2R46, and downstream signaling effectors α-Gustducin, PLCβ2, and TRPM5 are expressed in the inferior turbinate, middle turbinate, septum, and uncinate of both control and diseased patients. PLCβ2/TRPM5-immunoreactive SCCs were identified in the sinonasal mucosa of both control and diseased patients. qPCR showed similar expression of α-Gustducin and TRPM5 in the uncinate process of control and diseased groups, and there was no correlation between level of expression and 22-item Sino-Nasal Outcomes Test (SNOT-22) or pain scores. SCCs are present in human sinonasal mucosa in functionally relevant areas. Expression level of signaling effectors was similar in control and diseased patients and did not correlate with measures of pain and inflammation. Further study into these pathways may provide insight into nasal inflammatory diseases and may offer potential therapeutic targets. © 2013 ARS-AAOA, LLC.
Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies
Pietsch, E C; Dong, J; Cardoso, R; Zhang, X; Chin, D; Hawkins, R; Dinh, T; Zhou, M; Strake, B; Feng, P-H; Rocca, M; Santos, C Dos; Shan, X; Danet-Desnoyers, G; Shi, F; Kaiser, E; Millar, H J; Fenton, S; Swanson, R; Nemeth, J A; Attar, R M
2017-01-01
CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices. PMID:28234345
Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon
2017-04-01
Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Charpentier, Xavier; Gabay, Joëlle E.; Reyes, Moraima; Zhu, Jing W.; Weiss, Arthur; Shuman, Howard A.
2009-01-01
Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions. PMID:19578436
Shames, Stephanie R.; Liu, Luying; Havey, James C.; Schofield, Whitman B.; Goodman, Andrew L.; Roy, Craig R.
2017-01-01
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires’ disease. A single strain of L. pneumophila encodes a repertoire of over 300 different effector proteins that are delivered into host cells by the Dot/Icm type IV secretion system during infection. The large number of L. pneumophila effectors has been a limiting factor in assessing the importance of individual effectors for virulence. Here, a transposon insertion sequencing technology called INSeq was used to analyze replication of a pool of effector mutants in parallel both in a mouse model of infection and in cultured host cells. Loss-of-function mutations in genes encoding effector proteins resulted in host-specific or broad virulence phenotypes. Screen results were validated for several effector mutants displaying different virulence phenotypes using genetic complementation studies and infection assays. Specifically, loss-of-function mutations in the gene encoding LegC4 resulted in enhanced L. pneumophila in the lungs of infected mice but not within cultured host cells, which indicates LegC4 augments bacterial clearance by the host immune system. The effector proteins RavY and Lpg2505 were important for efficient replication within both mammalian and protozoan hosts. Further analysis of Lpg2505 revealed that this protein functions as a metaeffector that counteracts host cytotoxicity displayed by the effector protein SidI. Thus, this study identified a large cohort of effectors that contribute to L. pneumophila virulence positively or negatively and has demonstrated regulation of effector protein activities by cognate metaeffectors as being critical for host pathogenesis. PMID:29133401
Sass, Laura A; Hair, Pamela S; Perkins, Amy M; Shah, Tushar A; Krishna, Neel K; Cunnion, Kenji M
2015-01-01
In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.
Lugade, Amit A; Kalathil, Suresh; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin
2013-07-01
The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.
Identification of legionella effectors using bioinformatic approaches.
Segal, Gil
2013-01-01
Legionella pneumophila the causative agent of Legionnaires' disease, actively manipulates host cell processes to establish a replication niche inside host cells. The establishment of its replication niche requires a functional Icm/Dot type IV secretion system which translocates about 300 effector proteins into host cells during infection. Many of these effectors were first identified as effector candidates by several bioinformatic approaches, and these predicted effectors were later examined experimentally for translocation and a large number of which were validated as effector proteins. Here, I summarized the bioinformatic approaches that were used to identify these effectors.
Kwak, Minsuk; Mu, Luye; Lu, Yao; Chen, Jonathan J.; Brower, Kara; Fan, Rong
2013-01-01
Secreted proteins including cytokines, chemokines, and growth factors represent important functional regulators mediating a range of cellular behavior and cell–cell paracrine/autocrine signaling, e.g., in the immunological system (Rothenberg, 2007), tumor microenvironment (Hanahan and Weinberg, 2011), or stem cell niche (Gnecchi etal., 2008). Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically identical cell population can give rise to diverse phenotypic differences (Niepel etal., 2009). Non-genetic heterogeneity is also emerging as a potential barrier to accurate monitoring of cellular immunity and effective pharmacological therapies (Cohen etal., 2008; Gascoigne and Taylor, 2008), but can hardly assessed using conventional approaches that do not examine cellular phenotype at the functional level. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer. PMID:23390614
Erwinia amylovora effector protein Eop1 suppresses PAMP-triggered immunity in Malus
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora (Ea) utilizes a type three secretion system (T3SS) to deliver effector proteins into plant host cells. Several Ea effectors have been identified based on their sequence similarity to plant and animal bacterial pathogen effectors; however, the function of the majority of Ea effecto...
Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.
Layman, Awo A K; Oliver, Paula M
2016-05-15
The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function. Copyright © 2016 by The American Association of Immunologists, Inc.
Schroeder, Gunnar N.
2018-01-01
The defective in organelle trafficking/intracellular multiplication (Dot/Icm) Type IVb secretion system (T4SS) is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS) or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal. PMID:29354599
Fraiture, Malou; Liu, Xiaoyu; Boevink, Petra C.; Gilroy, Eleanor M.; Chen, Ying; Kandel, Kabindra; Sessa, Guido; Birch, Paul R. J.; Brunner, Frédéric
2014-01-01
Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans. PMID:24763622
Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.
Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim
2013-01-01
Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.
Yao, Shuyu; Huang, Dan; Chen, Crystal Y.; Halliday, Lisa; Wang, Richard C.; Chen, Zheng W.
2014-01-01
The possibility that CD4+ T cells can act as “innate-like” cells to contain very-early M. tuberculosis (Mtb) dissemination and function as master helpers to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes during development of adaptive immunity against primary tuberculosis(TB) has not been demonstrated. We showed that pulmonary Mtb infection of CD4-depleted macaques surprisingly led to very-early extrathoracic Mtb dissemination, whereas CD4 deficiency clearly resulted in rapid TB progression. CD4 depletion during Mtb infection revealed the ability of CD8+ T cells to compensate and rapidly differentiate to Th17-like/Th1-like, and cytotoxic-like effectors, but these effector functions were subsequently unsustainable due to CD4 deficiency. While CD3-negative non-T lymphocytes in presence of CD4+ T cells developed predominant Th22-like and NK-like (perforin production) responses to Mtb infection, CD4 depletion abrogated these Th22-/NK-like effector functions and favored IL-17 production by CD3-negative lymphocytes. CD4-depleted macaques exhibited no or few pulmonary T effector cells constitutively producing IFN-γ, TNFα, IL-17, IL-22, and perforin at the endpoint of more severe TB, but presented pulmonary IL-4+ T effectors. TB granulomas in CD4-depleted macaques contained fewer IL-22+ and perforin+ cells despite presence of IL-17+ and IL-4+ cells. These results implicate previously-unknown “innate-like” ability of CD4+ T cells to contain extrathoracic Mtb dissemination at very early stage. Data also suggest that CD4+ T cells are required to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes and to prevent rapid TB progression during Mtb infection of nonhuman primates. PMID:24489088
Bacterial virulence effectors and their activities.
Hann, Dagmar R; Gimenez-Ibanez, Selena; Rathjen, John P
2010-08-01
The major virulence strategy for plant pathogenic bacteria is deployment of effector molecules within the host cytoplasm. Each bacterial strain possesses a set of 20-30 effectors which have overlapping activities, are functionally interchangeable, and diverge in composition between strains. Effectors target host molecules to suppress immunity. Two main strategies are apparent. Effectors that target host proteins seem to attack conserved structural domains but otherwise lack specificity. On the other hand, those that influence host gene transcription directly do so with extreme specificity. In both cases, examples are known where the host has exploited effector-target affinities to establish immune recognition of effectors. The molecular activity of each effector links virulence and immune outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.
Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N
2014-01-01
Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations. Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303
MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility
Hutin, Mathilde; Pérez-Quintero, Alvaro L.; Lopez, Camilo; Szurek, Boris
2015-01-01
Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance. PMID:26236326
Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif
2010-01-01
Background Effector secretion is a common strategy of pathogen in mediating host-pathogen interaction. Eight EPIYA-motif containing effectors have recently been discovered in six pathogens. Once these effectors enter host cells through type III/IV secretion systems (T3SS/T4SS), tyrosine in the EPIYA motif is phosphorylated, which triggers effectors binding other proteins to manipulate host-cell functions. The objectives of this study are to evaluate the distribution pattern of EPIYA motif in broad biological species, to predict potential effectors with EPIYA motif, and to suggest roles and biological functions of potential effectors in host-pathogen interactions. Results A hidden Markov model (HMM) of five amino acids was built for the EPIYA-motif based on the eight known effectors. Using this HMM to search the non-redundant protein database containing 9,216,047 sequences, we obtained 107,231 sequences with at least one EPIYA motif occurrence and 3115 sequences with multiple repeats of the EPIYA motif. Although the EPIYA motif exists among broad species, it is significantly over-represented in some particular groups of species. For those proteins containing at least four copies of EPIYA motif, most of them are from intracellular bacteria, extracellular bacteria with T3SS or T4SS or intracellular protozoan parasites. By combining the EPIYA motif and the adjacent SH2 binding motifs (KK, R4, Tarp and Tir), we built HMMs of nine amino acids and predicted many potential effectors in bacteria and protista by the HMMs. Some potential effectors for pathogens (such as Lawsonia intracellularis, Plasmodium falciparum and Leishmania major) are suggested. Conclusions Our study indicates that the EPIYA motif may be a ubiquitous functional site for effectors that play an important pathogenicity role in mediating host-pathogen interactions. We suggest that some intracellular protozoan parasites could secrete EPIYA-motif containing effectors through secretion systems similar to the T3SS/T4SS in bacteria. Our predicted effectors provide useful hypotheses for further studies. PMID:21143776
TAL effectors and the executor R genes
Zhang, Junli; Yin, Zhongchao; White, Frank
2015-01-01
Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized—recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance. PMID:26347759
TAL effectors and the executor R genes.
Zhang, Junli; Yin, Zhongchao; White, Frank
2015-01-01
Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.
An assay for entry of secreted fungal effectors into plant cells.
Lo Presti, Libera; Zechmann, Bernd; Kumlehn, Jochen; Liang, Liang; Lanver, Daniel; Tanaka, Shigeyuki; Bock, Ralph; Kahmann, Regine
2017-01-01
Successful colonization of plants by prokaryotic and eukaryotic pathogens requires active effector-mediated suppression of defense responses and host tissue reprogramming. Secreted effector proteins can either display their activity in the apoplast or translocate into host cells and function therein. Although characterized in bacteria, the molecular mechanisms of effector delivery by fungal phytopathogens remain elusive. Here we report the establishment of an assay that is based on biotinylation of effectors in the host cytoplasm as hallmark of uptake. The assay exploits the ability of the bacterial biotin ligase BirA to biotinylate any protein that carries a short peptide (Avitag). It is based on the stable expression of BirA in the cytoplasm of maize plants and on engineering of Ustilago maydis strains to secrete Avitagged effectors. We demonstrate translocation of a number of effectors in the U. maydis-maize system and show data that suggest that the uptake mechanism could be rather nonspecific The assay promises to be a powerful tool for the classification of effectors as well as for the functional study of effector uptake mechanism not only in the chosen system but more generally for systems where biotrophic interactions are established. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.
Ma, Ka-Wai; Ma, Wenbo
2016-12-01
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Identification of AaCASPS7, an effector caspase in Aedes albopictus.
Feng, Lingyan; Liu, Hao; Li, Xiaomei; Qiao, Jialu; Wang, Shengya; Guo, Deyin; Liu, Qingzhen
2016-11-15
Aedes albopictus mosquito is a vector of various arboviruses and is becoming a significant threat to public health due to its rapid global expansion. Several reports suggest that apoptosis could be a factor limiting arbovirus infection in mosquitoes. Thus, it is significant to identify apoptosis pathway and study the correlation between apoptosis and virus infection in mosquitoes. Apoptosis is a type of programmed cell death that plays a vital role in immunity, development, and tissue homeostasis. Caspases are a family of conserved proteases playing important roles in apoptosis. In this study, we identified Aedes albopictus AaCASPS7, a caspase shared high identity with dipteran insect drICE orthologs. Phylogenetic analysis showed the closest relative of AaCASPS7 was Aedes aegypti AeCASPS7. AaCASPS7 displayed several features that were typical of an effector caspase and showed significant activity to effector caspase substrates. Aacasps7 transcripts were expressed ubiquitously in developmental and adult stages in Aedes albopictus mosquitoes. Transient expression of AaCASPS7 induced caspase-dependent apoptosis in C6/36 cells. Taken together the above data, this study identified a novel caspase, AaCASPS7, which might function as an apoptotic caspase. Further study the function of AaCASPS7 would facilitate better understanding the apoptotic mechanism in Aedes albopictus mosquito. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.
2003-06-01
Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.
Faurobert, E; Otto-Bruc, A; Chardin, P; Chabre, M
1993-01-01
We have produced a recombinant transducin alpha subunit (rT alpha) in sf9 cells, using a baculovirus system. Deletion of the myristoylation site near the N-terminal increased the solubility and allowed the purification of rT alpha. When reconstituted with excess T beta gamma on retinal membrane, rT alpha displayed functional characteristics of wild-type T alpha vis à vis its coupled receptor, rhodopsin and its effector, cGMP phosphodiesterase (PDE). We further mutated a tryptophan, W207, which is conserved in all G proteins and is suspected to elicit the fluorescence change correlated to their activation upon GDP/GTP exchange or aluminofluoride (AlFx) binding. [W207F]T alpha mutant displayed high affinity receptor binding and underwent a conformational switch upon receptor-catalysed GTP gamma S binding or upon AlFx binding, but this did not elicit any fluorescence change. Thus W207 is the only fluorescence sensor of the switch. Upon the switch the mutant remained unable to activate the PDE. To characterize better its effector-activating interaction we measured the affinity of [W207F]T alpha GDP-AlFx for PDE gamma, the effector subunit that binds most tightly to T alpha. [W207F]T alpha still bound in an activation-dependent way to PDE gamma, but with a 100-fold lower affinity than rT alpha. This suggests that W207 contributes to the G protein effector binding. Images PMID:8223434
Weßling, Ralf; Epple, Petra; Altmann, Stefan; He, Yijian; Yang, Li; Henz, Stefan R.; McDonald, Nathan; Wiley, Kristin; Bader, Kai Christian; Gläßer, Christine; Mukhtar, M. Shahid; Haigis, Sabine; Ghamsari, Lila; Stephens, Amber E.; Ecker, Joseph R.; Vidal, Marc; Jones, Jonathan D. G.; Mayer, Klaus F. X.; van Themaat, Emiel Ver Loren; Weigel, Detlef; Schulze-Lefert, Paul; Dangl, Jeffery L.; Panstruga, Ralph; Braun, Pascal
2014-01-01
SUMMARY While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this dataset with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intra- and interspecies convergence and several altered immune response phenotypes. The effectors and most heavily targeted host protein co-localized in sub-nuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets. PMID:25211078
Nonneutralizing Functional Antibodies: a New “Old” Paradigm for HIV Vaccines
Ake, Julie; Robb, Merlin L.; Kim, Jerome H.; Plotkin, Stanley A.
2014-01-01
Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high-frequency HIV-specific functional nNAb at high titers may represent an attractive hypothesis-testing strategy in future HIV vaccine efficacy trials. PMID:24920599
Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora.
Castiblanco, Luisa F; Triplett, Lindsay R; Sundin, George W
2018-01-01
Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora .
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity
2016-01-01
SUMMARY Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted “effector” proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. PMID:27784797
Effector biology of plant-associated organisms: concepts and perspectives.
Win, J; Chaparro-Garcia, A; Belhaj, K; Saunders, D G O; Yoshida, K; Dong, S; Schornack, S; Zipfel, C; Robatzek, S; Hogenhout, S A; Kamoun, S
2012-01-01
Every plant is closely associated with a variety of living organisms. Therefore, deciphering how plants interact with mutualistic and parasitic organisms is essential for a comprehensive understanding of the biology of plants. The field of plant-biotic interactions has recently coalesced around an integrated model. Major classes of molecular players both from plants and their associated organisms have been revealed. These include cell surface and intracellular immune receptors of plants as well as apoplastic and host-cell-translocated (cytoplasmic) effectors of the invading organism. This article focuses on effectors, molecules secreted by plant-associated organisms that alter plant processes. Effectors have emerged as a central class of molecules in our integrated view of plant-microbe interactions. Their study has significantly contributed to advancing our knowledge of plant hormones, plant development, plant receptors, and epigenetics. Many pathogen effectors are extraordinary examples of biological innovation; they include some of the most remarkable proteins known to function inside plant cells. Here, we review some of the key concepts that have emerged from the study of the effectors of plant-associated organisms. In particular, we focus on how effectors function in plant tissues and discuss future perspectives in the field of effector biology.
Kazanov, Marat D.; Li, Xiaoqing; Gelfand, Mikhail S.; Osterman, Andrei L.; Rodionov, Dmitry A.
2013-01-01
Large and functionally heterogeneous families of transcription factors have complex evolutionary histories. What shapes specificities toward effectors and DNA sites in paralogous regulators is a fundamental question in biology. Bacteria from the deep-branching lineage Thermotogae possess multiple paralogs of the repressor, open reading frame, kinase (ROK) family regulators that are characterized by carbohydrate-sensing domains shared with sugar kinases. We applied an integrated genomic approach to study functions and specificities of regulators from this family. A comparative analysis of 11 Thermotogae genomes revealed novel mechanisms of transcriptional regulation of the sugar utilization networks, DNA-binding motifs and specific functions. Reconstructed regulons for seven groups of ROK regulators were validated by DNA-binding assays using purified recombinant proteins from the model bacterium Thermotoga maritima. All tested regulators demonstrated specific binding to their predicted cognate DNA sites, and this binding was inhibited by specific effectors, mono- or disaccharides from their respective sugar catabolic pathways. By comparing ligand-binding domains of regulators with structurally characterized kinases from the ROK family, we elucidated signature amino acid residues determining sugar-ligand regulator specificity. Observed correlations between signature residues and the sugar-ligand specificities provide the framework for structure functional classification of the entire ROK family. PMID:23209028
Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.
Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E
2018-05-17
Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.
Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity
Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.
2018-01-01
Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less
Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.; ...
2016-12-16
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less
Kon, Shunsuke; Funaki, Tomo; Satake, Masanobu
2011-05-01
The role of ArfGAP1 as a terminator or effector in COPi-vesicle formation has been the subject of ongoing discussions. Here, the discussion on the putative terminator/effector functions has been enlarged to include Arf GAP members involved in the formation of clathrin-coated vesicles. ACAP1, whose role has been studied extensively, enhances the recycling of endocytosed proteins to the plasma membrane. Importantly, this positive role appears to be an overall reflection of both the terminator and effector activities attributed to ACAP1. Other Arf GAP subtypes have also been suggested to possess both terminator and effector activities. Interestingly, while most Arf GAP proteins regulate membrane trafficking by acting as facilitators, a few Arf GAP subtypes act as inhibitors.
Quezada, Sergio A.; Peggs, Karl S.; Curran, Michael A.; Allison, James P.
2006-01-01
CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF–transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3– and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy. PMID:16778987
Jaouannet, Maëlle; Rosso, Marie-Noëlle
2013-09-01
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System
Cianfanelli, Francesca R.; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J.
2016-01-01
The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery. PMID:27352036
Kang, Joonsoo; Malhotra, Nidhi
2015-01-01
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177
Identification and functional analysis of secreted effectors from phytoparasitic nematodes.
Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K
2016-03-21
Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes.
Carpenter, Victoria; Chen, Yi-Shan; Dolat, Lee; Valdivia, Raphael H
2017-01-01
Chlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.
Siamer, Sabrina; Gaubert, Stéphane; Boureau, Tristan; Brisset, Marie-Noëlle; Barny, Marie-Anne
2013-05-01
The bacterium Erwinia amylovora causes fire blight, an invasive disease that threatens apple trees, pear trees and other plants of the Rosaceae family. Erwinia amylovora pathogenicity relies on a type III secretion system and on a single effector DspA/E. This effector belongs to the widespread AvrE family of effectors whose biological function is unknown. In this manuscript, we performed a bioinformatic analysis of DspA/E- and AvrE-related effectors. Motif search identified nuclear localization signals, peroxisome targeting signals, endoplasmic reticulum membrane retention signals and leucine zipper motifs, but none of these motifs were present in all the AvrE-related effectors analysed. Protein threading analysis, however, predicted a conserved double β-propeller domain in the N-terminal part of all the analysed effector sequences. We then performed a random pentapeptide mutagenesis of DspA/E, which led to the characterization of 13 new altered proteins with a five amino acids insertion. Eight harboured the insertion inside the predicted β-propeller domain and six of these eight insertions impaired DspA/E stability or function. Conversely, the two remaining insertions generated proteins that were functional and abundantly secreted in the supernatant suggesting that these two insertions stabilized the protein. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Functional versus effector-specific organization of the human posterior parietal cortex: revisited
Leone, Frank T. M.; Medendorp, W. Pieter
2016-01-01
It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level. PMID:27466132
Shen, Danyu; Liu, Tingli; Ye, Wenwu; Liu, Li; Liu, Peihan; Wu, Yuren; Wang, Yuanchao; Dou, Daolong
2013-01-01
Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen.
Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L
2017-01-17
FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Impact of end effector technology on telemanipulation performance
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Szakaly, Z.; Ohm, T.
1990-01-01
Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.
Space Station end effector strategy study
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.
1987-01-01
The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.
Jefferis, R; Lund, J; Pound, J D
1998-06-01
The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.
LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell
Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.
2017-01-01
Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209
Kainer, Manuela; Antes, Bernhard; Wiederkum, Susanne; Wozniak-Knopp, Gordana; Bauer, Anton; Rüker, Florian; Woisetschläger, Max
2012-10-15
Antigen binding immunoglobulin Fc fragments (Fcab) are generated by engineering loop regions in the CH3 domain of human IgG1 Fc. Variants of an Fcab specific for Her-2 were designed to display either enhanced (S239D:A330L:I332E) or diminished (L234A:L235A) binding affinities to the Fc receptor CD16a based on mutations described previously. The two mutant Fcab proteins demonstrated the expected modulation of CD16a binding. Interaction with recombinant or cell surface expressed Her-2 was unaffected in both mutants compared to the parental Fcab. Binding affinities for CD16a correlated with the ADCC-potencies of the Fcab variants. Additional studies indicated that the L234A:L235A variant Fcab had equivalent structural features as the unmodified Fcab since their DSC profiles were similar and antigen binding after re-folding upon partial heat denaturation had not changed. Introduction of the S239D:A330L:I332E mutations resulted in a significant reduction of the CH2 domain melting temperature, a moderate decrease of the thermal transition of the CH3 domain and lower antigen binding after thermal stress compared to the parental Fcab. We conclude that the known correlation between CD16a binding affinity and ADCC potency is also valid in Fcab proteins and that antigen specific Fcab molecules can be further engineered for fine tuning of immuno effector functions. Copyright © 2012 Elsevier Inc. All rights reserved.
Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.
Suzuki, M M; Cooper, E L
1995-08-01
Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.
Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity.
Phan, Anthony T; Goldrath, Ananda W; Glass, Christopher K
2017-05-16
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Metabolic and epigenetic coordination of T cell and Macrophage immunity
Phan, Anthony T.; Goldrath, Ananda W.; Glass, Christopher K.
2017-01-01
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. PMID:28514673
The Role of TIR-NBS and TIR-X Proteins in Plant Basal Defense Responses1[W][OA
Nandety, Raja Sekhar; Caplan, Jeffery L.; Cavanaugh, Keri; Perroud, Bertrand; Wroblewski, Tadeusz; Michelmore, Richard W.; Meyers, Blake C.
2013-01-01
Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors. PMID:23735504
The role of TIR-NBS and TIR-X proteins in plant basal defense responses.
Nandety, Raja Sekhar; Caplan, Jeffery L; Cavanaugh, Keri; Perroud, Bertrand; Wroblewski, Tadeusz; Michelmore, Richard W; Meyers, Blake C
2013-07-01
Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors.
The YopJ superfamily of type III efforts in plant-associated bacteria
USDA-ARS?s Scientific Manuscript database
Bacterial pathogens employ the type III secretion system to secrete and translocate effector proteins into their hosts. The primary function of these effector proteins is believed to be the suppression of host defense responses or innate immunity. However, some effector proteins may be recognized by...
Emerging concepts in effector biology of plant-associated organisms.
Hogenhout, Saskia A; Van der Hoorn, Renier A L; Terauchi, Ryohei; Kamoun, Sophien
2009-02-01
Plant-associated organisms secrete proteins and other molecules to modulate plant defense circuitry and enable colonization of plant tissue. Understanding the molecular function of these secreted molecules, collectively known as effectors, became widely accepted as essential for a mechanistic understanding of the processes underlying plant colonization. This review summarizes recent findings in the field of effector biology and highlights the common concepts that have emerged from the study of cellular plant pathogen effectors.
Ham, Jong Hyun; Majerczak, Doris R; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L
2009-06-01
The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well.
Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.
Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H
2017-01-01
Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.
Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected].
Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing
2014-01-01
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
Phytophthora parasitica Effector PpRxLR2 Suppresses Nicotiana benthamiana Immunity.
Dalio, R J D; Maximo, H J; Oliveira, T S; Dias, R O; Breton, M C; Felizatti, H; Machado, M
2018-04-01
Phytophthora species secrete several classes of effector proteins during interaction with their hosts. These proteins can have multiple functions including modulation of host physiology and immunity. The RxLR effectors have the ability to enter plant cells using the plant machinery. Some of these effectors have been characterized as immunity suppressors; however, very little is known about their functions in the interaction between Phytophthora parasitica and its hosts. Using a bioinformatics pipeline, we have identified 172 candidate RxLR effectors (CREs) in the isolate IAC 01_95 of P. parasitica. Of these 172 CREs, 93 were found to be also present in eight other genomes of P. parasitica, isolated from different hosts and continents. After transcriptomics and gene expression analysis, we have found five CREs to be up-regulated in in-vitro and in-planta samples. Subsequently, we selected three CREs for functional characterization in the model plant Nicotiana benthamiana. We show that PpRxLR2 is able to completely suppress INF-1-induced cell death, whereas PpRxLR3 and PpRxLR5 moderately suppressed N. benthamiana immunity in a less-extensive manner. Moreover, we confirmed the effector-triggered susceptibility activity of these proteins after transient transformation and infection of N. benthamiana plants. All three CREs enhanced virulence of P. parasitica during the interaction with N. benthamiana. These effectors, in particular PpRxLR2, can be targeted for the development of biotechnology-based control strategies of P. parasitica diseases.
TNF-induced target cell killing by CTL activated through cross-presentation.
Wohlleber, Dirk; Kashkar, Hamid; Gärtner, Katja; Frings, Marianne K; Odenthal, Margarete; Hegenbarth, Silke; Börner, Carolin; Arnold, Bernd; Hämmerling, Günter; Nieswandt, Bernd; van Rooijen, Nico; Limmer, Andreas; Cederbrant, Karin; Heikenwalder, Mathias; Pasparakis, Manolis; Protzer, Ulrike; Dienes, Hans-Peter; Kurts, Christian; Krönke, Martin; Knolle, Percy A
2012-09-27
Viruses can escape cytotoxic T cell (CTL) immunity by avoiding presentation of viral components via endogenous MHC class I antigen presentation in infected cells. Cross-priming of viral antigens circumvents such immune escape by allowing noninfected dendritic cells to activate virus-specific CTLs, but they remain ineffective against infected cells in which immune escape is functional. Here, we show that cross-presentation of antigen released from adenovirus-infected hepatocytes by liver sinusoidal endothelial cells stimulated cross-primed effector CTLs to release tumor necrosis factor (TNF), which killed virus-infected hepatocytes through caspase activation. TNF receptor signaling specifically eliminated infected hepatocytes that showed impaired anti-apoptotic defense. Thus, CTL immune surveillance against infection relies on two similarly important but distinct effector functions that are both MHC restricted, requiring either direct antigen recognition on target cells and canonical CTL effector function or cross-presentation and a noncanonical effector function mediated by TNF. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.
2011-01-01
Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370
Legionella and Coxiella effectors: strength in diversity and activity.
Qiu, Jiazhang; Luo, Zhao-Qing
2017-10-01
Legionella pneumophila and Coxiella burnetii are two evolutionarily related intracellular pathogens that use the Dot/Icm type IV secretion system to translocate effectors into host cells. These effectors are essential for the establishment of membrane-bound compartments known as replication vacuoles, which enable the survival and replication of bacteria inside host cells. The effectors interfere with diverse signalling pathways to co-opt host processes, such as vesicle trafficking, ubiquitylation, gene expression and lipid metabolism, to promote pathogen survival. In this Review, we explore Dot/Icm effectors from L. pneumophila and C. burnetii as key virulence factors, and we examine the biochemical and cell biological functions of these effectors and their roles in our understanding of bacterial virulence.
Chen, Chunhong; Newell, Kim; Lawrence, Gregory J.; Ellis, Jeffrey G.; Anderson, Peter A.; Dodds, Peter N.
2016-01-01
NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216
Gilbert, Peter B.; Juraska, Michal; deCamp, Allan C.; Karuna, Shelly; Edupuganti, Srilatha; Mgodi, Nyaradzo; Donnell, Deborah J.; Bentley, Carter; Sista, Nirupama; Andrew, Philip; Isaacs, Abby; Huang, Yunda; Zhang, Lily; Capparelli, Edmund; Kochar, Nidhi; Wang, Jing; Eshleman, Susan H.; Mayer, Kenneth H.; Magaret, Craig A.; Hural, John; Kublin, James G.; Gray, Glenda; Montefiori, David C.; Gomez, Margarita M.; Burns, David N.; McElrath, Julie; Ledgerwood, Julie; Graham, Barney S.; Mascola, John R.; Cohen, Myron; Corey, Lawrence
2017-01-01
Background Anti-HIV-1 broadly neutralizing antibodies (bnAbs) have been developed as potential agents for prevention of HIV-1 infection. The HIV Vaccine Trials Network and the HIV Prevention Trials Network are conducting the Antibody Mediated Prevention (AMP) trials to assess whether, and how, intravenous infusion of the anti-CD4 binding site bnAb, VRC01, prevents HIV-1 infection. These are the first test-of-concept studies to assess HIV-1 bnAb prevention efficacy in humans. Methods The AMP trials are two parallel phase 2b HIV-1 prevention efficacy trials conducted in two cohorts: 2700 HIV-uninfected men and transgender persons who have sex with men in the United States, Peru, Brazil, and Switzerland; and 1500 HIV-uninfected sexually active women in seven countries in sub-Saharan Africa. Participants are randomized 1:1:1 to receive an intravenous infusion of 10 mg/kg VRC01, 30 mg/kg VRC01, or a control preparation every 8 weeks for a total of 10 infusions. Each trial is designed (1) to assess overall prevention efficacy (PE) pooled over the two VRC01 dose groups vs. control and (2) to assess VRC01 dose and laboratory markers as correlates of protection (CoPs) against overall and genotype- and phenotype-specific infection. Results Each AMP trial is designed to have 90% power to detect PE > 0% if PE is ≥ 60%. The AMP trials are also designed to identify VRC01 properties (i.e., concentration and effector functions) that correlate with protection and to provide insight into mechanistic CoPs. CoPs are assessed using data from breakthrough HIV-1 infections, including genetic sequences and sensitivities to VRC01-mediated neutralization and Fc effector functions. Conclusions The AMP trials test whether VRC01 can prevent HIV-1 infection in two study populations. If affirmative, they will provide information for estimating the optimal dosage of VRC01 (or subsequent derivatives) and identify threshold levels of neutralization and Fc effector functions associated with high-level protection, setting a benchmark for future vaccine evaluation and constituting a bridge to other bnAb approaches for HIV-1 prevention. PMID:29218117
Gilbert, Peter B; Juraska, Michal; deCamp, Allan C; Karuna, Shelly; Edupuganti, Srilatha; Mgodi, Nyaradzo; Donnell, Deborah J; Bentley, Carter; Sista, Nirupama; Andrew, Philip; Isaacs, Abby; Huang, Yunda; Zhang, Lily; Capparelli, Edmund; Kochar, Nidhi; Wang, Jing; Eshleman, Susan H; Mayer, Kenneth H; Magaret, Craig A; Hural, John; Kublin, James G; Gray, Glenda; Montefiori, David C; Gomez, Margarita M; Burns, David N; McElrath, Julie; Ledgerwood, Julie; Graham, Barney S; Mascola, John R; Cohen, Myron; Corey, Lawrence
2017-01-01
Anti-HIV-1 broadly neutralizing antibodies (bnAbs) have been developed as potential agents for prevention of HIV-1 infection. The HIV Vaccine Trials Network and the HIV Prevention Trials Network are conducting the Antibody Mediated Prevention (AMP) trials to assess whether, and how, intravenous infusion of the anti-CD4 binding site bnAb, VRC01, prevents HIV-1 infection. These are the first test-of-concept studies to assess HIV-1 bnAb prevention efficacy in humans. The AMP trials are two parallel phase 2b HIV-1 prevention efficacy trials conducted in two cohorts: 2700 HIV-uninfected men and transgender persons who have sex with men in the United States, Peru, Brazil, and Switzerland; and 1500 HIV-uninfected sexually active women in seven countries in sub-Saharan Africa. Participants are randomized 1:1:1 to receive an intravenous infusion of 10 mg/kg VRC01, 30 mg/kg VRC01, or a control preparation every 8 weeks for a total of 10 infusions. Each trial is designed (1) to assess overall prevention efficacy (PE) pooled over the two VRC01 dose groups vs. control and (2) to assess VRC01 dose and laboratory markers as correlates of protection (CoPs) against overall and genotype- and phenotype-specific infection. Each AMP trial is designed to have 90% power to detect PE > 0% if PE is ≥ 60%. The AMP trials are also designed to identify VRC01 properties (i.e., concentration and effector functions) that correlate with protection and to provide insight into mechanistic CoPs. CoPs are assessed using data from breakthrough HIV-1 infections, including genetic sequences and sensitivities to VRC01-mediated neutralization and Fc effector functions. The AMP trials test whether VRC01 can prevent HIV-1 infection in two study populations. If affirmative, they will provide information for estimating the optimal dosage of VRC01 (or subsequent derivatives) and identify threshold levels of neutralization and Fc effector functions associated with high-level protection, setting a benchmark for future vaccine evaluation and constituting a bridge to other bnAb approaches for HIV-1 prevention.
Mazerolles, Fabienne; Stolzenberg, Marie-Claude; Pelle, Olivier; Picard, Capucine; Neven, Benedicte; Fischer, Alain; Magerus-Chatinet, Aude; Rieux-Laucat, Frederic
2018-01-01
Autoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS. The proportion of CD25 high CD127 low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3 + CD4 + T cells from ALPS patients and thus an abnormally low proportion of CD25 high FOXP3 + Helios + T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3 low CD45RA + ) and an unusual subpopulation (CD4 + CD127 low CD15s + CD45RA + ). Despite this abnormal phenotype, the CD25 high CD127 low Tregs' suppressive function was unaffected. Furthermore, conventional T cells from FAS -mutated patients showed normal levels of sensitivity to Treg suppression. An abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro . This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression.
Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.
Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang
2017-01-01
Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.
Lucca, Liliana E.; Lerner, Benjamin A.; Gunel, Murat; Raddassi, Khadir; Coric, Vlad; Hafler, David A.; Love, J. Christopher
2017-01-01
Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM), the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25—CD127+Foxp3—effector cells in healthy subjects and in patients with GBM. In healthy subjects, we found that PD-1+CD4+ effector cells are dysfunctional: they do not proliferate but can secrete large quantities of IFNγ. Strikingly, blocking antibodies against PD-1 did not rescue proliferation. RNA-sequencing revealed features of exhaustion in PD-1+ CD4 effectors. In the context of GBM, tumors were enriched in PD-1+ CD4+ effectors that were similarly dysfunctional and unable to proliferate. Furthermore, we found enrichment of PD-1+TIM-3+ CD4+ effectors in tumors, suggesting that co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. RNA-sequencing of blood and tumors from GBM patients revealed distinct differences between CD4+ effectors from both compartments with enrichment in multiple gene sets from tumor infiltrating PD-1—CD4+ effectors cells. Enrichment of these gene sets in tumor suggests a more metabolically active cell state with signaling through other co-receptors. PD-1 expression on CD4 cells identifies a dysfunctional subset refractory to rescue with PD-1 blocking antibodies, suggesting that the influence of immune checkpoint inhibitors may involve recovery of function in the PD-1—CD4+ T cell compartment. Additionally, co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. PMID:28880903
Makinde, O A; Mpofu, K; Vrabic, R; Ramatsetse, B I
2017-01-01
The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula: see text] and [Formula: see text]), normal forces ([Formula: see text]) and total load [Formula: see text] acting on the teeth of the worm-gear module of the multifunctional robotic end-effector during the gripping of worn-out or new RVS machine subsystems, which are 978.547, 1245.06 and 1016.406 N, respectively, were satisfactory. The nominal bending and torsional stresses acting on the shoulder of the socket module of the multifunctional robotic end-effector during the loosing and tightening of bolts, which are 1450.72 and 179.523 MPa, respectively, were satisfactory. The hammering and unpinning forces utilized by the electric cylinder actuator module of the multifunctional robotic end-effector during the unpinning and hammering of screen panel pins out of and into the screen panels were satisfactory.
Kinematic functions for the 7 DOF robotics research arm
NASA Technical Reports Server (NTRS)
Kreutz, K.; Long, M.; Seraji, Homayoun
1989-01-01
The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.
Electroporation of Functional Bacterial Effectors into Mammalian Cells
Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; ...
2015-01-19
Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.
Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.
Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT,more » NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of action.« less
Deciphering Interplay between Salmonella Invasion Effectors
Koronakis, Vassilis
2008-01-01
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. PMID:18389058
Regulation of Effector Treg Cells in Murine Lupus.
Chandrasekaran, Uma; Yi, Woelsung; Gupta, Sanjay; Weng, Chien-Huan; Giannopoulou, Eugenia; Chinenov, Yurii; Jessberger, Rolf; Weaver, Casey T; Bhagat, Govind; Pernis, Alessandra B
2016-06-01
Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development. © 2016, American College of Rheumatology.
Zhou, Yan; Dong, Na; Hu, Liyan; Shao, Feng
2013-01-01
The genus Shigella infects human gut epithelial cells to cause diarrhea and gastrointestinal disorders. Like many other Gram-negative bacterial pathogens, the virulence of Shigella spp. relies on a conserved type three secretion system that delivers a handful of effector proteins into host cells to manipulate various host cell physiology. However, many of the Shigella type III effectors remain functionally uncharacterized. Here we observe that OspG, one of the Shigella effectors, interacted with ubiquitin conjugates and poly-ubiquitin chains of either K48 or K63 linkage in eukaryotic host cells. Purified OspG protein formed a stable complex with ubiquitin but showed no interactions with other ubiquitin-like proteins. OspG binding to ubiquitin required the carboxyl terminal helical region in OspG and the canonical I44-centered hydrophobic surface in ubiquitin. OspG and OspG-homologous effectors, NleH1/2 from enteropathogenic E coli (EPEC), contain sub-domains I-VII of eukaryotic serine/threonine kinase. GST-tagged OspG and NleH1/2 could undergo autophosphorylation, the former of which was significantly stimulated by ubiquitin binding. Ubiquitin binding was also required for OspG functioning in attenuating host NF-κB signaling. Our data illustrate a new mechanism that bacterial pathogen like Shigella exploits ubiquitin binding to activate its secreted virulence effector for its functioning in host eukaryotic cells. PMID:23469023
Sharma, Shailendra; Sharma, Shiveta; Hirabuchi, Akiko; Yoshida, Kentaro; Fujisaki, Koki; Ito, Akiko; Uemura, Aiko; Terauchi, Ryohei; Kamoun, Sophien; Sohn, Kee Hoon; Jones, Jonathan D G; Saitoh, Hiromasa
2013-05-01
Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Yang, Rui; Lirussi, Dario; Thornton, Tina M; Jelley-Gibbs, Dawn M; Diehl, Sean A; Case, Laure K; Madesh, Muniswamy; Taatjes, Douglas J; Teuscher, Cory; Haynes, Laura; Rincón, Mercedes
2015-01-01
IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI: http://dx.doi.org/10.7554/eLife.06376.001 PMID:25974216
Carrette, Florent; Henriquez, Monique L.; Fujita, Yu
2018-01-01
T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007
Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon
2017-01-01
Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium -mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa , Psa -NZ V13 and Psa -NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana . Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium -mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1 , NDR1 , or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana . In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta .
Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon
2017-01-01
Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta. PMID:29326748
Muthuswamy, Ravikumar; Corman, John M; Dahl, Kathryn; Chatta, Gurkamal S; Kalinski, Pawel
2016-09-01
Local infiltration of CD8(+) T cells (CTLs) in tumor lesions predicts overall clinical outcomes and the clinical benefit of cancer patients from immune checkpoint blockade. In the current study, we evaluated local production of different classes of chemokines in prostate cancer lesions, and the feasibility of their modulation to promote selective entry of CTLs into prostate tumors. Chemokine expression in prostate cancer lesion was analyzed by TaqMan-based quantitative PCR, confocal fluorescence microscopy and ELISA. For ex vivo chemokine modulation analysis, prostate tumor explants from patients undergoing primary prostate cancer resections were cultured for 24 hr, in the absence or presence of the combination of poly-I:C, IFNα, and celecoxib (PAC). The numbers of cells producing defined chemokines in the tissues were analyzed by confocal microscopy. Chemotaxis of effector CD8(+) T cells towards the untreated and PAC-treated tumor explant supernatants were evaluated in a standard in vitro migration assays, using 24 well trans-well plates. The number of effector cells that migrated was enumerated by flow cytometry. Pearson (r) correlation was used for analyzing correlations between chemokines and immune filtrate, while paired two tailed students t-test was used for comparison between treatment groups. Prostate tumors showed uniformly low levels of CTL/NK/Th1-recruiting chemokines (CCL5, CXCL9, CXCL10) but expressed high levels of chemokines implicated in the attraction of myeloid derived suppressor cells (MDSC) and regulatory T cells (Treg ): CCL2, CCL22, and CXCL12. Strong positive correlations were observed between CXCL9 and CXCL10 and local CD8 expression. Tumor expression levels of CCL2, CCL22, and CXCL12 were correlated with intratumoral expression of MDSC/Treg markers: FOXP3, CD33, and NCF2. Treatment with PAC suppressed intratumoral production of the Treg -attractant CCL22 and Treg /MDSC-attractant, CXCL12, while increasing the production of the CTL attractant, CXCL10. These changes in local chemokine production were accompanied by the reduced ability of the ex vivo-treated tumors to attract CD4(+) FOXP3(+) Treg cells, and strongly enhanced attraction of the CD8(+) Granzyme B(+) CTLs. Our data demonstrate that the chemokine environment in prostate cancer can be reprogrammed to selectively enhance the attraction of type-1 effector immune cells and reduce local attraction of MDSCs and Tregs . Prostate 76:1095-1105, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Quentin, Michaëel; Abad, Pierre; Favery, Bruno
2013-01-01
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Vleeshouwers, Vivianne G A A; Oliver, Richard P
2014-03-01
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Scholze, Heidi; Boch, Jens
2010-01-01
TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.
Critical requirement for the Wiskott-Aldrich syndrome protein in Th2 effector function
USDA-ARS?s Scientific Manuscript database
The Wiskott-Aldrich syndrome protein (WASp) regulates actin polymerization via activation of Arp2/3 and plays a role in the dynamics of the immunological synapse. How these events influence subsequent gene expression and effector function is unclear. We studied the role of WASp in CD4+ T cell effe...
Neural control of the kidney: functionally specific renal sympathetic nerve fibers.
DiBona, G F
2000-11-01
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs via mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers in addition to an innervation that is shared among all the effectors. This arrangement permits the maximum flexibility in the coordination of physiologically appropriate responses of the tubules, the blood vessels, and the juxtaglomerular granular cells to a variety of homeostatic requirements.
Functionally specific renal sympathetic nerve fibers: role in cardiovascular regulation.
DiBona, G F
2001-06-01
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs through mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers and an innervation that is shared among all the effectors. This arrangement facilitates maximum flexibility in the coordination of the tubules, the blood vessels, and the juxtaglomerular granular cells so as to produce physiologically appropriate responses to a variety of homeostatic requirements.
Hewezi, Tarek
2015-10-01
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.
Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges
Selin, Carrie; de Kievit, Teresa R.; Belmonte, Mark F.; Fernando, W. G. Dilantha
2016-01-01
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930
Joseph, Thomas T; Osman, Roman
2012-01-01
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways.
Joseph, Thomas T.; Osman, Roman
2012-01-01
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand “seed region” have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways. PMID:23028290
Liu, Yunxiao; Lan, Xia; Song, Shiren; Yin, Ling; Dry, Ian B.; Qu, Junjie; Xiang, Jiang; Lu, Jiang
2018-01-01
Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs) were cloned from the P. viticola isolate “JL-7-2” genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83) could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria. PMID:29706971
Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease
Conlan, Thomas; Jardine, Laura; Tkacz, Claire; Ferrer, Ivana R.; Lomas, Cara; Ward, Sophie; West, Heather; Dertschnig, Simone; Means, Terry K.; Kaplan, Daniel H.; Bennett, Clare L.
2018-01-01
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ–specific approaches to block immunopathology while avoiding global immune suppression. PMID:29515032
Iborra, Salvador; Ramos, Manuel; Arana, David M.; Lázaro, Silvia; Aguilar, Francisco; Santos, Eugenio; López, Daniel
2013-01-01
Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate. PMID:23776078
USDA-ARS?s Scientific Manuscript database
All fungal plant pathogens produce effectors to manipulate the plant immune system to colonize and gain nutrients from the plant cell. Much is known about how fungal pathogens classified as biotrophs use effectors to interact with their hosts and how the host responds, however, less is known about ...
USDA-ARS?s Scientific Manuscript database
It has now been established that the wheat pathogen Stagonospora nodorum causes disease on wheat in an inverse gene-for-gene manner through the interaction of pathogen effector proteins and corresponding dominant susceptibility host genes. One such effector, SnToxA, interacts with the Tsn1 gene to c...
Protein-Protein Interaction Assays with Effector-GFP Fusions in Nicotiana benthamiana.
Petre, Benjamin; Win, Joe; Menke, Frank L H; Kamoun, Sophien
2017-01-01
Plant parasites secrete proteins known as effectors into host tissues to manipulate host cell structures and functions. One of the major goals in effector biology is to determine the host cell compartments and the protein complexes in which effectors accumulate. Here, we describe a five-step pipeline that we routinely use in our lab to achieve this goal, which consists of (1) Golden Gate assembly of pathogen effector-green fluorescent protein (GFP) fusions into binary vectors, (2) Agrobacterium-mediated heterologous protein expression in Nicotiana benthamiana leaf cells, (3) laser-scanning confocal microscopy assay, (4) anti-GFP coimmunoprecipitation-liquid chromatography-tandem mass spectrometry (coIP/MS) assay, and (5) anti-GFP western blotting. This pipeline is suitable for rapid, cost-effective, and medium-throughput screening of pathogen effectors in planta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germane, Katherine L.; Spiller, Benjamin W.
2011-09-20
Bacterial pathogens secrete effectors into their hosts that subvert host defenses and redirect host processes. EspG is a type three secretion effector with a disputed function that is found in enteropathogenic Escherichia coli. Here we show that EspG is structurally similar to VirA, a Shigella virulence factor; EspG has a large, conserved pocket on its surface; EspG binds directly to the amino-terminal inhibitory domain of human p21-activated kinase (PAK); and mutations to conserved residues in the surface pocket disrupt the interaction with PAK.
Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.
Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu
2018-02-20
The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.
Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.
Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias
2017-09-01
In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.
Nuclear processes associated with plant immunity and pathogen susceptibility
Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja
2015-01-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755
Nuclear processes associated with plant immunity and pathogen susceptibility.
Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar
2015-07-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications.
Pyzocha, Neena K; Chen, Sidi
2018-02-16
CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by making targeted DNA edits simple and scalable. These technologies are developed by domesticating naturally occurring microbial adaptive immune systems that display wide diversity of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes have been characterized and engineered for use in mammalian cells. The unique properties of the single effector enzymes can make a critical difference in experimental use or targeting specificity. This review describes known single effector enzymes and discusses their use in genome engineering applications.
Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang
2017-07-21
B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.
Wei, Hai-Lei; Collmer, Alan
2017-12-25
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Suarez, Guadalupe V; Angerami, Matías T; Vecchione, María B; Laufer, Natalia; Turk, Gabriela; Ruiz, Maria J; Mesch, Viviana; Fabre, Bibiana; Maidana, Patricia; Ameri, Diego; Cahn, Pedro; Sued, Omar; Salomón, Horacio; Bottasso, Oscar A; Quiroga, María F
2015-09-01
Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlling transcription in human pluripotent stem cells using CRISPR-effectors.
Genga, Ryan M; Kearns, Nicola A; Maehr, René
2016-05-15
The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells, including hPSCs. In this review, we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation, gene repression, and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene, demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs. Copyright © 2015 Elsevier Inc. All rights reserved.
PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells
He, Feng; Chen, Hairong; Probst-Kepper, Michael; Geffers, Robert; Eifes, Serge; del Sol, Antonio; Schughart, Klaus; Zeng, An-Ping; Balling, Rudi
2012-01-01
Human FOXP3+CD25+CD4+ regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4+ T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function. PMID:23169000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srikannathasan, Velupillai; English, Grant; Bui, Nhat Khai
Crystal structures of type VI secretion system-associated immunity proteins, a peptidoglycan endopeptidase and a complex of the endopeptidase and its cognate immunity protein are reported together with assays of endopeptidase activity and functional assessment. Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-d-glutamic acid and l-meso-diaminopimelic acid with differentmore » specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure–activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1–Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2–Rap2a orthologues suggest that the specificity of these immunity proteins for neutralizing effectors is fold-dependent and that in cases where the fold is conserved sequence differences contribute to the specificity of effector–immunity protein interactions.« less
GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.
Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide
2015-01-01
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing
2014-01-01
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review. PMID:25513772
Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.
2015-01-01
Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268
Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng
2010-03-31
Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was functional when any one of these effector mechanisms was completely absent, except some noticeably reduced penetrance, but not abolishment, of the phenotype in the male background in comparison to female background. These results also indicate that some other effector mechanism(s) of granulocytes may be involved in the killing of cancer cells in SR/CR mice.
Gershman, Samuel J.; Pesaran, Bijan; Daw, Nathaniel D.
2009-01-01
Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable, due to the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning – such as prediction error signals for action valuation associated with dopamine and the striatum – can cope with this “curse of dimensionality.” We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and BOLD activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to “divide and conquer” reinforcement learning over high-dimensional action spaces. PMID:19864565
Gershman, Samuel J; Pesaran, Bijan; Daw, Nathaniel D
2009-10-28
Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning-such as prediction error signals for action valuation associated with dopamine and the striatum-can cope with this "curse of dimensionality." We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to "divide and conquer" reinforcement learning over high-dimensional action spaces.
Independently evolved virulence effectors converge onto hubs in a plant immune system network.
Mukhtar, M Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T; Pevzner, Samuel J; Donovan, Susan E; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M; Gebreab, Fana; Gutierrez, Bryan J; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P; Hill, David E; Ecker, Joseph R; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L
2011-07-29
Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.
Reaction Time Correlations during Eye–Hand Coordination:Behavior and Modeling
Dean, Heather L.; Martí, Daniel; Tsui, Eva; Rinzel, John; Pesaran, Bijan
2011-01-01
During coordinated eye– hand movements, saccade reaction times (SRTs) and reach reaction times (RRTs) are correlated in humans and monkeys. Reaction times (RTs) measure the degree of movement preparation and can correlate with movement speed and accuracy. However, RTs can also reflect effector nonspecific influences, such as motivation and arousal. We use a combination of behavioral psychophysics and computational modeling to identify plausible mechanisms for correlations in SRTs and RRTs. To disambiguate nonspecific mechanisms from mechanisms specific to movement coordination, we introduce a dual-task paradigm in which a reach and a saccade are cued with a stimulus onset asynchrony (SOA). We then develop several variants of integrate-to-threshold models of RT, which postulate that responses are initiated when the neural activity encoding effector-specific movement preparation reaches a threshold. The integrator models formalize hypotheses about RT correlations and make predictions for how each RT should vary with SOA. To test these hypotheses, we trained three monkeys to perform the eye– hand SOA task and analyzed their SRTs and RRTs. In all three subjects, RT correlations decreased with increasing SOA duration. Additionally, mean SRT decreased with decreasing SOA, revealing facilitation of saccades with simultaneous reaches, as predicted by the model. These results are not consistent with the predictions of the models with common modulation or common input but are compatible with the predictions of a model with mutual excitation between two effector-specific integrators. We propose that RT correlations are not simply attributable to motivation and arousal and are a signature of coordination. PMID:21325507
Anderson, Ryan G; Casady, Megan S; Fee, Rachel A; Vaughan, Martha M; Deb, Devdutta; Fedkenheuer, Kevin; Huffaker, Alisa; Schmelz, Eric A; Tyler, Brett M; McDowell, John M
2012-12-01
Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR-like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non-pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen's host. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett
2004-11-23
The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resultedmore » in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.« less
The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus.
Sędzielewska Toro, Kinga; Brachmann, Andreas
2016-02-09
Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Recent studies of plant-pathogen interactions showed that effector proteins play a key role in host colonization by controlling the plant immune system. We hypothesise that also for symbiotic-plant interactions the secreted effectome of the fungus is a major component of communication and the conservation level of effector proteins between AMF species may be indicative whether they play a fundamental role. In this study, we used a bioinformatics pipeline to predict and compare the effector candidate repertoire of the two AMF species, Rhizophagus irregularis and Rhizophagus clarus. Our in silico pipeline revealed a list of 220 R. irregularis candidate effector genes that create a valuable information source to elucidate the mechanism of plant infection and colonization by fungi during AMF symbiotic interaction. While most of the candidate effectors show no homologies to known domains or proteins, the candidates with homologies point to potential roles in signal transduction, cell wall modification or transcription regulation. A remarkable aspect of our work is presence of a large portion of the effector proteins involved in symbiosis, which are not unique to each fungi or plant species, but shared along the Glomeromycota phylum. For 95% of R. irregularis candidates we found homologs in a R. clarus genome draft generated by Illumina high-throughput sequencing. Interestingly, 9% of the predicted effectors are at least as conserved between the two Rhizophagus species as proteins with housekeeping functions (similarity > 90%). Therefore, we state that this group of highly conserved effector proteins between AMF species may play a fundamental role during fungus-plant interaction. We hypothesise that in symbiotic interactions the secreted effectome of the fungus might be an important component of communication. Identification and functional characterization of the primary AMF effectors that regulate symbiotic development will help in understanding the mechanisms of fungus-plant interaction.
Characterization of CTL Recognized Epitopes on Human Breast Tumors
1996-09-01
maturation and effector function of cellular immune cytotoxic effectors such as CTL (11). (c) The epitopes defined on tumor Ag are self-peptides of...have been reported to be expressed in breast and ovarian cancer cells (18), and they apparently function by maintaining the undifferentiated state...Body of the Report The purpose of the present work continues to be the characterization of the functional significance of the CTL epitopes as potential
The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.
Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel
2018-05-16
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T
2016-06-10
The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.
Type III secretion system effector proteins: double agents in bacterial disease and plant defense.
Alfano, James R; Collmer, Alan
2004-01-01
Many phytopathogenic bacteria inject virulence effector proteins into plant cells via a Hrp type III secretion system (TTSS). Without the TTSS, these pathogens cannot defeat basal defenses, grow in plants, produce disease lesions in hosts, or elicit the hypersensitive response (HR) in nonhosts. Pathogen genome projects employing bioinformatic methods to identify TTSS Hrp regulon promoters and TTSS pathway targeting signals suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of effectors. The Hrp TTSS employs customized cytoplasmic chaperones, conserved export components in the bacterial envelope (also used by the TTSS of animal pathogens), and a more specialized set of TTSS-secreted proteins to deliver effectors across the plant cell wall and plasma membrane. Many effectors can act as molecular double agents that betray the pathogen to plant defenses in some interactions and suppress host defenses in others. Investigations of the functions of effectors within plant cells have demonstrated the plasma membrane and nucleus as subcellular sites for several effectors, revealed some effectors to possess cysteine protease or protein tyrosine phosphatase activity, and provided new clues to the coevolution of bacterium-plant interactions.
Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie
2012-07-01
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth.
Barceló, Carles; Paco, Noelia; Morell, Mireia; Alvarez-Moya, Blanca; Bota-Rabassedas, Neus; Jaumot, Montserrat; Vilardell, Felip; Capella, Gabriel; Agell, Neus
2014-02-15
KRAS phosphorylation has been reported recently to modulate the activity of mutant KRAS protein in vitro. In this study, we defined S181 as a specific phosphorylation site required to license the oncogenic function of mutant KRAS in vivo. The phosphomutant S181A failed to induce tumors in mice, whereas the phosphomimetic mutant S181D exhibited an enhanced tumor formation capacity, compared with the wild-type KRAS protein. Reduced growth of tumors composed of cells expressing the nonphosphorylatable KRAS S181A mutant was correlated with increased apoptosis. Conversely, increased growth of tumors composed of cells expressing the phosphomimetic KRAS S181D mutant was correlated with increased activation of AKT and ERK, two major downstream effectors of KRAS. Pharmacologic treatment with PKC inhibitors impaired tumor growth associated with reduced levels of phosphorylated KRAS and reduced effector activation. In a panel of human tumor cell lines expressing various KRAS isoforms, we showed that KRAS phosphorylation was essential for survival and tumorigenic activity. Furthermore, we identified phosphorylated KRAS in a panel of primary human pancreatic tumors. Taken together, our findings establish that KRAS requires S181 phosphorylation to manifest its oncogenic properties, implying that its inhibition represents a relevant target to attack KRAS-driven tumors. ©2013 AACR.
Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M
2010-07-23
Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.
A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors
Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther
2015-01-01
The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589
Lu, Jin Fang; Wang, Wei Na; Wang, Gai Ling; Zhang, He; Zhou, Ying; Gao, Zhi Peng; Nie, Pin; Xie, Hai Xia
2016-01-01
The type III secretion system (T3SS) of Edwardsiella tarda is crucial for its intracellular survival and pathogenesis in fish. The orf13 gene (escE) of E. tarda is located 84 nucleotides (nt) upstream of esrC in the T3SS gene cluster. We found that EscE is secreted and translocated in a T3SS-dependent manner and that amino acids 2 to 15 in the N terminus were required for a completely functional T3SS in E. tarda. Deletion of escE abolished the secretion of T3SS translocators, as well as the secretion and translocation of T3SS effectors, but did not influence their intracellular protein levels in E. tarda. Complementation of the escE mutant with a secretion-incompetent EscE derivative restored the secretion of translocators and effectors. Interestingly, the effectors that were secreted and translocated were positively correlated with the EscE protein level in E. tarda. The escE mutant was attenuated in the blue gourami fish infection model, as its 50% lethal dose (LD50) increased to 4 times that of the wild type. The survival rate of the escE mutant-strain-infected fish was 69%, which was much higher than that of the fish infected with the wild-type bacteria (6%). Overall, EscE represents a secreted T3SS regulator that controls effector injection and translocator secretion, thus contributing to E. tarda pathogenesis in fish. The homology of EscE within the T3SSs of other bacterial species suggests that the mechanism of secretion and translocation control used by E. tarda may be commonly used by other bacterial pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lippé, Roger; Miaczynska, Marta; Rybin, Vladimir; Runge, Anja; Zerial, Marino
2001-01-01
Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases. PMID:11452015
Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses
Boesch, Austin W.; Osei-Owusu, Nana Yaw; Crowley, Andrew R.; Chu, Thach H.; Chan, Ying N.; Weiner, Joshua A.; Bharadwaj, Pranay; Hards, Rufus; Adamo, Mark E.; Gerber, Scott A.; Cocklin, Sarah L.; Schmitz, Joern E.; Miles, Adam R.; Eckman, Joshua W.; Belli, Aaron J.; Reimann, Keith A.; Ackerman, Margaret E.
2016-01-01
Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies. PMID:28018355
Lilley, Catherine J.; Maqbool, Abbas; Wu, Duqing; Yusup, Hazijah B.; Jones, Laura M.; Birch, Paul R. J.; Urwin, Peter E.
2018-01-01
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function. PMID:29641602
Advanced Aerodynamic Design of Passive Porosity Control Effectors
NASA Technical Reports Server (NTRS)
Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.
2001-01-01
This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.
Magioncalda, Paola; Martino, Matteo; Tardito, Samuele; Sterlini, Bruno; Conio, Benedetta; Marozzi, Valentina; Adavastro, Giulia; Capobianco, Laura; Russo, Daniel; Parodi, Alessia; Kalli, Francesca; Nasi, Giorgia; Altosole, Tiziana; Piaggio, Niccolò; Northoff, Georg; Fenoglio, Daniela; Inglese, Matilde; Filaci, Gilberto; Amore, Mario
2018-05-01
White matter (WM) microstructural abnormalities and, independently, signs of immunological activation were consistently demonstrated in bipolar disorder (BD). However, the relationship between WM and immunological alterations as well as their occurrence in the various phases of BD remain unclear. In 60 type I BD patients - 20 in manic, 20 in depressive, 20 in euthymic phases - and 20 controls we investigated: (i) diffusion tensor imaging (DTI)-derived fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) using a tract-based spatial statistics (TBSS) approach; (ii) circulating T cell subpopulations frequencies, as well as plasma levels of different cytokines; (iii) potential relationships between WM and immunological data. We found: (i) a significant widespread combined FA-RD alteration mainly in mania, with involvement of the body of corpus callosum (BCC) and superior corona radiata (SCR); (ii) significant increase in CD4+ T cells as well as significant decrease in CD8+ T cells and their subpopulations effector memory (CD8+ CD28-CD45RA-), terminal effector memory (CD8+ CD28-CD45RA+) and CD8+ IFNγ+ in mania; (iii) a significant relationship between WM and immunological alterations in the whole cohort, and a significant correlation of FA-RD abnormalities in the BCC and SCR with reduced frequencies of CD8+ terminal effector memory and CD8+ IFNγ+ T cells in mania only. Our data show a combined occurrence of WM and immunological alterations in mania. WM abnormalities highly correlated with reduction in circulating CD8+ T cell subpopulations that are terminally differentiated effector cells prone to tissue migration, suggesting that these T cells could play a role in WM alteration in BD. Copyright © 2018 Elsevier Inc. All rights reserved.
Proton channel HVCN1 is required for effector functions of mouse eosinophils
2013-01-01
Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Wines, Bruce D; Billings, Hugh; Mclean, Milla R; Kent, Stephen J; Hogarth, P Mark
2017-01-01
There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fcdependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. This brief review highlights the importance of Fc properties for immunity to HIV, particularly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ectodomains to detect functionally relevant viral antigen-specific antibodies. The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the essential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reliably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. We propose the assay has broader implications for the evaluation of the quality of antibody responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wines, Bruce D.; Billings, Hugh; Mclean, Milla R.; Kent, Stephen J.; Hogarth, P. Mark
2017-01-01
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. PMID:28322167
Zhang, Lei; Davies, Laura J; Elling, Axel A
2015-01-01
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function
Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua
2015-01-01
SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609
Zhang, Xiaoxiao; Farah, Nadya; Rolston, Laura; Ericsson, Daniel J; Catanzariti, Ann-Maree; Bernoux, Maud; Ve, Thomas; Bendak, Katerina; Chen, Chunhong; Mackay, Joel P; Lawrence, Gregory J; Hardham, Adrienne; Ellis, Jeffrey G; Williams, Simon J; Dodds, Peter N; Jones, David A; Kobe, Bostjan
2018-05-01
The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector-triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc-finger-like structure with a novel interleaved zinc-binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P-mediated recognition. The first zinc-coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid-binding and chromatin-associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non-conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B
2014-01-01
Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.
Modern Technologies for Creating Synthetic Antibodies for Clinical application
Lebedenko, E. N.
2009-01-01
The modular structure and versatility of antibodies enables one to modify natural immunoglobulins in different ways for various clinical applications. Rational design and molecular engineering make it possible to directionally modify the molecular size, affinity, specificity, and immunogenicity and effector functions of an antibody, as well as to combine them with other functional agents. This review focuses on up-to-date methods of antibody engineering for diagnosing and treating various diseases, particularly on new technologies meant to refine the effector functions of therapeutic antibodies. PMID:22649585
Functional Proteomics to Identify Moderators of CD8+ T Cell Function in Melanoma
2015-05-01
identified 17 phage that selectively bind TIL rather than effector cells. However, none of these phage influenced CD8+ TIL expansion or function in vitro...Using a novel NextGeneration sequencing approach, we have further defined another 1,000,000 phage that selectively bind TIL , of which 100,000 are unique...Using the original approach outlined in the application, we identified a total of 17 unique phage that selectively bind CD8+ TIL but not effector or
Siggers, Keri A; Lesser, Cammie F
2008-07-17
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim
2013-04-01
Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.
Tailored immune responses: novel effector helper T cell subsets in protective immunity.
Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R
2014-02-01
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganusov, Vitaly V
2009-01-01
In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less
Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne
2012-01-01
Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689
Etzl, Stefan; Lindner, Robert; Nelson, Matthew D; Winkler, Andreas
2018-06-08
Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties. © 2018 Etzl et al.
McLane, Laura M.; Steblyanko, Maria; Anikeeva, Nadia; Ablanedo-Terrazas, Yuria; Demers, Korey; Eller, Michael A.; Streeck, Hendrik; Jansson, Marianne; Sönnerborg, Anders; Canaday, David H.; Naji, Ali; Wherry, E. John; Robb, Merlin L.; Reyes-Teran, Gustavo; Sykulev, Yuri; Betts, Michael R.
2018-01-01
CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. PMID:29652923
Azuma, Miyuki
2010-01-01
Glucocorticoid-induced TNF receptor-related protein (GITR) is expressed in regulatory T cells at high levels, but is also inducible in conventional effector T cells after activation. Initial studies using an agonistic anti- GITR mAb mislead this line of research with respect to the contribution of GITR stimulation on the function of regulatory T cells. In fact, GITR acts as a costimulatory receptor for both effector and regulatory T cells by enhancing effector and regulatory functions, respectively. Unlike other costimulatory ligands, GITR ligand (GITRL) expression on mature myeloid dendritic cells (DCs) is extremely limited and the GITR-GITRL pathway does not contribute markedly to direct interactions with T cells and antigen-presenting cells in the secondary lymphoid tissues. Rather, GITRL is constitutively expressed on parenchymal tissue cells and interacts with GITR expressed on tissue-infiltrating macrophages and DCs, or effector and regulatory T cells. Interactions with GITR and GITRL at local inflammatory sites induce site-specific production of cytokines and chemokines, resulting in control activation of tissue-infiltrating effector or regulatory cells and their migration. This review summarizes recent reports on the GITR-GITRL pathway, which controls both innate and adaptive immune responses.
Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana
2018-03-01
Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia
2007-01-01
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574
Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia
2007-08-15
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.
USDA-ARS?s Scientific Manuscript database
The Gram-negative bacterium Erwinia amylovora (Burrill) Winslow. et al., causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that functions to translocate effector proteins into plant cells that collectively function to suppress host defenses and ena...
Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan
2013-10-22
Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963
NASA Astrophysics Data System (ADS)
Gebauer, L.; Kringelbach, M. L.; Vuust, P.
2015-06-01
The review by Koelsch and colleagues [1] offers a timely, comprehensive, and anatomically detailed framework for understanding the neural correlates of human emotions. The authors describe emotion in a framework of four affect systems, which are linked to effector systems, and higher order cognitive functions. This is elegantly demonstrated through the example of music; a realm for exploring emotions in a domain, that can be independent of language but still highly relevant for understanding human emotions [2].
A Plethora of Virulence Strategies Hidden Behind Nuclear Targeting of Microbial Effectors
Rivas, Susana; Genin, Stéphane
2011-01-01
Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great variety of analyzed plant–pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins. PMID:22639625
Integration of two RAB5 groups during endosomal transport in plants
Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko
2018-01-01
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929
O'Boyle, Nicky; Boyd, Aoife
2013-01-01
Vibrio parahaemolyticus elicits gastroenteritis by deploying Type III Secretion Systems (TTSS) to deliver effector proteins into epithelial cells of the human intestinal tract. The bacteria must adhere to the human cells to allow colonization and operation of the TTSS translocation apparatus bridging the bacterium and the host cell. This article first reviews recent advances in identifying the molecules responsible for intercellular adherence. V. parahaemolyticus possesses two TTSS, each of which delivers an exclusive set of effectors and mediates unique effects on the host cell. TTSS effectors primarily target and alter the activation status of host cell signaling proteins, thereby bringing about changes in the regulation of cellular behavior. TTSS1 is responsible for the cytotoxicity of V. parahaemolyticus, while TTSS2 is necessary for the enterotoxicity of the pathogen. Recent publications have elucidated the function of several TTSS effectors and their importance in the virulence of the bacterium. This review will explore the ability of the TTSS to manipulate activities of human intestinal cells and how this modification of cell function favors bacterial colonization and persistence of V. parahaemolyticus in the host. PMID:24455490
Structural Evolution of Differential Amino Acid Effector Regulation in Plant Chorismate Mutases*
Westfall, Corey S.; Xu, Ang; Jez, Joseph M.
2014-01-01
Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1–3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme. PMID:25160622
Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection.
Raué, Hans-Peter; Slifka, Mark K
2007-05-01
Previous studies have shown that T cells, which are genetically deficient in CTLA-4/CD152 expression, will proliferate uncontrollably, resulting in lethal autoimmune disease. This and other evidence indicate that CTLA-4 plays a critical role in the negative regulation of effector T cell function. In contrast to expectations, BrdU incorporation experiments demonstrated that CTLA-4 expression was associated with normal or even enhanced in vivo proliferation of virus-specific CD4+ and CD8+ T cells following acute lymphocytic choriomeningitis virus or vaccinia virus infection. When compared with CTLA-4- T cells directly ex vivo, CTLA-4+ T cells also exhibited normal antiviral effector functions following stimulation with peptide-coated cells, virus-infected cells, plate-bound anti-CD3/anti-CTLA-4, or the cytokines IL-12 and IL-18. Together, this indicates that CTLA-4 does not directly inhibit antiviral T cell expansion or T cell effector functions, at least not under the normal physiological conditions associated with either of these two acute viral infections.
A new approach to global control of redundant manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
A new and simple approach to configuration control of redundant manipulators is presented. In this approach, the redundancy is utilized to control the manipulator configuration directly in task space, where the task will be performed. A number of kinematic functions are defined to reflect the desirable configuration that will be achieved for a given end-effector position. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. An adaptive scheme is then utilized to globally control the configuration variables so as to achieve tracking of some desired reference trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The control law is simple and computationally very fast, and does not require the complex manipulator dynamic model.
CD4+ T helper 2 cells – microbial triggers, differentiation requirements and effector functions
Okoye, Isobel S; Wilson, Mark S
2011-01-01
Over the past 10 years we have made great strides in our understanding of T helper cell differentiation, expansion and effector functions. Within the context of T helper type 2 (Th2) cell development, novel innate-like cells with the capacity to secrete large amounts of interleukin-5 (IL-5), IL-13 and IL-9 as well as IL-4-producing and antigen-processing basophils have (re)-emerged onto the type 2 scene. To what extent these new players influence αβ+ CD4+ Th2 cell differentiation is discussed throughout this appraisal of the current literature. We highlight the unique features of Th2 cell development, highlighting the three necessary signals, T-cell receptor ligation, co-stimulation and cytokine receptor ligation. Finally, putting these into context, microbial and allergenic properties that trigger Th2 cell differentiation and how these influence Th2 effector function are discussed and questioned. PMID:22043920
Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
Johnston, Joe; Gopalarathnam, Ashok
2012-09-01
A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the stall behavior more gentle. The benefits of using the effector could include care-free operations at high angles of attack during perching and maneuvering flight, especially in gusty conditions.
Rajput, Nasir Ahmed; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Zhang, Qimeng; Ru, Yanyan; Sun, Peng; Dou, Daolong
2015-12-01
The Crinkler (CRN) effector family is produced by oomycete pathogens and may manipulate host physiological and biochemical events inside host cells. Here, PsCRN161 was identified from Phytophthora sojae based on its broad and strong cell death suppression activities. The effector protein contains two predicted nuclear localization signals and localized to nuclei of plant cells, indicating that it may target plant nuclei to modify host cell physiology and function. The chimeric gene GFP:PsCRN161 driven by the Cauliflower mosaic virus (CaMV) 35S promoter was introduced into Nicotiana benthamiana. The four independent PsCRN161-transgenic lines exhibited increased resistance to two oomycete pathogens (P. parasitica and P. capsici) and showed enhanced tolerance to salinity and drought stresses. Digital gene expression profiling analysis showed that defense-related genes, including ABC transporters, Cyt P450 and receptor-like kinases (RLKs), were significantly up-regulated in PsCRN161-transgenic plants compared with GFP (green fluorescent protein) lines, implying that PsCRN161 expression may protect plants from biotic and abiotic stresses by up-regulation of many defense-related genes. The results reveal previously unknown functions of the oomycete effectors, suggesting that the pathogen effectors could be directly used as functional genes for plant molecular breeding for enhancement of tolerance to biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Marín, Macarena; Uversky, Vladimir N; Ott, Thomas
2013-09-01
Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.
Schlenker, Ramona; Olguín-Contreras, Luis Felipe; Leisegang, Matthias; Schnappinger, Julia; Disovic, Anja; Rühland, Svenja; Nelson, Peter J; Leonhardt, Heinrich; Harz, Hartmann; Wilde, Susanne; Schendel, Dolores J; Uckert, Wolfgang; Willimsky, Gerald; Noessner, Elfriede
2017-07-01
Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR . ©2017 American Association for Cancer Research.
Transcription factor-based biosensors enlightened by the analyte
Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel
2015-01-01
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047
A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.
Pan, Deng; Kobayashi, Aya; Jiang, Peng; Ferrari de Andrade, Lucas; Tay, Rong En; Luoma, Adrienne M; Tsoucas, Daphne; Qiu, Xintao; Lim, Klothilda; Rao, Prakash; Long, Henry W; Yuan, Guo-Cheng; Doench, John; Brown, Myles; Liu, X Shirley; Wucherpfennig, Kai W
2018-02-16
Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including Pbrm1 , Arid2 , and Brd7 , which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex-sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1 -deficient murine melanomas were more strongly infiltrated by cytotoxic T cells. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Transcription factor-based biosensors enlightened by the analyte.
Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel
2015-01-01
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Cooper, Colin A; Zhang, Kun; Andres, Sara N; Fang, Yuan; Kaniuk, Natalia A; Hannemann, Mandy; Brumell, John H; Foster, Leonard J; Junop, Murray S; Coombes, Brian K
2010-02-05
Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.
Jovanovic, Goran; Mehta, Parul; Ying, Liming; Buck, Martin
2014-11-01
All cell types must maintain the integrity of their membranes. The conserved bacterial membrane-associated protein PspA is a major effector acting upon extracytoplasmic stress and is implicated in protection of the inner membrane of pathogens, formation of biofilms and multi-drug-resistant persister cells. PspA and its homologues in Gram-positive bacteria and archaea protect the cell envelope whilst also supporting thylakoid biogenesis in cyanobacteria and higher plants. In enterobacteria, PspA is a dual function protein negatively regulating the Psp system in the absence of stress and acting as an effector of membrane integrity upon stress. We show that in Escherichia coli the low-order oligomeric PspA regulatory complex associates with cardiolipin-rich, curved polar inner membrane regions. There, cardiolipin and the flotillin 1 homologue YqiK support the PspBC sensors in transducing a membrane stress signal to the PspA-PspF inhibitory complex. After stress perception, PspA high-order oligomeric effector complexes initially assemble in polar membrane regions. Subsequently, the discrete spatial distribution and dynamics of PspA effector(s) in lateral membrane regions depend on the actin homologue MreB and the peptidoglycan machinery protein RodZ. The consequences of loss of cytoplasmic membrane anionic lipids, MreB, RodZ and/or YqiK suggest that the mode of action of the PspA effector is closely associated with cell envelope organization. © 2014 The Authors.
Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.
2009-01-01
Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557
Cheng, Yulin; Wu, Kuan; Yao, Juanni; Li, Shumin; Wang, Xiaojie; Huang, Lili; Kang, Zhensheng
2017-05-01
During the infection of host plants, pathogens can deliver virulence-associated 'effector' proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP-INF1 and two resistance-related mitogen-activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern-triggered immunity (PTI)-associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Functional heterogeneity of human effector CD8+ T cells.
Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi
2012-02-09
Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.
The targeting of plant cellular systems by injected type III effector proteins.
Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell
2009-12-01
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.
The Rab-binding Profiles of Bacterial Virulence Factors during Infection*
So, Ernest C.; Schroeder, Gunnar N.; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W.; Frankel, Gad
2016-01-01
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. PMID:26755725
USDA-ARS?s Scientific Manuscript database
Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins that are delivered to the apoplast, as well as...
Effector-triggered immunity: from pathogen perception to robust defense.
Cui, Haitao; Tsuda, Kenichi; Parker, Jane E
2015-01-01
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Robotic end-effector for rewaterproofing shuttle tiles
NASA Astrophysics Data System (ADS)
Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd
1992-11-01
This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.
Diverse secreted effectors are required for Salmonella persistence in a mouse infection model.
Kidwai, Afshan S; Mushamiri, Ivy; Niemann, George S; Brown, Roslyn N; Adkins, Joshua N; Heffron, Fred
2013-01-01
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.
Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 moremore » strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.« less
Effector functions of memory CTLs can be affected by signals received during reactivation.
Lv, Yingjun; Mattson, Elliot; Bhadurihauck, Anjuli; Garcia, Karla; Li, Lei; Xiao, Zhengguo
2017-08-01
Memory cytotoxic T lymphocytes (CTLs) are able to provide protections to the host against repeated insults from intracellular pathogens. However, it has not been completely understood how the effector functions of memory CTLs are induced upon antigen challenge, which is directly related to the efficacy of their protection. Third signal cytokines, such as IL-12 and type I interferon, have been suggested to be involved in the protective function of memory CTLs, but direct evidence is warranted. In this report, we found that memory CTLs need to be reactivated to exert effector functions. Infusion of a large population of quiescent memory CTLs did not lead to cancer control in tumor-bearing mice, whereas infusion of a reactivated memory CTL population did. This reactivation of memory CTLs requires cytokines such as IL-12 in addition to antigen but was less dependent upon costimulation and IL-2 compared to naive CTLs. Memory CTLs responded more quickly and with greater strength than their naive counterparts upon stimulation, which is associated with higher upregulation of important transcription factors such as T-bet and phosphorylated STAT4. In addition, memory CTLs underwent less expansion than naive CTLs upon pathogen challenge. In conclusion, effector functions of established memory CTLs may be affected by certain cytokines such as IL-12 and type I IFN. Thus, a pathogen's ability to induce cytokines could contribute to the efficacy of protection of an established memory CTL population.
Mechanism and function of type IV secretion during infection of the human host
Gonzalez-Rivera, Christian; Bhatty, Minny; Christie, Peter J.
2015-01-01
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic host. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant ‘superbugs’, detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This chapter summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host. PMID:27337453
Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya
2013-01-01
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112
Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A
2016-02-01
Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.
Combover/CG10732, a Novel PCP Effector for Drosophila Wing Hair Formation
Fagan, Jeremy K.; Dollar, Gretchen; Lu, Qiuheng; Barnett, Austen; Pechuan Jorge, Joaquin; Schlosser, Andreas; Pfleger, Cathie; Adler, Paul; Jenny, Andreas
2014-01-01
The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh. PMID:25207969
Shohdy, Nadim; Efe, Jem A; Emr, Scott D; Shuman, Howard A
2005-03-29
Legionella pneumophila invades and replicates intracellularly in human and protozoan hosts. The bacteria use the Icm/Dot type IVB secretion system to translocate effectors that inhibit phagosome maturation and modulate host vesicle trafficking pathways. To understand how L. pneumophila modulates organelle trafficking in host cells, we carried out pathogen effector protein screening in yeast, identifying L. pneumophila genes that produced membrane trafficking [vacuole protein sorting (VPS)] defects in yeast. We identified four L. pneumophila DNA fragments that perturb sorting of vacuolar proteins. Three encode ORFs of unknown function that are translocated via the Icm/Dot transporter from Legionella into macrophages. VPS inhibitor protein (Vip) A is a coiled-coil protein, VipD is a patatin domain-containing protein, and VipF contains an acetyltransferase domain. Processing studies in yeast indicate that VipA, VipD, and VipF inhibit lysosomal protein trafficking by different mechanisms; overexpressing VipA has an effect on carboxypeptidase Y trafficking, whereas VipD interferes with multivesicular body formation at the late endosome and endoplasmic reticulum-to-Golgi body transport. Such differences highlight the multiple strategies L. pneumophila effectors use to subvert host trafficking processes. Using yeast as an effector gene discovery tool allows for a powerful, genetic approach to both the identification of virulence factors and the study of their function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djeu, J.Y.; Parapanios, A.; Halkias, D.
This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr atmore » 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.« less
2017-01-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451
Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G
2012-01-01
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Obligatory Requirement for Antibody in Recovery from a Primary Poxvirus Infection
Chaudhri, Geeta; Panchanathan, Vijay; Bluethmann, Horst; Karupiah, Gunasegaran
2006-01-01
To understand the correlates of protective immunity against primary variola virus infection in humans, we have used the well-characterized mousepox model. This is an excellent surrogate small-animal model for smallpox in which the disease is caused by infection with the closely related orthopoxvirus, ectromelia virus. Similarities between the two infections include virus replication and transmission, aspects of pathology, and development of pock lesions. Previous studies using ectromelia virus have established critical roles for cytokines and effector functions of CD8 T cells in the control of acute stages of poxvirus infection. Here, we have used mice deficient in B cells to demonstrate that B-cell function is also obligatory for complete virus clearance and recovery of the host. In the absence of B cells, virus persists and the host succumbs to infection, despite the generation of CD8 T-cell responses. Intriguingly, transfer of naive B cells or ectromelia virus-immune serum to B-cell-deficient mice with established infection allowed these animals to clear virus and fully recover. In contrast, transfer of ectromelia virus-immune CD8 T cells was ineffective. Our data show that mice deficient in CD8 T-cell function die early in infection, whereas those deficient in B cells or antibody production die much later, indicating that B-cell function becomes critical after the effector phase of the CD8 T-cell response to infection subsides. Strikingly, our results show that antibody prevents virus from seeding the skin and forming pock lesions, which are important for virus transmission between hosts. PMID:16775322
Intracellular signaling by phospholipase D as a therapeutic target.
Steed, P M; Chow, A H
2001-09-01
The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.
Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity
Su, Jianbin; Yang, Liuyi; Zhu, Qiankun; Wu, Hongjiao; He, Yi; Liu, Yidong; Xu, Juan; Jiang, Dean
2018-01-01
Extensive research revealed tremendous details about how plants sense pathogen effectors during effector-triggered immunity (ETI). However, less is known about downstream signaling events. In this report, we demonstrate that prolonged activation of MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MPKs), is essential to ETI mediated by both coiled coil-nucleotide binding site-leucine rich repeats (CNLs) and toll/interleukin-1 receptor nucleotide binding site-leucine rich repeats (TNLs) types of R proteins. MPK3/MPK6 activation rapidly alters the expression of photosynthesis-related genes and inhibits photosynthesis, which promotes the accumulation of superoxide (O2•−) and hydrogen peroxide (H2O2), two major reactive oxygen species (ROS), in chloroplasts under light. In the chemical-genetically rescued mpk3 mpk6 double mutants, ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation are compromised, which correlates with delayed hypersensitive response (HR) cell death and compromised resistance. Furthermore, protection of chloroplasts by expressing a plastid-targeted cyanobacterial flavodoxin (pFLD) delays photosynthetic inhibition and compromises ETI. Collectively, this study highlights a critical role of MPK3/MPK6 in manipulating plant photosynthetic activities to promote ROS accumulation in chloroplasts and HR cell death, which contributes to the robustness of ETI. Furthermore, the dual functionality of MPK3/MPK6 cascade in promoting defense and inhibiting photosynthesis potentially allow it to orchestrate the trade-off between plant growth and defense in plant immunity. PMID:29723186
Representation of the speech effectors in the human motor cortex: somatotopy or overlap?
Takai, Osamu; Brown, Steven; Liotti, Mario
2010-04-01
Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this dichotomy, we performed four voxel-based meta-analyses of 54 functional neuroimaging studies of non-speech tasks involving respiration, lip movement, tongue movement, and swallowing, respectively. While the centers of mass of the clusters supported the classic homuncular view of the motor cortex, there was significant variability in the locations of the activation-coordinates among studies, resulting in an overlapping arrangement. This "somatotopy with overlap" might reflect the intrinsic functional interconnectedness of the oral effectors for speech production.
2014-01-01
Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens. PMID:24564253
Pereira, Andre L A; Carazzolle, Marcelo F; Abe, Valeria Y; de Oliveira, Maria L P; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E
2014-02-25
Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.
Intestinal Effector T Cells in Health and Disease
Maynard, Craig L.; Weaver, Casey T.
2011-01-01
Summary Crohn’s disease and ulcerative colitis are the two major forms of chronic relapsing inflammatory disorders of the human intestines collectively referred to as inflammatory bowel disease (IBD). Though a complex set of autoinflammatory disorders that can be precipitated by diverse genetic and environmental factors, a feature that appears common to IBD pathogenesis is a dysregulated effector T cell response to the commensal microbiota. Due to the heightened effector T cell activity in IBD, developmental and functional pathways that give rise to these cells are potential targets for therapeutic intervention. In this review, we highlight recent advances in our understanding of effector T cell biology in the context of intestinal immune regulation and speculate on their potential clinical significance. PMID:19766082
Development and testing of the rack insertion device
NASA Technical Reports Server (NTRS)
Strickland, G. Scott
1995-01-01
Installing and removing experiment racks in a Space Station Logistics Module will become a repetitive operation at Kennedy Space Center (KSC) in the near future. A Rack Insertion Device (RID) consisting of an Extendible Boom, End Effector, and Positioning Base is being developed for the task. This paper discusses the key elements of the RlD's function and design. Prototype test results for the RlD's Extendible Boom and End Effector are presented. Also discussed are future end effectors that will further enhance the RlD's Space Station processing capability.
Nikitina, Irina Yu; Kondratuk, Natalya A; Kosmiadi, George A; Amansahedov, Rasul B; Vasilyeva, Irina A; Ganusov, Vitaly V; Lyadova, Irina V
2012-01-01
Effector CD4 T cells represent a key component of the host's anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection. The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27(low) cells within a population of Mtb- specific CD4 T lymphocytes ("CD27(low)IFN-γ(+)" cells). The percentages of CD27(low)IFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27(low)IFN-γ(+) cells were uniformly high in the lungs (>76%), but varied in blood (12-92%). The major correlate for the accumulation of CD27(low)IFN-γ(+) cells in blood was lung destruction (r = 0.65, p = 2.7 × 10(-7)). A cutoff of 47% of CD27(low)IFN-γ(+) cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27(low)IFN-γ(+)cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01). Highly differentiated CD27(low) Mtb-specific (CD27(low)IFN-γ(+)) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27(low)IFN-γ(+) cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27(low)IFN-γ(+) cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.
Sojka, Dorothy K.; Fowell, Deborah J.
2011-01-01
CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707
Functions of tissue-resident eosinophils.
Weller, Peter F; Spencer, Lisa A
2017-12-01
Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.
Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong
2015-06-03
Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses.
Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M; Hagen, Shoko I; Walker, Joshua M; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B; Planer, Shannon L; Legasse, Alfred; Sylwester, Andrew W; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Sodora, Donald L; Douek, Daniel C; Axthelm, Michael K; Grossman, Zvi; Picker, Louis J
2007-09-03
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4(+) CCR5(+) effector-memory T (T(EM)) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4(+) memory T cell proliferation appears to prevent collapse of effector site CD4(+) T(EM) cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4(+) T(EM) cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4(+) T(EM) cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4(+) T(EM) cells from central-memory T (T(CM)) cell precursors. The instability of effector site CD4(+) T(EM) cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5(-) CD4(+) T(CM) cells. These data suggest that although CD4(+) T(EM) cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4(+) T(CM) cells.
Robot-Assisted Arm Assessments in Spinal Cord Injured Patients: A Consideration of Concept Study
Albisser, Urs; Rudhe, Claudia; Curt, Armin; Riener, Robert; Klamroth-Marganska, Verena
2015-01-01
Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness). For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the “Graded and Redefined Assessment of Strength, Sensibility and Prehension” (GRASSP) and the Van Lieshout Test (VLT) for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can serve as a basis for the future development of end-effector and exoskeleton-based robotic assessments. PMID:25996374
Long, Meixiao; Slaiby, Aaron M.; Hagymasi, Adam T.; Mihalyo, Marianne A.; Lichtler, Alexander C.; Reiner, Steven L.; Adler, Adam J.
2010-01-01
When Th1 effector CD4 cells encounter tolerizing Ag in vivo, their capacity to express the effector cytokines IFN-γ and TNF-α is lost more rapidly than noneffector functions such as IL-2 production and proliferation. To localize the relevant intracellular signaling defects, cytokine expression was compared following restimulation with Ag vs agents that bypass TCR-proximal signaling. IFN-γ and TNF-α expression were both partially rescued when TCR-proximal signaling was bypassed, indicating that both TCR-proximal and -distal signaling defects impair the expression of these two effector cytokines. In contrast, bypassing TCR-proximal signaling fully rescued IL-2 expression. T-bet, a transcription and chromatin remodeling factor that is required to direct the differentiation of naive CD4 cells into IFN-γ -expressing Th1 effectors, was partially down-modulated in tolerized Th1 effectors. Enforcing T-bet expression during tolerization selectively rescued the ability to express IFN-γ, but not TNF-α. Conversely, expression of a dominant-negative T-bet in Th1 effectors selectively impaired the ability to express IFN-γ, but not TNF-α. Analysis of histone acetylation at the IFN-γ promoter further suggested that down-modulation of T-bet expression during Th1 effector CD4 cell tolerization does not impair IFN-γ expression potential through alterations in chromatin structure. PMID:16393991
Bogers, Willy M.; Yates, Nicole L.; Ferrari, Guido; Dey, Antu K.; Williams, William T.; Jaeger, Frederick H.; Wiehe, Kevin; Sawant, Sheetal; Alam, S. Munir; LaBranche, Celia C.; Montefiori, David C.; Martin, Loic; Srivastava, Indresh; Heeney, Jonathan; Barnett, Susan W.
2017-01-01
ABSTRACT Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions. IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization. PMID:28490585
Effector and memory T cell subsets in the response to bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
Long-term (i.e., 14d) cultured IFN-gamma ELISPOT assays of PBMC are used as a correlate of T cell central memory (Tcm) responses in cattle and humans. With bovine tuberculosis, vaccine-elicited Tcm responses correlate with protection against experimental Mycobacterium bovis infection. The objective ...
USDA-ARS?s Scientific Manuscript database
Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...
Ma, Lay-Sun; Wang, Lei; Trippel, Christine; Mendoza-Mendoza, Artemio; Ullmann, Steffen; Moretti, Marino; Carsten, Alexander; Kahnt, Jörg; Reissmann, Stefanie; Zechmann, Bernd; Bange, Gert; Kahmann, Regine
2018-04-27
To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism.
Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...
2012-12-13
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less
Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita
Rutter, William B.; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R.; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S.; Baum, Thomas J.
2014-01-01
Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins, which M. incognita secretes into its host plants during infection, is an important step towards finding new ways to manage this pest. In this study we have identified the cDNAs for 18 putative effectors, i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants. These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically up-regulated during different stages of the nematode’s life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of Meloidogyne hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed, and reproduce on their host plants. Future studies investigating the roles these proteins play in planta will help mitigate the effects of this damaging pest. PMID:24875667
An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.
Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B
2017-03-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.
Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.
Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J
2014-09-01
Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.
rab3 mediates cortical granule exocytosis in the sea urchin egg.
Conner, S; Wessel, G M
1998-11-15
Egg activation at fertilization in the sea urchin results in the exocytosis of approximately 15,000 cortical granules that are docked at the plasma membrane. Previously, we reported that several integral membrane proteins modeled in the SNARE hypothesis, synaptotagmin, VAMP, and syntaxin, in addition to a small GTPase of the ras superfamily, rab3, were present on cortical granules (Conner, S., Leaf, D., and Wessel, G., Mol. Reprod. Dev. 48, 1-13, 1997). Here we report that rab3 is associated with cortical granules throughout oogenesis, during cortical granule translocation, and while docked at the egg plasma membrane. Following cortical granule exocytosis, however, rab3 reassociates with a different population of vesicles, at least some of which are of endocytic origin. Because of its selective association with cortical granules in eggs and oocytes, we hypothesize that rab3 functions in cortical granule exocytosis. To test this hypothesis, we used a strategy of interfering with rab3 function by peptide competition with its effector domain, a conserved region within specific rab types. We first identified the effector domain sequence in Lytechinus variegatus eggs and find the sequence 94% identical to the effector domain of rab3 in Stronglocentrotus purpuratus. Then, with synthetic peptides to different regions of the rab3 protein, we find that cortical granule exocytosis is inhibited in eggs injected with effector domain peptides, but not with peptides from the hypervariable region or with a scrambled effector peptide. Additionally, effector-peptide-injected eggs injected with IP3 are blocked in their ability to exocytose cortical granules, suggesting that the inhibition is directly on the membrane fusion event and not the result of interference with the signal transduction mechanism leading to calcium release. We interpret these results to mean that rab3 functions in the regulation of cortical granule exocytosis following vesicle docking. Copyright 1998 Academic Press.
Stanger, Frédéric V; de Beer, Tjaart A P; Dranow, David M; Schirmer, Tilman; Phan, Isabelle; Dehio, Christoph
2017-01-03
The BID (Bep intracellular delivery) domain functions as secretion signal in a subfamily of protein substrates of bacterial type IV secretion (T4S) systems. It mediates transfer of (1) relaxases and the attached DNA during bacterial conjugation, and (2) numerous Bartonella effector proteins (Beps) during protein transfer into host cells infected by pathogenic Bartonella species. Furthermore, BID domains of Beps have often evolved secondary effector functions within host cells. Here, we provide crystal structures for three representative BID domains and describe a novel conserved fold characterized by a compact, antiparallel four-helix bundle topped with a hook. The conserved hydrophobic core provides a rigid scaffold to a surface that, despite a few conserved exposed residues and similarities in charge distribution, displays significant variability. We propose that the genuine function of BID domains as T4S signal may primarily depend on their rigid structure, while the plasticity of their surface may facilitate adaptation to secondary effector functions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Petri, Robert Michael; Hackel, Alexander; Hahnel, Katrin; Dumitru, Claudia Alexandra; Bruderek, Kirsten; Flohe, Stefanie B; Paschen, Annette; Lang, Stephan; Brandau, Sven
2017-09-12
The interaction of mesenchymal stromal cells (MSCs) with natural killer (NK) cells is traditionally thought of as a static inhibitory model, whereby resting MSCs inhibit NK cell effector function. Here, we use a dynamic in vitro system of poly(I:C) stimulation to model the interaction of NK cells and tissue-resident MSCs in the context of infection or tissue injury. The experiments suggest a time-dependent system of regulation and feedback, where, at early time points, activated MSCs secrete type I interferon to enhance NK cell effector function, while at later time points TGF-β and IL-6 limit NK cell effector function and terminate inflammatory responses by induction of a regulatory senescent-like NK cell phenotype. Importantly, feedback of these regulatory NK cells to MSCs promotes survival, proliferation, and pro-angiogenic properties. Our data provide additional insight into the interaction of stromal cells and innate immune cells and suggest a model of time-dependent MSC polarization and licensing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The Rab-binding Profiles of Bacterial Virulence Factors during Infection.
So, Ernest C; Schroeder, Gunnar N; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W; Frankel, Gad
2016-03-11
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis
Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.
2013-01-01
SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840
Schaaf, Tory M.; Peterson, Kurt C.; Grant, Benjamin D.; Bawaskar, Prachi; Yuen, Samantha; Li, Ji; Muretta, Joseph M.; Gillispie, Gregory D.; Thomas, David D.
2017-01-01
A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green (GFP, donor) and red (RFP, acceptor) fluorescent proteins fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA’s distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA’s ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS. PMID:27899691
Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit
2013-05-01
While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.
Effector CD8 T cells dedifferentiate into long-lived memory cells.
Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi
2017-12-21
Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.
Judge, Chelsey J; Sandberg, Johan K; Funderburg, Nicholas T; Sherman, Kenneth E; Butt, Adeel A; Kang, Minhee; Landay, Alan L; Lederman, Michael M; Anthony, Donald D
2016-11-01
During HIV+ hepatitis C virus (HCV)+ coinfection CD14CD16 monocytes produce soluble immune-activation markers that predict disease progression and poor response to interferon (IFN)-α treatment. We evaluated relationships among immune activation, monocyte phenotype, CD4-memory T cells, and HCV-, cytomegalovirus-, and cytomegalovirus/Epstein-Barr virus/influenza-specific IFN-γ-response before and during IFN-α treatment. Effector-memory and central-memory CD4 T-cell frequencies were lower in HCV+ HIV+ donors than in uninfected donors and correlated negatively with HCV level, CD14CD16 monocytes, and plasma sCD14. sCD14 and CD14CD16 monocytes negatively correlated with IFN-α-dependent HCV decline. CD4 effector-memory T cells positively associated with cytomegalovirus/Epstein-Barr virus/influenza(CEF)-specific IFN-γ response, while sCD14 negatively associated with both CD4 effector-memory T cells and CEF-specific IFN-γ response. These data support a role for memory-CD4 T cells in HCV containment and link immune activation and CD14CD16-monocyte frequency to the failure of IFN-dependent HCV clearance.
Greasy tactics in the plant-pathogen molecular arms race.
Boyle, Patrick C; Martin, Gregory B
2015-03-01
The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila.
Beyrakhova, Ksenia A; van Straaten, Karin; Li, Lei; Boniecki, Michal T; Anderson, Deborah H; Cygler, Miroslaw
2016-07-22
Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.
2008-01-01
Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075
Alontaga, Aileen Y.; Fenton, Aron W.
2011-01-01
The binding site for allosteric inhibitor (amino acid) is highly conserved between human liver pyruvate kinase (hL-PYK) and the rabbit muscle isozyme (rM1-PYK). To detail similarities/differences in the allosteric function of these two homologs, we quantified the binding of 45 amino acid analogues to hL-PYK and their allosteric impact on affinity for the substrate, phosphoenolpyruvate (PEP). This complements a similar study previously completed for rM1-PYK. In hL-PYK, the minimum chemical requirements for effector binding are the same as those identified for rM1-PYK (i.e. the L-2-aminopropanaldehyde substructure of the effector is primarily responsible for binding). However different regions of the effector determine the magnitude of the allosteric response in hL-PYK vs. rM1-PYK. This finding is inconsistent with the idea that allosteric pathways are conserved between homologs of a protein family. PMID:21261284
Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum
Vieira-de-Abreu, Adriana; Campbell, Robert A.; Weyrich, Andrew S.
2015-01-01
Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases. PMID:21818701
The genome sequence and effector complement of the flax rust pathogen Melampsora lini.
Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N
2014-01-01
Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.
Emerging Concepts of Adaptive Immunity in Leprosy
Sadhu, Soumi; Mitra, Dipendra Kumar
2018-01-01
Leprosy is a chronic intracellular infection caused by the acid-fast bacillus, Mycobacterium leprae. The disease chiefly affects the skin, peripheral nerves, mucosa of the upper respiratory tract, and the eyes. The damage to peripheral nerves results in sensory and motor impairment with characteristic deformities and disability. Presently, the disease remains concentrated in resource-poor countries in tropical and warm temperate regions with the largest number of cases reported from India. Even though innate immunity influences the clinical manifestation of the disease, it is the components of adaptive immune system which seem to tightly correlate with the characteristic spectrum of leprosy. M. leprae-specific T cell anergy with bacillary dissemination is the defining feature of lepromatous leprosy (LL) patients in contrast to tuberculoid leprosy (TT) patients, which is characterized by strong Th1-type cell response with localized lesions. Generation of Th1/Th2-like effector cells, however, cannot wholly explain the polarized state of immunity in leprosy. A comprehensive understanding of the role of various regulatory T cells, such as Treg and natural killer T cells, in deciding the polarized state of T cell immunity is crucial. Interaction of these T cell subsets with effector T cells like Th1 (IFN-γ dominant), Th2 (interluekin-4 dominant), and Th17 (IL-17+) cells through various regulatory cytokines and molecules (programmed death-1/programmed death ligand-1) may constitute key events in dictating the state of immune polarization, thus controlling the clinical manifestation. Studying these important components of the adaptive immune system in leprosy patients is essential for better understanding of immune function, correlate(s) the immunity and mechanism(s) of its containment. PMID:29686668
Prediction of type III secretion signals in genomes of gram-negative bacteria.
Löwer, Martin; Schneider, Gisbert
2009-06-15
Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).
A common stochastic accumulator with effector-dependent noise can explain eye-hand coordination
Gopal, Atul; Viswanathan, Pooja
2015-01-01
The computational architecture that enables the flexible coupling between otherwise independent eye and hand effector systems is not understood. By using a drift diffusion framework, in which variability of the reaction time (RT) distribution scales with mean RT, we tested the ability of a common stochastic accumulator to explain eye-hand coordination. Using a combination of behavior, computational modeling and electromyography, we show how a single stochastic accumulator to threshold, followed by noisy effector-dependent delays, explains eye-hand RT distributions and their correlation, while an alternate independent, interactive eye and hand accumulator model does not. Interestingly, the common accumulator model did not explain the RT distributions of the same subjects when they made eye and hand movements in isolation. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning. PMID:25568161
Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays
NASA Technical Reports Server (NTRS)
Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.
2004-01-01
A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.
Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.
Ashida, Hiroshi; Sasakawa, Chihiro
2015-01-01
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria
Ashida, Hiroshi; Sasakawa, Chihiro
2016-01-01
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections. PMID:26779450
Teper, Doron; Salomon, Dor; Sunitha, Sukumaran; Kim, Jung-Gun; Mudgett, Mary Beth; Sessa, Guido
2014-01-01
Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Guzmán-Guzmán, Paulina; Alemán-Duarte, Mario Iván; Delaye, Luis; Herrera-Estrella, Alfredo; Olmedo-Monfil, Vianey
2017-02-15
Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.
Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets.
Moogk, Duane; Zhong, Shi; Yu, Zhiya; Liadi, Ivan; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan B; Krogsgaard, Michelle
2016-07-15
CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications. Copyright © 2016 by The American Association of Immunologists, Inc.
Exploring a regulatory role for mast cells: 'MCregs'?
Frossi, Barbara; Gri, Giorgia; Tripodo, Claudio; Pucillo, Carlo
2010-03-01
Regulatory cells can mould the fate of the immune response by direct suppression of specific subsets of effector cells, or by redirecting effectors against invading pathogens and infected or neoplastic cells. These functions have been classically, although not exclusively, ascribed to different subsets of T cells. Recently, mast cells have been shown to regulate physiological and pathological immune responses, and thus to act at the interface between innate and adaptive immunity assuming different functions and behaviors at discrete stages of the immune response. Here, we focus on these poorly defined, and sometimes apparently conflicting, functions of mast cells. Copyright 2010 Elsevier Ltd. All rights reserved.
Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M
2017-07-01
The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
Multiple Rap1 effectors control Epac1-mediated tightening of endothelial junctions.
Pannekoek, Willem-Jan; Vliem, Marjolein J; Bos, Johannes L
2018-02-17
Epac1 and Rap1 mediate cAMP-induced tightening of endothelial junctions. We have previously found that one of the mechanisms is the inhibition of Rho-mediated tension in radial stress fibers by recruiting the RhoGAP ArhGAP29 in a complex containing the Rap1 effectors Rasip1 and Radil. However, other mechanisms have been proposed as well, most notably the induction of tension in circumferential actin cables by Cdc42 and its GEF FGD5. Here, we have investigated how Rap1 controls FGD5/Cdc42 and how this interconnects with Radil/Rasip1/ArhGAP29. Using endothelial barrier measurements, we show that Rho inhibition is not sufficient to explain the barrier stimulating effect of Rap1. Indeed, Cdc42-mediated tension is induced at cell-cell contacts upon Rap1 activation and this is required for endothelial barrier function. Depletion of potential Rap1 effectors identifies AF6 to mediate Rap1 enhanced tension and concomitant Rho-independent barrier function. When overexpressed in HEK293T cells, AF6 is found in a complex with FGD5 and Radil. From these results we conclude that Rap1 utilizes multiple pathways to control tightening of endothelial junctions, possibly through a multiprotein effector complex, in which AF6 functions to induce tension in circumferential actin cables.
Xia, Chongjing; Wang, Meinan; Cornejo, Omar E; Jiwan, Derick A; See, Deven R; Chen, Xianming
2017-01-01
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76 . We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst . The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst , which will enable us to understand molecular mechanisms underlying Pst -wheat interactions, to determine the effectiveness of resistance genes and further to develop durable resistance to stripe rust.
Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment
Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.
2015-01-01
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704
Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.
Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J
2015-01-01
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.
Rose, Marie-Clare St.; Taylor, Roslyn A.; Bandyopadhyay, Suman; Qui, Harry Z.; Hagymasi, Adam T.; Vella, Anthony T.; Adler, Adam J.
2012-01-01
T cell tolerance to tumor antigens represents a major hurdle in generating tumor immunity. Combined administration of agonistic monoclonal antibodies to the costimulatory receptors CD134 plus CD137 can program T cells responding to tolerogenic antigen to undergo expansion and effector T cell differentiation, and also elicits tumor immunity. Nevertheless, CD134 and CD137 agonists can also engage inhibitory immune components. To understand how immune stimulatory versus inhibitory components are regulated during CD134 plus CD137 dual costimulation, the current study utilized a model where dual costimulation programs T cells encountering a highly tolerogenic self-antigen to undergo effector differentiation. IFN-γ was found to play a pivotal role in maximizing the function of effector T cells while simultaneously limiting the expansion of CD4+CD25+Foxp3+ Tregs. In antigen-responding effector T cells, IFN-γ operates via a direct cell-intrinsic mechanism to cooperate with IL-2 to program maximal expression of granzyme B. Simultaneously, IFN-γ limits expression of the IL-2 receptor alpha chain (CD25) and IL-2 signaling through a mechanism that does not involve T-bet-mediated repression of IL-2. IFN-γ also limited CD25 and Foxp3 expression on bystanding CD4+Foxp3+ Tregs, and limited the potential of these Tregs to expand. These effects could not be explained by the ability of IFN-γ to limit IL-2 availability. Taken together, during dual costimulation IFN-γ interacts with IL-2 through distinct mechanisms to program maximal expression of effector molecules in antigen-responding T cells while simultaneously limiting Treg expansion. PMID:23295363
Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques
2017-01-01
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.
2014-01-01
Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617
Immune Checkpoint Blockade for Breast Cancer.
Swoboda, April; Nanda, Rita
An effective antitumor immune response requires interaction between cells of the adaptive and innate immune system. Three key elements are required: generation of activated tumor-directed T cells, infiltration of activated T cells into the tumor microenvironment, and killing of tumor cells by activated T cells. Tumor immune evasion can occur as a result of the disruption of each of these three key T cell activities, resulting in three distinct cancer-immune phenotypes. The immune inflamed phenotype, characterized by the presence of a robust tumor immune infiltrate, suggests impaired activated T cell killing of tumor cells related to the presence of inhibitory factors. Programmed death receptor-1 (PD-1) is an inhibitory transmembrane protein expressed on T cells, B cells, and NK cells. The interaction between PD-1 and its ligands (PD-L1/L2) functions as an immune checkpoint against unrestrained cytotoxic T effector cell activity-it promotes peripheral T effector cell exhaustion and conversion of T effector cells to immunosuppressive T regulatory (Treg) cells. Immune checkpoint inhibitors, which block the PD-1/PD-L1 axis and reactivate cytotoxic T effector cell function, are actively being investigated for the treatment of breast cancer.
An effector Peptide family required for Drosophila toll-mediated immunity.
Clemmons, Alexa W; Lindsay, Scott A; Wasserman, Steven A
2015-04-01
In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire.
Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.
Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A
2004-01-15
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.
The quartet theory of human emotions: An integrative and neurofunctional model
NASA Astrophysics Data System (ADS)
Koelsch, Stefan; Jacobs, Arthur M.; Menninghaus, Winfried; Liebal, Katja; Klann-Delius, Gisela; von Scheve, Christian; Gebauer, Gunter
2015-06-01
Despite an explosion of research in the affective sciences during the last few decades, interdisciplinary theories of human emotions are lacking. Here we present a neurobiological theory of emotions that includes emotions which are uniquely human (such as complex moral emotions), considers the role of language for emotions, advances the understanding of neural correlates of attachment-related emotions, and integrates emotion theories from different disciplines. We propose that four classes of emotions originate from four neuroanatomically distinct cerebral systems. These emotional core systems constitute a quartet of affect systems: the brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred affect systems. The affect systems were increasingly differentiated during the course of evolution, and each of these systems generates a specific class of affects (e.g., ascending activation, pain/pleasure, attachment-related affects, and moral affects). The affect systems interact with each other, and activity of the affect systems has effects on - and interacts with - biological systems denoted here as emotional effector systems. These effector systems include motor systems (which produce actions, action tendencies, and motoric expression of emotion), peripheral physiological arousal, as well as attentional and memory systems. Activity of affect systems and effector systems is synthesized into an emotion percept (pre-verbal subjective feeling), which can be transformed (or reconfigured) into a symbolic code such as language. Moreover, conscious cognitive appraisal (involving rational thought, logic, and usually language) can regulate, modulate, and partly initiate, activity of affect systems and effector systems. Our emotion theory integrates psychological, neurobiological, sociological, anthropological, and psycholinguistic perspectives on emotions in an interdisciplinary manner, aiming to advance the understanding of human emotions and their neural correlates.
Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis
2015-01-01
Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808
Gaulin, Elodie; Pel, Michiel J C; Camborde, Laurent; San-Clemente, Hélène; Courbier, Sarah; Dupouy, Marie-Alexane; Lengellé, Juliette; Veyssiere, Marine; Le Ru, Aurélie; Grandjean, Frédéric; Cordaux, Richard; Moumen, Bouziane; Gilbert, Clément; Cano, Liliana M; Aury, Jean-Marc; Guy, Julie; Wincker, Patrick; Bouchez, Olivier; Klopp, Christophe; Dumas, Bernard
2018-04-18
Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.
IgG4 subclass antibodies impair antitumor immunity in melanoma
Karagiannis, Panagiotis; Gilbert, Amy E.; Josephs, Debra H.; Ali, Niwa; Dodev, Tihomir; Saul, Louise; Correa, Isabel; Roberts, Luke; Beddowes, Emma; Koers, Alexander; Hobbs, Carl; Ferreira, Silvia; Geh, Jenny L.C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Blower, Philip J.; Mitchell, Tracey; Fear, David J.; Spicer, James F.; Lacy, Katie E.; Nestle, Frank O.; Karagiannis, Sophia N.
2013-01-01
Host-induced antibodies and their contributions to cancer inflammation are largely unexplored. IgG4 subclass antibodies are present in IL-10–driven Th2 immune responses in some inflammatory conditions. Since Th2-biased inflammation is a hallmark of tumor microenvironments, we investigated the presence and functional implications of IgG4 in malignant melanoma. Consistent with Th2 inflammation, CD22+ B cells and IgG4+-infiltrating cells accumulated in tumors, and IL-10, IL-4, and tumor-reactive IgG4 were expressed in situ. When compared with B cells from patient lymph nodes and blood, tumor-associated B cells were polarized to produce IgG4. Secreted B cells increased VEGF and IgG4, and tumor cells enhanced IL-10 secretion in cocultures. Unlike IgG1, an engineered tumor antigen-specific IgG4 was ineffective in triggering effector cell–mediated tumor killing in vitro. Antigen-specific and nonspecific IgG4 inhibited IgG1-mediated tumoricidal functions. IgG4 blockade was mediated through reduction of FcγRI activation. Additionally, IgG4 significantly impaired the potency of tumoricidal IgG1 in a human melanoma xenograft mouse model. Furthermore, serum IgG4 was inversely correlated with patient survival. These findings suggest that IgG4 promoted by tumor-induced Th2-biased inflammation may restrict effector cell functions against tumors, providing a previously unexplored aspect of tumor-induced immune escape and a basis for biomarker development and patient-specific therapeutic approaches. PMID:23454746
Shan, Qiang; Xue, Hai-Hui; Harty, John T.
2017-01-01
Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM) and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM) provide robust protection in a variety of infectious models. TRM rapidly ‘sense’ infection in non-lymphoid tissues and ‘alarm’ the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production) intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their ‘sensing and alarming’ functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9) on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM antigen recognition. Thus, sepsis has the capacity to alter skin TRM anamnestic responses without directly impacting TRM number and/or function, an observation that helps to further define the immunoparalysis phase in sepsis survivors. PMID:28910403
[The alterations of proteins glycosylation in rheumatic diseases].
Chludzińska, Anna; Chrostek, Lech; Cylwik, Bogdan
2012-08-01
The alterations in glycosylation of serum glycoproteins were reported in several pathological conditions including rheumatic diseases. The many studies demonstrated the occurrence of some differentially glycosylated plasma immunoglobulins, especially IgG in rheumatoid arthritis. The most characteristic features are the decrease in galactose content, the presence of N-acetylglucosamine and the increase in fucose content. The structure of oligosaccharides attached to the antibody Fc region affect the pharmacokinetics and antibody effector functions of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The changes in immunoglobulin glycosylation was suggested to be important in the etiology of rheumatoid athritis and correlated with the disease severity. In addition to impaired glycosylation of imunoglubulins, in rheumatic diseases exist the disturbances in glycosylation of both acute-phase and non acute-phase response, such as alpha-1 acid glycoprotein, haptoglobin and alpha-2 macroglobulin. The alterations in glycosylation of these glycoproteins were also correlated with the disease activity.
McAndrews, Kathleen M.; Kim, Min Jeong; Lam, Tuyet Y.; McGrail, Daniel J.
2014-01-01
Naturally derived biomaterials have emerged as modulators of cell function and tissue substitutes. Here, we developed crosslinked glutaraldehyde (GTA) scaffolds for the expansion and differentiation of mesenchymal stem cells (MSCs). The mechanical and architectural properties of the scaffolds were altered by varying the concentration of gelatin and GTA. Higher GTA concentrations were associated with an increase in more confined pores and osteogenic differentiation. In addition, myogenic potential varied with crosslinking degree, although bulk mechanical properties were unaltered. Correlation analysis revealed that ALP activity of differentiated MSCs on higher gelatin concentration scaffolds was dependent on traditional effectors, including environment elasticity and spread area. In contrast, the differentiation capacity of cells cultured on lower gelatin concentration scaffolds did not correlate with these factors, instead it was dependent on the hydrated pore structure. These results suggest that scaffold composition can determine what factors direct differentiation and may have critical implications for biomaterial design. PMID:24873687
Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien
2013-01-01
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221
Sriram, Uma; Hill, Beth L.; Cenna, Jonathan M.; Gofman, Larisa; Fernandes, Nicole C.; Haldar, Bijayesh; Potula, Raghava
2016-01-01
Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host’s innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses. PMID:27760221
Sriram, Uma; Hill, Beth L; Cenna, Jonathan M; Gofman, Larisa; Fernandes, Nicole C; Haldar, Bijayesh; Potula, Raghava
2016-01-01
Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host's innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses.
Guérin, Jeremy; Bigot, Sarah; Schneider, Robert; Buchanan, Susan K.; Jacob-Dubuisson, Françoise
2017-01-01
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process. PMID:28536673
Piantoni, S; Regola, F; Zanola, A; Andreoli, L; Dall'Ara, F; Tincani, A; Airo', P
2018-01-01
Background and objectives T-cell activation may be one of the pathogenic mechanisms of systemic lupus erythematosus (SLE). After repeated antigenic stimulation, T-cells undergo different modifications, leading to the differentiation into effector memory T-cells (CCR7-CD45RA-) and terminally differentiated effector memory (TDEM) T-cells (CCR7-CD45RA+). Similarly, down-modulation of CD28 may lead to the expansion of the CD28- T-cells, a subpopulation with peculiar effector activities. The aim of this study was the characterization of T-cell phenotype in a cohort of patients with SLE according to disease activity and damage index. Materials and methods Phenotypic analysis of peripheral blood T lymphocytes of 51 SLE patients and 21 healthy controls was done by flow-cytometry. SLE disease activity was evaluated by SLE Disease Activity Index-2000 (SLEDAI-2K) and damage by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI). The variations between different groups were evaluated by Mann-Whitney test. Bonferroni correction was applied to adjust for multiple comparisons ( p adj ). Spearman rank test was used to evaluate the correlations between quantitative variables. Results CD4+ lymphopenia was found among SLE patients. Patients showed a trend for a higher percentage of TDEM among the CD4+ T-cell subpopulation in comparison with healthy controls ( p = .04). SLE patients were divided into two groups according to disease activity: patients with SLEDAI-2K ≥ 6 ( n = 13) had a higher percentage of circulating CD4+ T-cells with CD28- phenotype ( p adj = .005) as well as those with an effector memory ( p adj = .004) and TDEM ( p adj = .002) phenotype and a trend of decrease of regulatory T-cells (TREGs) ( p = .02), in comparison with patients with low disease activity ( n = 38). Patients with damage (SDI ≥ 1) tended to show an expansion of TDEM among CD4+ T-cells as compared with patients with no damage ( p = .01). In SLE patients an inverse correlation was found between the percentages of TREGs and those of TDEM ( p < .01) or CD4 + CD28- ( p < .01) T-cells. Conclusions CD4+ T-cell subpopulations displaying phenotype characteristics of effector lymphocytes are proportionally expanded in patients with active SLE and a higher damage index. These findings may suggest a role of effector T-cells in the pathogenesis of the disease and in the mechanisms of damage in SLE.
2013-01-01
Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298
Lewis, Aurélia E.; Sommer, Lilly; Arntzen, Magnus Ø.; Strahm, Yvan; Morrice, Nicholas A.; Divecha, Nullin; D'Santos, Clive S.
2011-01-01
Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn = 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions. PMID:21048195
de Lourdes Mora-García, María; García-Rocha, Rosario; Morales-Ramírez, Omar; Montesinos, Juan José; Weiss-Steider, Benny; Hernández-Montes, Jorge; Ávila-Ibarra, Luis Roberto; Don-López, Christian Azucena; Velasco-Velázquez, Marco Antonio; Gutiérrez-Serrano, Vianey; Monroy-García, Alberto
2016-10-26
In recent years, immunomodulatory mechanisms of mesenchymal stem/stromal cells (MSCs) from bone marrow and other "classic" sources have been described. However, the phenotypic and functional properties of tumor MSCs are poorly understood. The aim of this study was to analyze the immunosuppressive capacity of cervical cancer-derived MSCs (CeCa-MSCs) on effector T lymphocytes through the purinergic pathway. We determined the expression and functional activity of the membrane-associated ectonucleotidases CD39 and CD73 on CeCa-MSCs and normal cervical tissue-derived MSCs (NCx-MSCs). We also analyzed their immunosuppressive capacity to decrease proliferation, activation and effector cytotoxic T (CD8+) lymphocyte function through the generation of adenosine (Ado). We detected that CeCa-MSCs express higher levels of CD39 and CD73 ectonucleotidases in cell membranes compared to NCx-MSCs, and that this feature was associated with the ability to strongly suppress the proliferation, activation and effector functions of cytotoxic T-cells through the generation of large amounts of Ado from the hydrolysis of ATP, ADP and AMP nucleotides. This study suggests that CeCa-MSCs play an important role in the suppression of the anti-tumor immune response in CeCa through the purinergic pathway.
Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.
2016-01-01
The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849
miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT.
Wang, Yu; Li, Jun; Kuang, Dong; Wang, Xiaoyan; Zhu, Yuanli; Xu, Sanpeng; Chen, Yaobing; Cheng, Henghui; Zhao, Qiu; Duan, Yaqi; Wang, Guoping
2018-04-16
Gain-of-function mutations and overexpression of KIT are characteristic features of gastrointestinal stromal tumor (GIST). Dysregulation in miRNA expression may lead to KIT overexpression and tumorigenesis. miRNA microarray analysis and real-time PCR were used to determine the miRNA expression profiles in a cohort of 69 clinical samples including 50 CD117 IHC+ /KIT mutation GISTs and 19 CD117 IHC- /wild-type GISTs. GO enrichment and KEGG pathway analyses were performed to reveal the predicted targets of the dysregulated miRNAs. Of the dysregulated miRNAs whose expression was inversely correlated with that of KIT miRNAs were predicted by bioinformatics analysis and confirmed by luciferase reporter assay. Cell counting kit-8 (CCK-8) and flow cytometry were used to measure the cell proliferation, cycle arrest and apoptosis. Wound healing and transwell assays were used to evaluate migration and invasion. A xenograft BALB/c nude mouse model was applied to investigate the tumorigenesis in vivo. Western blot and qRT-PCR were used to investigate the protein and mRNA levels of KIT and its downstream effectors including ERK, AKT and STAT3. Of the six miRNAs whose expression was inversely correlated with that of KIT, we found that miR-148b-3p was significantly downregulated in the CD117 IHC+ /KIT mutation GIST cohort. This miRNA was subsequently found to inhibit proliferation, migration and invasion of GIST882 cells. Mechanistically, miR-148b-3p was shown to regulate KIT expression through directly binding to the 3'-UTR of the KIT mRNA. Restoration of miR-148b-3p expression in GIST882 cells led to reduced expression of KIT and the downstream effectors proteins ERK, AKT and STAT3. However, overexpression of KIT reversed the inhibitory effect of miR-148b-3p on cell proliferation, migration and invasion. Furthermore, we found that reduced miR-148b-3p expression correlated with poor overall survival (OS) and disease-free survival (DFS) in GIST patients. miR-148b-3p functions as an important regulator of KIT expression and a potential prognostic biomarker for GISTs.
A Discussion of Aerodynamic Control Effectors (ACEs) for Unmanned Air Vehicles (UAVs)
NASA Technical Reports Server (NTRS)
Wood, Richard M.
2002-01-01
A Reynolds number based, unmanned air vehicle classification structure has been developed which identifies four classes of unmanned air vehicle concepts. The four unmanned air vehicle (UAV) classes are; Micro UAV, Meso UAV, Macro UAV, and Mega UAV. In a similar fashion a labeling scheme for aerodynamic control effectors (ACE) was developed and eleven types of ACE concepts were identified. These eleven types of ACEs were laid out in a five (5) layer scheme. The final section of the paper correlated the various ACE concepts to the four UAV classes and ACE recommendations are offered for future design activities.
A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.
Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G
2015-05-21
Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The AvrRpt2EA effector protein of Erwinia amylovora is important for pathogen recognition in the fire blight resistant crabapple Malus ×robusta 5; however, little is known about its role in susceptible apple genotypes. In order to study its function in planta, we expressed a plant optimized version...
Method and apparatus for loss of control inhibitor systems
NASA Technical Reports Server (NTRS)
A'Harrah, Ralph C. (Inventor)
2007-01-01
Active and adaptive systems and methods to prevent loss of control incidents by providing tactile feedback to a vehicle operator are disclosed. According to the present invention, an operator gives a control input to an inceptor. An inceptor sensor measures an inceptor input value of the control input. The inceptor input is used as an input to a Steady-State Inceptor Input/Effector Output Model that models the vehicle control system design. A desired effector output from the inceptor input is generated from the model. The desired effector output is compared to an actual effector output to get a distortion metric. A feedback force is generated as a function of the distortion metric. The feedback force is used as an input to a feedback force generator which generates a loss of control inhibitor system (LOCIS) force back to the inceptor. The LOCIS force is felt by the operator through the inceptor.
The role of effectors of biotrophic and hemibiotrophic fungi in infection.
Koeck, Markus; Hardham, Adrienne R; Dodds, Peter N
2011-12-01
Biotrophic and hemibiotrophic fungi are successful groups of plant pathogens that require living plant tissue to survive and complete their life cycle. Members of these groups include the rust fungi and powdery mildews and species in the Ustilago, Cladosporium and Magnaporthe genera. Collectively, they represent some of the most destructive plant parasites, causing huge economic losses and threatening global food security. During plant infection, pathogens synthesize and secrete effector proteins, some of which are translocated into the plant cytosol where they can alter the host's response to the invading pathogen. In a successful infection, pathogen effectors facilitate suppression of the plant's immune system and orchestrate the reprogramming of the infected tissue so that it becomes a source of nutrients that are required by the pathogen to support its growth and development. This review summarizes our current understanding of the function of fungal effectors in infection. © 2011 Blackwell Publishing Ltd.
Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico
2017-09-01
Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.
The Development of Adult Innate Lymphoid Cells
Yang, Qi; Bhandoola, Avinash
2016-01-01
Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595
Autonomic nervous system correlates in movement observation and motor imagery
Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.
2013-01-01
The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623
Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J
2012-09-01
Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B. (Inventor)
1999-01-01
Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.
Verma, Anju; Lee, Chris; Morriss, Stephanie; Odu, Fiona; Kenning, Charlotte; Rizzo, Nancy; Spollen, William G; Lin, Marriam; McRae, Amanda G; Givan, Scott A; Hewezi, Tarek; Hussey, Richard; Davis, Eric L; Baum, Thomas J; Mitchum, Melissa G
2018-05-04
Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Kassem, Sahar; Gaud, Guillaume; Bernard, Isabelle; Benamar, Mehdi; Dejean, Anne S; Liblau, Roland; Fournié, Gilbert J; Colacios, Céline; Malissen, Bernard; Saoudi, Abdelhadi
2016-07-01
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation.
Kassem, Sahar; Bernard, Isabelle; Dejean, Anne S.; Liblau, Roland; Fournié, Gilbert J.; Colacios, Céline
2016-01-01
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation. PMID:27438086
Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji
2016-04-12
The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation. Copyright © 2016 Mukaihara et al.
Robotic End Effectors for Hard-Rock Climbing
NASA Technical Reports Server (NTRS)
Kennedy, Brett; Leger, Patrick
2004-01-01
Special-purpose robot hands (end effectors) now under development are intended to enable robots to traverse cliffs much as human climbers do. Potential applications for robots having this capability include scientific exploration (both on Earth and other rocky bodies in space), military reconnaissance, and outdoor search and rescue operations. Until now, enabling robots to traverse cliffs has been considered too difficult a task because of the perceived need of prohibitively sophisticated planning algorithms as well as end effectors as dexterous as human hands. The present end effectors are being designed to enable robots to attach themselves to typical rock-face features with less planning and simpler end effectors. This advance is based on the emulation of the equipment used by human climbers rather than the emulation of the human hand. Climbing-aid equipment, specifically cams, aid hooks, and cam hooks, are used by sport climbers when a quick ascent of a cliff is desired (see Figure 1). Currently two different end-effector designs have been created. The first, denoted the simple hook emulator, consists of three "fingers" arranged around a central "palm." Each finger emulates the function of a particular type of climbing hook (aid hook, wide cam hook, and a narrow cam hook). These fingers are connected to the palm via a mechanical linkage actuated with a leadscrew/nut. This mechanism allows the fingers to be extended or retracted. The second design, denoted the advanced hook emulator (see Figure 2), shares these features, but it incorporates an aid hook and a cam hook into each finger. The spring-loading of the aid hook allows the passive selection of the type of hook used. The end effectors can be used in several different modes. In the aid-hook mode, the aid hook on one of the fingers locks onto a horizontal ledge while the other two fingers act to stabilize the end effector against the cliff face. In the cam-hook mode, the broad, flat tip of the cam hook is inserted into a non-horizontal crack in the cliff face. A subsequent transfer of weight onto the end effector causes the tip to rotate within the crack, creating a passive, self-locking action of the hook relative to the crack. In the advanced hook emulator, the aid hook is pushed into its retracted position by contact with the cliff face as the cam hook tip is inserted into the crack. When a cliff face contains relatively large pockets or cracks, another type of passive self-locking can be used. Emulating the function of the piece of climbing equipment called a "cam" (note: not the same as a "cam hook"; see Figure 1), the fingers can be fully retracted and the entire end effector inserted into the feature. The fingers are then extended as far as the feature allows. Any weight then transferred to the end effector will tend to extend the fingers further due to frictional force, passively increasing the grip on the feature. In addition to the climbing modes, these end effectors can be used to walk on (either on the palm or the fingertips) and to grasp objects by fully extending the fingers.
Johnson, A J; Shukle, R H; Chen, M-S; Srivastava, S; Subramanyam, S; Schemerhorn, B J; Weintraub, P G; Abdel Moniem, H E M; Flanders, K L; Buntin, G D; Williams, C E
2015-01-01
Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions. PMID:25528896
The quartet theory of human emotions: An integrative and neurofunctional model.
Koelsch, Stefan; Jacobs, Arthur M; Menninghaus, Winfried; Liebal, Katja; Klann-Delius, Gisela; von Scheve, Christian; Gebauer, Gunter
2015-06-01
Despite an explosion of research in the affective sciences during the last few decades, interdisciplinary theories of human emotions are lacking. Here we present a neurobiological theory of emotions that includes emotions which are uniquely human (such as complex moral emotions), considers the role of language for emotions, advances the understanding of neural correlates of attachment-related emotions, and integrates emotion theories from different disciplines. We propose that four classes of emotions originate from four neuroanatomically distinct cerebral systems. These emotional core systems constitute a quartet of affect systems: the brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred affect systems. The affect systems were increasingly differentiated during the course of evolution, and each of these systems generates a specific class of affects (e.g., ascending activation, pain/pleasure, attachment-related affects, and moral affects). The affect systems interact with each other, and activity of the affect systems has effects on - and interacts with - biological systems denoted here as emotional effector systems. These effector systems include motor systems (which produce actions, action tendencies, and motoric expression of emotion), peripheral physiological arousal, as well as attentional and memory systems. Activity of affect systems and effector systems is synthesized into an emotion percept (pre-verbal subjective feeling), which can be transformed (or reconfigured) into a symbolic code such as language. Moreover, conscious cognitive appraisal (involving rational thought, logic, and usually language) can regulate, modulate, and partly initiate, activity of affect systems and effector systems. Our emotion theory integrates psychological, neurobiological, sociological, anthropological, and psycholinguistic perspectives on emotions in an interdisciplinary manner, aiming to advance the understanding of human emotions and their neural correlates. Copyright © 2015 Elsevier B.V. All rights reserved.
Teper, Doron; Burstein, David; Salomon, Dor; Gershovitz, Michael; Pupko, Tal; Sessa, Guido
2016-04-01
The Gram-negative bacterium Xanthomonas euvesicatoria (Xcv) is the causal agent of bacterial spot disease in pepper and tomato. Xcv pathogenicity depends on a type III secretion (T3S) system that delivers effector proteins into host cells to suppress plant immunity and promote disease. The pool of known Xcv effectors includes approximately 30 proteins, most identified in the 85-10 strain by various experimental and computational techniques. To identify additional Xcv 85-10 effectors, we applied a genome-wide machine-learning approach, in which all open reading frames (ORFs) were scored according to their propensity to encode effectors. Scoring was based on a large set of features, including genomic organization, taxonomic dispersion, hypersensitive response and pathogenicity (hrp)-dependent expression, 5' regulatory sequences, amino acid composition bias and GC content. Thirty-six predicted effectors were tested for translocation into plant cells using the hypersensitive response (HR)-inducing domain of AvrBs2 as a reporter. Seven proteins (XopAU, XopAV, XopAW, XopAP, XopAX, XopAK and XopAD) harboured a functional translocation signal and their translocation relied on the HrpF translocon, indicating that they are bona fide T3S effectors. Remarkably, four belong to novel effector families. Inactivation of the xopAP gene reduced the severity of disease symptoms in infected plants. A decrease in cell death and chlorophyll content was observed in pepper leaves inoculated with the xopAP mutant when compared with the wild-type strain. However, populations of the xopAP mutant in infected leaves were similar in size to those of wild-type bacteria, suggesting that the reduction in virulence was not caused by impaired bacterial growth. © 2015 BSPP and John Wiley & Sons Ltd.
Platelets as Cellular Effectors of Inflammation in Vascular Diseases
Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.
2013-01-01
Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217
Seier, Anne M.; Renkl, Andreas C.; Schulz, Guido; Uebele, Tanja; Sindrilaru, Anca; Iben, Sebastian; Liaw, Lucy; Kon, Shigeyuki; Uede, Toshimitsu; Weiss, Johannes M.
2010-01-01
Allergic contact dermatitis is a T cell-mediated immune response, which in its relapsing chronic form is of high socioeconomic impact. The phosphoglycoprotein osteopontin (OPN) has chemotactic and Th1 cytokine functions and in various models is essential for robust T cell-mediated immunity. Here we demonstrate that OPN is abundantly expressed by both effector T cells and keratinocytes in allergic contact dermatitis lesions. T cells from nickel-allergic donors secrete high levels of OPN following antigen-specific stimulation. OPN may substitute for missing IFN-γ secretion in T effector cells because low IFN-γ-producing T cell clones secrete high levels of OPN, and OPN down-modulates their interleukin-4 expression. Furthermore, interferon-γ from T effector cells augments OPN in allergic contact dermatitis by inducing OPN in keratinocytes, which in turn polarizes dendritic cells and attracts inflammatory cells. In the murine contact hypersensitivity (CHS) model for allergic contact dermatitis, OPN is strongly induced in antigen-specific proliferating T cells, and OPN null mice display a reduced chronic CHS inflammatory response due to a decreased influx of effector T cells. Importantly, because of its function for chronic allergic contact dermatitis, OPN may well be a therapeutic target, because anti-OPN antibody treatment in part suppresses established chronic CHS. PMID:20008129
Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.
Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje
2011-11-01
Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.
Interferon-inducible effector mechanisms in cell-autonomous immunity
MacMicking, John D.
2014-01-01
Interferons (IFNs) induce the expression of hundreds of genes as part of an elaborate antimicrobial programme designed to combat infection in all nucleated cells — a process termed cell-autonomous immunity. As described in this Review, recent genomic and subgenomic analyses have begun to assign functional properties to novel IFN-inducible effector proteins that restrict bacteria, protozoa and viruses in different subcellular compartments and at different stages of the pathogen life cycle. Several newly described host defence factors also participate in canonical oxidative and autophagic pathways by spatially coordinating their activities to enhance microbial killing. Together, these IFN-induced effector networks help to confer vertebrate host resistance to a vast and complex microbial world. PMID:22531325
Kinematic functions for redundancy resolution using configuration control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1994-01-01
The invention fulfills new goals for redundancy resolution based on manipulator dynamics and end-effector characteristics. These goals are accomplished by employing the recently developed configuration control approach. Redundancy resolution is achieved by controlling the joint inertia matrix of the end-effector mass matrix that affect the inertial torques or by reducing the joint torques due to gravity loading and payload. The manipulator mechanical-advantage and velocity-ratio are also used as performance measures to be improved by proper utilization of redundancy. Furthermore, end-effector compliance, sensitivity, and impulsive force at impact are introduced as redundancy resolution criteria. The new goals for redundancy resolution allow a more efficient utilization of the redundant joints based on the desired task requirements.
Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C
2018-04-03
The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins. Copyright © 2018 Naor et al.
Masson, Jesse J R; Murphy, Andrew J; Lee, Man K S; Ostrowski, Matias; Crowe, Suzanne M; Palmer, Clovis S
2017-01-01
Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.
Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang
2012-11-01
Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.
Structure activity relationship of synaptic and junctional neurotransmission.
Goyal, Raj K; Chaudhury, Arun
2013-06-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. Published by Elsevier B.V.
Structure activity relationship of synaptic and junctional neurotransmission
Goyal, Raj K; Chaudhury, Arun
2013-01-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140
Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.
2013-01-01
Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085
Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes
Deb, Chandra; Howe, Charles L
2011-01-01
Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler’s virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8+ lymphocytes that are CD45hiCD44loCD62L− and a population of spinal cord infiltrating target effector memory CD8+ lymphocytes that are CD45hiCD44hiCD62L−. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler’s virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities. PMID:19596449
Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation
Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo
2015-01-01
Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407
Cai, Jing; Maitra, Anirban; Anders, Robert A.; Taketo, Makoto M.; Pan, Duojia
2015-01-01
Mutations in Adenomatous polyposis coli (APC) underlie familial adenomatous polyposis (FAP), an inherited cancer syndrome characterized by the widespread development of colorectal polyps. APC is best known as a scaffold protein in the β-catenin destruction complex, whose activity is antagonized by canonical Wnt signaling. Whether other effector pathways mediate APC's tumor suppressor function is less clear. Here we report that activation of YAP, the downstream effector of the Hippo signaling pathway, is a general hallmark of tubular adenomas from FAP patients. We show that APC functions as a scaffold protein that facilitates the Hippo kinase cascade by interacting with Sav1 and Lats1. Consistent with the molecular link between APC and the Hippo signaling pathway, genetic analysis reveals that YAP is absolutely required for the development of APC-deficient adenomas. These findings establish Hippo–YAP signaling as a critical effector pathway downstream from APC, independent from its involvement in the β-catenin destruction complex. PMID:26193883
Vaccinating for natural killer cell effector functions.
Wagstaffe, Helen R; Mooney, Jason P; Riley, Eleanor M; Goodier, Martin R
2018-01-01
Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.
Silencing and innate immunity in plant defense against viral and non-viral pathogens.
Zvereva, Anna S; Pooggin, Mikhail M
2012-10-29
The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.
Li, Ting; Huang, Sheng; Zhou, Junhui; Yang, Bing
2013-05-01
TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.
Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice
Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook
2017-01-01
Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4+ T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4+ T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation. PMID:27686408
Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.
Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook
2017-03-01
Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4 + T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4 + T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Evan A.; Birch, M. Eileen; Yadav, Jagjit S., E-mail: Jagjit.Yadav@uc.edu
Carbon nanotubes (CNTs) are rapidly emerging as high-priority occupational toxicants. CNT powders contain fibrous particles that aerosolize readily in places of manufacture and handling, posing an inhalation risk for workers. Studies using animal models indicate that lung exposure to CNTs causes prolonged inflammatory responses and diffuse alveolar injury. The mechanisms governing CNT-induced lung inflammation are not fully understood but have been suggested to involve alveolar macrophages (AMs). In the current study, we sought to systematically assess the effector role of AMs in vivo in the induction of lung inflammatory responses to CNT exposures and investigate their cell type-specific mechanisms. Multi-wallmore » CNTs characterized for various physicochemical attributes were used as the CNT type. Using an AM-specific depletion and repopulation approach in a mouse model, we unambiguously demonstrated that AMs are major effector cells necessary for the in vivo elaboration of CNT-induced lung inflammation. We further investigated in vitro AM responses and identified molecular targets which proved critical to pro-inflammatory responses in this model, namely MyD88 as well as MAPKs and Ca{sup 2} {sup +}/CamKII. We further demonstrated that MyD88 inhibition in donor AMs abrogated their capacity to reconstitute CNT-induced inflammation when adoptively transferred into AM-depleted mice. Taken together, this is the first in vivo demonstration that AMs act as critical effector cell types in CNT-induced lung inflammation and that MyD88 is required for this in vivo effector function. AMs and their cell type-specific mechanisms may therefore represent potential targets for future therapeutic intervention of CNT-related lung injury. - Highlights: • Demonstrated in vivo effector role of alveolar macrophages (AMs) in CNT toxicity • MyD88, MAPKs, and Ca{sup 2} {sup +}/CamKII are required for AM inflammatory responses in vitro. • MyD88 signaling is required for in vivo effector function of AMs. • MyD88 may be a potential target for intervention in CNT lung exposures.« less
Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D G
2013-12-01
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.
Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D. G.
2013-01-01
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. PMID:24339748
Marteyn, Benoit; Gazi, Anastasia; Sansonetti, Philippe
2012-01-01
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the “arms race” in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The “identity” of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this “identity” may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis. PMID:22356862
Ota, Yuri; Niiro, Hiroaki; Ota, Shun-Ichiro; Ueki, Naoko; Tsuzuki, Hirofumi; Nakayama, Tsuyoshi; Mishima, Koji; Higashioka, Kazuhiko; Jabbarzadeh-Tabrizi, Siamak; Mitoma, Hiroki; Akahoshi, Mitsuteru; Arinobu, Yojiro; Kukita, Akiko; Yamada, Hisakata; Tsukamoto, Hiroshi; Akashi, Koichi
2016-03-16
The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T-B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL(+) effector B cells and their impacts on osteoclast differentiation. Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. RANKL expression was accentuated in CD80(+)CD86(+) B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3(+)RANKL(+) effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL(+) effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Our current findings have shed light on the generation mechanism of pathogenic RANKL(+) effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future.
Pitabut, Nada; Sakurada, Shinsaku; Tanaka, Takahiro; Ridruechai, Chutharut; Tanuma, Junko; Aoki, Takahiro; Kantipong, Pacharee; Piyaworawong, Surachai; Kobayashi, Nobuyuki; Dhepakson, Panadda; Yanai, Hideki; Yamada, Norio; Oka, Shinichi; Okada, Masaji; Khusmith, Srisin; Keicho, Naoto
2013-01-01
Background: Host effector mechanism against Mycobacterium tuberculosis (Mtb) infection is dependent on innate immune response by macrophages and neutrophils and the alterations in balanced adaptive immunity. Coordinated release of cytolytic effector molecules from NK cells and effector T cells and the subsequent granule-associated killing of infected cells have been documented; however, their role in clinical tuberculosis (TB) is still controversy. Objective: To investigate whether circulating granulysin and other effector molecules are associated with the number of NK cells, iNKT cells, Vγ9+Vδ2+ T cells, CD4+ T cells and CD8+ T cells, and such association influences the clinical outcome of the disease in patients with pulmonary TB and HIV/TB coinfection. Methods: Circulating granulysin, perforin, granzyme-B and IFN-γ levels were determined by ELISA. The isoforms of granulysin were analyzed by Western blot analysis. The effector cells were analyzed by flow cytometry. Results: Circulating granulysin and perforin levels in TB patients were lower than healthy controls, whereas the granulysin levels in HIV/TB coinfection were much higher than in any other groups, TB and HIV with or without receiving HAART, which corresponded to the number of CD8+ T cells which kept high, but not with NK cells and other possible cellular sources of granulysin. In addition, the 17kDa, 15kDa and 9kDa isoforms of granulysin were recognized in plasma of HIV/TB coinfection. Increased granulysin and decreased IFN-γ levels in HIV/TB coinfection and TB after completion of anti-TB therapy were observed. Conclusion: The results suggested that the alteration of circulating granulysin has potential function in host immune response against TB and HIV/TB coinfection. This is the first demonstration so far of granulysin in HIV/TB coinfection. PMID:23801887
T cell responses in senior patients with community-acquired pneumonia related to disease severity.
Bian, Lu-Qin; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Mao, Ling; Wang, Ling
2017-12-01
Senior individuals older than 65 years of age are at a disproportionally higher risk of developing pneumonia. Impaired capacity to defend against airway infections may be one of the reasons. It is generally believed that weaker regulatory T cell responses may be beneficial to host defense against pathogens. In senior patients with community-acquired bacterial pneumonia, we investigated the frequencies and functions of regulatory T cells. Interestingly, we found that compared to age- and sex-matched healthy controls, senior pneumonia patients presented lower frequencies of Foxp3-expressing and Helios-expressing CD4 + T cells. The quantity of Foxp3 and Helios being expressed, measured by their mRNA transcription levels, was also lower in CD4 + T cells from pneumonia patients. Furthermore, following TCR and TGF-β stimulation, pneumonia patients presented impaired capacity to upregulate Foxp3 and Helios. Functional analyses revealed that CD4 + T cells from pneumonia patients secreted lower amounts of IL-10 and TGF-β, two cytokines critical to regulatory T cell-mediated suppression. Also, the expression of granzyme B and perforin, which were cytolytic molecules potentially utilized by regulatory T cells to mediate the elimination of antigen-presenting cells and effector T cells, were reduced in CD4 + CD25 + T cells from senior pneumonia patients. In addition, the CD4 + CD25 + T cells from senior pneumonia patients presented reduced capacity to suppress effector CD4 + and CD8 + T cell proliferation. Moreover, the value of pneumonia severity index was inversely correlated with several parameters of regulatory T cell function. Together, our results demonstrated that senior pneumonia patients presented a counterintuitive impairment in regulatory T cell responses that was associated with worse prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Previte, Dana M; O'Connor, Erin C; Novak, Elizabeth A; Martins, Christina P; Mollen, Kevin P; Piganelli, Jon D
2017-01-01
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr
2012-02-01
The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less
Zou, Xiaoxiao; Zhu, Yu; Pohlmann, Edward L; Li, Jilun; Zhang, Yaoping; Roberts, Gary P
2008-09-01
The activity of NifA, the transcriptional activator of the nitrogen fixation (nif) gene, is tightly regulated in response to ammonium and oxygen. However, the mechanisms for the regulation of NifA activity are quite different among various nitrogen-fixing bacteria. Unlike the well-studied NifL-NifA regulatory systems in Klebsiella pneumoniae and Azotobacter vinelandii, in Rhodospirillum rubrum NifA is activated by a direct protein-protein interaction with the uridylylated form of GlnB, which in turn causes a conformational change in NifA. We report the identification of several substitutions in the N-terminal GAF domain of R. rubrum NifA that allow NifA to be activated in the absence of GlnB. Presumably these substitutions cause conformational changes in NifA necessary for activation, without interaction with GlnB. We also found that wild-type NifA can be activated in a GlnB-independent manner under certain growth conditions, suggesting that some other effector(s) can also activate NifA. An attempt to use Tn5 mutagenesis to obtain mutants that altered the pool of these presumptive effector(s) failed, though much rarer spontaneous mutations in nifA were detected. This suggests that the necessary alteration of the pool of effector(s) for NifA activation cannot be obtained by knockout mutations.
Geiger, J D; Wagner, P D; Shu, S; Chang, A E
1992-06-01
The growth of immunogenic tumours stimulates the generation of tumour-sensitized, but not functional, pre-effector T cells in the draining lymph nodes. These pre-effector cells can mature into effector cells upon in-vitro stimulation with anti-CD3 and IL-2. In the current study, using a defined, poorly immunogenic tumour, B16-BL6 melanoma, the pre-effector cell response was not evident during progressive tumour growth but was elicited by vaccination with irradiated tumour cells admixed with Corynebacterium parvum. After anti-CD3/IL-2 activation, these cells were capable of mediating the regression of established pulmonary metastases. The efficacy of the vaccine depended on the doses of both tumour cells and the adjuvant. While higher numbers of tumour cells were more effective, an optimal dose (12.5 micrograms) of C. parvum was required. The dose of irradiation was not a critical factor. After vaccination, kinetic studies revealed that the pre-effector cell response was evident 4 days later and declined after 14 days. These observations illustrate the potential role of active immunization in the cellular therapy of cancer.
Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.
Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner
2007-01-24
A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.
Type IV secretion system of Brucella spp. and its effectors
Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang
2015-01-01
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis. PMID:26528442
Type IV secretion system of Brucella spp. and its effectors.
Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang
2015-01-01
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.
Effector proteins of rust fungi.
Petre, Benjamin; Joly, David L; Duplessis, Sébastien
2014-01-01
Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.
Yates, Nicole L.; Liao, Hua-Xin; Fong, Youyi; deCamp, Allan; Vandergrift, Nathan A.; Williams, William T.; Alam, S. Munir; Ferrari, Guido; Yang, Zhi-yong; Seaton, Kelly E.; Berman, Phillip W.; Alpert, Michael D.; Evans, David T.; O’Connell, Robert J.; Francis, Donald; Sinangil, Faruk; Lee, Carter; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Tartaglia, James; Pinter, Abraham; Zolla-Pazner, Susan; Gilbert, Peter B.; Nabel, Gary J.; Michael, Nelson L.; Kim, Jerome H.; Montefiori, David C.; Haynes, Barton F.; Tomaras, Georgia D.
2014-01-01
HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials. PMID:24648342
Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin
2015-10-13
Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.
Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition
Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily
2016-01-01
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040
Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit
2015-06-16
Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.
Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I; Smithgall, Thomas E
2014-10-10
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I.; Smithgall, Thomas E.
2014-01-01
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. PMID:25122770
Opata, Michael M; Ibitokou, Samad A; Carpio, Victor H; Marshall, Karis M; Dillon, Brian E; Carl, Jordan C; Wilson, Kyle D; Arcari, Christine M; Stephens, Robin
2018-04-01
Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages.
Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido
2018-05-21
The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas species and elucidate evolution of the Xanthomonas euvesicatoria xopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multi-domains gene into two ORFs that conserved the original domain function. Analysis of xopAE 85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE 85-10 is an XL-box E3 ubiquitin ligase and provide insights into structure and function of this effector family. Copyright © 2018 American Society for Microbiology.
Macho, Alberto P
2016-04-01
Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.
The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity
Longman, Randy S.; Littman, Dan R.
2016-01-01
Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030
Tomczynska, Iga; Stumpe, Michael; Mauch, Felix
2018-04-19
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinIzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian
2013-01-01
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence. PMID:23357949
Corrective jitter motion shows similar individual frequencies for the arm and the finger.
Noy, Lior; Alon, Uri; Friedman, Jason
2015-04-01
A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes.
Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael
2014-01-01
During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species,more » while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.« less
In vitro immunotherapy potency assays using real-time cell analysis
Cerignoli, Fabio; Abassi, Yama A.; Lamarche, Brandon J.; Guenther, Garret; Santa Ana, David; Guimet, Diana; Zhang, Wen; Zhang, Jing
2018-01-01
A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow. PMID:29499048
Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants
Ali, Muhammad A.; Azeem, Farrukh; Li, Hongjie; Bohlmann, Holger
2017-01-01
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants. PMID:29046680
Mining the human gut microbiota for effector strains that shape the immune system
Ahern, Philip P.; Faith, Jeremiah J.; Gordon, Jeffrey I.
2014-01-01
Summary The gut microbiota co-develops with the immune system beginning at birth. Mining the microbiota for bacterial strains responsible for shaping the structure and dynamic operations of the innate and adaptive arms of the immune system represents a formidable combinatorial problem but one that needs to be overcome to advance mechanistic understanding of microbial community-immune system co-regulation, and in order to develop new diagnostic and therapeutic approaches that promote health. Here, we discuss a scalable, less biased approach for identifying effector strains in complex microbial communities that impact immune function. The approach begins by identifying uncultured human fecal microbiota samples that transmit immune phenotypes to germ-free mice. Clonally-arrayed sequenced collections of bacterial strains are constructed from representative donor microbiota. If the collection transmits phenotypes, effector strains are identified by testing randomly generated subsets with overlapping membership in individually-housed germ-free animals. Detailed mechanistic studies of effector strain-host interactions can then be performed. PMID:24950201
Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh; ...
2017-03-23
During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less
Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants.
Ali, Muhammad A; Azeem, Farrukh; Li, Hongjie; Bohlmann, Holger
2017-01-01
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
Role of Rab family GTPases and their effectors in melanosomal logistics.
Ohbayashi, Norihiko; Fukuda, Mitsunori
2012-04-01
Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.
Central neural pathways for thermoregulation.
Morrison, Shaun F; Nakamura, Kazuhiro
2011-01-01
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh
During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less
Long-range allosteric signaling in red light–regulated diguanylyl cyclases
Gourinchas, Geoffrey; Etzl, Stefan; Göbl, Christoph; Vide, Uršula; Madl, Tobias; Winkler, Andreas
2017-01-01
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light–sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate–producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light–regulated optogenetic tools. PMID:28275738
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S
2014-05-01
Th17 and Th22 cells are thought to function as innate regulators of mucosal antimicrobial responses, tissue inflammation and mucosal integrity, yet their role in persistent SIV infection is still unclear. Here we compared Th17 and Th22 cells in their phenotype, effector/cytokine function, and frequency in blood and intestinal mucosal tissues, and correlate levels with mucosal damage in SIV-infected rhesus macaques. We found that Th17/Th22 cells share similar features in that both highly produce TNF-α and IL-2 and express CCR5 in intestinal tissues; yet very few show cytotoxic functions, as evidenced by lack of IFN-γ and granzyme B production. Further, Th17/Th22 cells display distinct tissue-specific distributions. Both Th17 and Th22 cells and cytokine secretion were significantly depleted in both blood and intestine in chronically SIV-infected macaques. The frequency of Th17 and Th22 cells in the intestine positively correlated with percentages of intestinal CD4+ T cells and negatively with damage to intestinal mucosa, and plasma viral loads in SIV infection. These findings indicate Th17 and Th22 cells share considerable functions, and may coordinate in innate mucosal immune responses, and their regional loss in the intestine may be associated with local mucosal immune dysfunction in persistent HIV/SIV infection.
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.
2014-01-01
Th17 and Th22 cells are thought to function as innate regulators of mucosal antimicrobial responses, tissue inflammation and mucosal integrity, yet their role in persistent SIV infection is still unclear. Here we compared Th17 and Th22 cells in their phenotype, effector/cytokine function, and frequency in blood and intestinal mucosal tissues, and correlate levels with mucosal damage in SIV-infected rhesus macaques. We found that Th17/Th22 cells share similar features in that both highly produce TNF-α and IL-2 and express CCR5 in intestinal tissues; yet very few show cytotoxic functions, as evidenced by lack of IFN-γ and granzyme B production. Further, Th17/Th22 cells display distinct tissue-specific distributions. Both Th17 and Th22 cells and cytokine secretion were significantly depleted in both blood and intestine in chronically SIV-infected macaques. The frequency of Th17 and Th22 cells in the intestine positively correlated with percentages of intestinal CD4+ T cells and negatively with damage to intestinal mucosa, and plasma viral loads in SIV infection. These findings indicate Th17 and Th22 cells share considerable functions, and may coordinate in innate mucosal immune responses, and their regional loss in the intestine may be associated with local mucosal immune dysfunction in persistent HIV/SIV infection. PMID:25364618
Gohain, Neelakshi; Tolbert, William D; Acharya, Priyamvada; Yu, Lei; Liu, Tongyun; Zhao, Pingsen; Orlandi, Chiara; Visciano, Maria L; Kamin-Lewis, Roberta; Sajadi, Mohammad M; Martin, Loïc; Robinson, James E; Kwong, Peter D; DeVico, Anthony L; Ray, Krishanu; Lewis, George K; Pazgier, Marzena
2015-09-01
Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting--a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Truttmann, Matthias C.; Guye, Patrick; Dehio, Christoph
2011-01-01
The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation. PMID:22043280
Truttmann, Matthias C; Guye, Patrick; Dehio, Christoph
2011-01-01
The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.
Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts.
Guiguet, Antoine; Dubreuil, Géraldine; Harris, Marion O; Appel, Heidi M; Schultz, Jack C; Pereira, Marcos H; Giron, David
2016-01-01
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A
2016-02-26
Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.
2016-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458
Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study
Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki
2015-01-01
When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024
Vilchez, Valery; Turcios, Lilia; Butterfield, David A; Mitov, Mihail I; Coquillard, Cristin L; Brandon, Ja Anthony; Cornea, Virgilius; Gedaly, Roberto; Marti, Francesc
2017-10-01
The PI3K/mTOR signaling cascade is fundamental in T-cell activation and fate decisions. We showed the distinct regulation of PI3K/mTOR in regulatory and effector T-cells and proposed the potential therapeutic benefit of targeting this pathway to control the balance between effector and regulatory T-cell activities. Substantial adverse effects in long-term clinical usage of rapamycin suggest the use of alternative treatments in restraining effector T-cell function in transplant patients. We hypothesize that dual PI3K/mTOR inhibitors may represent an immunosuppressant alternative. Here we show that dual PI3K/mTOR PI-103 and PKI-587 inhibitors interfered IL-2-dependent responses in T-cells. However, in contrast to the inhibitory effects in non-Treg T-cell proliferation and effector functions, dual inhibitors increased the differentiation, preferential expansion, and suppressor activity of iTregs. Rapamycin, PI-103, and PKI-587 targeted different signaling events and induced different metabolic patterns in primary T-cells. Similar to rapamycin, in vivo administration of PI-103 and PKI-587 controlled effectively the immunological response against allogeneic skin graft. These results characterize specific regulatory mechanisms of dual PI3K/mTOR inhibitors in T-cells and support their potential as a novel therapeutic option in transplantation. © 2017 Steunstichting ESOT.
Nguyen, Tinh T.; Martí-Arbona, Ricardo; Hall, Richard S.; ...
2013-05-21
Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xenovoransLB400, Bxe_B2842, which is homologous to E. coli’s OhrR. Bxe_B2842 regulates the expression of an organic hydroperoxide resistance protein (OsmC). We utilized frontal affinity chromatography coupled with mass spectrometry (FAC-MS) and electrophoretic mobility gel shift assays (EMSA) to identify and characterize the possible effectors of the regulation by Bxe_B2842. Without an effector, Bxe_B2842 binds a DNA operator sequence (DOS) upstream ofmore » osmC. FAC-MS results suggest that 2-aminophenol binds to the protein and is potentially an effector molecule. EMSA analysis shows that 2-aminophenol also attenuates the Bxe_B2842’s affinity for its DOS. EMSA analysis also shows that organic peroxides attenuate Bxe_B2842/DOS affinity, suggesting that binding of the TR to its DOS is regulated by the two-cysteine mechanism, common to TRs in this family. Bxe_B2842 is the first OhrR TR to have both oxidative and effector-binding mechanisms of regulation. Our paper reveals further mechanistic diversity TR mediated gene regulation and provides insights into methods for function discovery of TRs.« less
Impact of mutations on the allosteric conformational equilibrium
Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej
2012-01-01
Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330
Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.
Kim, Chang H
2018-02-01
Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.
Unique catalytic activities and scaffolding of p21 activated kinase-1 in cardiovascular signaling.
Ke, Yunbo; Lei, Ming; Wang, Xin; Solaro, R John
2013-09-27
P21 activated kinase-1 (Pak1) has diverse functions in mammalian cells. Although a large number of phosphoproteins have been designated as Pak1 substrates from in vitro studies, emerging evidence has indicated that Pak1 may function as a signaling molecule through a unique molecular mechanism - scaffolding. By scaffolding, Pak1 delivers signals through an auto-phosphorylation-induced conformational change without transfer of a phosphate group to its immediate downstream effector(s). Here we review evidence for this regulatory mechanism based on structural and functional studies of Pak1 in different cell types and research models as well as in vitro biochemical assays. We also discuss the implications of Pak1 scaffolding in disease-related signaling processes and the potential in cardiovascular drug development.
Pfeilmeier, Sebastian; Caly, Delphine L; Malone, Jacob G
2016-10-01
Plant infection is a complicated process. On encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled with overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. ) (Melotto and Kunkel, ; Phan Tran et al., ). As our understanding of the pathways and mechanisms underpinning plant pathogenicity increases, a number of central research challenges are emerging that will profoundly shape the direction of research in the future. We need to understand the bacterial phenotypes that promote epiphytic survival and surface adaptation in pathogenic bacteria. How do these pathways function in the context of the plant-associated microbiome, and what impact does this complex microbial community have on the onset and severity of plant infections? The huge importance of bacterial signal transduction to every stage of plant infection is becoming increasingly clear. However, there is a great deal to learn about how these signalling pathways function in phytopathogenic bacteria, and the contribution they make to various aspects of plant pathogenicity. We are increasingly able to explore the structural and functional diversity of small-molecule natural products from plant pathogens. We need to acquire a much better understanding of the production, deployment, functional redundancy and physiological roles of these molecules. Type III secretion systems (T3SSs) are important and well-studied contributors to bacterial disease. Several key unanswered questions will shape future investigations of these systems. We need to define the mechanism of hierarchical and temporal control of effector secretion. For successful infection, effectors need to interact with host components to exert their function. Advanced biochemical, proteomic and cell biological techniques will enable us to study the function of effectors inside the host cell in more detail and on a broader scale. Population genomics analyses provide insight into evolutionary adaptation processes of phytopathogens. The determination of the diversity and distribution of type III effectors (T3Es) and other virulence genes within and across pathogenic species, pathovars and strains will allow us to understand how pathogens adapt to specific hosts, the evolutionary pathways available to them, and the possible future directions of the evolutionary arms race between effectors and molecular plant targets. Although pathogenic bacteria employ a host of different virulence and proliferation strategies, as a result of the space constraints, this review focuses mainly on the hemibiotrophic pathogens. We discuss the process of plant infection from the perspective of these important phytopathogens, and highlight new approaches to address the outstanding challenges in this important and fast-moving field. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Miranda, Dante; Jara, Claudia; Mejias, Sophia; Ahumada, Viviana; Cortez-San Martin, Marcelo; Ibañez, Jorge; Hirsch, Sandra; Montoya, Margarita
2018-05-18
Immunosenescence has been described as age-associated changes in the immune function which are thought to be responsible for the increased morbidity with age. Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in immune defense against tumor and microbial diseases. Interestingly, aging-related NK cell dysfunction is associated with features of aging such as tumor incidence, reduced vaccination efficacy, and short survival due to infection. It is known that NK cell effector functions are critically dependent on cytokines and metabolic activity. Our aim was to determine whether there is a difference in purified human NK cell function in response to high concentration of IL-2 between young and elder donors. Here, we report that the stimulation of human NK cells with IL-2 (2000 U/mL) enhance NK cell cytotoxic activity from both young and elderly donors. However, while NK cells from young people responded to IL-2 signaling by increasing mitochondrial mass and mitochondrial membrane potential, no increase in these mitochondrial functional parameters was seen in purified NK cells from elderly subjects. Moreover, as purified NK cells from the young exhibited an almost three-fold increase in PGC-1α expression after IL-2 (2000 U/mL) stimulation, PGC-1α expression was inhibited in purified NK cells from elders. Furthermore, this response upon PGC-1α expression after IL-2 stimulation promoted an increase in ROS production in NK cells from elderly humans, while no increase in ROS production was observed in NK cells of young donors. Our data show that IL-2 stimulates NK cell effector function through a signaling pathway which involves a PGC-1α-dependent mitochondrial function in young NK cells, however it seems that NK cells from older donors exhibit an altered IL-2 signaling which affects mitochondrial function associated with an increased production of ROS which could represent a feature of NK cell senescence. Copyright © 2018 Elsevier Inc. All rights reserved.
Pearson, Jaclyn S; Riedmaier, Patrice; Marchès, Olivier; Frankel, Gad; Hartland, Elizabeth L
2011-01-01
Many bacterial pathogens utilize a type III secretion system (T3SS) to inject virulence effector proteins into host cells during infection. Previously, we found that enteropathogenic Escherichia coli (EPEC) uses the type III effector, NleE, to block the inflammatory response by inhibiting IκB degradation and nuclear translocation of the p65 subunit of NF-κB. Here we screened further effectors with unknown function for their capacity to prevent p65 nuclear translocation. We observed that ectopic expression of GFP–NleC in HeLa cells led to the degradation of p65. Delivery of NleC by the T3SS of EPEC also induced degradation of p65 in infected cells as well as other NF-κB components, c-Rel and p50. Recombinant His6-NleC induced p65 and p50 cleavage in HeLa cell lysates and mutation of a consensus zinc metalloprotease motif, HEIIH, abrogated NleC proteolytic activity. NleC inhibited IL-8 production during prolonged EPEC infection of HeLa cells in a protease activity-dependent manner. A double nleE/nleC mutant was further impaired for its ability to inhibit IL-8 secretion than either a single nleE or a single nleC mutant. We conclude that NleC is a type III effector protease that degrades NF-κB thereby contributing the arsenal of bacterial effectors that inhibit innate immune activation. PMID:21306441
Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs.
Rutter, William B; Hewezi, Tarek; Maier, Tom R; Mitchum, Melissa G; Davis, Eric L; Hussey, Richard S; Baum, Thomas J
2014-08-01
Sedentary plant-parasitic nematodes engage in complex interactions with their host plants by secreting effector proteins. Some effectors of both root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera and Globodera spp.) mimic plant ligand proteins. Most prominently, cyst nematodes secrete effectors that mimic plant CLAVATA3/ESR-related (CLE) ligand proteins. However, only cyst nematodes have been shown to secrete such effectors and to utilize CLE ligand mimicry in their interactions with host plants. Here, we document the presence of ligand-like motifs in bona fide root-knot nematode effectors that are most similar to CLE peptides from plants and cyst nematodes. We have identified multiple tandem CLE-like motifs conserved within the previously identified Meloidogyne avirulence protein (MAP) family that are secreted from root-knot nematodes and have been shown to function in planta. By searching all 12 MAP family members from multiple Meloidogyne spp., we identified 43 repetitive CLE-like motifs composing 14 unique variants. At least one CLE-like motif was conserved in each MAP family member. Furthermore, we documented the presence of other conserved sequences that resemble the variable domains described in Heterodera and Globodera CLE effectors. These findings document that root-knot nematodes appear to use CLE ligand mimicry and point toward a common host node targeted by two evolutionarily diverse groups of nematodes. As a consequence, it is likely that CLE signaling pathways are important in other phytonematode pathosystems as well.
Ruh, Mylène; Briand, Martial; Bonneau, Sophie; Jacques, Marie-Agnès; Chen, Nicolas W G
2017-08-30
Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages.
Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel
2016-01-01
Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.
Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel
2016-01-01
Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors. PMID:26821324
Method and apparatus for configuration control of redundant robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space.
Zhang, Zhonghui; Wu, Wen-Shu
2018-01-01
MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.
CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection
NASA Astrophysics Data System (ADS)
Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.
2004-06-01
Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.
Sun, Im-Hong; Oh, Min-Hee; Zhao, Liang; Patel, Chirag H; Arwood, Matthew L; Xu, Wei; Tam, Ada J; Blosser, Richard L; Wen, Jiayu; Powell, Jonathan D
2018-06-08
The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8 + memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1 hi eTregs and mTORC1 lo central Tregs. Copyright © 2018 by The American Association of Immunologists, Inc.
Cytokines and the Inception of CD8 T Cell Responses
Cox, Maureen A.; Harrington, Laurie E.; Zajac, Allan J.
2011-01-01
The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprised of both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this article we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation and also highlight the potential counterbalancing role of IL-21. PMID:21371940
Harms, Alexander; Liesch, Marius; Körner, Jonas; Québatte, Maxime; Engel, Philipp; Dehio, Christoph
2017-10-01
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins.
Liesch, Marius
2017-01-01
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins. PMID:29073136
Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M.; Hagen, Shoko I.; Walker, Joshua M.; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B.; Planer, Shannon L.; Legasse, Alfred; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Sodora, Donald L.; Douek, Daniel C.; Axthelm, Michael K.; Grossman, Zvi; Picker, Louis J.
2007-01-01
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells. PMID:17724130
Martí-Arbona, Ricardo; Mu, Fangping; Nowak-Lovato, Kristy L.; ...
2014-12-18
In this study, the clustering of genes in a pathway and the co-location of functionally related genes is widely recognized in prokaryotes. We used these characteristics to predict the metabolic involvement for a Transcriptional Regulator (TR) of unknown function, identified and confirmed its biological activity. software tool that identifies the genes encoded within a defined genomic neighborhood for the subject TR and its homologs was developed. The output lists of genes in the genetic neighborhoods, their annotated functions, the reactants/products, and identifies the metabolic pathway in which the encoded-proteins function. When a set of TRs of known function was analyzed,more » we observed that their homologs frequently had conserved genomic neighborhoods that co-located the metabolically related genes regulated by the subject TR. We postulate that TR effectors are metabolites in the identified pathways; indeed the known effectors were present. We analyzed Bxe_B3018 from Burkholderia xenovorans, a TR of unknown function and predicted that this TR was related to the glycine, threonine and serine degradation. We tested the binding of metabolites in these pathways and for those that bound, their ability to modulate TR binding to its specific DNA operator sequence. Using rtPCR, we confirmed that methylglyoxal was an effector of Bxe_3018. These studies provide the proof of concept and validation of a systematic approach to the discovery of the biological activity for proteins of unknown function, in this case a TR. Bxe_B3018 is a methylglyoxal responsive TR that controls the expression of an operon composed of a putative efflux system.« less
Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E
2013-10-01
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.
Doucette, Carolyn D; Rodgers, Gemma; Liwski, Robert S; Hoskin, David W
2015-11-01
Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders. © 2015 Wiley Periodicals, Inc.
Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie
2016-01-01
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
The function of small RNAs in plant biotic stress response.
Huang, Juan; Yang, Meiling; Zhang, Xiaoming
2016-04-01
Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control. © 2016 Institute of Botany, Chinese Academy of Sciences.
Assaying effector function in planta using double-barreled particle bombardment.
Kale, Shiv D; Tyler, Brett M
2011-01-01
The biolistic transient gene expression assay is a beneficial tool for studying gene function in vivo. However, biolistic transient assay systems have inherent pitfalls that often cause experimental inaccuracies such as poor transformation efficiency, which can be confused with biological phenomena. The double-barreled gene gun device is an inexpensive and highly effective attachment that enables statistically significant data to be obtained with one-tenth the number of experimental replicates compared to conventional biolistic assays. The principle behind the attachment is to perform two simultaneous bombardments with control and test DNA preparations onto the same leaf. The control bombardment measures the efficiency of the transformation while the ratio of the test bombardment to the control bombardment measures the activity of the gene of interest. With care, the ratio between the pair of bombardments can be highly reproducible from bombardment to bombardment. The double-barreled attachment has been used to study plant resistance (R) gene-mediated responses to effectors, induction and suppression of cell death by a wide variety of pathogen and host molecules, and the role of oömycete effector RXLR motifs in cell reentry.
Protein Allostery and Conformational Dynamics.
Guo, Jingjing; Zhou, Huan-Xiang
2016-06-08
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
¹H, ¹³C and ¹⁵N resonance assignment for the human K-Ras at physiological pH.
Vo, Uybach; Embrey, Kevin J; Breeze, Alexander L; Golovanov, Alexander P
2013-10-01
K-Ras, a member of the Ras family of small GTPases, is involved in cell growth, proliferation, differentiation and apoptosis and is frequently mutated in cancer. The activity of Ras is mediated by the inter-conversion between GTP- and GDP- bound states. This conversion is regulated by binding of effector proteins such as guanine nucleotide exchange factors and GTPase activating proteins. Previously, NMR signals from these effector-binding regions of Ras often remained unassigned and largely unobservable due to conformational exchange and polysterism inherent to this protein. In this paper, we report the complete backbone and C(β), as well as partial H(α), H(β) and C(γ), NMR assignment for human K-Ras (residues 1-166) in the GDP-bound form at a physiological pH of 7.4. These data thereby make possible detailed monitoring of the functional cycle of Ras and its interactions with nucleotides and effector proteins through the observation of fingerprint signals from all the functionally important regions of the protein.
Liu, Yanwei; Yan, Wei; Zhang, Wei; Chen, Lingchao; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Wang, Hongjun; Kang, Chunsheng; Jiang, Tao
2012-09-01
The invasive behavior of glioblastoma multiforme (GBM) cells is one of the most important reasons for the poor prognosis of this cancer. For invasion, tumor cells must acquire an ability to digest the extracellular matrix and infiltrate the normal tissue bordering the tumor. Preventing this by altering effector molecules can significantly improve a patient's prognosis. Accumulating evidence suggests that miRNAs are involved in multiple biological functions, including cell invasion, by altering the expression of multiple target genes. The expression levels of miR-218 correlate with the invasive potential of GBM cells. In this study, we found that miR-218 expression was low in glioma tissues, especially in GBM. The data showed an inverse correlation in 60 GBM tissues between the levels of miR-218 and MMP mRNAs (MMP-2, -7 and -9). Additionally, ectopic expression of miR-218 suppressed the invasion of GBM cells whereas inhibition of miR-218 expression enhanced the invasive ability. Numerous members of the MMP family are downstream effectors of the Wnt/LEF1 pathway. Target prediction databases and luciferase data showed that LEF1 is a new direct target of miR-218. Importantly, western blot assays demonstrated that miR-218 can reduce protein levels of LEF1 and MMP-9. We, therefore, hypothesize that miR-218 directly targets LEF1, resulting in reduced synthesis of MMP-9. Results suggest that miR-218 is involved in the invasive behavior of GBM cells and by targeting LEF1 and blocking the invasive axis, miR-218-LEF1-MMPs, it may be useful for developing potential clinical strategies.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
A central role for Notch in effector CD8+ T cell differentiation
Backer, Ronald A.; Helbig, Christina; Gentek, Rebecca; Kent, Andrew; Laidlaw, Brian J.; Dominguez, Claudia X.; de Souza, Yevan S.; van Trierum, Stella E.; van Beek, Ruud; Rimmelzwaan, Guus F.; ten Brinke, Anja; Willemsen, A. Marcel; van Kampen, Antoine H. C.; Kaech, Susan M.; Blander, J. Magarian; van Gisbergen, Klaas; Amsen, Derk
2014-01-01
Activated CD8+ T cells choose between terminal effector cell (TEC) or memory precursor cell (MPC) fates. We show that Notch controls this choice. Notch promoted differentiation of immediately protective TECs and was correspondingly required for clearance of an acute influenza virus infection. Notch activated a major portion of the TEC-specific gene expression program and suppressed the MPC-specific program. Expression of Notch receptors was induced on naïve CD8+ T cells by inflammatory mediators and interleukin 2 (IL-2) via mTOR and T-bet dependent pathways. These pathways were subsequently amplified downstream of Notch, creating a positive feedback loop. Notch thus functions as a central hub where information from different sources converges to match effector T cell differentiation to the demands of the infection. PMID:25344724
Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?
Block, Anna; Alfano, James R
2011-02-01
The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.
Generation of effector CD8+ T cells and their conversion to memory T cells
Cui, Weiguo; Kaech, Susan M.
2015-01-01
Summary Immunological memory is a cardinal feature of adaptive immunity. We are now beginning to elucidate the mechanisms that govern the formation of memory T cells and their ability to acquire longevity, survive the effector-to-memory transition, and mature into multipotent, functional memory T cells that self-renew. Here, we discuss the recent findings in this area and highlight extrinsic and intrinsic factors that regulate the cellular fate of activated CD8+ T cells. PMID:20636815
Morais do Amaral, Alexandre; Antoniw, John; Rudd, Jason J.; Hammond-Kosack, Kim E.
2012-01-01
The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328) which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks), and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies. PMID:23236356
Kroken, Abby R.; Chen, Camille K.; Evans, David J.; Yahr, Timothy L.
2018-01-01
ABSTRACT Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. PMID:29717012
Herrmann, Andreas; Kortylewski, Marcin; Kujawski, Maciej; Zhang, Chunyan; Reckamp, Karen; Armstrong, Brian; Wang, Lin; Kowolik, Claudia; Deng, Jiehui; Robert, Figlin; Yu, Hua
2010-01-01
Improving effector T cell functions is highly desirable for preventive or therapeutic interventions of diverse diseases. Stat3 in the myeloid compartment constrains Th-1 type immunity, dampening natural and induced antitumor immune responses. We have recently developed an in vivo siRNA delivery platform by conjugating a TLR9 agonist with siRNA that efficiently targets myeloid and B cells. Here we show that either ablating the Stat3 alleles in the myeloid compartment and B cells combined with CpG triggering or administrating the CpG-Stat3siRNA conjugates drastically augments effector functions of adoptively transferred CD8+ T cells. Specifically, we demonstrate that both approaches are capable of increasing dendritic cell and CD8+ T cell engagement in tumor draining lymph nodes. Furthermore, both approaches can significantly activate the transferred CD8+ T cells in vivo, upregulating effector molecules such as perforin, granzyme B and IFN-γ. Intravital multiphoton microscopy reveals that Stat3 silencing combined with CpG triggering greatly increases killing activity and tumor infiltration of transferred T cells. These results suggest the use of CpG-Stat3siRNA, and possibly other Stat3 inhibitors, as a potent adjuvant to improve T cell therapies. PMID:20841481
Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells
Mortha, Arthur; Burrows, Kyle
2018-01-01
Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ. PMID:29467768
Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.
Mortha, Arthur; Burrows, Kyle
2018-01-01
Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.
Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D.; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C.
2015-01-01
Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity towards B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs (ITAM)-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared to standard first and second generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors. PMID:25941351
Protein partners in the life history of activated fibroblast growth factor receptors.
Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M
2007-12-01
Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.
RELATIONSHIP BETWEEN BEHAVIORAL AND AUTONOMIC THERMOREGULATION IN THE GUINEA PIG
The study was conducted to correlate the preferred thermal environment of the unrestrained guinea pig with the activity of its thermoregulatory effectors when maintained under a wide range of ambient temperatures (Ta). Eight male guinea pigs were used in a series of experiments o...
Vav family exchange factors: an integrated regulatory and functional view
Bustelo, Xosé R
2014-01-01
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets. PMID:25483299
Evaluation of profile and functionality of memory T cells in pulmonary tuberculosis.
Tonaco, Marcela M; Moreira, Jôsimar D; Nunes, Fernanda F C; Loures, Cristina M G; Souza, Larissa R; Martins, Janaina M; Silva, Henrique R; Porto, Arthur Henrique R; Toledo, Vicente Paulo C P; Miranda, Silvana S; Guimarães, Tânia Mara P D
2017-12-01
The cells T CD4+ T and CD8+ can be subdivided into phenotypes naïve, T of central memory, T of effector memory and effector, according to the expression of surface molecules CD45RO and CD27. The T lymphocytes are cells of long life with capacity of rapid expansion and function, after a new antigenic exposure. In tuberculosis, it was found that specific memory T cells are present, however, gaps remain about the role of such cells in the disease immunology. In this study, the phenotypic profile was analyzed and characterized the functionality of CD4+ T lymphocytes and CD8+ T cells of memory and effector, in response to specific stimuli in vitro, in patients with active pulmonary TB, compared to individuals with latent infection with Mycobacterium tuberculosis the ones treated with pulmonary TB. It was observed that the group of patients with active pulmonary tuberculosis was the one which presented the highest proportion of cells T CD4+ of central memory IFN-ɣ+ e TNF-α+, suggesting that in TB, these T of central memory cells would have a profile of protective response, being an important target of study for the development of more effective vaccines; this group also developed lower proportion of CD8+ T effector lymphocytes than the others, a probable cause of specific and less effective response against the bacillus in these individuals; the ones treated for pulmonary tuberculosis were those who developed higher proportion of T CD4+ of memory central IL-17+ cells, indicating that the stimulation of long duration, with high antigenic load, followed by elimination of the pathogen, contribute to more significant generation of such cells; individuals with latent infection by M. tuberculosis and treated for pulmonary tuberculosis, showed greater response of CD8+ T effector lymphocytes IFN-ɣ+ than the controls, suggesting that these cells, as well as CD4+ T lymphocytes, have crucial role of protection against M. tuberculosis. These findings have contributed to a better understanding of the immunologic changes in M. tuberculosis infection and the development of new strategies for diagnosis and prevention of tuberculosis. Copyright © 2017. Published by Elsevier B.V.
Fiordalisi, James J; Holly, Stephen P; Johnson, Ronald L; Parise, Leslie V; Cox, Adrienne D
2002-03-29
Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first extensive characterization of this functionally distinct class of DN Ras inhibitor proteins.
Boesch, Austin W; Kappel, James H; Mahan, Alison E; Chu, Thach H; Crowley, Andrew R; Osei-Owusu, Nana Y; Alter, Galit; Ackerman, Margaret E
2018-05-01
As antibodies continue to gain predominance in drug discovery and development pipelines, efforts to control and optimize their activity in vivo have matured to incorporate sophisticated abilities to manipulate engagement of specific Fc binding partners. Such efforts to promote diverse functional outcomes include modulating IgG-Fc affinity for FcγRs to alternatively potentiate or reduce effector functions, such as antibody-dependent cellular cytotoxicity and phagocytosis. While a number of natural and engineered Fc features capable of eliciting variable effector functions have been demonstrated in vitro and in vivo, elucidation of these important functional relationships has taken significant effort through use of diverse genetic, cellular and enzymatic techniques. As an orthogonal approach, we demonstrate use of FcγR as chromatographic affinity ligands to enrich and therefore simultaneously identify favored binding species from a complex mixture of serum-derived pooled polycloncal human IgG, a load material that contains the natural repertoire of Fc variants and post-translational modifications. The FcγR-enriched IgG was characterized for subclass and glycoform composition and the impact of this bioseparation step on antibody activity was measured in cell-based effector function assays including Natural Killer cell activation and monocyte phagocytosis. This work demonstrates a tractable means to rapidly distinguish complex functional relationships between two or more interacting biological agents by leveraging affinity chromatography followed by secondary analysis with high-resolution biophysical and functional assays and emphasizes a platform capable of surveying diverse natural post-translational modifications that may not be easily produced with high purity or easily accessible with recombinant expression techniques. © 2018 Wiley Periodicals, Inc.
Information distribution in distributed microprocessor based flight control systems
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1977-01-01
This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.
Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft
NASA Technical Reports Server (NTRS)
Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas
2001-01-01
Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.
Scheible, Kristin M.; Emo, Jason; Yang, Hongmei; Holden-Wiltse, Jeanne; Straw, Andrew; Huyck, Heidie; Misra, Sara; Topham, David J.; Ryan, Rita M.; Reynolds, Anne Marie; Mariani, Thomas J.; Pryhuber, Gloria S.
2015-01-01
Homeostatic T cell proliferation is more robust during human fetal development. In order to understand the relative effect of normal fetal homeostasis and perinatal exposures on CD8+ T cell behavior in PT infants, we characterized umbilical cord blood CD8+ T cells from infants born between 23–42 weeks gestation. Subjects were recruited as part of the NHLBI-sponsored Prematurity and Respiratory Outcomes Program. Cord blood from PT infants had fewer naïve CD8+ T cells and lower regulatory CD31 expression on both naïve and effector, independent of prenatal exposures. CD8+ T cell in vitro effector function was greater at younger gestational ages, an effect that was exaggerated in infants with prior inflammatory exposures. These results suggest that CD8+ T cells earlier in gestation have loss of regulatory co-receptor CD31 and greater effector differentiation, which may place PT neonates at unique risk for CD8+ T cell-mediated inflammation and impaired T cell memory formation. PMID:26232733
Central neural pathways for thermoregulation
Morrison, Shaun F.; Nakamura, Kazuhiro
2010-01-01
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160
Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.
Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu
2015-07-15
Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes
Marwaha, Rituraj; Arya, Subhash B.; Jagga, Divya; Kaur, Harmeet
2017-01-01
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. PMID:28325809
Dyck, Lydia; Wilk, Mieszko M; Raverdeau, Mathilde; Misiak, Alicja; Boon, Louis; Mills, Kingston H G
2016-12-01
The co-inhibitory molecule PD-1 suppresses T cell responses and has been targeted in the treatment of cancer. Here, we examined the role of PD-1 in regulating the balance between regulatory and effector T cells and whether blocking PD-1 could enhance tumour vaccine-induced protective immunity. A significantly higher proportion of tumour-resident T cells expressed PD-1 and Foxp3 compared with T cells in the tumour circulation or draining lymph nodes, and this correlated with a lower frequency of IFN-γ- and TNF-secreting CD8 T cells. Blocking PD-1 with a specific antibody reduced Foxp3 + regulatory T (Treg) cell induction and enhanced proliferation, cytokine production, and tumour killing by CD8 T cells. Treatment of CT26 tumour-bearing mice with anti-PD-1 in combination with a vaccine, comprising heat-shocked irradiated tumour cells and a TLR 7/8 agonist, significantly reduced tumour growth and enhanced survival. Furthermore, surviving mice resisted tumour re-challenge. The rejection of tumours in mice treated with the anti-PD-1 vaccine combination was associated with a reduction in tumour-infiltrating Treg cells and enhancement of IFN-γ-secreting CD8 T cells. Our findings demonstrate that high PD-1 expression correlates with increased tumour-infiltrating Treg cells and reduced effector T cells and that when combined with a potent antigen-adjuvant combination, blocking PD-1 effectively enhances anti-tumour immunity.
Neutrophils in Cancer: Two Sides of the Same Coin.
Uribe-Querol, Eileen; Rosales, Carlos
2015-01-01
Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.
Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K
2013-03-01
The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.
Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W
2003-01-17
T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.
Integrated Modeling of Spacecraft Touch-and-Go Sampling
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2009-01-01
An integrated modeling tool has been developed to include multi-body dynamics, orbital dynamics, and touch-and-go dynamics for spacecraft covering three types of end-effectors: a sticky pad, a brush-wheel sampler, and a pellet gun. Several multi-body models of a free-flying spacecraft with a multi-link manipulator driving these end-effectors have been tested with typical contact conditions arising when the manipulator arm is to sample the surface of an asteroidal body. The test data have been infused directly into the dynamics formulation including such information as the mass collected as a function of end-effector longitudinal speed for the brush-wheel and sticky-pad samplers, and the mass collected as a function of projectile speed for the pellet gun sampler. These data represent the realistic behavior of the end effector while in contact with a surface, and represent a low-order model of more complex contact conditions that otherwise would have to be simulated. Numerical results demonstrate the adequacy of these multibody models for spacecraft and manipulator- arm control design. The work contributes to the development of a touch-and-go testbed for small body exploration, denoted as the GREX Testbed (GN&C for Rendezvous-based EXploration). The GREX testbed addresses the key issues involved in landing on an asteroidal body or comet; namely, a complex, low-gravity field; partially known terrain properties; possible comet outgassing; dust ejection; and navigating to a safe and scientifically desirable zone.
Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection.
Qiao, Yongli; Shi, Jinxia; Zhai, Yi; Hou, Yingnan; Ma, Wenbo
2015-05-05
A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.
Correlation of Factor IXa Subsite Modulations with Effects on Substrate Discrimination
Neuenschwander, Pierre F.; Deadmond, Kimberly J.; Zepeda, Karla; Rutland, Joshua
2012-01-01
Summary Background A key feature of factor IXa (fIXa) is its allosteric transformation from an enzymatically latent form into a potent procoagulant. Whilst several small molecules have been found capable of partially effecting fIXa function (i.e. ethylene glycol, calcium ion and LMWH), the resulting modest changes in peptidolytic activity have made the study of their mechanisms of action challenging. Since these effects yield hints into potential regulatory forces that may be operational in full expression of fIXa coagulant activity, their description remains of high interest. Studies of crystal structures have yielded insight into structural changes induced by these effectors, but there remains a paucity of information to correlate any given structural change with specific consequences on fIXa function. Objectives To correlate structural changes induced by these modulators with defined consequences in fIXa substrate discrimination and function. Methods A peptidomics-based MS approach was used to examine patterns of hydrolysis of four combinatorial chemistry-derived pentapeptide libraries by fIXa under various conditions in a soluble, active enzyme system. Results Ethylene glycol specifically alters the S3 subsite of fIXa to render it more tolerant to side chains at the P3 substrate position, while calcium enhances tolerance at the S2 subsite. In contrast, LMWH alters both S2 and S1' subsites. Conclusions These results demonstrate the role of plasticity in regulating fIXa function with respect to discrimination of extended substrate sequences, as well as provide crucial insight into active site modulations that may be capitalized upon by various physiological cofactors of fIXa and in future drug design. PMID:22212890
Sharpee, William; Oh, Yeonyee; Yi, Mihwa; Franck, William; Eyre, Alex; Okagaki, Laura H; Valent, Barbara; Dean, Ralph A
2017-08-01
Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Sperschneider, Jana; Ying, Hua; Dodds, Peter N.; Gardiner, Donald M.; Upadhyaya, Narayana M.; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.
2014-01-01
Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. PMID:25225496
Effector and memory T cell subsets in the response to bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays of peripheral blood mononuclear cells (PBMC) are used to access T cell central memory (Tcm) responses in both cattle and humans. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT response correlates with protection; how...
Quezada, Sergio A.; Peggs, Karl S.; Simpson, Tyler R.; Shen, Yuelei; Littman, Dan R.; Allison, James P.
2008-01-01
Interference with inhibitory immunological checkpoints controlling T cell activation provides new opportunities to augment cancer immunotherapies. Whereas cytotoxic T lymphocyte–associated antigen-4 blockade has shown promising preclinical and clinical results, therapeutic CD4+CD25+ T reg cell depletion has failed to consistently enhance immune-based therapies. Using B16/BL6, a transplantable murine melanoma model, we show a dichotomy between the effects of T reg cell depletion on tumor rejection dependent on whether depletion occurs before (prophylactic) or after (therapeutic) tumor engraftment. Failure to promote rejection with therapeutic depletion is not related to lack of T reg cell depletion, to elimination of CD25+ effector T cells, or to a failure to enhance systemic antitumor T cell responses, but correlates with failure of effector cells to infiltrate the tumor and increase the intratumor ratio of effector T cell/T reg cell. Finally, systemic antitumor responses generated upon therapeutic T reg cell depletion are significantly stronger than those generated in the presence of T reg cells, and are capable of eliciting rejection of established tumors after transfer into immunoablated recipients receiving combination immunotherapy. The data demonstrate a dissociation between measurable systemic responses and tumor rejection during CD25-directed T reg cell depletion, and suggest an alternative, clinically applicable strategy for the treatment of established tumors. PMID:18725522
Profiling calcium signals of in vitro polarized human effector CD4+ T cells.
Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia
2018-06-01
Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Wang, Teng; Shen, Han; Wu, Fenglin; Zhang, Wenfeng; Tao, Changli; Yuan, Yin; Bo, Huaben; Wang, Hui; Huang, Shulin
2014-01-01
Tumor infiltrating lymphocytes (TIL) reflect the host's anti-tumor immune response, and can be a valuable predictor of prognosis. However, many properties of TIL are not fully understood. In the present study, TCR-Vβ repertoires of cancer patients were primarily analyzed by flow cytometry. Abnormally expressed TCR-Vβ subfamilies were generally found in both TIL and peripheral blood lymphocytes (PBL) of each patient. Of note, increased patient age was associated with increasingly biased TCR-Vβ repertoire in TIL but not in PBL, and the dispersion degree of the differences of TCR-Vβ subfamilies between TIL and PBL correlated positively with age (P = 0.007). Utilizing immunoscope analysis, we identified the age-related reduction in TCR-Vβ diversity, but polyclonal pattern was predominant in significantly expanded TCR-Vβ subfamilies. In addition, we found that older patients possessed a decreased ratio of CD8+CD62L+ non-effector cells in TIL compared to PBL, implying age-related increase of CD8+CD62L− effector cells in TIL. The colocalization analysis of CD8 and CD3, however, suggested the suppressed activity of these effector cells in tumor microenvironment. These findings further elucidate the properties of TIL, showing an increasing difference between TIL and PBL with age, which may provide insight for the development of effective immunotherapies for cancer patients of different ages. PMID:25019226
Varughese, Jayson F; Chalovich, Joseph M; Li, Yumin
2010-10-01
Mutations of any subunit of the troponin complex may lead to serious disorders. Rational approaches to managing these disorders require knowledge of the complex interactions among the three subunits that are required for proper function. Molecular dynamics (MD) simulations were performed for both skeletal (sTn) and cardiac (cTn) troponin. The interactions and correlated motions among the three components of the troponin complex were analyzed using both Molecular Mechanics-Generalized Born Surface Area (MMGBSA) and cross-correlation techniques. The TnTH2 helix was strongly positively correlated with the two long helices of TnI. The C domain of TnC was positively correlated with TnI and TnT. The N domain of TnC was negatively correlated with TnI and TnT in cTn, but not in sTn. The two C-domain calcium-binding sites of TnC were dynamically correlated. The two regulatory N-domain calcium-binding sites of TnC were dynamically correlated, even though the calcium-binding site I is dysfunctional. The strong interaction residue pairs and the strong dynamically correlated residues pairs among the three components of troponin complexes were identified. These correlated motions are consistent with the idea that there is a high degree of cooperativity among the components of the regulatory complex in response to Ca(2+) and other effectors. This approach may give insight into the mechanism by which mutations of troponin cause disease. It is interesting that some observed disease causing mutations fall within regions of troponin that are strongly correlated or interacted.
BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins
Chiu, Christopher W.; Dalton, Mark; Ishiai, Masamichi; Kurosaki, Tomohiro; Chan, Andrew C.
2002-01-01
Assembly of intracellular macromolecular complexes is thought to provide an important mechanism to coordinate the generation of second messengers upon receptor activation. We have previously identified a B cell linker protein, termed BLNK, which serves such a scaffolding function in B cells. We demonstrate here that phosphorylation of five tyrosine residues within human BLNK nucleates distinct signaling effectors following B cell antigen receptor activation. The phosphorylation of multiple tyrosine residues not only amplifies PLCγ-mediated signaling but also supports ‘cis’-mediated interaction between distinct signaling effectors within a large molecular complex. These data demonstrate the importance of coordinate phosphorylation of molecular scaffolds, and provide insights into how assembly of macromolecular complexes is required for normal receptor function. PMID:12456653
Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.
2014-01-01
Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186
Progress in understanding the neuronal SNARE function and its regulation.
Yoon, T-Y; Shin, Y-K
2009-02-01
Vesicle budding and fusion underlies many essential biochemical deliveries in eukaryotic cells, and its core fusion machinery is thought to be built on one protein family named soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). Recent technical advances based on site-directed fluorescence labelling and nano-scale detection down to the single-molecule level rapidly unveiled the protein and the lipid intermediates along the fusion pathway as well as the molecular actions of fusion effectors. Here we summarize these new exciting findings in context with a new mechanistic model that reconciles two existing fusion models: the proteinaceous pore model and the hemifusion model. Further, we attempt to locate the points of action for the fusion effectors along the fusion pathway and to delineate the energetic interplay between the SNARE complexes and the fusion effectors.
Determination of Rab5 activity in the cell by effector pull-down assay.
Qi, Yaoyao; Liang, Zhimin; Wang, Zonghua; Lu, Guodong; Li, Guangpu
2015-01-01
Rab5 targets to early endosomes and is a master regulator of early endosome fusion and endocytosis in all eukaryotic cells. Like other GTPases, Rab5 functions as a molecular switch by alternating between GTP-bound and GDP-bound forms, with the former being biologically active via interactions with multiple effector proteins. Thus the Rab5-GTP level in the cell reflects Rab5 activity in promoting endosome fusion and endocytosis and is indicative of cellular endocytic activity. In this chapter, we describe a Rab5 activity assay by using GST fusion proteins with the Rab5 effectors such as Rabaptin-5, Rabenosyn-5, and EEA1 that specifically bind to GTP-bound Rab5. We compare the efficiencies of the three GST fusion proteins in the pull-down of mammalian and fungal Rab5 proteins.
Emerging concepts on the role of innate immunity in the prevention and control of HIV infection.
Ackerman, Margaret E; Dugast, Anne-Sophie; Alter, Galit
2012-01-01
While neutralizing antibodies can provide sterilizing protection from HIV infection via their variable domains, the antibody constant domain provides a functional link between innate and adaptive immunity and offers a means to harness the potent antiviral properties of a wide spectrum of innate immune effector cells. There has been a growing appreciation of the role of these effector mechanisms across fields from cancer immunotherapy to autoimmunity and infectious disease, as well as speculation that this mechanism may be responsible for the protection observed in the RV144 HIV vaccine trial. This review summarizes these extraneutralizing humoral immune activities, progress in defining the importance of these effector mechanisms during progression in HIV infection, and the potential impact that such vaccine-induced immune responses may have on protection from infection.
Trafficking arms: oomycete effectors enter host plant cells.
Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L
2006-01-01
Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.
Optimal regulation in systems with stochastic time sampling
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1980-01-01
An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.
Moore, Randy; Pasieniuk, John
1984-01-01
Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818
The role of T and B cells in human atherosclerosis and atherothrombosis
Ammirati, E; Moroni, F; Magnoni, M; Camici, P G
2015-01-01
Far from being merely a passive cholesterol accumulation within the arterial wall, the development of atherosclerosis is currently known to imply both inflammation and immune effector mechanisms. Adaptive immunity has been implicated in the process of disease initiation and progression interwined with traditional cardiovascular risk factors. Although the body of knowledge regarding the correlation between atherosclerosis and immunity in humans is growing rapidly, a relevant proportion of it derives from studies carried out in animal models of cardiovascular disease (CVD). However, while the mouse is a well-suited model, the results obtained therein are not fully transferrable to the human setting due to intrinsic genomic and environmental differences. In the present review, we will discuss mainly human findings, obtained either by examination of post-mortem and surgical atherosclerotic material or through the analysis of the immunological profile of peripheral blood cells. In particular, we will discuss the findings supporting a pro-atherogenic role of T cell subsets, such as effector memory T cells or the potential protective function of regulatory T cells. Recent studies suggest that traditional T cell-driven B2 cell responses appear to be atherogenic, while innate B1 cells appear to exert a protective action through the secretion of naturally occurring antibodies. The insights into the immune pathogenesis of atherosclerosis can provide new targets in the quest for novel therapeutic targets to abate CVD morbidity and mortality. PMID:25352024
Birlea, Stanca A; Costin, Gertrude-E; Roop, Dennis R; Norris, David A
2017-07-01
Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. © 2016 Wiley Periodicals, Inc.
Birlea, Stanca A.; Costin, Gertrude-E.; Roop, Dennis R.; Norris, David A.
2017-01-01
Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. PMID:28029168
ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.
Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan
2016-02-18
Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. © 2016 by The American Society of Hematology.
Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K
2014-07-29
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong
2016-05-31
Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63.
Zhao, Bei-Bei; Li, Xiang-Hui; Zeng, Yong-Lun; Lu, Yong-Jun
2016-08-02
The opportunistic bacterial pathogen Legionella pneumophila uses substrate effectors of Dot/Icm type IVB secretion system (T4BSS) to accomplish survival and replication in amoebae cells and mammalian alveolar macrophages. During the conversion between its highly resistant, infectious dormant form and vigorously growing, uninfectious replicative form, L. pneumophila utilizes a complicated regulatory network in which proteolysis may play a significant role. As a highly conserved core protease, ClpP is involved in various cellular processes as well as virulence in bacteria, and has been proved to be required for the expression of transmission traits and cell division of L. pneumophila. The clpP-deficient L. pneumophila strain failed to replicate and was digested in the first 3 h post-infection in mammalian cells J774A.1. Further investigation demonstrates that the clpP deficient mutant strain was unable to escape the endosome-lysosomal pathway in host cells. We also found that the clpP deficient mutant strain still expresses T4BSS components, induces contact-dependent cytotoxicity and translocate effector proteins RalF and LegK2, indicating that its T4BSS was overall functional. Interestingly, we further found that the translocation of several effector proteins is significantly reduced without ClpP. The data indicate that ClpP plays an important role in regulating the virulence and effector translocation of Legionella pneumophila.
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855
Gürlebeck, Doreen; Jahn, Simone; Gürlebeck, Norman; Szczesny, Robert; Szurek, Boris; Hahn, Simone; Hause, Gerd; Bonas, Ulla
2009-03-01
Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.
Schmidt, Sarah M; Kuhn, Hannah; Micali, Cristina; Liller, Corinna; Kwaaitaal, Mark; Panstruga, Ralph
2014-08-01
Filamentous phytopathogens, such as fungi and oomycetes, secrete effector proteins to establish successful interactions with their plant hosts. In contrast with oomycetes, little is known about effector functions in true fungi. We used a bioinformatics pipeline to identify Blumeria effector candidates (BECs) from the obligate biotrophic barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). BEC1-BEC5 are expressed at different time points during barley infection. BEC1, BEC2 and BEC4 have orthologues in the Arabidopsis thaliana-infecting powdery mildew fungus Golovinomyces orontii. Arabidopsis lines stably expressing the G. orontii BEC2 orthologue, GoEC2, are more susceptible to infection with the non-adapted fungus Erysiphe pisi, suggesting that GoEC2 contributes to powdery mildew virulence. For BEC3 and BEC4, we identified thiopurine methyltransferase, a ubiquitin-conjugating enzyme, and an ADP ribosylation factor-GTPase-activating protein (ARF-GAP) as potential host targets. Arabidopsis knockout lines of the respective HvARF-GAP orthologue (AtAGD5) allowed higher entry levels of E. pisi, but exhibited elevated resistance to the oomycete Hyaloperonospora arabidopsidis. We hypothesize that ARF-GAP proteins are conserved targets of powdery and downy mildew effectors, and we speculate that BEC4 might interfere with defence-associated host vesicle trafficking. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K.; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir
2005-01-01
We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944
Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.
2013-01-01
SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932
Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Scott, Laura L; Teague, Jessica E; Schlapbach, Christoph; Elco, Christopher P; Huang, Victor; Matos, Tiago R; Kupper, Thomas S; Clark, Rachael A
2015-03-18
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. Copyright © 2015, American Association for the Advancement of Science.
Mast cells in airway diseases and interstitial lung disease.
Cruse, Glenn; Bradding, Peter
2016-05-05
Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease. Published by Elsevier B.V.
Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy
Lina, Taslima T.; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W.
2016-01-01
Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657
CD4 T Cell Responses in Latent and Chronic Viral Infections
Walton, Senta; Mandaric, Sanja; Oxenius, Annette
2013-01-01
The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter. PMID:23717308
Strutt, Tara M.; McKinstry, K. Kai; Marshall, Nikki B.; Vong, Allen M.; Dutton, Richard W.; Swain, Susan L.
2014-01-01
Summary Over the last decade, the known spectrum of CD4 T cell effect or subsets has become much broader and it has become clear that there are multiple dimensions by which subsets with a particular cytokine commitment can be further defined, including their stage of differentiation, their location and most importantly, their ability to carryout discrete functions. Here we focus on our studies that highlight the synergy among discrete subsets, especially those defined by helper and cytotoxic function, in mediating viral protection and on distinctions between CD4 T cell effectors located in spleen, draining lymph node, and in tissue sites of infection. What emerges is a surprising multiplicity of CD4 T cell functions that indicate a large arsenal of mechanisms by which CD4 T cells act to combat viruses. PMID:23947353
Engineered TAL Effector modulators for the large-scale gain-of-function screening
Zhang, Hanshuo; Li, Juan; Hou, Sha; Wang, Gancheng; Jiang, Mingjun; Sun, Changhong; Hu, Xiongbing; Zhuang, Fengfeng; Dai, Zhifei; Dai, Junbiao; Xi, Jianzhong Jeff
2014-01-01
Recent effective use of TAL Effectors (TALEs) has provided an important approach to the design and synthesis of sequence-specific DNA-binding proteins. However, it is still a challenging task to design and manufacture effective TALE modulators because of the limited knowledge of TALE–DNA interactions. Here we synthesized more than 200 TALE modulators and identified two determining factors of transcription activity in vivo: chromatin accessibility and the distance from the transcription start site. The implementation of these modulators in a gain-of-function screen was successfully demonstrated for four cell lines in migration/invasion assays and thus has broad relevance in this field. Furthermore, a novel TALE–TALE modulator was developed to transcriptionally inhibit target genes. Together, these findings underscore the huge potential of these TALE modulators in the study of gene function, reprogramming of cellular behaviors, and even clinical investigation. PMID:24939900
NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.
Bakker, A B; Wu, J; Phillips, J H; Lanier, L L
2000-01-01
A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.
Zhang, Linlin; Li, Chunyan; Li, Li; She, Zhicai; Huang, Baoyu; Zhang, Guofan
2013-01-01
Background The Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster’s euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR. Results Transcriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na+/K+ channel and aquaporin but increased calcium-activated K+ channel and Ca2+ channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster’s powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas. Conclusions Our results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas. PMID:23554902
Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph
2011-02-10
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich
2018-03-01
We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph
2011-01-01
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. PMID:21347280
Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination
Lewinsohn, Deborah A.; Lewinsohn, David M.; Scriba, Thomas J.
2017-01-01
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG). Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in the immune response against Mtb. PMID:29051764
Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline
2006-10-01
Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.