Science.gov

Sample records for effector ssei mediates

  1. Armet is an effector protein mediating aphid-plant interactions.

    PubMed

    Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng

    2015-05-01

    Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions.

  2. Armet is an effector protein mediating aphid-plant interactions.

    PubMed

    Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng

    2015-05-01

    Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions. PMID:25678626

  3. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins1

    PubMed Central

    Hewezi, Tarek

    2015-01-01

    Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. PMID:26315856

  4. TAL effector-mediated susceptibility to bacterial blight of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial blight of cotton (BBC) caused by Xanthomonas campestris pv. malvacearum (Xcm) is a destructive disease that has recently re-emerged in the U.S. Xcm injects transcription activator-like (TAL) effectors that directly induce the expression of host susceptibility (S) or resistance (R) genes. ...

  5. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases.

  6. Structure of the catalytic domain of the Salmonella virulence factor SseI.

    PubMed

    Bhaskaran, Shyam S; Stebbins, C Erec

    2012-12-01

    SseI is secreted into host cells by Salmonella and contributes to the establishment of systemic infections. The crystal structure of the C-terminal domain of SseI has been solved to 1.70 Å resolution, revealing it to be a member of the cysteine protease superfamily with a catalytic triad consisting of Cys178, His216 and Asp231 that is critical to its virulence activities. Structure-based analysis revealed that SseI is likely to possess either acyl hydrolase or acyltransferase activity, placing this virulence factor in the rapidly growing class of enzymes of this family utilized by bacterial pathogens inside eukaryotic cells.

  7. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein

    PubMed Central

    Alcoforado Diniz, Juliana

    2015-01-01

    ABSTRACT The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057–6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. IMPORTANCE Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion

  8. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    PubMed

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death. PMID:24313955

  9. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean.

    PubMed

    Wang, Jialin; Shine, M B; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-05-28

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector.

  10. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo

    PubMed Central

    Wu, Huixia; Jones, Rheinallt M.; Neish, Andrew S.

    2011-01-01

    SUMMARY The enteric pathogen Salmonella typhimurium secretes the preformed AvrA effector protein into host cells. This acetyltransferase has been shown to modulate mammalian intestinal immune and survival responses by inhibition of JNK MAPK. To study the role of this effector in natural enteric infection, we used a mouse model to compare wild type Salmonella typhimurium to an isogenic AvrA null Salmonella mutant. Salmonella lacking AvrA induced increased intestinal inflammation, more intense systemic cytokine responses, and increased apoptosis in epithelial cells. Increased apoptosis was also observed in extra epithelial macrophages. AvrA null infected mice consistently showed higher bacterial burden within mucosal lymphoid tissues, spleen and liver by 5 days post infection, which indicated a more severe clinical course. To study the molecular mechanisms involved, recombinant adenoviruses expressing AvrA or mutant AvrA proteins were constructed, which showed appropriate expression and mediated the expected inhibition of JNK signaling. Cultured epithelial cells and macrophages transduced with AvrA expressing adenovirus were protected from apoptosis induced by exogenous stimuli. In conclusion, the results demonstrated that Salmonella AvrA modulates survival of infected macrophages likely via JNK suppression, and prevents macrophage death and rapid bacterial dissemination. AvrA suppression of apoptosis in infected macrophages may allow for establishment of a stable intracellular niche typical of intracellular pathogens. PMID:21899703

  11. Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer.

    PubMed

    Wang, Weimin; Kryczek, Ilona; Dostál, Lubomír; Lin, Heng; Tan, Lijun; Zhao, Lili; Lu, Fujia; Wei, Shuang; Maj, Tomasz; Peng, Dongjun; He, Gong; Vatan, Linda; Szeliga, Wojciech; Kuick, Rork; Kotarski, Jan; Tarkowski, Rafał; Dou, Yali; Rattan, Ramandeep; Munkarah, Adnan; Liu, J Rebecca; Zou, Weiping

    2016-05-19

    Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here, we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells, resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival, respectively. Thus, our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.

  12. Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes.

    PubMed Central

    Fülöp, T; Fóris, G; Wórum, I; Leövey, A

    1985-01-01

    Changes in the effector functions in polymorphonuclear leucocytes (PMNL), harvested from blood of young and aged healthy subjects of both sexes, were studied. FC gamma-receptor (Fc gamma R)-mediated incorporation of IgG coated 51Cr-HRBC significantly increased in the aged male group, while the phagocytosis of pre-opsonized fungi (Saccharomyces cerevisiae and Candida albicans) was independent of both the age and sex. However, the intracellular killing capacity of neutrophils obtained from aged male subjects significantly decreased toward 51Cr-labelled c. albicans. The antibody-dependent cellular cytotoxicity (ADCC) was also impaired with ageing in both sexes. The age-dependent decrease in the effector functions of PMNL may be explained, among others, by the fact that during yeast cell incorporation the increased cAMP level does not return to the basic level in the old group. On the other hand, the cGMP level which increased in PMNL of aged subjects does not show any progressive increase as in the young subjects, but remains unchanged. The oxidative metabolism producing free radicals being necessary for the effective intracellular killing and ADCC diminished in PMNL of aged subjects of both sexes. The above findings indicate that the adaptation of cyclic nucleotide system and the oxidative burst to the cell activation becomes impaired with ageing. PMID:2994926

  13. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo.

    PubMed

    Wu, Huixia; Jones, Rheinallt M; Neish, Andrew S

    2012-01-01

    The enteric pathogen Salmonella typhimurium secretes the preformed AvrA effector protein into host cells. This acetyltransferase has been shown to modulate mammalian intestinal immune and survival responses by inhibition of JNK MAPK. To study the role of this effector in natural enteric infection, we used a mouse model to compare wild-type S. typhimurium to an isogenic AvrA null Salmonella mutant. Salmonella lacking AvrA induced increased intestinal inflammation, more intense systemic cytokine responses, and increased apoptosis in epithelial cells. Increased apoptosis was also observed in extra epithelial macrophages. AvrA null-infected mice consistently showed higher bacterial burden within mucosal lymphoid tissues, spleen and liver by 5 days post infection, which indicated a more severe clinical course. To study the molecular mechanisms involved, recombinant adenoviruses expressing AvrA or mutant AvrA proteins were constructed, which showed appropriate expression and mediated the expected inhibition of JNK signalling. Cultured epithelial cells and macrophages transduced with AvrA expressing adenovirus were protected from apoptosis induced by exogenous stimuli. In conclusion, the results demonstrated that Salmonella AvrA modulates survival of infected macrophages likely via JNK suppression, and prevents macrophage death and rapid bacterial dissemination. AvrA suppression of apoptosis in infected macrophages may allow for establishment of a stable intracellular niche typical of intracellular pathogens.

  14. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion

    PubMed Central

    Chen, Fei; Wu, Wenhui; Millman, Ariel; Craft, Joshua F.; Chen, Eunice; Patel, Nirav; Boucher, Jean L.; Urban, Joseph F.; Kim, Charles C.; Gause, William C.

    2014-01-01

    We examined the role of innate cells in acquired resistance to the natural murine parasitic nematode, Nippostrongylus brasiliensis. Macrophages obtained as late as 45 days after N. brasiliensis inoculation were able to transfer accelerated parasite clearance to naive recipients. Primed macrophages adhered to larvae in vitro and triggered increased mortality of parasites. Neutrophil depletion in primed mice abrogated the protective effects of transferred macrophages and inhibited their in vitro binding to larvae. Neutrophils in parasite-infected mice showed a distinct transcriptional profile and promoted alternatively activated M2 macrophage polarization through secretory factors including IL-13. Differentially activated neutrophils in the context of a type 2 immune response therefore prime a long-lived effector macrophage phenotype that directly mediates rapid nematode damage and clearance. PMID:25173346

  15. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement.

    PubMed

    Lee, Seung-Hye; Le Pichon, Claire E; Adolfsson, Oskar; Gafner, Valérie; Pihlgren, Maria; Lin, Han; Solanoy, Hilda; Brendza, Robert; Ngu, Hai; Foreman, Oded; Chan, Ruby; Ernst, James A; DiCara, Danielle; Hotzel, Isidro; Srinivasan, Karpagam; Hansen, David V; Atwal, Jasvinder; Lu, Yanmei; Bumbaca, Daniela; Pfeifer, Andrea; Watts, Ryan J; Muhs, Andreas; Scearce-Levie, Kimberly; Ayalon, Gai

    2016-08-01

    The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau. PMID:27475227

  16. A Downy Mildew Effector Attenuates Salicylic Acid–Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex

    PubMed Central

    Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D. G.

    2013-01-01

    Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. PMID:24339748

  17. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes.

    PubMed

    Orlovskis, Zigmunds; Hogenhout, Saskia A

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  18. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    PubMed Central

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  19. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  20. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana.

    PubMed

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-06-03

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses.

  1. ICOS Promotes the Function of CD4+ Effector T Cells during Anti-OX40-Mediated Tumor Rejection.

    PubMed

    Metzger, Todd C; Long, Hua; Potluri, Shobha; Pertel, Thomas; Bailey-Bucktrout, Samantha L; Lin, John C; Fu, Tihui; Sharma, Padmanee; Allison, James P; Feldman, Reid M R

    2016-07-01

    ICOS is a T-cell coregulatory receptor that provides a costimulatory signal to T cells during antigen-mediated activation. Antitumor immunity can be improved by ICOS-targeting therapies, but their mechanism of action remains unclear. Here, we define the role of ICOS signaling in antitumor immunity using a blocking, nondepleting antibody against ICOS ligand (ICOS-L). ICOS signaling provided critical support for the effector function of CD4(+) Foxp3(-) T cells during anti-OX40-driven tumor immune responses. By itself, ICOS-L blockade reduced accumulation of intratumoral T regulatory cells (Treg), but it was insufficient to substantially inhibit tumor growth. Furthermore, it did not impede antitumor responses mediated by anti-4-1BB-driven CD8(+) T cells. We found that anti-OX40 efficacy, which is based on Treg depletion and to a large degree on CD4(+) effector T cell (Teff) responses, was impaired with ICOS-L blockade. In contrast, the provision of additional ICOS signaling through direct ICOS-L expression by tumor cells enhanced tumor rejection and survival when administered along with anti-OX40 therapy. Taken together, our results showed that ICOS signaling during antitumor responses acts on both Teff and Treg cells, which have opposing roles in promoting immune activation. Thus, effective therapies targeting the ICOS pathway should seek to promote ICOS signaling specifically in effector CD4(+) T cells by combining ICOS agonism and Treg depletion. Cancer Res; 76(13); 3684-9. ©2016 AACR. PMID:27197182

  2. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    SciTech Connect

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2006-08-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5{alpha} with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain.

  3. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...

  4. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  5. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic. PMID:26854666

  6. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  7. EDS1 mediates pathogen resistance and virulence function of a bacterial effector in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4 (PAD4) are well known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1- (GmEDS1a/b) and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean. Consist...

  8. TAL effectors mediate high-efficiency transposition of the piggyBac transposon in silkworm Bombyx mori L.

    PubMed

    Ye, Lupeng; You, Zhengying; Qian, Qiujie; Zhang, Yuyu; Che, Jiaqian; Song, Jia; Zhong, Boxiong

    2015-11-26

    The piggyBac (PB) transposon is one of the most useful transposable elements, and has been successfully used for genetic manipulation in more than a dozen species. However, the efficiency of PB-mediated transposition is still insufficient for many purposes. Here, we present a strategy to enhance transposition efficiency using a fusion of transcription activator-like effector (TALE) and the PB transposase (PBase). The results demonstrate that the TALE-PBase fusion protein which is engineered in this study can produce a significantly improved stable transposition efficiency of up to 63.9%, which is at least 7 times higher than the current transposition efficiency in silkworm. Moreover, the average number of transgene-positive individuals increased up to 5.7-fold, with each positive brood containing an average of 18.1 transgenic silkworms. Finally, we demonstrate that TALE-PBase fusion-mediated PB transposition presents a new insertional preference compared with original insertional preference. This method shows a great potential and value for insertional therapy of many genetic diseases. In conclusion, this new and powerful transposition technology will efficiently promote genetic manipulation studies in both invertebrates and vertebrates.

  9. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    NASA Technical Reports Server (NTRS)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  10. Propanil Exposure Induces Delayed but Sustained Abrogation of Cell-Mediated Immunity through Direct Interference with Cytotoxic T-Lymphocyte Effectors

    PubMed Central

    Sheil, James M.; Frankenberry, Marc A.; Schell, Todd D.; Brundage, Kathleen M.; Barnett, John B.

    2006-01-01

    The postemergent herbicide propanil (PRN; also known as 3,4-dichloropropionanilide) is used on rice and wheat crops and has well-known immunotoxic effects on various compartments of the immune system, including T-helper lymphocytes, B lymphocytes, and macrophages. It is unclear, however, whether PRN also adversely affects cytotoxic T lymphocytes (CTLs), the primary (1°) effectors of cell-mediated immunity. In this study we examined both the direct and indirect effects of PRN exposure on CTL activation and effector cell function to gauge its likely impact on cell-mediated immunity. Initial experiments addressed whether PRN alters the class I major histocompatibility complex (MHC) pathway for antigen processing and presentation by antigen-presenting cells (APCs), thereby indirectly affecting effector function. These experiments demonstrated that PRN does not impair the activation of CTLs by PRN-treated APCs. Subsequent experiments addressed whether PRN treatment of CTLs directly inhibits their activation and revealed that 1° alloreactive CTLs exposed to PRN are unimpaired in their proliferative response and only marginally inhibited in their lytic activity. Surprisingly, secondary stimulation of these alloreactive CTL effectors, however, even in the absence of further PRN exposure, resulted in complete abrogation of CTL lytic function and a delayed but significant long-term effect on CTL responsiveness. These findings may have important implications for the diagnosis and clinical management of anomalies of cell-mediated immunity resulting from environmental exposure to various herbicides and other pesticides. PMID:16835059

  11. Lactose inhibits regulatory T-cell-mediated suppression of effector T-cell interferon-γ and IL-17 production.

    PubMed

    Paasela, Monika; Kolho, Kaija-Leena; Vaarala, Outi; Honkanen, Jarno

    2014-12-14

    Our interest in lactose as an immunomodulatory molecule results from studies showing that lactose binds to galectin-9, which has been shown to have various regulatory functions in the immune system including regulation of T-cell responses. Impaired regulation of T helper (Th)1 and Th17 type immune responses and dysfunction of regulatory T cells (Treg) have been implicated in many human immune-mediated diseases. In the present study, we investigated the effects of lactose on immune regulation using co-cultures of human peripheral blood mononuclear cell (PBMC)-derived Treg and effector T cells (Teff) obtained from twenty healthy adults. Treg, i.e. CD4+CD25+CD127-, were isolated from PBMC by immunomagnetic separation. The fraction of CD4+CD127- cells that was depleted of CD25+ cells was used as Teff. Treg and Teff at a ratio 1:5 were activated and the effects of lactose on the secretion of interferon-γ (IFN-γ) and IL-17 were analysed using ELISA for protein and quantitative RT-PCR for mRNA. Treg down-regulated the secretion of both IFN-γ (8.8-3.9 ng/ml, n 20, P= 0.003) and IL-17 (0.83-0.64 ng/ml, n 15, P= 0.04) in co-cultures, while in the presence of lactose the levels of secreted IFN-γ and IL-17 remained high and no down-regulation was observed (16.4 v. 3.99 ng/ml, n 20, P< 0.0001, and 0.74 v. 0.64 ng/ml, n 15, P= 0.005, respectively). We showed that lactose inhibits human Treg-mediated suppression of Th1 and Th17 immune responses in vitro.

  12. Identification of Thymosin β4 as an effector of Hand1-mediated vascular development.

    PubMed

    Smart, Nicola; Dubé, Karina N; Riley, Paul R

    2010-07-27

    The bHLH transcription factor Hand1 (Heart and neural crest-derived transcript-1) has a fundamental role in cardiovascular development; however, the molecular mechanisms have not been elucidated. In this paper we identify Thymosin β4 (Tβ4/Tmsb4x), which encodes an actin monomer-binding protein implicated in cell migration and angiogenesis, as a direct target of Hand1. We demonstrate that Hand1 binds an upstream regulatory region proximal to the promoter of Tβ4 at consensus Thing1 and E-Box sites and identify both activation and repression of Tβ4 by Hand1, through direct binding within either non-canonical or canonical E-boxes, providing new insight into gene regulation by bHLH transcription factors. Hand1-mediated activation of Tβ4 is essential for yolk sac vasculogenesis and embryonic survival, and administration of synthetic TB4 partially rescues yolk sac capillary plexus formation in Hand1-null embryos. Thus, we identify an in vivo downstream target of Hand1 and reveal impaired yolk sac vasculogenesis as a primary cause of early embryonic lethality following loss of this critical bHLH factor.

  13. Mechanisms of corticosteroid action on lymphocyte subpopulations. III. Differential effects of dexamethasone administration on subpopulations of effector cells mediating cellular cytotoxicity in man

    PubMed Central

    Parrillo, J. E.; Fauci, A. S.

    1978-01-01

    The present study investigated the effect of dexamethasone (DEX) administration on different populations of mononuclear cells and neutrophils mediating antibody-dependent cellular cytotoxicity (ADCC) against different target cells. Mononuclear cells (lymphocytes and monocytes) and neutrophils were obtained from twenty-seven normal volunteers at 0, 4, 24 and 48 hr after oral administration of 21 mg of DEX. ADCC was determined utilizing the following targets: human red blood cells (HRBC), Chang liver cells (Ch) and human heart cells (HHC). The predominant mononuclear effector in HRBC killing was shown to be a monocyte and in Ch and HHC killing, a K cell. As previously shown, DEX produced a profound monocytopenia and lymphocytopenia at 4 hr with a return of lymphocyte counts to normal and monocyte counts to supra-normal at 24 hr. At the point of maximal monocytopenia, monocyte-mediated HRBC killing decreased from a geometric mean of 14 to 4 lytic units per 108 effector cells (P<0·05) and rebounded at 24 hr to a mean of 39 lytic units (P<0·02) with the rebound monocytosis. At the point of absolute lymphopenia (4 hr), there was a relative enrichment in the proportion of lymphocytes bearing an Fc receptor (K cells, P<0·01). Concomitant with this was an increase in ADCC against Ch and HHC from geometric means of 1121 to 7172 lytic units and 939 to 7354 lytic units (P<0·001) respectively. Thus, a major action of DEX administration on mononuclear ADCC was to differentially enrich or deplete different effector cells to and from the circulation, causing changes in cytotoxicity. Since the cytotoxicity paralleled the proportion of effector cells, the cells remaining in the circulation following DEX administration retained normal antibody-dependent cytotoxic capabilities. Neutrophil-mediated ADCC against HRBC significantly increased at 4 hr from a geometric mean of 3785 to 20142 lytic units (P<0·02) concomitant with the blood neutrophilia and remained elevated for 72 hr

  14. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    PubMed Central

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  15. Suppression of Xo1-Mediated Disease Resistance in Rice by a Truncated, Non-DNA-Binding TAL Effector of Xanthomonas oryzae

    PubMed Central

    Read, Andrew C.; Rinaldi, Fabio C.; Hutin, Mathilde; He, Yong-Qiang; Triplett, Lindsay R.; Bogdanove, Adam J.

    2016-01-01

    Delivered into plant cells by type III secretion from pathogenic Xanthomonas species, TAL (transcription activator-like) effectors are nuclear-localized, DNA-binding proteins that directly activate specific host genes. Targets include genes important for disease, genes that confer resistance, and genes inconsequential to the host-pathogen interaction. TAL effector specificity is encoded by polymorphic repeats of 33–35 amino acids that interact one-to-one with nucleotides in the recognition site. Activity depends also on N-terminal sequences important for DNA binding and C-terminal nuclear localization signals (NLS) and an acidic activation domain (AD). Coding sequences missing much of the N- and C-terminal regions due to conserved, in-frame deletions are present and annotated as pseudogenes in sequenced strains of Xanthomonas oryzae pv. oryzicola (Xoc) and pv. oryzae (Xoo), which cause bacterial leaf streak and bacterial blight of rice, respectively. Here we provide evidence that these sequences encode proteins we call “truncTALEs,” for “truncated TAL effectors.” We show that truncTALE Tal2h of Xoc strain BLS256, and by correlation truncTALEs in other strains, specifically suppress resistance mediated by the Xo1 locus recently described in the heirloom rice variety Carolina Gold. Xo1-mediated resistance is triggered by different TAL effectors from diverse X. oryzae strains, irrespective of their DNA binding specificity, and does not require the AD. This implies a direct protein-protein rather than protein-DNA interaction. Similarly, truncTALEs exhibit diverse predicted DNA recognition specificities. And, in vitro, Tal2h did not bind any of several potential recognition sites. Further, a single candidate NLS sequence in Tal2h was dispensable for resistance suppression. Many truncTALEs have one 28 aa repeat, a length not observed previously. Tested in an engineered TAL effector, this repeat required a single base pair deletion in the DNA, suggesting that it

  16. The μ Subunit of Arabidopsis Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins.

    PubMed

    Hatsugai, Noriyuki; Hillmer, Rachel; Yamaoka, Shohei; Hara-Nishimura, Ikuko; Katagiri, Fumiaki

    2016-05-01

    Endocytosis has been suggested to be important in the cellular processes of plant immune responses. However, our understanding of its role during effector-triggered immunity (ETI) is still limited. We have previously shown that plant endocytosis, especially clathrin-coated vesicle formation at the plasma membrane, is mediated by the adaptor protein-2 (AP-2) complex and that loss of the μ subunit of AP-2 (AP2M) affects plant growth and floral organ development. Here, we report that AP2M is required for full-strength ETI mediated by the disease resistance (R) genes RPM1 and RPS2 in Arabidopsis. Reduced ETI was observed in an ap2m mutant plant, measured by growth of Pseudomonas syringae pv. tomato DC3000 strains carrying the corresponding effector genes avrRpm1 or avrRpt2 and by hypersensitive cell death response and defense gene expression triggered by these strains. In contrast, RPS4-mediated ETI and its associated immune responses were not affected by the ap2m mutation. While RPM1 and RPS2 are localized to the plasma membrane, RPS4 is localized to the cytoplasm and nucleus. Our results suggest that AP2M is involved in ETI mediated by plasma membrane-localized R proteins, possibly by mediating endocytosis of the immune receptor complex components from the plasma membrane.

  17. Natural cell-mediated cytotoxicity against Candida albicans induced by cyclophosphamide: nature of the in vitro cytotoxic effector.

    PubMed Central

    Baccarini, M; Bistoni, F; Puccetti, P; Garaci, E

    1983-01-01

    We have recently reported the in vivo modulation of resistance to experimental Candida albicans infection by cyclophosphamide (150 mg/kg intraperitoneally) in mice and have shown that increased resistance to the microbial challenge occurs 12 to 21 days after treatment with the drug (Bistoni et al., Infect. Immun. 40: 46-55, 1983). The event is accompanied by the appearance of a highly candidacidal cell population in the spleen and the activation of a subpopulation of natural cytotoxic effectors reactive in vitro against YAC-1 tumor cells. We now provide evidence that these anti-YAC-1 cytotoxic effectors are clearly distinct from the cyclophosphamide-induced candidacidal effectors, which seem to belong to a macrophage-monocyte lineage. The enhanced cytotoxic activity induced by cyclophosphamide was not restricted to C. albicans but was also exerted against a panel of Candida strains. PMID:6352489

  18. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells

    PubMed Central

    O'Leary, Claire E.; Riling, Christopher R.; Spruce, Lynn A.; Ding, Hua; Kumar, Suresh; Deng, Guoping; Liu, Yuhong; Seeholzer, Steven H.; Oliver, Paula M.

    2016-01-01

    Nedd4 family E3 ubiquitin ligases have been shown to restrict T-cell function and impact T-cell differentiation. We show here that Ndfip1 and Ndfip2, activators of Nedd4 family ligases, together limit accumulation and function of effector CD4+ T cells. Using a three-part proteomics approach in primary T cells, we identify stabilization of Jak1 in Ndfip1/2-deficient T cells stimulated through the TCR. Jak1 degradation is aborted in activated T cells that lack Ndfips. In wild-type cells, Jak1 degradation lessens CD4+ cell sensitivity to cytokines during TCR stimulation, while in Ndfip-deficient cells cytokine responsiveness persists, promoting increased expansion and survival of pathogenic effector T cells. Thus, Ndfip1/Ndfip2 regulate the cross talk between the T-cell receptor and cytokine signalling pathways to limit inappropriate T-cell responses. PMID:27088444

  19. The cyclin dependent kinase inhibitor (R)-roscovitine mediates selective suppression of alloreactive human T cells but preserves pathogen-specific and leukemia-specific effectors

    PubMed Central

    Nellore, Anoma; Liu, Bianling; Patsoukis, Nikolaos; Boussiotis, Vassiliki A.; Li, Lequn

    2014-01-01

    Graft versus host disease (GvHD), mediated by donor T cells, remains the primary cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation and novel therapeutic approaches are required. Cdk2 is a critical node of signal integration and programming of T cell responses towards immunity versus anergy but is dispensable for hematopoiesis and thymocyte development. We examined the effects of pharmacologic Cdk2 inhibition on alloreactive human T cells. Inhibition of Cdk2 blocked expansion of alloreactive T cells upon culture with HLA-mismatched dendritic cells and prevented generation of IFN-γ-producing alloantigen-specific effectors. In contrast, Cdk2 inhibition preserved effectors specific for Wilms’ tumor 1 (WT1) leukemia antigen and for CMV as determined by WT1-specific and CMV-specific pentamers. Cdk2 inhibition preserved Treg cells, which have the ability to prevent GvHD while maintaining GvL. Thus, Cdk inhibitors may improve allogeneic HSCT by reducing alloreactivity and GvHD without loss of pathogen-specific and leukemia-specific immunity. PMID:24631965

  20. The Cyst Nematode Effector Protein 10A07 Targets and Recruits Host Posttranslational Machinery to Mediate Its Nuclear Trafficking and to Promote Parasitism in Arabidopsis

    PubMed Central

    Hewezi, Tarek; Juvale, Parijat S.; Piya, Sarbottam; Maier, Tom R.; Rambani, Aditi; Rice, J. Hollis; Mitchum, Melissa G.; Davis, Eric L.; Hussey, Richard S.; Baum, Thomas J.

    2015-01-01

    Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants. PMID:25715285

  1. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis.

    PubMed

    Hewezi, Tarek; Juvale, Parijat S; Piya, Sarbottam; Maier, Tom R; Rambani, Aditi; Rice, J Hollis; Mitchum, Melissa G; Davis, Eric L; Hussey, Richard S; Baum, Thomas J

    2015-03-01

    Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants.

  2. The cyclin dependent kinase inhibitor (R)-roscovitine mediates selective suppression of alloreactive human T cells but preserves pathogen-specific and leukemia-specific effectors.

    PubMed

    Nellore, Anoma; Liu, Bianling; Patsoukis, Nikolaos; Boussiotis, Vassiliki A; Li, Lequn

    2014-01-01

    Graft versus host disease (GvHD), mediated by donor T cells, remains the primary cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation and novel therapeutic approaches are required. Cdk2 is a critical node of signal integration and programming of T cell responses towards immunity versus anergy but is dispensable for hematopoiesis and thymocyte development. We examined the effects of pharmacologic Cdk2 inhibition on alloreactive human T cells. Inhibition of Cdk2 blocked expansion of alloreactive T cells upon culture with HLA-mismatched dendritic cells and prevented generation of IFN-γ-producing alloantigen-specific effectors. In contrast, Cdk2 inhibition preserved effectors specific for Wilms' tumor 1 (WT1) leukemia antigen and for CMV as determined by WT1-specific and CMV-specific pentamers. Cdk2 inhibition preserved Treg cells, which have the ability to prevent GvHD while maintaining GvL. Thus, Cdk inhibitors may improve allogeneic HSCT by reducing alloreactivity and GvHD without loss of pathogen-specific and leukemia-specific immunity. PMID:24631965

  3. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis.

    PubMed

    Hewezi, Tarek; Juvale, Parijat S; Piya, Sarbottam; Maier, Tom R; Rambani, Aditi; Rice, J Hollis; Mitchum, Melissa G; Davis, Eric L; Hussey, Richard S; Baum, Thomas J

    2015-03-01

    Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants. PMID:25715285

  4. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies.

    PubMed

    Schmidt, Florian Ingo; Bleck, Christopher Karl Ernst; Reh, Lucia; Novy, Karel; Wollscheid, Bernd; Helenius, Ari; Stahlberg, Henning; Mercer, Jason

    2013-08-15

    Host cell entry of vaccinia virus, the prototypic poxvirus, involves a membrane fusion event delivering the viral core and two proteinaceous lateral bodies (LBs) into the cytosol. Uncoating of viral cores is poorly characterized, and the composition and function of LBs remains enigmatic. We found that cytosolic cores rapidly dissociated from LBs and expanded in volume, which coincided with reduction of disulfide-bonded core proteins. We identified the abundant phosphoprotein F17, the dual-specificity phosphatase VH1, and the oxidoreductase G4 as bona fide LB components. After reaching the cytosol, F17 was degraded in a proteasome-dependent manner. Proteasome activity, and presumably LB disassembly, was required for the immediate immunomodulatory activity of VH1: dephosphorylation of STAT1 to prevent interferon-γ-mediated antiviral responses. These results reveal a mechanism used by poxviruses to deliver viral enzymes to the host cell cytosol and are likely to facilitate the identification of additional LB-resident viral effectors.

  5. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori.

    PubMed

    Xu, J; Wang, Y; Li, Z; Ling, L; Zeng, B; James, A A; Tan, A; Huang, Y

    2014-12-01

    Engineering sex-specific sterility is critical for developing transgene-based sterile insect technology. Targeted genome engineering achieved by customized zinc-finger nuclease, transcription activator-like effector nuclease (TALEN) or clustered, regularly interspaced, short palindromic repeats/Cas9 systems has been exploited extensively in a variety of model organisms; however, screening mutated individuals without a detectable phenotype is still challenging. In addition, genetically recessive mutations only detectable in homozygotes make the experiments time-consuming. In the present study, we model a novel genetic system in the silkworm, Bombyx mori, that results in female-specific sterility by combining transgenesis with TALEN technologies. This system induces sex-specific sterility at a high efficiency by targeting the female-specific exon of the B. mori doublesex (Bmdsx) gene, which has sex-specific splicing isoforms regulating somatic sexual development. Transgenic animals co-expressing TALEN left and right arms targeting the female-specific Bmdsx exon resulted in somatic mutations and female mutants lost fecundity because of lack of egg storage and abnormal external genitalia. The wild-type sexual dimorphism of abdominal segment was not evident in mutant females. In contrast, there were no deleterious effects in mutant male moths. The current somatic TALEN technologies provide a promising approach for future insect functional genetics, thus providing the basis for the development of attractive genetic alternatives for insect population management. PMID:25125145

  6. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    PubMed

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production.

  7. Colletotrichum orbiculare Secretes Virulence Effectors to a Biotrophic Interface at the Primary Hyphal Neck via Exocytosis Coupled with SEC22-Mediated Traffic.

    PubMed

    Irieda, Hiroki; Maeda, Hitomi; Akiyama, Kaoru; Hagiwara, Asuka; Saitoh, Hiromasa; Uemura, Aiko; Terauchi, Ryohei; Takano, Yoshitaka

    2014-05-21

    The hemibiotrophic pathogen Colletotrichum orbiculare develops biotrophic hyphae inside cucumber (Cucumis sativus) cells via appressorial penetration; later, the pathogen switches to necrotrophy. C. orbiculare also expresses specific effectors at different stages. Here, we found that virulence-related effectors of C. orbiculare accumulate in a pathogen-host biotrophic interface. Fluorescence-tagged effectors accumulated in a ring-like region around the neck of the biotrophic primary hyphae. Fluorescence imaging of cellular components and transmission electron microscopy showed that the ring-like signals of the effectors localized at the pathogen-plant interface. Effector accumulation at the interface required induction of its expression during the early biotrophic phase, suggesting that transcriptional regulation may link to effector localization. We also investigated the route of effector secretion to the interface. An exocytosis-related component, the Rab GTPase SEC4, localized to the necks of biotrophic primary hyphae adjacent to the interface, thereby suggesting focal effector secretion. Disruption of SEC4 in C. orbiculare reduced virulence and impaired effector delivery to the ring signal interface. Disruption of the v-SNARE SEC22 also reduced effector delivery. These findings suggest that biotrophy-expressed effectors are secreted, via the endoplasmic reticulum-to-Golgi route and subsequent exocytosis, toward the interface generated between C. orbiculare and the host cell.

  8. TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines1

    PubMed Central

    Müller, Teresa M.; Böttcher, Christoph; Morbitzer, Robert; Götz, Cornelia C.; Lehmann, Johannes; Lahaye, Thomas; Glawischnig, Erich

    2015-01-01

    In Arabidopsis (Arabidopsis thaliana), a number of defense-related metabolites are synthesized via indole-3-acetonitrile (IAN), including camalexin and indole-3-carboxylic acid (ICOOH) derivatives. Cytochrome P450 71A13 (CYP71A13) is a key enzyme for camalexin biosynthesis and catalyzes the conversion of indole-3-acetaldoxime (IAOx) to IAN. The CYP71A13 gene is located in tandem with its close homolog CYP71A12, also encoding an IAOx dehydratase. However, for CYP71A12, indole-3-carbaldehyde and cyanide were identified as major reaction products. To clarify CYP71A12 function in vivo and to better understand IAN metabolism, we generated two cyp71a12 cyp71a13 double knockout mutant lines. CYP71A12-specific transcription activator-like effector nucleases were introduced into the cyp71a13 background, and very efficient somatic mutagenesis was achieved. We observed stable transmission of the cyp71a12 mutation to the following generations, which is a major challenge for targeted mutagenesis in Arabidopsis. In contrast to cyp71a13 plants, in which camalexin accumulation is partially reduced, double mutants synthesized only traces of camalexin, demonstrating that CYP71A12 contributes to camalexin biosynthesis in leaf tissue. A major role of CYP71A12 was identified for the inducible biosynthesis of ICOOH. Specifically, the ICOOH methyl ester was reduced to 12% of the wild-type level in AgNO3-challenged cyp71a12 leaves. In contrast, indole-3-carbaldehyde derivatives apparently are synthesized via alternative pathways, such as the degradation of indole glucosinolates. Based on these results, we present a model for this surprisingly complex metabolic network with multiple IAN sources and channeling of IAOx-derived IAN into camalexin biosynthesis. In conclusion, transcription activator-like effector nuclease-mediated mutation is a powerful tool for functional analysis of tandem genes in secondary metabolism. PMID:25953104

  9. Human intrahepatic regulatory T cells are functional, require IL‐2 from effector cells for survival, and are susceptible to Fas ligand‐mediated apoptosis

    PubMed Central

    Chen, Yung‐Yi; Jeffery, Hannah C.; Hunter, Stuart; Bhogal, Ricky; Birtwistle, Jane; Braitch, Manjit Kaur; Roberts, Sheree; Ming, Mikaela; Hannah, Jack; Thomas, Clare; Adali, Gupse; Hübscher, Stefan G.; Syn, Wing‐Kin; Afford, Simon; Lalor, Patricia F.; Adams, David H.

    2016-01-01

    Regulatory T cells (Treg) suppress T effector cell proliferation and maintain immune homeostasis. Autoimmune liver diseases persist despite high frequencies of Treg in the liver, suggesting that the local hepatic microenvironment might affect Treg stability, survival, and function. We hypothesized that interactions between Treg and endothelial cells during recruitment and then with epithelial cells within the liver affect Treg stability, survival, and function. To model this, we explored the function of Treg after migration through human hepatic sinusoidal‐endothelium (postendothelial migrated Treg [PEM Treg]) and the effect of subsequent interactions with cholangiocytes and local proinflammatory cytokines on survival and stability of Treg. Our findings suggest that the intrahepatic microenvironment is highly enriched with proinflammatory cytokines but deficient in the Treg survival cytokine interleukin (IL)‐2. Migration through endothelium into a model mimicking the inflamed liver microenvironment did not affect Treg stability; however, functional capacity was reduced. Furthermore, the addition of exogenous IL‐2 enhanced PEM Treg phosphorylated STAT5 signaling compared with PEMCD8. CD4 and CD8 T cells are the main source of IL‐2 in the inflamed liver. Liver‐infiltrating Treg reside close to bile ducts and coculture with cholangiocytes or their supernatants induced preferential apoptosis of Treg compared with CD8 effector cells. Treg from diseased livers expressed high levels of CD95, and their apoptosis was inhibited by IL‐2 or blockade of CD95. Conclusion: Recruitment through endothelium does not impair Treg stability, but a proinflammatory microenvironment deficient in IL‐2 leads to impaired function and increased susceptibility of Treg to epithelial cell‐induced Fas‐mediated apoptosis. These results provide a mechanism to explain Treg dysfunction in inflamed tissues and suggest that IL‐2 supplementation, particularly if used in conjunction

  10. A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis.

    PubMed

    Ramocki, M B; White, M A; Konieczny, S F; Taparowsky, E J

    1998-07-10

    Oncogenic Ras inhibits the differentiation of skeletal muscle cells through the activation of multiple downstream signaling pathways, including a Raf-dependent, mitogen-activated or extracellular signal-regulated kinase kinase/mitogen-activated protein kinase (MEK/MAPK)-independent pathway. Here we report that a non-Raf binding Ras effector-loop variant (H-Ras G12V,E37G), which retains interaction with the Ral guanine nucleotide dissociation stimulator (RalGDS), inhibits the conversion of MyoD-expressing C3H10T1/2 mouse fibroblasts to skeletal muscle. We show that H-Ras G12V,E37G, RalGDS, and the membrane-localized RalGDS CAAX protein inhibit the activity of alpha-actin-Luc, a muscle-specific reporter gene containing a necessary E-box and serum response factor (SRF) binding site, while a RalGDS protein defective for Ras interaction has no effect on alpha-actin-Luc transcription. H-Ras G12V,E37G does not activate endogenous MAPK, but does increase SRF-dependent transcription. Interestingly, RalGDS, RalGDS CAAX, and RalA G23V inhibit H-Ras G12V, E37G-induced expression of an SRF-regulated reporter gene, demonstrating that signaling through RalGDS does not duplicate the action of H-Ras G12V,E37G in this system. As additional evidence for this, we show that H-Ras G12V,E37G inhibits the expression of troponin I-Luc, an SRF-independent muscle-specific reporter gene, whereas RalGDS and RalGDS CAAX do not. Although our studies show that signaling through RalGDS can interfere with the expression of reporter genes dependent on SRF activity (including alpha-actin-Luc), our studies also provide strong evidence that an additional signaling molecule(s) activated by H-Ras G12V,E37G is required to achieve the complete inhibition of the myogenic differentiation program.

  11. AN EMERGING ROLE FOR THE LIPID MEDIATOR SPHINGOSINE-1-PHOSPHATE IN MAST CELL EFFECTOR FUNCTION AND ALLERGIC DISEASE*

    PubMed Central

    Olivera, Ana; Rivera, Juan

    2011-01-01

    Sphingosine-1-phosphate (S1P) plays important roles regulating functions of diverse biological systems, including the immune system. S1P affects immune cell function mostly by acting through its receptors at the cell membrane but it can also induce S1P receptor-independent responses in the cells where it is generated. S1P produced in allergically stimulated mast cells mediates degranulation, cytokine and lipid mediator production, and migration of mast cells towards antigen by mechanisms that are both S1P receptor-dependent and independent. Even in the absence of an antigen challenge, the differentiation and responsiveness of mast cells can be affected by chronic exposure to elevated S1P from a non-mast cell source, which may occur under pathophysiological conditions, potentially leading to the hyper-responsiveness of mast cells. The role of S1P extends beyond the regulation of the function of mast cells to the regulation of the surrounding or distal environment. S1P is exported out of antigen-stimulated mast cells and into the extracellular space and the resulting S1P gradient within the tissue may influence diverse surrounding tissue cells and several aspects of the allergic disease, such as inflammation or tissue remodeling. Furthermore, recent findings indicate that vasoactive mediators released systemically by mast cells induce the production of S1P in non-hematopoietic compartments, where it plays a role in regulating the vascular tone and reducing the hypotension characteristic of the anaphylactic shock and thus helping the recovery. The dual actions of S1P, promoting the immediate response of mast cells, while controlling the systemic consequences of mast cell activity will be discussed in detail. PMID:21713655

  12. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction.

    PubMed

    Zhao, Ende; Maj, Tomasz; Kryczek, Ilona; Li, Wei; Wu, Ke; Zhao, Lili; Wei, Shuang; Crespo, Joel; Wan, Shanshan; Vatan, Linda; Szeliga, Wojciech; Shao, Irene; Wang, Yin; Liu, Yan; Varambally, Sooryanarayana; Chinnaiyan, Arul M; Welling, Theodore H; Marquez, Victor; Kotarski, Jan; Wang, Hongbo; Wang, Zehua; Zhang, Yi; Liu, Rebecca; Wang, Guobin; Zou, Weiping

    2016-01-01

    Aerobic glycolysis regulates T cell function. However, whether and how primary cancer alters T cell glycolytic metabolism and affects tumor immunity in cancer patients remains a question. Here we found that ovarian cancers imposed glucose restriction on T cells and dampened their function via maintaining high expression of microRNAs miR-101 and miR-26a, which constrained expression of the methyltransferase EZH2. EZH2 activated the Notch pathway by suppressing Notch repressors Numb and Fbxw7 via trimethylation of histone H3 at Lys27 and, consequently, stimulated T cell polyfunctional cytokine expression and promoted their survival via Bcl-2 signaling. Moreover, small hairpin RNA-mediated knockdown of human EZH2 in T cells elicited poor antitumor immunity. EZH2(+)CD8(+) T cells were associated with improved survival in patients. Together, these data unveil a metabolic target and mechanism of cancer immune evasion.

  13. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies.

    PubMed

    Schmidt, Florian Ingo; Bleck, Christopher Karl Ernst; Reh, Lucia; Novy, Karel; Wollscheid, Bernd; Helenius, Ari; Stahlberg, Henning; Mercer, Jason

    2013-08-15

    Host cell entry of vaccinia virus, the prototypic poxvirus, involves a membrane fusion event delivering the viral core and two proteinaceous lateral bodies (LBs) into the cytosol. Uncoating of viral cores is poorly characterized, and the composition and function of LBs remains enigmatic. We found that cytosolic cores rapidly dissociated from LBs and expanded in volume, which coincided with reduction of disulfide-bonded core proteins. We identified the abundant phosphoprotein F17, the dual-specificity phosphatase VH1, and the oxidoreductase G4 as bona fide LB components. After reaching the cytosol, F17 was degraded in a proteasome-dependent manner. Proteasome activity, and presumably LB disassembly, was required for the immediate immunomodulatory activity of VH1: dephosphorylation of STAT1 to prevent interferon-γ-mediated antiviral responses. These results reveal a mechanism used by poxviruses to deliver viral enzymes to the host cell cytosol and are likely to facilitate the identification of additional LB-resident viral effectors. PMID:23891003

  14. Production of α1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology.

    PubMed

    Kang, Jung-Taek; Kwon, Dae-Kee; Park, A-Rum; Lee, Eun-Jin; Yun, Yun-Jin; Ji, Dal-Young; Lee, Kiho; Park, Kwang-Wook

    2016-03-01

    Recent developments in genome editing technology using meganucleases demonstrate an efficient method of producing gene edited pigs. In this study, we examined the effectiveness of the transcription activator-like effector nuclease (TALEN) system in generating specific mutations on the pig genome. Specific TALEN was designed to induce a double-strand break on exon 9 of the porcine α1,3-galactosyltransferase (GGTA1) gene as it is the main cause of hyperacute rejection after xenotransplantation. Human decay-accelerating factor (hDAF) gene, which can produce a complement inhibitor to protect cells from complement attack after xenotransplantation, was also integrated into the genome simultaneously. Plasmids coding for the TALEN pair and hDAF gene were transfected into porcine cells by electroporation to disrupt the porcine GGTA1 gene and express hDAF. The transfected cells were then sorted using a biotin-labeled IB4 lectin attached to magnetic beads to obtain GGTA1 deficient cells. As a result, we established GGTA1 knockout (KO) cell lines with biallelic modification (35.0%) and GGTA1 KO cell lines expressing hDAF (13.0%). When these cells were used for somatic cell nuclear transfer, we successfully obtained live GGTA1 KO pigs expressing hDAF. Our results demonstrate that TALEN-mediated genome editing is efficient and can be successfully used to generate gene edited pigs. PMID:27051344

  15. Antibody-dependent cellular cytotoxicity-mediated serotherapy against murine neuroblastoma. II. In vitro and in vivo treatment using effector cells from normal and X-irradiated humans.

    PubMed

    Byfield, J E; Zerubavel, R; Fonkalsrud, E W

    1983-01-01

    Human peripheral lymphocytes (HLc) have been studied in vitro as possible effector cells in an antibody-dependent cellular cytotoxicity (ADCC) reaction. HLc were found to be active against murine neuroblastoma cells (MNB) inoculated into the flank of syngeneic mice. Both the time of onset of tumor appearance and the mean survival time of tumor-bearing host mice were beneficially influenced. Occasional animals could be cured of up to 10(5) tumor cells (1--10 cells of MNB are lethal). This level of tumor cytotoxicity approaches that of tolerance-dose chemotherapy and is without demonstrable side-effects. HLc from patients who had just received = 3,000 rads fractionated therapeutic X-irradiation were equally effective as HLc from control non-irradiated donors when assayed at equivalent HLc : tumor cell ratios. HLc could also inhibit MNB tumor cell growth in the ascitic form, confirming in vivo activity. Overall, HLc appeared almost as active as rat spleen cells in mediating a useful anti-tumor ADCC. This approach may ultimately prove useful in man, especially in the peritoneal cavity, and is currently limited only by the need to develop appropriate antisera. It is proposed and emphasized that such antisera need not necessarily be directed at tumor-specific antigens. Organ-specific antibodies such are already known to develop spontaneously in some human auto-immune diseases might be equally useful and are a naturally occurring potential source of appropriately expressed genetic material.

  16. Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling

    PubMed Central

    Sahin, Bogachan; Galdi, Stacey; Hendrick, Joseph; Greene, Robert W.; Snyder, Gretchen L.; Bibb, James A.

    2007-01-01

    Adenosine A2A receptors are predominantly expressed in the dendrites of enkephalin-positive γ-aminobutyric acidergic medium spiny neurons in the striatum. Evidence indicates that these receptors modulate striatal dopaminergic neurotransmission and regulate motor control, vigilance, alertness, and arousal. Although the physiological and behavioral correlates of adenosine A2A receptor signaling have been extensively studied using a combination of pharmacological and genetic tools, relatively little is known about the signal transduction pathways that mediate the diverse biological functions attributed to this adenosine receptor subtype. Using a candidate approach based on the coupling of these receptors to adenylate cyclase-activating G proteins, a number of membranal, cytosolic, and nuclear phosphoproteins regulated by PKA were evaluated as potential mediators of adenosine A2A receptor signaling in the striatum. Specifically, the adenosine A2A receptor agonist, CGS 21680, was used to determine whether the phosphorylation state of each of the following PKA targets is responsive to adenosine A2A receptor stimulation in this tissue: Ser40 of tyrosine hydroxylase, Ser9 of synapsin, Ser897 of the NR1 subunit of the N-methyl-D-aspartate-type glutamate receptor, Ser845 of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor, Ser94 of spinophilin, Thr34 of the dopamine- and cAMP-regulated phosphoprotein, Mr32,000, Ser133 of the cAMP-response element-binding protein, Thr286 of Ca2+/calmodulin-dependent protein kinase II, and Thr202/Tyr204 and Thr183/Tyr185 of the p44 and p42 isoforms, respectively, of mitogen-activated protein kinase. Although the substrates studied differed considerably in their responsiveness to selective adenosine A2A receptor activation, the phosphorylation state of all postsynaptic PKA targets was up-regulated in a time- and dose-dependent manner by treatment with CGS 21680, whereas presynaptic PKA

  17. Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling.

    PubMed

    Sahin, Bogachan; Galdi, Stacey; Hendrick, Joseph; Greene, Robert W; Snyder, Gretchen L; Bibb, James A

    2007-01-19

    Adenosine A(2A) receptors are predominantly expressed in the dendrites of enkephalin-positive gamma-aminobutyric acidergic medium spiny neurons in the striatum. Evidence indicates that these receptors modulate striatal dopaminergic neurotransmission and regulate motor control, vigilance, alertness, and arousal. Although the physiological and behavioral correlates of adenosine A(2A) receptor signaling have been extensively studied using a combination of pharmacological and genetic tools, relatively little is known about the signal transduction pathways that mediate the diverse biological functions attributed to this adenosine receptor subtype. Using a candidate approach based on the coupling of these receptors to adenylate cyclase-activating G proteins, a number of membranal, cytosolic, and nuclear phosphoproteins regulated by PKA were evaluated as potential mediators of adenosine A(2A) receptor signaling in the striatum. Specifically, the adenosine A(2A) receptor agonist, CGS 21680, was used to determine whether the phosphorylation state of each of the following PKA targets is responsive to adenosine A(2A) receptor stimulation in this tissue: Ser40 of tyrosine hydroxylase, Ser9 of synapsin, Ser897 of the NR1 subunit of the N-methyl-d-aspartate-type glutamate receptor, Ser845 of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor, Ser94 of spinophilin, Thr34 of the dopamine- and cAMP-regulated phosphoprotein, M(r) 32,000, Ser133 of the cAMP-response element-binding protein, Thr286 of Ca(2+)/calmodulin-dependent protein kinase II, and Thr202/Tyr204 and Thr183/Tyr185 of the p44 and p42 isoforms, respectively, of mitogen-activated protein kinase. Although the substrates studied differed considerably in their responsiveness to selective adenosine A(2A) receptor activation, the phosphorylation state of all postsynaptic PKA targets was up-regulated in a time- and dose-dependent manner by treatment with CGS 21680

  18. Ab-IL2 fusion proteins mediate NK cell immune synapse formation by polarizing CD25 to the target cell-effector cell interface.

    PubMed

    Gubbels, Jennifer A A; Gadbaw, Brian; Buhtoiarov, Ilia N; Horibata, Sachi; Kapur, Arvinder K; Patel, Dhara; Hank, Jacquelyn A; Gillies, Stephen D; Sondel, Paul M; Patankar, Manish S; Connor, Joseph

    2011-12-01

    The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.

  19. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector.

    PubMed

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  20. Cancer-induced defective cytotoxic T lymphocyte effector function: another mechanism how antigenic tumors escape immune-mediated killing.

    PubMed Central

    Radoja, S.; Frey, A. B.

    2000-01-01

    BACKGROUND: The notion that a deficit in immune cell functions permits tumor growth has received experimental support with the discovery of several different biochemical defects in T lymphocytes that infiltrate cancers. Decreased levels of enzymes involved with T-cell signal transduction have been reported by several laboratories, suggesting that tumors or host cells recruited to the tumor site actively down-regulate antitumor T-cell immune response. This permits tumor escape from immune-mediated killing. The possibility that defects in T-cell signal transduction can be reversed, which would potentially permit successful vaccination or adoptive immunotherapy, motivates renewed interest in the field. Summarizing the literature concerning tumor-induced T-cell dysfunction, we focus on the end stage of immune response to human cancer, that of defective cytotoxic T lymphocyte killing function. Based on the data from several laboratories, we hypothesize a biochemical mechanism that accounts for the unusual phenotype of antitumor T-cell accumulation in tumors, but with defective killing function. PMID:10972084

  1. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells.

    PubMed

    Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf; Brakhage, Axel A

    2012-05-01

    Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.

  2. TLR2 ligation protects effector T cells from regulatory T-cell mediated suppression and repolarizes T helper responses following MVA-based cancer immunotherapy.

    PubMed

    Amiset, Laurent; Fend, Laetitia; Gatard-Scheikl, Tania; Rittner, Karola; Duong, Vanessa; Rooke, Ronald; Muller, Sylviane; Bonnefoy, Jean-Yves; Préville, Xavier; Haegel, Hélène

    2012-11-01

    Cancer immunotherapy is hampered by the immunosuppression maintained by regulatory T cells (Tregs) in tumor-bearing hosts. Stimulation of the Toll-like receptor 2 (TLR2) by Pam3Cys is known to affect Treg-mediated suppression. We found that Pam3Cys increases the proliferation of both CD4(+) effector T cells (Teffs) and Tregs co-cultured in vitro, but did not induce the proliferation of Tregs alone upon CD3 and CD28 stimulation. In a mouse model of RMA-MUC1 tumors, Pam3Cys was administered either alone or in combination with a modified vaccinia ankara (MVA)-based mucin 1 (MUC1) therapeutic vaccine. The combination of Pam3Cys with MVA-MUC1 (1) diminished splenic Treg/CD4(+) T-cell ratios to those found in tumor-free mice, (2) stimulated a specific anti-MUC1 interferon γ (IFNγ) response and (3) had a significant therapeutic effect on tumor growth and mouse survival. When CD4(+) Teffs and Tregs were isolated from Pam3Cys-treated mice, Teffs had become resistant to Treg-mediated suppression while upregulating the expression of BclL-x(L). Tregs from Pam3Cys-treated mice were fully suppressive for Teffs from naïve mice. Bcl-x(L) was induced by Pam3Cys with different kinetics in Tregs and Teffs. Teff from Pam3Cys-treated mice produced increased levels of Th1 and Th2-type cytokines and an interleukin (IL)-6-dependent secretion of IL-17 was observed in Teff:Treg co-cultures, suggesting that TLR2 stimulation had skewed the immune response toward a Th17 profile. Our results show for the first time that in a tumor-bearing host, TLR2 stimulation with Pam3Cys affects both Tregs and Teffs, protects Teff from Treg-mediated suppression and has strong therapeutic effects when combined with an MVA-based antitumor vaccine. PMID:23243590

  3. TLR2 ligation protects effector T cells from regulatory T-cell mediated suppression and repolarizes T helper responses following MVA-based cancer immunotherapy

    PubMed Central

    Amiset, Laurent; Fend, Laetitia; Gatard-Scheikl, Tania; Rittner, Karola; Duong, Vanessa; Rooke, Ronald; Muller, Sylviane; Bonnefoy, Jean-Yves; Préville, Xavier; Haegel, Hélène

    2012-01-01

    Cancer immunotherapy is hampered by the immunosuppression maintained by regulatory T cells (Tregs) in tumor-bearing hosts. Stimulation of the Toll-like receptor 2 (TLR2) by Pam3Cys is known to affect Treg-mediated suppression. We found that Pam3Cys increases the proliferation of both CD4+ effector T cells (Teffs) and Tregs co-cultured in vitro, but did not induce the proliferation of Tregs alone upon CD3 and CD28 stimulation. In a mouse model of RMA-MUC1 tumors, Pam3Cys was administered either alone or in combination with a modified vaccinia ankara (MVA)-based mucin 1 (MUC1) therapeutic vaccine. The combination of Pam3Cys with MVA-MUC1 (1) diminished splenic Treg/CD4+ T-cell ratios to those found in tumor-free mice, (2) stimulated a specific anti-MUC1 interferon γ (IFNγ) response and (3) had a significant therapeutic effect on tumor growth and mouse survival. When CD4+ Teffs and Tregs were isolated from Pam3Cys-treated mice, Teffs had become resistant to Treg-mediated suppression while upregulating the expression of BclL-xL. Tregs from Pam3Cys-treated mice were fully suppressive for Teffs from naïve mice. Bcl-xL was induced by Pam3Cys with different kinetics in Tregs and Teffs. Teff from Pam3Cys-treated mice produced increased levels of Th1 and Th2-type cytokines and an interleukin (IL)-6-dependent secretion of IL-17 was observed in Teff:Treg co-cultures, suggesting that TLR2 stimulation had skewed the immune response toward a Th17 profile. Our results show for the first time that in a tumor-bearing host, TLR2 stimulation with Pam3Cys affects both Tregs and Teffs, protects Teff from Treg-mediated suppression and has strong therapeutic effects when combined with an MVA-based antitumor vaccine. PMID:23243590

  4. Tumoricidal effector mechanisms of murine Bacillus Calmette-Guérin-activated macrophages: mediation of cytolysis, mitochondrial respiration inhibition, and release of intracellular iron by distinct mechanisms.

    PubMed

    Klostergaard, J; Leroux, M E; Ezell, S M; Kull, F C

    1987-04-15

    retarded appearance compared to the time at which a factor mediating release of intracellular iron was detectable. Our results strongly suggest that these three distinct cytotoxic reactions are under differential control by the effector cell. PMID:3828989

  5. The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence

    PubMed Central

    Börnke, Frederik

    2013-01-01

    The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) requires type III effector proteins (T3Es) for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA) and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed. PMID:23785289

  6. A single binding site mediates resistance- and disease-associated activities of the effector protein NIP1 from the barley pathogen Rhynchosporium secalis.

    PubMed

    van't Slot, Klaas A E; Gierlich, Angela; Knogge, Wolfgang

    2007-07-01

    The effector protein NIP1 from the barley (Hordeum vulgare) pathogen Rhynchosporium secalis specifically induces the synthesis of defense-related proteins in cultivars of barley expressing the complementary resistance gene, Rrs1. In addition, it stimulates the activity of the barley plasma membrane H(+)-ATPase in a genotype-unspecific manner and it induces necrotic lesions in leaf tissues of barley and other cereal plant species. NIP1 variants type I and II, which display quantitative differences in their activities as elicitor and H(+)-ATPase stimulator, and the inactive mutant variants type III* and type IV*, were produced in Escherichia coli. Binding studies using (125)I-NIP1 type I revealed a single class of binding sites with identical binding characteristics in microsomes from near-isogenic resistant (Rrs1) and susceptible (rrs1) barley. Binding was specific, reversible, and saturable, and saturation ligand-binding experiments yielded a K(d) of 5.6 nm. A binding site was also found in rye (Secale cereale) and the nonhost species wheat (Triticum aestivum), oat (Avena sativa), and maize (Zea mays), but not in Arabidopsis (Arabidopsis thaliana). For NIP1 types I and II, equilibrium competition-binding experiments revealed a correlation between the difference in their affinities to the binding site and the differences in their elicitor activity and H(+)-ATPase stimulation, indicating a single target molecule to mediate both activities. In contrast, the inactive proteins type III* and type IV* are both characterized by high affinities similar to type I, suggesting that binding of NIP1 to this target is not sufficient for its activities. PMID:17478637

  7. Effect of activated antigen-specific B cells on ES-62-mediated modulation of effector function of heterologous antigen-specific T cells in vivo

    PubMed Central

    Marshall, Fraser A; Watson, Katherine A; Garside, Paul; Harnett, Margaret M; Harnett, William

    2008-01-01

    There is currently great interest in the idea of using helminth-derived molecules for therapeutic purposes and indeed we have shown that ES-62, a filarial nematode-derived phosphorylcholine-containing glycoprotein, significantly reduces the severity of arthritis in a murine model. Clearly, knowledge of mechanism of action is important when considering molecules for use in treating disease and although much is known regarding how ES-62 interacts with the immune system, gaps in our understanding remain. A feature of filarial nematode infection is a defective, T helper 2 (Th2)-polarized antigen-specific T-cell response and in relation to this we have recently shown that ES-62 inhibits clonal expansion and modulates effector function towards a Th2 phenotype, of antigen-specific T cells in vivo. ES-62 is also known to directly modulate B-cell behaviour and hence to determine whether it was mediating these effects on T cells by disrupting B–T-cell co-operation, we have investigated antigen-specific responses using an adoptive transfer system in which traceable numbers of tg ovalbumin (OVA)-specific T cells and hen egg lysozyme (HEL)-specific B cells respond to a chemically coupled form of OVA–HEL that contains linked epitopes that promote cognate T- and B-cell interactions. Surprisingly, these studies indicate that activated B cells restore T-cell expansion and prevent Th2-like polarization. However, ES-62-treated double cell transfer mice demonstrate a more generalized immunosuppression with reduced levels of Th1 and -2 type cytokines and antibody subclasses. Collectively, these results suggest that whilst ES-62 can target B–T-cell co-operation, this does not promote polarizing of T-cell responses towards a Th2-type phenotype. PMID:17961164

  8. Analysis of lysine clipping of a humanized Lewis-Y specific IgG antibody and its relation to Fc-mediated effector function.

    PubMed

    Antes, Bernhard; Amon, Sabine; Rizzi, Andreas; Wiederkum, Susi; Kainer, Manuela; Szolar, Oliver; Fido, Markus; Kircheis, Ralf; Nechansky, Andreas

    2007-06-01

    During the analytical characterization of the humanized Lewis-Y specific monoclonal antibody IGN311 (IgG1/kappa) used for passive anti-cancer therapy in humans, isoelectric focusing (IEF) experiments revealed that IGN311 batches produced in serum-containing and serum-free medium, respectively, displayed different banding patterns. The additional bands in the IEF pattern correlated with additional peaks observed by subsequent cation exchange (CEX)-HPLC analysis. Since the IEF pattern is one of the specification criteria in the quality control of monoclonal antibodies and a non-matching pattern may be indicative for lot-to-lot inconsistency, this phenomenon was investigated in detail. First, we investigated whether a difference in antibody glycosylation was the cause for the observed charge heterogeneity. De-N-glycosylation experiments demonstrated that charge heterogeneity observed in the IEF pattern is not a consequence of glycosylation. In contrast, sample treatment by carboxypeptidase B, removing the carboxy-terminal lysine residues from the two heavy chains of the antibody, resulted in reduced charge heterogeneity eliminating the two most basic bands observed in IEF. These data were supported by reversed phase HPLC-MALDI-TOF-MS analysis of enzymatically cleaved peptides of the antibody as well as by carboxy-terminal sequencing of the heavy chains. It was demonstrated that the differences in the IEF banding pattern were due to lysine clipping occurring during the production of the antibody. The antibody batch produced under serum-free conditions was less affected by lysine clipping. Both antibody variants--clipped and unclipped--elicited the same potency in a complement dependent cytotoxicity (CDC) assay demonstrating that lysine clipping of IGN311 does not impair Fc-mediated effector functions.

  9. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  10. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000[OPEN

    PubMed Central

    Lewis, Laura A.; Polanski, Krzysztof; de Torres-Zabala, Marta; Bowden, Laura; Jenkins, Dafyd J.; Hill, Claire; Baxter, Laura; Truman, William; Prusinska, Justyna; Hickman, Richard; Wild, David L.; Ott, Sascha; Buchanan-Wollaston, Vicky; Beynon, Jim

    2015-01-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. PMID:26566919

  11. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    SciTech Connect

    Tilden, A.B.; Cauda, R.; Grossi, C.E.; Balch, C.M.; Lakeman, A.D.; Whitley, R.J.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar to those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.

  12. New players in the same old game: a system level in silico study to predict type III secretion system and effector proteins in bacterial genomes reveals common themes in T3SS mediated pathogenesis

    PubMed Central

    2013-01-01

    Background Type III secretion system (T3SS) plays an important role in virulence or symbiosis of many pathogenic or symbiotic bacteria [CHM 2:291–294, 2007; Physiology (Bethesda) 20:326–339, 2005]. T3SS acts like a tunnel between a bacterium and its host through which the bacterium injects ‘effector’ proteins into the latter [Nature 444:567–573, 2006; COSB 18:258–266, 2008]. The effectors spatially and temporally modify the host signalling pathways [FEMS Microbiol Rev 35:1100–1125, 2011; Cell Host Microbe5:571–579, 2009]. In spite its crucial role in host-pathogen interaction, the study of T3SS and the associated effectors has been limited to a few bacteria [Cell Microbiol 13:1858–1869, 2011; Nat Rev Microbiol 6:11–16, 2008; Mol Microbiol 80:1420–1438, 2011]. Before one set out to perform systematic experimental studies on an unknown set of bacteria it would be beneficial to identify the potential candidates by developing an in silico screening algorithm. A system level study would also be advantageous over traditional laboratory methods to extract an overriding theme for host-pathogen interaction, if any, from the vast resources of data generated by sequencing multiple bacterial genomes. Results We have developed an in silico protocol in which the most conserved set of T3SS proteins was used as the query against the entire bacterial database with increasingly stringent search parameters. It enabled us to identify several uncharacterized T3SS positive bacteria. We adopted a similar strategy to predict the presence of the already known effectors in the newly identified T3SS positive bacteria. The huge resources of biochemical data [FEMS Microbiol Rev 35:1100–1125, 2011; Cell Host Microbe 5:571–579, 2009; BMC Bioinformatics 7(11):S4, 2010] on the T3SS effectors enabled us to search for the common theme in T3SS mediated pathogenesis. We identified few cellular signalling networks in the host, which are manipulated by most of the T3SS

  13. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava.

    PubMed

    Cohn, Megan; Bart, Rebecca S; Shybut, Mikel; Dahlbeck, Douglas; Gomez, Michael; Morbitzer, Robert; Hou, Bi-Huei; Frommer, Wolf B; Lahaye, Thomas; Staskawicz, Brian J

    2014-11-01

    The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava.

  14. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava.

    PubMed

    Cohn, Megan; Bart, Rebecca S; Shybut, Mikel; Dahlbeck, Douglas; Gomez, Michael; Morbitzer, Robert; Hou, Bi-Huei; Frommer, Wolf B; Lahaye, Thomas; Staskawicz, Brian J

    2014-11-01

    The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava. PMID:25083909

  15. A small unstructured region in Vibrio cholerae ToxT mediates the response to positive and negative effectors and ToxT proteolysis.

    PubMed

    Thomson, Joshua J; Plecha, Sarah C; Withey, Jeffrey H

    2015-02-01

    Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. The production of the virulence factors that are required for human disease is controlled by a complex network of transcriptional and posttranscriptional regulators. ToxT is the transcription regulator that directly controls the production of the two major virulence factors, toxin-coregulated pilus (TCP) and cholera toxin (CT). The solved crystal structure of ToxT revealed an unstructured region in the N-terminal domain between residues 100 and 110. This region and the surrounding amino acids have been previously implicated in ToxT proteolysis, resistance to inhibition by negative effectors, and ToxT dimerization. To better characterize this region, site-directed mutagenesis was performed to assess the effects on ToxT proteolysis and bile sensitivity. This analysis identified specific mutations within this unstructured region that prevent ToxT proteolysis and other mutations that reduce inhibition by bile and unsaturated fatty acids. In addition, we found that mutations that affect the sensitivity of ToxT to bile also affect the sensitivity of ToxT to its positive effector, bicarbonate. These results suggest that a small unstructured region in the ToxT N-terminal domain is involved in multiple aspects of virulence gene regulation and response to human host signals.

  16. Functional Analysis of Hyaloperonospora arabidopsidis RXLR Effectors

    PubMed Central

    Pel, Michiel J. C.; Wintermans, Paul C. A.; Cabral, Adriana; Robroek, Bjorn J. M.; Seidl, Michael F.; Bautor, Jaqueline; Parker, Jane E.; Van den Ackerveken, Guido; Pieterse, Corné M. J.

    2014-01-01

    The biotrophic plant pathogen Hyaloperonospora arabidopsidis produces a set of putative effector proteins that contain the conserved RXLR motif. For most of these RXLR proteins the role during infection is unknown. Thirteen RXLR proteins from H. arabidopsidis strain Waco9 were analyzed for sequence similarities and tested for a role in virulence. The thirteen RXLR proteins displayed conserved N-termini and this N-terminal conservation was also found in the 134 predicted RXLR genes from the genome of H. arabidopsidis strain Emoy2. To investigate the effects of single RXLR effector proteins on plant defense responses, thirteen H. arabidopsidis Waco9 RXLR genes were expressed in Arabidopsis thaliana. Subsequently, these plants were screened for altered susceptibility to the oomycetes H. arabidopsidis and Phytophthora capsici, and the bacterial pathogen Pseudomonas syringae. Additionally, the effect of the RXLR proteins on flg22-triggered basal immune responses was assessed. Multifactorial analysis of results collated from all experiments revealed that, except for RXLR20, all RXLR effector proteins tested affected plant immunity. For RXLR9 this was confirmed using a P. syringae ΔCEL-mediated effector delivery system. Together, the results show that many H. arabidopsidis RXLR effectors have small effects on the plant immune response, suggesting that suppression of host immunity by this biotrophic pathogen is likely to be caused by the combined actions of effectors. PMID:25375163

  17. End-effector microprocessor

    NASA Technical Reports Server (NTRS)

    Doggett, William R.

    1992-01-01

    The topics are presented in viewgraph form and include: automated structures assembly facility current control hierarchy; automated structures assembly facility purposed control hierarchy; end-effector software state transition diagram; block diagram for ideal install composite; and conclusions.

  18. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  19. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  20. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells.

    PubMed

    Popa, Crina M; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.

  1. Host cell type-dependent translocation and PhoP-mediated positive regulation of the effector SseK1 of Salmonella enterica

    PubMed Central

    Baisón-Olmo, Fernando; Galindo-Moreno, María; Ramos-Morales, Francisco

    2015-01-01

    Salmonella enterica expresses two virulence-related type III secretion systems (T3SSs) encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. SseK1 is a poorly characterized substrate of the SPI2-encoded T3SS. Here, we show that this effector is essential to get full virulence both in oral and intraperitoneal mice infections, in spite of not having a role in invasion or intracellular proliferation in cultured mammalian cells. In vitro, expression of sseK1 was higher in media mimicking intracellular conditions, when SPI2 was induced, but it was also significant under SPI1 inducing conditions. A detailed analysis of translocation of SseK1 into host cells unveiled that it was a substrate of both, T3SS1 and T3SS2, although with different patterns and kinetics depending on the specific host cell type (epithelial, macrophages, or fibroblasts). The regulation of the expression of sseK1 was examined using lacZ and bioluminescent lux fusions. The two-component system PhoQ/PhoP is a positive regulator of this gene. A combination of sequence analysis, directed mutagenesis and electrophoretic mobility shift assays showed that phosphorylated PhoP binds directly to the promoter region of sseK1 and revealed a PhoP binding site located upstream of the predicted -35 hexamer of this promoter. PMID:25972862

  2. Interleukin-13 Pathway Alterations Impair Invariant Natural Killer T-Cell-Mediated Regulation of Effector T Cells in Type 1 Diabetes.

    PubMed

    Usero, Lorena; Sánchez, Ana; Pizarro, Eduarda; Xufré, Cristina; Martí, Mercè; Jaraquemada, Dolores; Roura-Mir, Carme

    2016-08-01

    Many studies have shown that human natural killer T (NKT) cells can promote immunity to pathogens, but their regulatory function is still being investigated. Invariant NKT (iNKT) cells have been shown to be effective in preventing type 1 diabetes in the NOD mouse model. Activation of plasmacytoid dendritic cells, modulation of B-cell responses, and immune deviation were proposed to be responsible for the suppressive effect of iNKT cells. We studied the regulatory capacity of human iNKT cells from control subjects and patients with type 1 diabetes (T1D) at disease clinical onset. We demonstrate that control iNKT cells suppress the proliferation of effector T cells (Teffs) through a cell contact-independent mechanism. Of note, suppression depended on the secretion of interleukin-13 (IL-13) by iNKT cells because an antibody blocking this cytokine resulted from the abrogation of Teff suppression; however, T1D-derived iNKT cells showed impaired regulation that could be attributed to the decrease in IL-13 secretion. Thus, alteration of the IL-13 pathway at disease onset may lead to the progression of the autoimmune response in T1D. Advances in the study of iNKT cells and the selection of agonists potentiating IL-13 secretion should permit new therapeutic strategies to prevent the development of T1D. PMID:27207542

  3. Exposure to double-stranded RNA mediated by tobacco rattle virus leads to transcription up-regulation of effector gene Mi-vap-2 from Meloidogyne incognita and promotion of pathogenicity in progeny.

    PubMed

    Chi, Yuankai; Wang, Xuan; Le, Xiuhu; Ju, Yuliang; Guan, Tinglong; Li, Hongmei

    2016-02-01

    Meloidogyne spp. are economically important plant parasites and cause enormous damage to agriculture world-wide. These nematodes use secreted effectors which modify host cells, allowing them to obtain the nutrients required for growth and development. A better understanding of the roles of effectors in nematode parasitism is critical for understanding the mechanisms of nematode-host interactions. In this study, Mi-vap-2 of Meloidogyne incognita, a gene encoding a venom allergen-like protein, was targeted by RNA interference mediated by the tobacco rattle virus. Unexpectedly, compared with a wild type line, a substantial up-regulation of Mi-vap-2 transcript was observed in juveniles collected at 7 days p.i. from Nicotiana benthamiana agroinfiltrated with TRV::vap-2. This up-regulation of the targeted transcript did not impact development of females or the production of galls, nor the number of females on the TRV::vap-2 line. In a positive control line, the transcript of Mi16D10 was knocked down in juveniles from the TRV::16D10 line at 7 days p.i., resulting in a significant inhibition of nematode development. The up-regulation of Mi-vap-2 triggered by TRV-RNAi was inherited by the progeny of the nematodes exposed to double-stranded RNA. Meanwhile, a substantial increase in Mi-VAP-2 expression in those juvenile progeny was revealed by ELISA. This caused an increase in the number of galls (71.2%) and females (84.6%) produced on seedlings of N. benthamiana compared with the numbers produced by control nematodes. Up-regulation of Mi-vap-2 and its encoded protein therefore enhanced pathogenicity of the nematodes, suggesting that Mi-vap-2 may be required for successful parasitism during the early parasitic stage of M. incognita.

  4. End effectors and grapple fixtures

    NASA Astrophysics Data System (ADS)

    Vandersluis, Ron; Quittner, Erik

    1992-01-01

    An end effector has been developed for use with a space station remote manipulator system where capture and release capabilities are required, and which will provide for the transfer of substantial loads together with electrical power and signals across the end effector grapple fixture interface. The end effector has a latching mechanism for the transfer of substantial loads across the end effector grapple fixture interface. The functions associated with known nonlatching end effectors, namely their snaring and rigidizing capabilities, are maintained and can be operated independently of the new latching mechanisms and umbilical connectors of the end effector. The end effector is capable of functioning equally as a wrist (manipulator) and shoulder (arm base) unit. Applications of the new end effector include space station assembly, payload handling, capture of free-flyers, payload servicing, and providing stable bases for extravehicular activity work stations or robotic devices.

  5. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane

    PubMed Central

    Thwaites, Tristan R.; Pedrosa, Antonio T.; Peacock, Thomas P.; Carabeo, Rey A.

    2015-01-01

    The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway. PMID:26649283

  6. Robotic end effector

    DOEpatents

    Minichan, R.L.

    1993-10-05

    An end effector is described for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion. 7 figures.

  7. Robotic end effector

    DOEpatents

    Minichan, Richard L.

    1993-01-01

    An end effector for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion.

  8. Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor.

    PubMed Central

    Besman, M J; Yanagibashi, K; Lee, T D; Kawamura, M; Hall, P F; Shively, J E

    1989-01-01

    Delivery of cholesterol to inner mitochondrial membranes is rate-limiting for steroidogenesis in the zona fasciculata of adrenal cortex. A protein that stimulates this process was isolated to homogeneity from bovine adrenal tissue. This protein's primary structure has been determined in its entirety by a combination of automated Edman microsequencing, fast-atom bombardment mass spectrometry (FAB-MS). The sequence was identical to that previously reported for bovine brain endozepine, except that it lacks the last two residues, -Gly-Ile, at the C terminus. To our knowledge, isolation of an endozepine-related protein from a tissue other than brain has not been reported previously. Endozepine competes with benzodiazepines for saturable binding sites in synaptosomes and in mitochondria of specific peripheral tissues. Previous reports have localized the adrenal benzodiazepine receptor to the outer mitochondrial membrane. In this report, we show that the prototypic benzodiazepine, diazepam, effects a stimulation of adrenal mitochondrial cholesterol delivery similar to that observed for endozepine. The effective diazepam concentration was consistent with that previously shown to displace a high-affinity ligand of the mitochondrial benzodiazepine receptor. The action of diazepam in adrenal mitochondria suggests that the mediation of corticotropin-induced steroidogenesis may be the physiological function of the peripheral-type benzodiazepine receptor. These studies provide new insights into the previously unknown function of peripheral benzodiazepine receptors and should allow new investigations into the stimulation of steroidogenesis by endozepines and benzodiazepines in the brain and in certain peripheral tissues. PMID:2544879

  9. AvrXa7-Xa7 mediated defense in rice can be suppressed by transcriptional activator-like effectors TAL6 and TAL11a from Xanthomonas oryzae pv. oryzicola.

    PubMed

    Ji, Zhi-Yuan; Xiong, Li; Zou, Li-Fang; Li, Yu-Rong; Ma, Wen-Xiu; Liu, Liang; Zakria, Muhammad; Ji, Guang-Hai; Chen, Gong-You

    2014-09-01

    The closely related plant pathogens Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae cause bacterial leaf streak (BLS) and bacterial leaf blight (BLB), respectively, in rice. Unlike X. oryzae pv. oryzae, endogenous avirulence-resistance (avr-R) gene interactions have not been identified in the X. oryzae pv. oryzicola-rice pathosystem, though both X. oryzae pv. oryzicola and X. oryzae pv. oryzae possess transcriptional activator-like effectors (TALE), which are known to modulate R or S genes in rice. In this report, avrXa7, avrXa10, and avrXa27 from X. oryzae pv. oryzae were transferred into YNB0-17 and RS105, hypovirulent and hypervirulent strains, respectively, of X. oryzae pv. oryzicola. When YNB0-17 containing avrXa7, avrXa10, or avrXa27 was inoculated to rice, hypersensitive responses (HR) were elicited in rice cultivars containing the R genes Xa7, Xa10, and Xa27, respectively. By contrast, RS105 expressing avrXa27 elicited an HR in a rice cultivar containing Xa27 but the expression of avrXa7 and avrXa10 in RS105 did not result in HR in rice cultivars containing Xa7 and Xa10, correspondingly. Southern blot analysis demonstrated that YNB0-17 possesses only approximately nine putative tale genes, whereas the hypervirulent RS105 contains at least 20. Although YNB0-17 contains an intact type III secretion system (T3SS), its genome is lacking the T3SS effector genes avrRxo1 and xopO, which are present in RS105. The introduction of avrRxo1 and xopO into YNB0-17 did not suppress avrXa7- or avrXa10-triggered immunity in rice. However, the transference of individual tale genes from RS105 into YNB0-17 led to the identification of tal6 and tal11a that suppressed avrXa7-Xa7-mediated defense. Thus, YNB0-17 may be a useful recipient for discovering such suppressors. This is the first report that co-evolutionally generated tale genes in X. oryzae pv. oryzicola suppress gene-for-gene defense against BLB, which may explain the lack of BLS-resistant cultivars. PMID

  10. V-ATPase: a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy

    PubMed Central

    Meo-Evoli, Nathalie; Almacellas, Eugènia; Massucci, Francesco Alessandro; Gentilella, Antonio; Ambrosio, Santiago; Kozma, Sara C.; Thomas, George; Tauler, Albert

    2015-01-01

    In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy. Gain- and loss-of-function experiments reveal that E2F1 regulates v-ATPase activity and inhibition of v-ATPase activity repressed E2F1-induced lysosomal trafficking and mTORC1 activation. Immunoprecipitation experiments demonstrate that E2F1 induces the recruitment of v-ATPase to lysosomal RagB GTPase, suggesting that E2F1 regulates v-ATPase activity by enhancing the association of V0 and V1 v-ATPase complex. Analysis of v-ATPase subunit expression identified B subunit of V0 complex, ATP6V0B, as a transcriptional target of E2F1. Importantly, ATP6V0B ectopic-expression increased v-ATPase and mTORC1 activity, consistent with ATP6V0B being responsible for mediating the effects of E2F1 on both responses. Our findings on lysosomal trafficking, mTORC1 activation and autophagy suppression suggest that pharmacological intervention at the level of v-ATPase may be an efficacious avenue for the treatment of metastatic processes in tumors overexpressing E2F1. PMID:26356814

  11. V-ATPase: a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy.

    PubMed

    Meo-Evoli, Nathalie; Almacellas, Eugènia; Massucci, Francesco Alessandro; Gentilella, Antonio; Ambrosio, Santiago; Kozma, Sara C; Thomas, George; Tauler, Albert

    2015-09-29

    In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy. Gain- and loss-of-function experiments reveal that E2F1 regulates v-ATPase activity and inhibition of v-ATPase activity repressed E2F1-induced lysosomal trafficking and mTORC1 activation. Immunoprecipitation experiments demonstrate that E2F1 induces the recruitment of v-ATPase to lysosomal RagB GTPase, suggesting that E2F1 regulates v-ATPase activity by enhancing the association of V0 and V1 v-ATPase complex. Analysis of v-ATPase subunit expression identified B subunit of V0 complex, ATP6V0B, as a transcriptional target of E2F1. Importantly, ATP6V0B ectopic-expression increased v-ATPase and mTORC1 activity, consistent with ATP6V0B being responsible for mediating the effects of E2F1 on both responses. Our findings on lysosomal trafficking, mTORC1 activation and autophagy suppression suggest that pharmacological intervention at the level of v-ATPase may be an efficacious avenue for the treatment of metastatic processes in tumors overexpressing E2F1.

  12. Two-axis angular effector

    DOEpatents

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  13. SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana.

    PubMed

    Ustün, Suayib; Müller, Petra; Palmisano, Ralf; Hensel, Michael; Börnke, Frederik

    2012-06-01

    Type III effector proteins (T3Es) of many Gram-negative pathogenic bacteria manipulate highly conserved cellular processes, indicating conservation in virulence mechanisms during the infection of hosts of divergent evolutionary origin. In order to identify conserved effector functions, we used a cross-kingdom approach in which we expressed selected T3Es from the mammalian pathogen Salmonella enterica in leaves of Nicotiana benthamiana and searched for possible virulence or avirulence phenotypes. We show that the T3E SseF of S. enterica triggers hypersensitive response (HR)-like symptoms, a hallmark of effector-triggered immunity in plants, either when transiently expressed in leaves of N. benthamiana by Agrobacterium tumefaciens infiltration or when delivered by Xanthomonas campestris pv vesicatoria (Xcv) through the type III secretion system. The ability of SseF to elicit HR-like symptoms was lost upon silencing of suppressor of G2 allele of skp1 (SGT1), indicating that the S. enterica T3E is probably recognized by an R protein in N. benthamiana. Xcv translocating an AvrRpt2-SseF fusion protein was restricted in multiplication within leaves of N. benthamiana. Bacterial growth was not impaired but symptom development was rather accelerated in a compatible interaction with susceptible pepper (Capsicum annuum) plants. We conclude that the S. enterica T3E SseF is probably recognized by the plant immune system in N. benthamiana, resulting in effector-triggered immunity. PMID:22471508

  14. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  15. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts.

    PubMed

    Ye, Wenwu; Ma, Wenbo

    2016-08-01

    Filamentous eukaryotic pathogens including fungi and oomycetes are major threats of plant health. During the co-evolutionary arms race with the hosts, these pathogens have evolved a large repertoire of secreted virulence proteins, called effectors, to facilitate colonization and infection. Many effectors are believed to directly manipulate targeted processes inside the host cells; and a fundamental function of the effectors is to dampen immunity. Recent evidence suggests that the destructive oomycete pathogens in the genus Phytophthora encode RNA silencing suppressors. These effectors play an important virulence role during infection, likely through their inhibitory effect on host small RNA-mediated defense. PMID:27104934

  16. EFFECTOR CELL BLOCKADE

    PubMed Central

    Schrader, John W.; Nossal, G. J. V.

    1974-01-01

    of PFC. Consistent with this suggestion was the observation that the degree of inhibition of plaque formation could be increased by decreasing the sensitivity of the assay so that only AFC secreting at high rates were detected. A micromanipulation study, where single PFC were subjected to inhibition, and were then tested for the rate at which they could cause hemolysis, showed a 68% inhibition of mean secretory rate. Micromanipulation studies were performed to test the amount of cell surface-associated Ig on control and preinhibited PFC. For this, single PFC were held with [125I]antiglobulin and quantitative radioautography was performed. No significant difference emerged, suggesting that retention of secreted Ig on cell-attached antigen was not the cause of inhibition. The results are discussed in the framework of tolerance models and blocking effects at the T-cell level by antigen-antibody complexes. The name effector cell blockade is suggested in the belief that the phenomenon may be a general one applying to both T and B cells. PMID:4133616

  17. Engineered antibody Fc variants with enhanced effector function

    NASA Astrophysics Data System (ADS)

    Lazar, Greg A.; Dang, Wei; Karki, Sher; Vafa, Omid; Peng, Judy S.; Hyun, Linus; Chan, Cheryl; Chung, Helen S.; Eivazi, Araz; Yoder, Sean C.; Vielmetter, Jost; Carmichael, David F.; Hayes, Robert J.; Dahiyat, Bassil I.

    2006-03-01

    Antibody-dependent cell-mediated cytotoxicity, a key effector function for the clinical efficacy of monoclonal antibodies, is mediated primarily through a set of closely related Fc receptors with both activating and inhibitory activities. By using computational design algorithms and high-throughput screening, we have engineered a series of Fc variants with optimized Fc receptor affinity and specificity. The designed variants display >2 orders of magnitude enhancement of in vitro effector function, enable efficacy against cells expressing low levels of target antigen, and result in increased cytotoxicity in an in vivo preclinical model. Our engineered Fc regions offer a means for improving the next generation of therapeutic antibodies and have the potential to broaden the diversity of antigens that can be targeted for antibody-based tumor therapy. antibody-dependent cell-mediated cytotoxicity | FcR | protein engineering | cancer

  18. Ancient class of translocated oomycete effectors targets the host nucleus.

    PubMed

    Schornack, Sebastian; van Damme, Mireille; Bozkurt, Tolga O; Cano, Liliana M; Smoker, Matthew; Thines, Marco; Gaulin, Elodie; Kamoun, Sophien; Huitema, Edgar

    2010-10-01

    Pathogens use specialized secretion systems and targeting signals to translocate effector proteins inside host cells, a process that is essential for promoting disease and parasitism. However, the amino acid sequences that determine host delivery of eukaryotic pathogen effectors remain mostly unknown. The Crinkler (CRN) proteins of oomycete plant pathogens, such as the Irish potato famine organism Phytophthora infestans, are modular proteins with predicted secretion signals and conserved N-terminal sequence motifs. Here, we provide direct evidence that CRN N termini mediate protein transport into plant cells. CRN host translocation requires a conserved motif that is present in all examined plant pathogenic oomycetes, including the phylogenetically divergent species Aphanomyces euteiches that does not form haustoria, specialized infection structures that have been implicated previously in delivery of effectors. Several distinct CRN C termini localized to plant nuclei and, in the case of CRN8, required nuclear accumulation to induce plant cell death. These results reveal a large family of ubiquitous oomycete effector proteins that target the host nucleus. Oomycetes appear to have acquired the ability to translocate effector proteins inside plant cells relatively early in their evolution and before the emergence of haustoria. Finally, this work further implicates the host nucleus as an important cellular compartment where the fate of plant-microbe interactions is determined.

  19. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    SciTech Connect

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.

    2007-01-01

    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  20. Oomycetes, effectors, and all that jazz.

    PubMed

    Bozkurt, Tolga O; Schornack, Sebastian; Banfield, Mark J; Kamoun, Sophien

    2012-08-01

    Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, notably, the elucidation of the 3D structures of five RXLR effectors, and novel insights into how cytoplasmic effectors subvert host cells. In this review, we discuss these and other recent advances and highlight the most important open questions in oomycete effector biology.

  1. Effector proteins of rust fungi.

    PubMed

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  2. Antibody-dependent cellular cytotoxicity-mediated serotherapy against murine neuroblastoma. I. In vitro and in vivo treatment using normal, gamma-irradiated and immune-stimulated rat effector cells.

    PubMed

    Byfield, J E; Zerubavel, R; Fonkalsrud, E W

    1982-01-01

    The in vitro and in vivo activity has been investigated of antisera prepared against a murine (C-1300) neuroblastoma line (MNB) capable of differentiation. An antibody-dependent cellular cytotoxicity (ADCC) reaction was employed using rat spleen cells (RSC). ADCC activity in vitro (using 51Cr-release) was shown, but a maximum of only 50% of the immunologically releasable 51Cr was achieved. Nevertheless, in vivo (syngeneic mouse-tumor flank assay) significant delays were obtained in tumor onset and lethality. Under ideal circumstances, i.e., coating of tumor cells prior to inoculation and high RSC effector cell ratios, a significant number of animals could be cured of substantial tumor burdens (10(6) cells). While close proximity of the site of injection of effector cells was required (ectopic injections of RSC were ineffective), the anti-MNB ADCC was shown to be quite active in vivo without external precoating of the cells with antisera. RCS obtained from BCG-treated rats were more numerous and slightly more effective. RSC obtained from gamma-radiated animals retained normal activity. With appropriate antisera this approach could be useful under selected clinical circumstances.

  3. Engineered antibody Fc variants with enhanced effector function

    PubMed Central

    Lazar, Greg A.; Dang, Wei; Karki, Sher; Vafa, Omid; Peng, Judy S.; Hyun, Linus; Chan, Cheryl; Chung, Helen S.; Eivazi, Araz; Yoder, Sean C.; Vielmetter, Jost; Carmichael, David F.; Hayes, Robert J.; Dahiyat, Bassil I.

    2006-01-01

    Antibody-dependent cell-mediated cytotoxicity, a key effector function for the clinical efficacy of monoclonal antibodies, is mediated primarily through a set of closely related Fcγ receptors with both activating and inhibitory activities. By using computational design algorithms and high-throughput screening, we have engineered a series of Fc variants with optimized Fcγ receptor affinity and specificity. The designed variants display >2 orders of magnitude enhancement of in vitro effector function, enable efficacy against cells expressing low levels of target antigen, and result in increased cytotoxicity in an in vivo preclinical model. Our engineered Fc regions offer a means for improving the next generation of therapeutic antibodies and have the potential to broaden the diversity of antigens that can be targeted for antibody-based tumor therapy. PMID:16537476

  4. Engineered antibody Fc variants with enhanced effector function.

    PubMed

    Lazar, Greg A; Dang, Wei; Karki, Sher; Vafa, Omid; Peng, Judy S; Hyun, Linus; Chan, Cheryl; Chung, Helen S; Eivazi, Araz; Yoder, Sean C; Vielmetter, Jost; Carmichael, David F; Hayes, Robert J; Dahiyat, Bassil I

    2006-03-14

    Antibody-dependent cell-mediated cytotoxicity, a key effector function for the clinical efficacy of monoclonal antibodies, is mediated primarily through a set of closely related Fcgamma receptors with both activating and inhibitory activities. By using computational design algorithms and high-throughput screening, we have engineered a series of Fc variants with optimized Fcgamma receptor affinity and specificity. The designed variants display >2 orders of magnitude enhancement of in vitro effector function, enable efficacy against cells expressing low levels of target antigen, and result in increased cytotoxicity in an in vivo preclinical model. Our engineered Fc regions offer a means for improving the next generation of therapeutic antibodies and have the potential to broaden the diversity of antigens that can be targeted for antibody-based tumor therapy.

  5. EffectorP: predicting fungal effector proteins from secretomes using machine learning.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Dodds, Peter N; Tini, Francesco; Covarelli, Lorenzo; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2016-04-01

    Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au. PMID:26680733

  6. CD69-mediated pathway of lymphocyte activation: anti-CD69 monoclonal antibodies trigger the cytolytic activity of different lymphoid effector cells with the exception of cytolytic T lymphocytes expressing T cell receptor alpha/beta

    PubMed Central

    1991-01-01

    The effect of anti-CD69 monoclonal antibodies (mAbs) on the induction of the cytolytic activity in different types of lymphoid effector cells has been investigated. Three anti-CD69 mAbs, including the reference mAb MLR3 and two new mAbs (c227 and 31C4), have been used. All cloned CD3-CD16+ natural killer (NK) cells belonging to different subsets (as defined by the surface expression of GL183 and/or EB6 antigens) were efficiently triggered by anti-CD69 mAbs and lysed P815 mastocytoma cells in a redirected killing assay. Triggering of the cytolytic activity could also be induced in CD3-CD16- NK clones, which fail to respond to other stimuli (including anti-CD16, anti-CD2 mAbs, or phytohemagglutinin). A similar triggering effect was detected in T cell receptor (TCR) gamma/delta+ clones belonging to different subsets. On the other hand, anti-CD69 mAbs could not induce triggering of the cytolytic activity in TCR alpha/beta+ cytolytic clones. Since all thymocytes are known to express CD69 antigen after cell activation, we analyzed a series of phenotypically different cytolytic thymocyte populations and clones for their responsiveness to anti-CD69 mAb in a redirected killing assay. Again, anti-CD69 mAb triggered TCR gamma/delta+ but not TCR alpha/beta+ thymocytes. Anti-CD69 mAb efficiently triggered the cytolytic activity of "early" thymocytes lines or clones (CD3-4-8-7+), which lack all other known pathways of cell activation. Thus, it appears that CD69 molecules may initiate a pathway of activation of cytolytic functions common to a number of activated effector lymphocytes with the remarkable exception of TCR alpha/beta+ cytolytic cells. PMID:1720808

  7. Dexterous end effector flight demonstration

    NASA Technical Reports Server (NTRS)

    Carter, Edward L.; Monford, Leo G.

    1994-01-01

    The Dexterous End Effector Flight Experiment is a flight demonstration of newly developed equipment and methods which make for more dexterous manipulation of robotic arms. The following concepts are to be demonstrated: The Force Torque Sensor is a six axis load cell located at the end of the RMS which displays load data to the operator on the orbiter CCTV monitor. TRAC is a target system which provides six axis positional information to the operator. It has the characteristic of having high sensitivity to attitude misalignment while being flat. AUTO-TRAC is a variation of TRAC in which a computer analyzes a target, displays translational and attitude misalignment information, and provides cues to the operator for corrective inputs. The Magnetic End Effector is a fault tolerant end effector which grapples payloads using magnetic attraction. The Carrier Latch Assembly is a fault tolerant payload carrier, which uses mechanical latches and/or magnetic attraction to hold small payloads during launch/landing and to release payloads as desired. The flight experiment goals and objectives are explained. The experiment equipment is described, and the tasks to be performed during the demonstration are discussed.

  8. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes.

    PubMed

    Santhanam, Parthasarathy; Thomma, Bart P H J

    2013-02-01

    The ascomycete fungus Verticillium dahliae causes vascular wilt diseases in hundreds of dicotyledonous plant species. However, thus far, only few V. dahliae effectors have been identified, and regulators of pathogenicity remain unknown. In this study, we investigated the role of the V. dahliae homolog of Sge1, a transcriptional regulator that was previously implicated in pathogenicity and effector gene expression in Fusarium oxysporum. We show that V. dahliae Sge1 (VdSge1) is required for radial growth and production of asexual conidiospores, because VdSge1 deletion strains display reduced radial growth and reduced conidia production. Furthermore, we show that VdSge1 deletion strains have lost pathogenicity on tomato. Remarkably, VdSge1 is not required for induction of Ave1, the recently identified V. dahliae effector that activates resistance mediated by the Ve1 immune receptor in tomato. Further assessment of the role of VdSge1 in the induction of the nine most highly in-planta-induced genes that encode putative effectors revealed differential activity. Although the expression of one putative effector gene in addition to Ave1 was not affected by VdSge1 deletion, VdSge1 appeared to be required for the expression of six putative effector genes, whereas two of the putative effectors genes were found to be negatively regulated by VdSge1. In conclusion, our data suggest that VdSge1 differentially regulates V. dahliae effector gene expression.

  9. Type IV secretion system of Brucella spp. and its effectors

    PubMed Central

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis. PMID:26528442

  10. Plasmodium cellular effector mechanisms and the hepatic microenvironment

    PubMed Central

    Frevert, Ute; Krzych, Urszula

    2015-01-01

    Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell–cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world’s population currently at risk of Plasmodium infection. PMID:26074888

  11. Marker for type VI secretion system effectors

    PubMed Central

    Salomon, Dor; Kinch, Lisa N.; Trudgian, David C.; Guo, Xiaofeng; Klimko, John A.; Grishin, Nick V.; Mirzaei, Hamid; Orth, Kim

    2014-01-01

    Bacteria use diverse mechanisms to kill, manipulate, and compete with other cells. The recently discovered type VI secretion system (T6SS) is widespread in bacterial pathogens and used to deliver virulence effector proteins into target cells. Using comparative proteomics, we identified two previously unidentified T6SS effectors that contained a conserved motif. Bioinformatic analyses revealed that this N-terminal motif, named MIX (marker for type six effectors), is found in numerous polymorphic bacterial proteins that are primarily located in the T6SS genome neighborhood. We demonstrate that several MIX-containing proteins are T6SS effectors and that they are not required for T6SS activity. Thus, we propose that MIX-containing proteins are T6SS effectors. Our findings allow for the identification of numerous uncharacterized T6SS effectors that will undoubtedly lead to the discovery of new biological mechanisms. PMID:24927539

  12. Space Station end effector strategy study

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  13. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    PubMed

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production. PMID:26851027

  14. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    PubMed

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production.

  15. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    PubMed

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  16. Perforin- and Granzyme-Mediated Cytotoxic Effector Functions Are Essential for Protection against Francisella tularensis following Vaccination by the Defined F. tularensis subsp. novicida ΔfopC Vaccine Strain

    PubMed Central

    Sanapala, Shilpa; Yu, Jieh-Juen; Murthy, Ashlesh K.; Li, Weidang; Guentzel, M. Neal; Chambers, James P.; Klose, Karl E.

    2012-01-01

    A licensed vaccine against Francisella tularensis is currently not available. Two Francisella tularensis subsp. novicida (herein referred to by its earlier name, Francisella novicida) attenuated strains, the ΔiglB and ΔfopC strains, have previously been evaluated as potential vaccine candidates against pneumonic tularemia in experimental animals. F. novicida ΔiglB, a Francisella pathogenicity island (FPI) mutant, is deficient in phagosomal escape and intracellular growth, whereas F. novicida ΔfopC, lacking the outer membrane lipoprotein FopC, which is required for evasion of gamma interferon (IFN-γ)-mediated signaling, is able to escape and replicate in the cytosol. To dissect the difference in protective immune mechanisms conferred by these two vaccine strains, we examined the efficacy of the F. novicida ΔiglB and ΔfopC mutants against pulmonary live-vaccine-strain (LVS) challenge and found that both strains provided comparable protection in wild-type, major histocompatibility complex class I (MHC I) knockout, and MHC II knockout mice. However, F. novicida ΔfopC-vaccinated but not F. novicida ΔiglB-vaccinated perforin-deficient mice were more susceptible and exhibited greater bacterial burdens than similarly vaccinated wild-type mice. Moreover, perforin produced by natural killer (NK) cells and release of granzyme contributed to inhibition of LVS replication within macrophages. This NK cell-mediated LVS inhibition was enhanced with anti-F. novicida ΔfopC immune serum, suggesting antibody-dependent cell-mediated cytotoxicity (ADCC) in F. novicida ΔfopC-mediated protection. Overall, this study provides additional immunological insight into the basis for protection conferred by live attenuated F. novicida strains with different phenotypes and supports further investigation of this organism as a vaccine platform for tularemia. PMID:22493083

  17. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.

    PubMed

    Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter

    2011-12-01

    Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.

  18. Allergic Disease and Autoimmune Effectors Pathways

    PubMed Central

    Rottem, Menachem; Gershwin, M. Eric; Shoenfeld, Yehuda

    2002-01-01

    Allergy and autoimmunity result from dysregulation of the immune system. Until recently, it was generally accepted that the mechanisms that govern these disease processes are quite disparate; however, new discoveries suggest possible common pathogenetic effector pathways. This review illustrates the concomitant presentation of these conditions and the potential relationship or common mechanism in some cases, by looking at the key elements that regulate the immune response in both allergic and autoimmunite conditions: mast cells, antibodies, T cells, cytokines, and genetic determinants. The parallel appearance of allergic and autoimmune conditions in the some patients may reveal that such aberrations of the immune system have a common pathophysiologic mechanism. Mast cells, which play a key role in allergic reactions, and the wealth of inflammatory mediators they express, make it likely that they have profound effects on many autoimmune processes. Activation of protein kinases by inflammatory cytokines and environmental stresses may contribute to both allergic and autoimmune diseases. The presence of autoantibodies in some allergic conditions suggests an autoimmune basis for these conditions. Because of the central role T cells play in immune reactivity, the T-cell receptor (TCR) loci have long been considered important candidates for common disease susceptibility within the immune system such as asthma, atopy, and autoimmunity. Immunomodulation is the key to a successful treatment of allergic and autoimmune conditions. PMID:12885156

  19. Homeostasis of peripheral immune effectors.

    PubMed

    Warrender, Christina; Forrest, Stephanie; Segel, Lee

    2004-11-01

    In this paper, we use both mathematical modeling and simulation to explore homeostasis of peripheral immune system effector cells, particularly alveolar macrophages. Our interest is in the distributed control mechanisms that allow such a population to maintain itself. We introduce a multi-purpose simulator designed to study individual cell responses to local molecular signals and their effects on population dynamics. We use the simulator to develop a model of growth factor regulation of macrophage proliferation and survival. We examine the effects of this form of regulation in the context of two competing hypotheses regarding the source of new alveolar macrophages. In one model, local cells divide to replenish the population; in the other, only cells migrating from circulation divide. We find that either scenario is plausible, although the influx-driven system is inherently more stable. The proliferation-driven system requires lower cell death and efflux rates than the influx-driven system.

  20. Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella.

    PubMed

    Pearson, Jaclyn S; Zhang, Ying; Newton, Hayley J; Hartland, Elizabeth L

    2015-02-01

    Many bacterial pathogens have the ability to manipulate cellular processes and interfere with host cell function through the translocation of bacterial 'effector' proteins. Dedicated protein secretion machines from Gram-negative pathogens, including type III, type IV and type VI secretion systems, inject virulence proteins into infected cells, altering normal cell physiology, including cell structure, metabolism, trafficking and signalling. While effectors were once thought to exert an effect simply by their localization and binding to host cell proteins, increasingly effectors are being recognised as enzymes, in some cases mediating highly novel post-translational modifications on host proteins. Here we highlight some of the more unusual activities of translocated effectors from enteropathogenic Escherichia coli and Legionella pneumophila.

  1. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta.

    PubMed

    Zhang, Lei; Davies, Laura J; Elling, Axel A

    2015-01-01

    Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity.

  2. Legionella effectors reflect strength in diversity.

    PubMed

    Comas, Iñaki

    2016-02-01

    The Legionella genus includes opportunistic human pathogenic species that invade human cells using effector proteins that evolved during association with their natural amoeba hosts. A new study compares the genomes of 41 Legionella species to identify nearly 6,000 effectors, providing insight into these species' evolution and pathogenic lifestyles. PMID:26813764

  3. Enhancement of Immune Effector Functions by Modulating IgG’s Intrinsic Affinity for Target Antigen

    PubMed Central

    Mazor, Yariv; Yang, Chunning; Borrok, M. Jack; Ayriss, Joanne; Aherne, Karen; Wu, Herren; Dall’Acqua, William F.

    2016-01-01

    Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics. PMID:27322177

  4. Transfer of the Salmonella type III effector sopE between unrelated phage families.

    PubMed

    Mirold, S; Rabsch, W; Tschäpe, H; Hardt, W D

    2001-09-01

    Salmonella spp. are pathogenic enterobacteria that employ type III secretion systems to translocate effector proteins and modulate responses of host cells. The repertoire of translocated effector proteins is thought to define host specificity and epidemic virulence, and varies even between closely related Salmonella strains. Therefore, horizontal transfer of effector protein genes between Salmonella strains plays a key role in shaping the Salmonella-host interaction. Several effector protein genes are located in temperate phages. The P2-like phage SopE Phi encodes SopE and the lambda-like GIFSY phages encode several effector proteins of the YopM/IpaH-family. Lysogenic conversion with these phages is responsible for much of the diversity of the effector protein repertoires observed among Salmonella spp. However, free exchange of effector proteins by lysogenic conversion can be restricted by superinfection immunity. To identify genetic mechanisms that may further enhance horizontal transfer of effector genes, we have analyzed sopE loci from Salmonella spp. that do not harbor P2-like sequences of SopE Phi. In two novel sopE loci that were identified, the 723 nt sopE gene is located in a conserved 1.2 kb cassette present also in SopE Phi. Most strikingly, in Salmonella enterica subspecies I serovars Gallinarum, Enteritidis, Hadar and Dublin, the sopE-cassette is located in a cryptic lambda-like prophage with similarity to the GIFSY phages. This provides the first evidence for transfer of virulence genes between different phage families. We show that such a mechanism can circumvent restrictions to phage-mediated gene transfer and thereby enhances reassortment of the effector protein repertoires in Salmonella spp.

  5. The Capping Domain in RalF Regulates Effector Functions

    PubMed Central

    Alix, Eric; Chesnel, Laurent; Bowzard, Brad J.; Tucker, Aimee M.; Delprato, Anna; Cherfils, Jacqueline; Wood, David O.; Kahn, Richard A.; Roy, Craig R.

    2012-01-01

    The Legionella pneumophila effector protein RalF functions as a guanine nucleotide exchange factor (GEF) that activates the host small GTPase protein ADP-ribosylation factor (Arf), and recruits this host protein to the vacuoles in which this pathogen resides. GEF activity is conferred by the Sec7 domain located in the N-terminal region of RalF. Structural studies indicate that the C-terminal region of RalF makes contacts with residues in the Sec7 domain important for Arf interactions. Theoretically, the C-terminal region of RalF could prevent nucleotide exchange activity by blocking the ability of Arf to interact with the Sec7 domain. For this reason, the C-terminal region of RalF has been termed a capping domain. Here, the role of the RalF capping domain was investigated by comparing biochemical and effector activities mediated by this domain in both the Legionella RalF protein (LpRalF) and in a RalF ortholog isolated from the unrelated intracellular pathogen Rickettsia prowazekii (RpRalF). These data indicate that both RalF proteins contain a functional Sec7 domain and that the capping domain regulates RalF GEF activity. The capping domain has intrinsic determinants that mediate localization of the RalF protein inside of host cells and confer distinct effector activities. Localization mediated by the capping domain of LpRalF enables the GEF to modulate membrane transport in the secretory pathway, whereas, the capping domain of RpRalF enables this bacterial GEF to modulate actin dynamics occurring near the plasma membrane. Thus, these data reveal that divergence in the function of the C-terminal capping domain alters the in vivo functions of the RalF proteins. PMID:23166491

  6. The Functions of Effector Proteins in Yersinia Virulence.

    PubMed

    Zhang, Linglin; Mei, Meng; Yu, Chan; Shen, Wenwen; Ma, Lixin; He, Jiewang; Yi, Li

    2016-01-01

    Yersinia species are bacterial pathogens that can cause plague and intestinal diseases after invading into human cells through the Three Secretion System (TTSS). The effect of pathogenesis is mediated by Yersinia outer proteins (Yop) and manifested as down-regulation of the cytokine genes expression by inhibiting nuclear factor-κ-gene binding (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In addition, its pathogenesis can also manipulate the disorder of host innate immune system and cell death such as apoptosis, pyroptosis, and autophagy. Among the Yersinia effector proteins, YopB and YopD assist the injection of other virulence effectors into the host cytoplasm, while YopE, YopH, YopJ, YopO, and YopT target on disrupting host cell signaling pathways in the host cytosols. Many efforts have been applied to reveal that intracellular proteins such as Rho-GTPase, and transmembrane receptors such as Toll-like receptors (TLRs) both play critical roles in Yersinia pathogenesis, establishing a connection between the pathogenic process and the signaling response. This review will mainly focus on how the effector proteins of Yersinia modulate the intrinsic signals in host cells and disturb the innate immunity of hosts through TTSS. PMID:27281989

  7. The Functions of Effector Proteins in Yersinia Virulence.

    PubMed

    Zhang, Linglin; Mei, Meng; Yu, Chan; Shen, Wenwen; Ma, Lixin; He, Jiewang; Yi, Li

    2016-01-01

    Yersinia species are bacterial pathogens that can cause plague and intestinal diseases after invading into human cells through the Three Secretion System (TTSS). The effect of pathogenesis is mediated by Yersinia outer proteins (Yop) and manifested as down-regulation of the cytokine genes expression by inhibiting nuclear factor-κ-gene binding (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In addition, its pathogenesis can also manipulate the disorder of host innate immune system and cell death such as apoptosis, pyroptosis, and autophagy. Among the Yersinia effector proteins, YopB and YopD assist the injection of other virulence effectors into the host cytoplasm, while YopE, YopH, YopJ, YopO, and YopT target on disrupting host cell signaling pathways in the host cytosols. Many efforts have been applied to reveal that intracellular proteins such as Rho-GTPase, and transmembrane receptors such as Toll-like receptors (TLRs) both play critical roles in Yersinia pathogenesis, establishing a connection between the pathogenic process and the signaling response. This review will mainly focus on how the effector proteins of Yersinia modulate the intrinsic signals in host cells and disturb the innate immunity of hosts through TTSS.

  8. Mouse and human FcR effector functions.

    PubMed

    Bruhns, Pierre; Jönsson, Friederike

    2015-11-01

    Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs. PMID:26497511

  9. Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia.

    PubMed

    Wroblewski, Tadeusz; Caldwell, Katherine S; Piskurewicz, Urszula; Cavanaugh, Keri A; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A; Blumenthal, Daniel; Vinatzer, Boris A; Greenberg, Jean T; Michelmore, Richard W

    2009-08-01

    Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308

  10. Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of Pseudomonas and Ralstonia1[W][OA

    PubMed Central

    Wroblewski, Tadeusz; Caldwell, Katherine S.; Piskurewicz, Urszula; Cavanaugh, Keri A.; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K.; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A.; Blumenthal, Daniel; Vinatzer, Boris A.; Greenberg, Jean T.; Michelmore, Richard W.

    2009-01-01

    Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308

  11. ROBOTIC TANK INSPECTION END EFFECTOR

    SciTech Connect

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of

  12. CD152 (CTLA-4) regulates effector functions of CD8+ T lymphocytes by repressing Eomesodermin.

    PubMed

    Hegel, Johannes K; Knieke, Karin; Kolar, Paula; Reiner, Steven L; Brunner-Weinzierl, Monika C

    2009-03-01

    CD8(+) T lymphocytes are required for effective host defense against pathogens and also for mediating effector responses against uncontrolled proliferating self-tissues. In this study, we determine that individual CD8(+) T cells are tightly controlled in their effector functions by CD152 (CTLA-4). We demonstrate that signals induced by CD152 reduce the frequency of IFN-gamma and granzyme B expressing CD8(+) T cells independently of the transcription factors T-bet or cKrox by selectively inhibiting accumulation of Eomesodermin mRNA and protein. Ectopic expression of Eomesodermin reversed the CD152-mediated inhibition of effector molecule production. Additionally, enhanced cytotoxicity of individual CD8(+) T cells differentiated in the absence of CD152 signaling was determined in vivo. These novel insights extend our understanding of how immune responses of CD8(+) T cells are selectively modulated.

  13. Oxysterols and Their Cellular Effectors

    PubMed Central

    Olkkonen, Vesa M.; Béaslas, Olivier; Nissilä, Eija

    2012-01-01

    Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine. PMID:24970128

  14. Live cell imaging reveals novel functions of Salmonella enterica SPI2-T3SS effector proteins in remodeling of the host cell endosomal system.

    PubMed

    Rajashekar, Roopa; Liebl, David; Chikkaballi, Deepak; Liss, Viktoria; Hensel, Michael

    2014-01-01

    Intracellular Salmonella enterica induce a massive remodeling of the endosomal system in infected host cells. One dramatic consequence of this interference is the induction of various extensive tubular aggregations of membrane vesicles, and tubules positive for late endosomal/lysosomal markers are referred to as Salmonella-induced filaments or SIF. SIF are highly dynamic in nature with extension and collapse velocities of 0.4-0.5 µm x sec-1. The induction of SIF depends on the function of the Salmonella Pathogenicity Island 2 (SPI2) encoded type III secretion system (T3SS) and a subset of effector proteins. In this study, we applied live cell imaging and electron microscopy to analyze the role of individual effector proteins in SIF morphology and dynamic properties of SIF. SIF in cells infected with sifB, sseJ, sseK1, sseK2, sseI, sseL, sspH1, sspH2, slrP, steC, gogB or pipB mutant strains showed a morphology and dynamics comparable to SIF induced by WT Salmonella. SIF were absent in cells infected with the sifA-deficient strain and live cell analyses allowed tracking of the loss of the SCV membrane of intracellular sifA Salmonella. In contrast to analyses in fixed cells, in living host cells SIF induced by sseF- or sseG-deficient strains were not discontinuous, but rather continuous and thinner in diameter. A very dramatic phenotype was observed for the pipB2-deficient strain that induced very bulky, non-dynamic aggregations of membrane vesicles. Our study underlines the requirement of the study of Salmonella-host interaction in living systems and reveals new phenotypes due to the intracellular activities of Salmonella.

  15. Human yeast-specific CD8 T lymphocytes show a nonclassical effector molecule profile.

    PubMed

    Breinig, Tanja; Scheller, Nicoletta; Glombitza, Birgit; Breinig, Frank; Meyerhans, Andreas

    2012-05-01

    Pathogenic yeast and fungi represent a major group of human pathogens. The consequences of infections are diverse and range from local, clinically uncomplicated mycosis of the skin to systemic, life-threatening sepsis. Despite extensive MHC class I-restricted frequencies of yeast-specific CD8 T lymphocytes in healthy individuals and the essential role of the cell-mediated immunity in controlling infections, the characteristics and defense mechanisms of antifungal effector cells are still unclear. Here, we describe the direct analysis of yeast-specific CD8 T lymphocytes in whole blood from healthy individuals. They show a unique, nonclassical phenotype expressing granulysin and granzyme K in lytic granules instead of the major effector molecules perforin and granzyme B. After stimulation in whole blood, yeast-specific CD8 T cells degranulated and, upon cultivation in the presence of IL-2, their granula were refilled with granulysin rather than with perforin and granzyme B. Moreover, yeast-specific stimulation through dendritic cells but not by yeast cells alone led to degranulation of the effector cells. As granulysin is the only effector molecule in lytic granules known to have antifungal properties, our data suggest yeast-specific CD8 T cells to be a nonclassical effector population whose antimicrobial effector machinery seems to be tailor-made for the efficient elimination of fungi as pathogens.

  16. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity

    PubMed Central

    Diaz-Granados, Amalia; Petrescu, Andrei-José; Goverse, Aska; Smant, Geert

    2016-01-01

    Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein–protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism. PMID:27812363

  17. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication.

    PubMed

    Brawn, Lyndsey C; Hayward, Richard D; Koronakis, Vassilis

    2007-03-15

    Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.

  18. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silcox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2011-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  19. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  20. Spiral lead platen robotic end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C. (Inventor)

    1990-01-01

    A robotic end effector is disclosed which makes use of a rotating platen with spiral leads used to impact lateral motion to gripping fingers. Actuation is provided by the contact of rolling pins with the walls of the leads. The use of the disclosed method of actuation avoids jamming and provides excellent mechanical advantage while remaining light in weight and durable. The entire end effector is compact and easily adapted for attachment to robotic arms currently in use.

  1. Assembly of Customized TAL Effectors Through Advanced ULtiMATE System.

    PubMed

    Yang, Junjiao; Guo, Shengjie; Yuan, Pengfei; Wei, Wensheng

    2016-01-01

    Transcription activator-like effectors (TALEs) have been widely applied in gene targeting. Here we describe an advanced ULtiMATE (USER-based Ligation-Mediated Assembly of TAL Effector) system that utilizes USER fusion technique and archive of 512 tetramer templates to achieve highly efficient construction of TALEs, which takes only half a day to accomplish the assembly of any given TALE construct. This system is also suitable for large-scale assembly of TALENs and any other TALE-based constructions. PMID:26443213

  2. Assembly of Customized TAL Effectors Through Advanced ULtiMATE System.

    PubMed

    Yang, Junjiao; Guo, Shengjie; Yuan, Pengfei; Wei, Wensheng

    2016-01-01

    Transcription activator-like effectors (TALEs) have been widely applied in gene targeting. Here we describe an advanced ULtiMATE (USER-based Ligation-Mediated Assembly of TAL Effector) system that utilizes USER fusion technique and archive of 512 tetramer templates to achieve highly efficient construction of TALEs, which takes only half a day to accomplish the assembly of any given TALE construct. This system is also suitable for large-scale assembly of TALENs and any other TALE-based constructions.

  3. TAL effectors and the executor R genes

    PubMed Central

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized—recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance. PMID:26347759

  4. Bacterial Effector Nanoparticles as Breast Cancer Therapeutics.

    PubMed

    Herrera Estrada, Lina; Padmore, Trudy J; Champion, Julie A

    2016-03-01

    Bacterial pathogens trigger cell death by a variety of mechanisms, including injection of effector proteins. Effector proteins have great potential as anticancer agents because they efficiently subvert a variety of eukaryotic signaling pathways involved in cancer development, drug resistance, and metastasis. In breast cancer, MAPK and NFκB pathways are known to be dysregulated. YopJ, an effector from Yersinia pestis, downregulates MAPK and NFκB pathways to induce cell death in specific cell types. We expressed YopJ in Escherichia coli as a fusion protein with glutathione S-transferase (GST), forming self-assembled protein nanoparticles with diameters of 100 nm. YopJ-GST nanoparticles efficiently delivered protein to cells, replacing the need for the pathogen secretion mechanism for effector delivery to cells. These nanoparticles induced dose and time dependent death in SKBR-3 breast cancer cells. After 72 h, 97% of cells died, significantly more than with the same molar dose of doxorubicin. Treatment with sublethal doses of nanoparticles decreased cell migration in vitro and downregulated the MAPK ERK 1/2 pathway, which has been correlated to metastasis. Exposure to a panel of breast cancer cell lines showed that YopJ-GST nanoparticles are cytotoxic to different subtypes, including doxorubicin resistant cells. However, they were not cytotoxic to NIH/3T3 fibroblasts or HeLa cells. Thus, YopJ-GST nanoparticles demonstrate the potential of effector proteins as breast cancer therapeutics with selective cytotoxicity and the capacity to decrease metastatic predictive behaviors.

  5. Differential contributions of central and effector memory T cells to recall responses

    PubMed Central

    Roberts, Alan D.; Ely, Kenneth H.; Woodland, David L.

    2005-01-01

    Although the absolute number of memory CD8+ T cells established in the spleen following antigen encounter remains stable for many years, the relative capacity of these cells to mediate recall responses is not known. Here we used a dual adoptive transfer approach to demonstrate a progressive increase in the quality of memory T cell pools in terms of their ability to proliferate and accumulate at effector sites in response to secondary pathogen challenge. This temporal increase in efficacy occurred in CD62Llo (effector memory) and CD62Lhi (central memory) subpopulations, but was most prominent in the CD62Lhi subpopulation. These data indicate that the contribution of effector memory and central memory T cells to the recall response changes substantially over time. PMID:15983064

  6. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    PubMed Central

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  7. Rho GTPases and their effector proteins.

    PubMed Central

    Bishop, A L; Hall, A

    2000-01-01

    Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field. PMID:10816416

  8. Cellular senescence and its effector programs

    PubMed Central

    Salama, Rafik; Sadaie, Mahito; Hoare, Matthew; Narita, Masashi

    2014-01-01

    Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized. These studies suggest that senescence is a collective phenotype of these multiple effectors, and their intensity and combination can be different depending on triggers and cell types, conferring a complex and diverse nature to senescence. Series of studies on senescence-associated secretory phenotype (SASP) in particular have revealed various layers of functionality of senescent cells in vivo. Here we discuss some key features of senescence effectors and attempt to functionally link them when it is possible. PMID:24449267

  9. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat.

    PubMed

    Upadhyaya, Narayana M; Mago, Rohit; Staskawicz, Brian J; Ayliffe, Michael A; Ellis, Jeffrey G; Dodds, Peter N

    2014-03-01

    Large numbers of candidate effectors from fungal pathogens are being identified through whole-genome sequencing and in planta expression studies. Although Agrobacterium-mediated transient expression has enabled high-throughput functional analysis of effectors in dicot plants, this assay is not effective in cereal leaves. Here, we show that a nonpathogenic Pseudomonas fluorescens engineered to express the type III secretion system (T3SS) of P. syringae and the wheat pathogen Xanthomonas translucens can deliver fusion proteins containing T3SS signals from P. syringae (AvrRpm1) and X. campestris (AvrBs2) avirulence (Avr) proteins, respectively, into wheat leaf cells. A calmodulin-dependent adenylate cyclase reporter protein was delivered effectively into wheat and barley by both bacteria. Absence of any disease symptoms with P. fluorescens makes it more suitable than X. translucens for detecting a hypersensitive response (HR) induced by an effector protein with avirulence activity. We further modified the delivery system by removal of the myristoylation site from the AvrRpm1 fusion to prevent its localization to the plasma membrane which could inhibit recognition of an Avr protein. Delivery of the flax rust AvrM protein by the modified delivery system into transgenic tobacco leaves expressing the corresponding M resistance protein induced a strong HR, indicating that the system is capable of delivering a functional rust Avr protein. In a preliminary screen of effectors from the stem rust fungus Puccinia graminis f. sp. tritici, we identified one effector that induced a host genotype-specific HR in wheat. Thus, the modified AvrRpm1:effector-Pseudomonas fluorescens system is an effective tool for large-scale screening of pathogen effectors for recognition in wheat. PMID:24156769

  10. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation

    PubMed Central

    Russo, Brian C.; Stamm, Luisa M.; Raaben, Matthijs; Kim, Caleb M.; Kahoud, Emily; Robinson, Lindsey R.; Bose, Sayantan; Queiroz, Ana L.; Herrera, Bobby Brooke; Baxt, Leigh A.; Mor-Vaknin, Nirit; Fu, Yang; Molina, Gabriel; Markovitz, David M.; Whelan, Sean P.; Goldberg, Marcia B.

    2016-01-01

    Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen Shigella flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion. PMID:27572444

  11. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation.

    PubMed

    Russo, Brian C; Stamm, Luisa M; Raaben, Matthijs; Kim, Caleb M; Kahoud, Emily; Robinson, Lindsey R; Bose, Sayantan; Queiroz, Ana L; Herrera, Bobby Brooke; Baxt, Leigh A; Mor-Vaknin, Nirit; Fu, Yang; Molina, Gabriel; Markovitz, David M; Whelan, Sean P; Goldberg, Marcia B

    2016-01-01

    Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen S. flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion. PMID:27572444

  12. CD4⁺ effector and memory cell populations protect against Cryptosporidium parvum infection.

    PubMed

    McNair, Nina N; Mead, Jan R

    2013-01-01

    Cryptosporidium parvum is a protozoan parasite that infects the epithelial cells of the small intestine causing diarrheal illness in humans. While T cells are known to be important in resistance and recovery from infection, little has been characterized as to the phenotypic expression of surface effector and memory markers after infection. We used an acute model of infection (C57BL/6 interleukin-12p40), which develops long-standing resistance to re-infection, to characterize expression of different effector and memory cells. Using flow cytometry, we found that heterogeneous populations were generated after infection, consisting of both CD62L(high) central memory T cells (T(CM)) and CD62L(low) effector memory T cells (T(EM)) that were competent to produce the Th type 1 effector cytokine, IFN-γ. Both CD4⁺ and CD8⁺ T(CM) and T(EM) populations persisted in the absence of infection (up to 60 days post-infection). Additionally, transfer of either CD62L(low)CD4⁺ T(EM) or CD62L(high)CD4⁺ T(CM) into naive recipients resulted in a protective response. Taken together, these studies show that distinct subsets of effector and memory CD4⁺ T cells develop after infection with C. parvum, and mediate protective immunity to re-challenge.

  13. Minimal Mimicry: Mere Effector Matching Induces Preference

    ERIC Educational Resources Information Center

    Sparenberg, Peggy; Topolinski, Sascha; Springer, Anne; Prinz, Wolfgang

    2012-01-01

    Both mimicking and being mimicked induces preference for a target. The present experiments investigate the minimal sufficient conditions for this mimicry-preference link to occur. We argue that mere effector matching between one's own and the other person's movement is sufficient to induce preference, independent of which movement is actually…

  14. Game of Trans-Kingdom Effectors.

    PubMed

    Bleves, Sophie

    2016-10-01

    TplE, a type VI secreted (phospho)lipase, has been identified as the third trans-kingdom effector of Pseudomonas aeruginosa, targeting both prokaryotic and eukaryotic hosts. Indeed, TplE triggers the killing of bacterial competitors and promotes autophagy in epithelial cells once localized to the endoplasmic reticulum. PMID:27554788

  15. Game of Trans-Kingdom Effectors.

    PubMed

    Bleves, Sophie

    2016-10-01

    TplE, a type VI secreted (phospho)lipase, has been identified as the third trans-kingdom effector of Pseudomonas aeruginosa, targeting both prokaryotic and eukaryotic hosts. Indeed, TplE triggers the killing of bacterial competitors and promotes autophagy in epithelial cells once localized to the endoplasmic reticulum.

  16. MARTX toxins as effector delivery platforms.

    PubMed

    Gavin, Hannah E; Satchell, Karla J F

    2015-12-01

    Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.

  17. Kinematic evaluation of end effector design

    NASA Astrophysics Data System (ADS)

    Edwards, Gary W.

    1992-09-01

    The complex, many degree-of-freedom end effectors at the leading edge of technology would be unusable in the sea bottom research environment. Simpler designs are required to provide adequate reliability for subsea use. This work examines selection of end effector designs to achieve optimum grasping ability with minimal mechanical complexity. A new method of calculating grasp stability is developed, incorporating elements of previous works in the field. Programs are developed which evaluate the ability of different end effector configurations to grasp representative objects (a cube, sphere, and infinite cylinder). End effector designs considered had circular palms with fingers located at the periphery, oriented so that each pointed to the center of the palm. The program tested configurations of from 1 to 4 fingers and from 1 to 3 links per finger. Three sets of finger proportions were considered: equal length links, half length links, and anthropomorphic proportions. The 2 finger, 2 link per finger configuration was determined to be the optimum design, and the half length proportions were selected as the best set of proportions.

  18. Type VI secretion effectors: poisons with a purpose

    PubMed Central

    Russell, Alistair B.; Peterson, S. Brook; Mougous, Joseph D.

    2014-01-01

    The type VI secretion system (T6SS) mediates interactions between a diverse range of Gram-negative bacterial species. Recent studies have led to a drastic increase in the number of characterized T6SS effector proteins and produced a more complete and nuanced view of the adaptive significance of the system. While the system is most often implicated in antagonism, in this review we consider the case for its involvement in both antagonistic and non-antagonistic behaviors. Clarifying the roles that T6S plays in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit. PMID:24384601

  19. Amphiregulin Is a Critical Downstream Effector of Estrogen Signaling in ERα-Positive Breast Cancer.

    PubMed

    Peterson, Esther A; Jenkins, Edmund C; Lofgren, Kristopher A; Chandiramani, Natasha; Liu, Hui; Aranda, Evelyn; Barnett, Maryia; Kenny, Paraic A

    2015-11-15

    Estrogen stimulation promotes epithelial cell proliferation in estrogen receptor (ERα)-positive breast cancer. Many ERα target genes have been enumerated, but the identities of the key effectors mediating the estrogen signal remain obscure. During mouse mammary gland development, the estrogen growth factor receptor (EGFR) ligand amphiregulin acts as an important stage-specific effector of estrogen signaling. In this study, we investigated the role of amphiregulin in breast cancer cell proliferation using human tissue samples and tumor xenografts in mice. Amphiregulin was enriched in ERα-positive human breast tumor cells and required for estrogen-dependent growth of MCF7 tumor xenografts. Furthermore, amphiregulin levels were suppressed in patients treated with endocrine therapy. Suppression of EGF receptor signaling appeared necessary for the therapeutic response in this setting. Our findings implicate amphiregulin as a critical mediator of the estrogen response in ERα-positive breast cancer, emphasizing the importance of EGF receptor signaling in breast tumor pathogenesis and therapeutic response. PMID:26527289

  20. Roadmap for future research on plant pathogen effectors

    PubMed Central

    Alfano, James R.

    2009-01-01

    SUMMARY Bacterial and eukaryotic plant pathogens deliver effector proteins into plant cells to promote pathogenesis. Bacterial pathogens containing type III protein secretion systems are known to inject many of these effectors into plant cells. More recently, oomycete pathogens have been shown to possess a large family of effectors containing the RXLR motif, and many effectors are also being discovered in fungal pathogens. Although effector activities are largely unknown, at least a subset suppress plant immunity. A plethora of new plant pathogen genomes that will soon be available thanks to next-generation sequencing technologies will allow the identification of many more effectors. This article summarizes the key approaches used to identify plant pathogen effectors, many of which will continue to be useful for future effector discovery. Thus, it can be viewed as a ‘roadmap’ for effector and effector target identification. Because effectors can be used as tools to elucidate components of innate immunity, advances in our understanding of effectors and their targets should lead to improvements in agriculture. PMID:19849786

  1. Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.

    PubMed

    Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan

    2013-10-22

    Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.

  2. Non-V delta 2 gamma delta T lymphocytes as effectors of cancer immunotherapy

    PubMed Central

    Fisher, Jonathan; Kramer, Anne-Marijn; Gustafsson, Kenth; Anderson, John

    2014-01-01

    Gamma delta T cells (γδT) are potent mediators of antitumor cytotoxicity and have shown promising efficacy in early phase clinical trials. Most is known about the tumoricidal properties of cells bearing the Vδ2 T cell receptor chain, but recent studies have demonstrated that cells with the Vδ1 chain and those with neither Vδ1 nor Vδ2 chains have properties which may make them more attractive anticancer effectors in adoptive immunotherapy. PMID:25949890

  3. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  4. Impact of end effector technology on telemanipulation performance

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Szakaly, Z.; Ohm, T.

    1990-01-01

    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.

  5. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    PubMed

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.

  6. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    PubMed

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts. PMID:25387135

  7. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator.

    PubMed

    Ezezika, Obidimma C; Haddad, Sandra; Clark, Todd J; Neidle, Ellen L; Momany, Cory

    2007-03-30

    BenM, a bacterial transcriptional regulator, responds synergistically to two effectors, benzoate and cis,cis-muconate. CatM, a paralog with overlapping function, responds only to muconate. Structures of their effector-binding domains revealed two effector-binding sites in BenM. BenM and CatM are the first LysR-type regulators to be structurally characterized while bound with physiologically relevant exogenous inducers. The effector complexes were obtained by soaking crystals with stabilizing solutions containing high effector concentrations and minimal amounts of competing ions. This strategy, including data collection with fragments of fractured crystals, may be generally applicable to related proteins. In BenM and CatM, the binding of muconate to an interdomain pocket was facilitated by helix dipoles that provide charge stabilization. In BenM, benzoate also bound in an adjacent hydrophobic region where it alters the effect of muconate bound in the primary site. A charge relay system within the BenM protein appears to underlie synergistic transcriptional activation. According to this model, Glu162 is a pivotal residue that forms salt-bridges with different arginine residues depending on the occupancy of the secondary effector-binding site. Glu162 interacts with Arg160 in the absence of benzoate and with Arg146 when benzoate is bound. This latter interaction enhances the negative charge of muconate bound to the adjacent primary effector-binding site. The redistribution of the electrostatic potential draws two domains of the protein more closely towards muconate, with the movement mediated by the dipole moments of four alpha helices. Therefore, with both effectors, BenM achieves a unique conformation capable of high level transcriptional activation.

  8. Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector.

    PubMed

    King, Nathan P; Newton, Patrice; Schuelein, Ralf; Brown, Darren L; Petru, Marketa; Zarsky, Vojtech; Dolezal, Pavel; Luo, Lin; Bugarcic, Andrea; Stanley, Amanda C; Murray, Rachael Z; Collins, Brett M; Teasdale, Rohan D; Hartland, Elizabeth L; Stow, Jennifer L

    2015-06-01

    Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.

  9. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens.

    PubMed

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid; Hensel, Michael

    2012-03-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines.

  10. 24-hour control of body temperature in rats. I. Integration of behavioral and autonomic effectors.

    PubMed

    Gordon, C J

    1994-07-01

    Some studies suggest that the nocturnal elevation in core temperature (Tc) of the rat is mediated by an elevation in the set point. The role of set point can be assessed if behavioral effectors are measured simultaneously with other thermoregulatory effectors and Tc over a 24-h period. Selected ambient temperature (STa) and motor activity (MA) were measured in rats housed in a temperature gradient system with a 12:12-h photoperiod (lights on 0600 h). Tc and heart rate (HR) were monitored by telemetry. During the light phase, STa, Tc, HR, and MA were relatively stable with values 29.0 degrees C, 37.1 degrees C, 310 beats/min, and 1-2 m/h, respectively. During the light-to-dark transition there were abrupt elevations in Tc, HR, and MA but no change in STa. STa decreased during the dark phase and reached a nadir of 23 degrees C at 0500 h. All variables recovered to basal levels within 3-4 h after the onset of the light phase. Overall, autonomic effectors control the elevation in Tc during the onset of the dark phase while behavioral effectors have little if any role. Behavioral thermoregulation is important in two ways: 1) the selection of cooler Ta values at night to prevent an excess elevation in Tc and 2) a preference for cooler Ta values before the light phase to facilitate the recovery of Tc. PMID:8048648

  11. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease

    PubMed Central

    Boevink, Petra C.; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R.; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M.; Tian, Zhendong; Birch, Paul R. J.

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c–1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  12. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease.

    PubMed

    Boevink, Petra C; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M; Tian, Zhendong; Birch, Paul R J

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  13. Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses

    PubMed Central

    Moll, Guido; Jitschin, Regina; von Bahr, Lena; Rasmusson-Duprez, Ida; Sundberg, Berit; Lönnies, Lena; Elgue, Graciela; Nilsson-Ekdahl, Kristina; Mougiakakos, Dimitrios; Lambris, John D.; Ringdén, Olle; Le Blanc, Katarina; Nilsson, Bo

    2011-01-01

    Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells. PMID:21747949

  14. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  15. Design and fabrication of an end effector

    NASA Technical Reports Server (NTRS)

    Crossley, F. R. E.; Umholtz, F. G.

    1975-01-01

    The construction is described of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. A model was tested and found capable of both these operations.

  16. The Salmonella effector protein SifA plays a dual role in virulence.

    PubMed

    Zhao, Weidong; Moest, Thomas; Zhao, Yaya; Guilhon, Aude-Agnès; Buffat, Christophe; Gorvel, Jean-Pierre; Méresse, Stéphane

    2015-08-13

    The virulence of Salmonella relies on the expression of effector proteins that the bacterium injects inside infected cells. Salmonella enters eukaryotic cells and resides in a vacuolar compartment on which a number of effector proteins such as SifA are found. SifA plays an essential role in Salmonella virulence. It is made of two distinct domains. The N-terminal domain of SifA interacts with the host protein SKIP. This interaction regulates vacuolar membrane dynamics. The C-terminal has a fold similar to other bacterial effector domains having a guanine nucleotide exchange factor activity. Although SifA interacts with RhoA, it does not stimulate the dissociation of GDP and the activation of this GTPase. Hence it remains unknown whether the C-terminal domain contributes to the function of SifA in virulence. We used a model of SKIP knockout mice to show that this protein mediates the host susceptibility to salmonellosis and to establish that SifA also contributes to Salmonella virulence independently of its interaction with SKIP. We establish that the C-terminal domain of SifA mediates this SKIP-independent contribution. Moreover, we show that the two domains of SifA are functionally linked and participate to the same signalling cascade that supports Salmonella virulence.

  17. The Salmonella effector protein SifA plays a dual role in virulence

    PubMed Central

    Zhao, Weidong; Moest, Thomas; Zhao, Yaya; Guilhon, Aude-Agnès; Buffat, Christophe; Gorvel, Jean-Pierre; Méresse, Stéphane

    2015-01-01

    The virulence of Salmonella relies on the expression of effector proteins that the bacterium injects inside infected cells. Salmonella enters eukaryotic cells and resides in a vacuolar compartment on which a number of effector proteins such as SifA are found. SifA plays an essential role in Salmonella virulence. It is made of two distinct domains. The N-terminal domain of SifA interacts with the host protein SKIP. This interaction regulates vacuolar membrane dynamics. The C-terminal has a fold similar to other bacterial effector domains having a guanine nucleotide exchange factor activity. Although SifA interacts with RhoA, it does not stimulate the dissociation of GDP and the activation of this GTPase. Hence it remains unknown whether the C-terminal domain contributes to the function of SifA in virulence. We used a model of SKIP knockout mice to show that this protein mediates the host susceptibility to salmonellosis and to establish that SifA also contributes to Salmonella virulence independently of its interaction with SKIP. We establish that the C-terminal domain of SifA mediates this SKIP-independent contribution. Moreover, we show that the two domains of SifA are functionally linked and participate to the same signalling cascade that supports Salmonella virulence. PMID:26268777

  18. C. elegans S6K Mutants Require a Creatine Kinase-Like Effector for Lifespan Extension

    PubMed Central

    McQuary, Philip R.; Liao, Chen-Yu; Chang, Jessica T.; Kumsta, Caroline; She, Xingyu; Davis, Andrew; Chu, Chu-Chiao; Gelino, Sara; Gomez-Amaro, Rafael L.; Petrascheck, Michael; Brill, Laurence M.; Ladiges, Warren C.; Kennedy, Brian K.; Hansen, Malene

    2016-01-01

    Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is a selective effector of rsks-1/S6K-mediated longevity, and overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels. PMID:26923601

  19. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen

    PubMed Central

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M. L.; Bauer, Saskia; Ellwood, Simon R.; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-01-01

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1. Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation. PMID:27702901

  20. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function

    PubMed Central

    Chung, Amy W.; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K.; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E.; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2015-01-01

    Objective To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Design Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein–Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4+ binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Methods Each mAb was assayed for antibody-binding affinity to gp140SF162, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcgRIIa, FcgRIIb and FcgRIIIa receptors. Antibody glycan profiles were determined by HPLC. Results Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcgRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcgRIIIa and ADCC activity, independent of the specificity of the mAb. Conclusions Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection. PMID:25160934

  1. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance.

    PubMed

    Álvarez-Sánchez, Nuria; Cruz-Chamorro, Ivan; López-González, Antonio; Utrilla, José C; Fernández-Santos, José M; Martínez-López, Alicia; Lardone, Patricia J; Guerrero, Juan M; Carrillo-Vico, Antonio

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS), is triggered by myelin-specific Th1 and Th17 cells. The immunomodulatory activities of melatonin have been shown to be beneficial under several conditions in which the immune system is exacerbated. Here, we sought to elucidate the basis of the melatonin protective effect on EAE by characterizing the T effector/regulatory responses, particularly those of the memory cell subsets. Melatonin was tested for its effect on Th1, Th17 and T regulatory (Treg) cells in the lymph nodes and CNS of immunodominant peptide of myelin oligodendrocyte glycoprotein (pMOG)-immunized and EAE mice, respectively. The capacity of melatonin to ameliorate EAE as well as modifying both T cell response and effector/regulatory balance was surveyed. T cell memory subsets and CD44, a key activation marker involved in the EAE pathogenesis, were also examined. Melatonin protected from EAE by decreasing peripheral and central Th1/Th17 responses and enhancing both the Treg frequency and IL-10 synthesis in the CNS. Melatonin reduced the T effector memory population and its pro-inflammatory response and regulated CD44 expression, which was decreased in T effector cells and increased in Tregs. The alterations in the T cell subpopulations were associated with a reduced mononuclear infiltration (CD4 and CD11b cells) of the melatonin-treated mice CNS. For the first time, we report that melatonin protects against EAE by controlling peripheral and central T effector/regulatory responses, effects that might be partially mediated by CD44. This immunomodulatory effect on EAE suggests that melatonin may represent an effective treatment option for MS.

  2. Formins as effector proteins of Rho GTPases

    PubMed Central

    Kühn, Sonja; Geyer, Matthias

    2014-01-01

    Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells. PMID:24914801

  3. Multiple thermoregulatory effectors with independent central controls.

    PubMed

    McAllen, Robin M; Tanaka, Mutsumi; Ootsuka, Yoichiro; McKinley, Michael J

    2010-05-01

    This review first considers how mammalian body temperature regulation evolved, and how the brain's responses to thermoregulatory challenges are likely to be organised differently from the way an engineer would design them. This is because thermoregulatory effector mechanisms would have evolved one at a time, with each being superimposed on pre-existing mechanisms. There may be no functional need for the final ensemble of control loops to be coordinated by neural cross-connections: appropriate thermal thresholds would solve the problem sufficiently. Investigations first into thermoregulatory behaviours and later into unconscious thermoregulatory mechanisms (autonomic and shivering) have led investigators to the realisation that multiple control loops exist in the brain, with each effector system apparently regulated by its own central temperature sensors. This theme is developed with reference to data on four temperature-regulated neural outflows that have been studied on anaesthetized rats under standard conditions in the authors' laboratory. Direct comparisons were made between the behaviour of sympathetic nerves supplying the tail vasculature, vessels in the proximal hairy skin, interscapular brown adipose tissue (BAT) and fusimotor fibres to hind limb muscle. All four outflows were activated by cooling the skin, and all were silenced by neuronal inhibition in the medullary raphé. Their thermal thresholds were quite different, however, as were their relative responsiveness to core temperature. This was ranked as: tail > back skin > BAT > fusimotor. These and other data indicate that the four thermoeffector outflows are driven by separate neural pathways, each regulated by independent brain temperature sensors.

  4. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions.

    PubMed

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin

    2015-01-01

    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain. PMID:26484613

  5. Potential effector and immunoregulatory functions of mast cells in mucosal immunity

    PubMed Central

    Reber, Laurent L; Sibilano, Riccardo; Mukai, Kaori; Galli, Stephen J

    2016-01-01

    Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs – such as secreting pre-formed and/or newly synthesized biologically active products – in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues. PMID:25669149

  6. Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection.

    PubMed

    Goncalves, Ricardo; Zhang, Xia; Cohen, Heather; Debrabant, Alain; Mosser, David M

    2011-06-01

    Leishmania species trigger a brisk inflammatory response and efficiently induce cell-mediated immunity. We examined the mechanisms whereby leukocytes were recruited into lesions after Leishmania major infection of mice. We found that a subpopulation of effector monocytes expressing the granulocyte marker GR1 (Ly6C) is rapidly recruited into lesions, and these monocytes efficiently kill L. major parasites. The recruitment of this subpopulation of monocytes depends on the chemokine receptor CCR2 and the activation of platelets. Activated platelets secrete platelet-derived growth factor, which induces the rapid release of CCL2 from leukocytes and mesenchymal cells. This work points to a new role for platelets in host defense involving the selective recruitment of a subpopulation of effector monocytes from the blood to efficiently kill this intracellular parasite.

  7. Exploitation of Eukaryotic Subcellular Targeting Mechanisms by Bacterial Effectors

    PubMed Central

    Hicks, Stuart W.; Galán, Jorge E.

    2013-01-01

    Several bacteria have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells with the capacity to modulate cellular pathways to promote bacterial survival and replication. The spatial and temporal context in which effectors exert their biochemical activities is critical for their function. Understanding the mechanisms that lead to their precise subcellular localization following delivery into host cells is essential for understanding effector function in the context of infection. Recent studies have shown that bacterial effectors exploit host cellular machinery to accurately target their biochemical activities within the host cell. PMID:23588250

  8. Imaging fluorescently tagged Phytophthora effector proteins inside infected plant tissue.

    PubMed

    Boevink, Petra C; Birch, Paul R J; Whisson, Stephen C

    2011-01-01

    Assays to determine the role of pathogen effectors within an infected plant cell are yielding valuable information about which host processes are targeted to allow successful pathogen colonization. However, this does not necessarily inform on the cellular location of these interactions, or if these effector-virulence target interactions occur only in the presence of the pathogen. Here, we describe techniques to allow the subcellular localization of pathogen effectors inside infected plant cells or tissues, based largely on infiltration of plant tissue by Agrobacterium tumefaciens and its delivery of DNA encoding fluorescent protein-tagged effectors, and subsequent confocal microscopy. PMID:21359810

  9. Fibre optic sensor on robot end effector for flexible assembly

    SciTech Connect

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-12-31

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed.

  10. Mcl-1 antagonizes Bax/Bak to promote effector CD4+ and CD8+ T-cell responses

    PubMed Central

    Tripathi, P; Koss, B; Opferman, J T; Hildeman, D A

    2013-01-01

    Members of the Bcl-2 family have critical roles in regulating tissue homeostasis by modulating apoptosis. Anti-apoptotic molecules physically interact and restrain pro-apoptotic family members preventing the induction of cell death. However, the specificity of the functional interactions between pro- and anti-apoptotic Bcl-2 family members remains unclear. The pro-apoptotic Bcl-2 family member Bcl-2 interacting mediator of death (Bim) has a critical role in promoting the death of activated, effector T cells following viral infections. Although Bcl-2 is an important Bim antagonist in effector T cells, and Bcl-xL is not required for effector T-cell survival, the roles of other anti-apoptotic Bcl-2 family members remain unclear. Here, we investigated the role of myeloid cell leukemia sequence 1 (Mcl-1) in regulating effector T-cell responses in vivo. We found, at the peak of the response to lymphocytic choriomeningitis virus (LCMV) infection, that Mcl-1 expression was increased in activated CD4+ and CD8+ T cells. Retroviral overexpression of Mcl-1-protected activated T cells from death, whereas deletion of Mcl-1 during the course of infection led to a massive loss of LCMV-specific CD4+ and CD8+ T cells. Interestingly, the co-deletion of Bim failed to prevent the loss of Mcl-1-deficient T cells. Furthermore, lck-driven overexpression of a Bcl-xL transgene only partially rescued Mcl-1-deficient effector T cells suggesting a lack of redundancy between the family members. In contrast, additional loss of Bax and Bak completely rescued Mcl-1-deficient effector T-cell number and function, without enhancing T-cell proliferation. These data suggest that Mcl-1 is critical for promoting effector T-cell responses, but does so by combating pro-apoptotic molecules beyond Bim. PMID:23558951

  11. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava.

    PubMed

    Cohn, Megan; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2016-08-01

    Xanthomonas axonopodis pv. manihotis (Xam) employs transcription activator-like (TAL) effectors to promote bacterial growth and symptom formation during infection of cassava. TAL effectors are secreted via the bacterial type III secretion system into plant cells, where they are directed to the nucleus, bind DNA in plant promoters and activate the expression of downstream genes. The DNA-binding activity of TAL effectors is carried out by a central domain which contains a series of repeat variable diresidues (RVDs) that dictate the sequence of bound nucleotides. TAL14Xam668 promotes virulence in Xam strain Xam668 and has been shown to activate multiple cassava genes. In this study, we used RNA sequencing to identify the full target repertoire of TAL14Xam668 in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14CIO151 from Xam strain CIO151. Although TAL14CIO151 and TAL14Xam668 differ by only a single RVD, they display differential activation of gene targets. TAL14CIO151 complements the TAL14Xam668 mutant defect, implying that shared target genes are important for TAL14Xam668 -mediated disease susceptibility. Complementation with closely related TAL effectors is a novel approach to the narrowing down of biologically relevant susceptibility genes of TAL effectors with multiple targets. This study provides an example of how TAL effector target activation by two strains within a single species of Xanthomonas can be dramatically affected by a small change in RVD-nucleotide affinity at a single site, and reflects the parameters of RVD-nucleotide interaction determined using designer TAL effectors in transient systems. PMID:26575863

  12. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava.

    PubMed

    Cohn, Megan; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2016-08-01

    Xanthomonas axonopodis pv. manihotis (Xam) employs transcription activator-like (TAL) effectors to promote bacterial growth and symptom formation during infection of cassava. TAL effectors are secreted via the bacterial type III secretion system into plant cells, where they are directed to the nucleus, bind DNA in plant promoters and activate the expression of downstream genes. The DNA-binding activity of TAL effectors is carried out by a central domain which contains a series of repeat variable diresidues (RVDs) that dictate the sequence of bound nucleotides. TAL14Xam668 promotes virulence in Xam strain Xam668 and has been shown to activate multiple cassava genes. In this study, we used RNA sequencing to identify the full target repertoire of TAL14Xam668 in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14CIO151 from Xam strain CIO151. Although TAL14CIO151 and TAL14Xam668 differ by only a single RVD, they display differential activation of gene targets. TAL14CIO151 complements the TAL14Xam668 mutant defect, implying that shared target genes are important for TAL14Xam668 -mediated disease susceptibility. Complementation with closely related TAL effectors is a novel approach to the narrowing down of biologically relevant susceptibility genes of TAL effectors with multiple targets. This study provides an example of how TAL effector target activation by two strains within a single species of Xanthomonas can be dramatically affected by a small change in RVD-nucleotide affinity at a single site, and reflects the parameters of RVD-nucleotide interaction determined using designer TAL effectors in transient systems.

  13. Natural resistance of lethally irradiated F1 hybrid mice to parental marrow grafts is a function of H-2/Hh-restricted effectors

    SciTech Connect

    Daley, J.P.; Nakamura, I.

    1984-04-01

    The natural resistance of F1 hybrid mice against parental bone marrow grafts is thought to be mediated by natural killer (NK)-like effector cells. However, unlike the NK cell activity against a wide range of tumors and normal cells, hybrid resistance is characterized by the immunogenetic specificity controlled by a set of unique noncodominant genes denoted as Hh. Two alternative hypotheses can account for the specificity. Thus, the specificity may reflect either the Hh restriction of effectors or the Hh gene control of mechanisms regulating non-Hh-restricted effector activity. In this study, therefore, we tested the recognition specificity of putative effectors mediating hybrid resistance in lethally irradiated H-2b/d and H-2b/k F1 hybrid mice to the engraftment of parental H-2b bone marrow. As a direct means of defining the effector specificity, rejection of parental bone marrow grafts was subjected to competitive inhibition in situ by irradiated tumor cells. Of the 16 independent lines of lymphoma and other hemopoietic tumor cells tested, the ability to inhibit hybrid resistance was the exclusive property of all tumors derived from mice homozygous for the H-2Db region, regardless of whether the tumor cells were susceptible or resistant to NK cell-mediated cytotoxicity in vitro. Four cell lines heterozygous for the H-2Db were noninhibitory, including one that is susceptible to natural killing. Pretreatment of the F1 hosts with an interferon inducer augmented the resistance with no alteration in the recognition specificity of effector cells. Therefore, natural resistance to parental H-2b bone marrow grafts was mediated by effectors restricted by the H-2Db/Hh-1b gene(s), and not by the nonrestricted NK cells detectable in conventional in vitro assays.

  14. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  15. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  16. The mast cell: a multifunctional effector cell.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico; Mallardi, Franco; Beltrami, Carlo Alberto

    2003-01-01

    Mast cells (MC) are recognized key cells of type I hypersensitivity reactions. Several lines of evidence, however, indicate that MC not only express critical effector functions in classic IgE-associated allergic disorders, but also play important roles in host defence against parasites, bacteria and perhaps even viruses. Indeed, it is now clear that MC can contribute to host defence in the context of either acquired or innate immune responses through the release of a myriad of pro-inflammatory and immunoregulatory molecules and the expression of a wide spectrum of surface receptors for cytokines and chemokines. Moreover, there is growing evidence that MC exert distinct nonimmunological functions, playing a relevant role in tissue homeostasis, remodeling and fibrosis as well as in the processes of tissue angiogenesis. In this review, we provide a small insight into the biology of mast cells and their potential implications in human pathology.

  17. Rack Insertion End Effector (RIEE) automation

    NASA Technical Reports Server (NTRS)

    Malladi, Narasimha

    1993-01-01

    NASA is developing a mechanism to manipulate and insert Racks into the Space Station Logistic modules. The mechanism consists of the following: a base with three motorized degrees of freedom, a 3 section motorized boom that goes from 15 to 44 feet in length, and a Rack Insertion End Effector (RIEE) with 5 hand wheels for precise alignment. The robotics section was tasked with the automation of the RIEE unit. In this report, for the automation of the RIEE unit, application of the Perceptics Vision System was conceptually developed to determine the position and orientation of the RIEE relative to the logistic module, and a MathCad program is written to display the needed displacements for precise alignment and final insertion of the Rack. The uniqueness of this report is that the whole report is in fact a MathCad program including text, derivations, and executable equations with example inputs and outputs.

  18. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects.

  19. Acquisition of effector-specific and effector-independent components of sequencing skill.

    PubMed

    Berner, Michael P; Hoffman, Joachim

    2009-01-01

    In a serial reaction time task, participants practiced a repeating sequence with 1 hand. In interleaved blocks, they responded to random sequences with the other hand. Experiment 1 was composed of 5 sessions, each consisting of 30 blocks. Intermanual transfer, reflecting a hand-independent component of sequence knowledge, increased across session. A smaller but significant, nontransferable, and hand-specific component was evident in each session and did not increase with practice. Experiment 2 comprised only 1 session. Uninterrupted practice (no interleaved random blocks) improved hand-independent sequence learning in comparison with interrupted practice (as implemented in Experiment 1), whereas hand-specific sequence learning was unaffected by this between-subjects manipulation. These findings suggest separate mechanisms for effector-independent sequence learning and effector-specific acquisition of optimized response coarticulation. PMID:19073469

  20. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges.

    PubMed

    Sonah, Humira; Deshmukh, Rupesh K; Bélanger, Richard R

    2016-01-01

    Effector proteins are mostly secretory proteins that stimulate plant infection by manipulating the host response. Identifying fungal effector proteins and understanding their function is of great importance in efforts to curb losses to plant diseases. Recent advances in high-throughput sequencing technologies have facilitated the availability of several fungal genomes and 1000s of transcriptomes. As a result, the growing amount of genomic information has provided great opportunities to identify putative effector proteins in different fungal species. There is little consensus over the annotation and functionality of effector proteins, and mostly small secretory proteins are considered as effector proteins, a concept that tends to overestimate the number of proteins involved in a plant-pathogen interaction. With the characterization of Avr genes, criteria for computational prediction of effector proteins are becoming more efficient. There are 100s of tools available for the identification of conserved motifs, signature sequences and structural features in the proteins. Many pipelines and online servers, which combine several tools, are made available to perform genome-wide identification of effector proteins. In this review, available tools and pipelines, their strength and limitations for effective identification of fungal effector proteins are discussed. We also present an exhaustive list of classically secreted proteins along with their key conserved motifs found in 12 common plant pathogens (11 fungi and one oomycete) through an analytical pipeline. PMID:26904083

  1. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges

    PubMed Central

    Sonah, Humira; Deshmukh, Rupesh K.; Bélanger, Richard R.

    2016-01-01

    Effector proteins are mostly secretory proteins that stimulate plant infection by manipulating the host response. Identifying fungal effector proteins and understanding their function is of great importance in efforts to curb losses to plant diseases. Recent advances in high-throughput sequencing technologies have facilitated the availability of several fungal genomes and 1000s of transcriptomes. As a result, the growing amount of genomic information has provided great opportunities to identify putative effector proteins in different fungal species. There is little consensus over the annotation and functionality of effector proteins, and mostly small secretory proteins are considered as effector proteins, a concept that tends to overestimate the number of proteins involved in a plant–pathogen interaction. With the characterization of Avr genes, criteria for computational prediction of effector proteins are becoming more efficient. There are 100s of tools available for the identification of conserved motifs, signature sequences and structural features in the proteins. Many pipelines and online servers, which combine several tools, are made available to perform genome-wide identification of effector proteins. In this review, available tools and pipelines, their strength and limitations for effective identification of fungal effector proteins are discussed. We also present an exhaustive list of classically secreted proteins along with their key conserved motifs found in 12 common plant pathogens (11 fungi and one oomycete) through an analytical pipeline. PMID:26904083

  2. The Pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity.

    PubMed

    Macho, Alberto P; Guevara, Carlos M; Tornero, Pablo; Ruiz-Albert, Javier; Beuzón, Carmen R

    2010-09-01

    *The Pseudomonas syringae pv syringae type III effector HopZ1a is a member of the HopZ effector family of cysteine-proteases that triggers immunity in Arabidopsis. This immunity is dependent on HopZ1a cysteine-protease activity, and independent of known resistance genes. We have previously shown that HopZ1a-triggered immunity is partially additive to that triggered by AvrRpt2. These partially additive effects could be caused by at least two mechanisms: their signalling pathways share a common element(s), or one effector interferes with the response triggered by the other. *Here, we investigate the molecular basis for the partially additive effect displayed by AvrRpt2- and HopZ1a-triggered immunities, by analysing competitive indices, hypersensitive response and symptom induction, PR-1 accumulation, expression of PR genes, and systemic acquired resistance (SAR) induction. *Partially additive effects between these defence responses require HopZ1a cysteine-protease activity, and also take place between HopZ1a and AvrRps4 or AvrRpm1-triggered responses. We establish that HopZ1a-triggered immunity is independent of salicylic acid (SA), EDS1, jasmonic acid (JA) and ethylene (ET)-dependent pathways, and show that HopZ1a suppresses the induction of PR-1 and PR-5 associated with P. syringae pv tomato (Pto)-triggered effector-triggered immunity (ETI)-like defences, AvrRpt2-triggered immunity, and Pto or Pto (avrRpt2) activation of SAR, and that suppression requires HopZ1a cysteine-protease activity. *Our results indicate that HopZ1a triggers an unusual resistance independent of known pathways and suppresses SA and EDS1-dependent resistance.

  3. Subcellular localization of legionella Dot/Icm effectors.

    PubMed

    Vogrin, Adam J; Mousnier, Aurelie; Frankel, Gad; Hartland, Elizabeth L

    2013-01-01

    The translocation of effector proteins by the Dot/Icm type IV secretion system is central to the ability of Legionella pneumophila to persist and replicate within eukaryotic cells. The subcellular localization of translocated Dot/Icm proteins in host cells provides insight into their function. Through co-staining with host cell markers, effector proteins may be localized to specific subcellular compartments and membranes, which frequently reflects their host cell target and mechanism of action. In this chapter, we describe protocols to (1) localize effector proteins within cells by ectopic expression using green fluorescent protein fusions and (2) localize effector proteins within infected cells using epitope-tagged effector proteins and immuno-fluorescence microscopy.

  4. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  5. Phospholipase C-delta1 and oxytocin receptor signalling: evidence of its role as an effector.

    PubMed Central

    Park, E S; Won, J H; Han, K J; Suh, P G; Ryu, S H; Lee, H S; Yun, H Y; Kwon, N S; Baek, K J

    1998-01-01

    Although the oxytocin receptor modulates intracellular Ca2+ ion levels in myometrium, the identities of signal molecules have not been clearly clarified. Our previous studies on oxytocin receptor signalling demonstrated that 80 kDa Ghalpha is a signal mediator [Baek, Kwon, Lee, Kim, Muralidhar and Im (1996) Biochem. J. 315, 739-744]. To elucidate the effector in the oxytocin receptor signalling pathway, we evaluated the oxytocin-mediated activation of phospholipase C (PLC) by using solubilized membranes from human myometrium and a three-component preparation containing the oxytocin receptor-Ghalpha-PLC-delta1 complex. PLC-delta1 activity in the three-component preparation, as well as PLC activity in solubilized membranes, was increased by oxytocin in the presence of Ca2+ and activated Ghalpha (GTP-bound Ghalpha). Furthermore the stimulated PLC-delta1 activity resulting from activation of Ghalpha via the oxytocin receptor was significantly attenuated by the selective oxytocin antagonist desGly-NH2d(CH2)5[Tyr(Me)2,Thr4]ornithine vasotocin or GDP. Consistent with these observations, co-immunoprecipitation and co-immunoadsorption of PLC-delta1 in the three-component preparation by anti-Gh7alpha antibody resulted in the PLC-delta1 being tightly coupled to activated Ghalpha on stimulation of the oxytocin receptor. These results indicate that PLC-delta1 is the effector for Ghalpha-mediated oxytocin receptor signalling. PMID:9512491

  6. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    PubMed

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts.

  7. Lysine11-Linked Polyubiquitination of the AnkB F-Box Effector of Legionella pneumophila

    PubMed Central

    Bruckert, William M.

    2015-01-01

    The fate of the polyubiquitinated protein is determined by the lysine linkages involved in the polymerization of the ubiquitin monomers, which has seven lysine residues (K6, K11, K27, K29, K33, K48, and K63). The translocated AnkB effector of the intravacuolar pathogen Legionella pneumophila is a bona fide F-box protein, which is localized to the cytosolic side of the Legionella-containing vacuole (LCV) and is essential for intravacuolar proliferation within macrophages and amoebae. The F-box domain of AnkB interacts with the host SCF1 E3 ubiquitin ligase that triggers the decoration of the LCV with K48-linked polyubiquitinated proteins that are targeted for proteasomal degradation. Here we report that AnkB becomes rapidly polyubiquitinated within the host cell, and this modification is independent of the F-box domain of AnkB, indicating host-mediated polyubiquitination. We show that the AnkB effector interacts specifically with the host E3 ubiquitin ligase Trim21. Mass spectrometry analyses have shown that AnkB is modified by K11-linked polyubiquitination, which has no effect on its stability. This work shows the first example of K11-linked polyubiquitination of a bacterial effector and its interaction with the host Trim21 ubiquitin ligase. PMID:26483404

  8. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses.

    PubMed

    Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E

    2011-12-01

    Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.

  9. Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease

    PubMed Central

    Sass, Laura A.; Hair, Pamela S.; Perkins, Amy M.; Shah, Tushar A.; Krishna, Neel K.; Cunnion, Kenji M.

    2015-01-01

    In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid. PMID:26642048

  10. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis

    PubMed Central

    Akum, Fidele N.; Steinbrenner, Jens; Biedenkopf, Dagmar; Imani, Jafargholi; Kogel, Karl-Heinz

    2015-01-01

    Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica’s genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (PiΔ08944) showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid (SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected. PMID:26579156

  11. Immune homeostasis enforced by co-localized effector and regulatory T cells

    PubMed Central

    Liu, Zhiduo; Gerner, Michael Y.; Van Panhuys, Nicholas; Levine, Andrew G.; Rudensky, Alexander Y.; Germain, Ronald N.

    2015-01-01

    Foxp3+ regulatory T cells (Tregs) play a critical role in preventing autoimmune disease by limiting the effector activity of conventional T cells that have escaped thymic negative selection or cell-autonomous peripheral inactivation1–3. However, despite the substantial information available about the molecular players mediating Treg functional interference with auto-aggressive effector responses4,5, the relevant cellular events in intact tissues remain largely unexplored and the issues of whether Tregs prevent activation of self-specific T cells or function primarily to limit damage from such cells have not been addressed6. Here we have employed multiplex, high-resolution, quantitative imaging to reveal that within most secondary lymphoid tissues, Tregs expressing phosphorylated STAT5 (pSTAT5) and high amounts of the suppressive molecules CD73 and CTLA-4 exist in discrete clusters with rare IL-2 producing effector T cells activated by self-antigens. This local IL-2 production induces the STAT5 phosphorylation in the Tregs and is part of a feedback circuit that augments the suppressive properties of the Tregs to limit further autoimmune responses. Inducible ablation of TCR expression by Tregs reduces their regulatory capacity and disrupts their localization in such clusters, resulting in uncontrolled effector T cell responses. Our data thus reveal that autoreactive T cells reach a state of activation and cytokine gene induction on a regular basis, with physically co-clustering, TCR-stimulated Tregs responding to this activation in a feedback manner to suppress incipient autoimmunity and maintain immune homeostasis. PMID:26605524

  12. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis.

    PubMed

    Akum, Fidele N; Steinbrenner, Jens; Biedenkopf, Dagmar; Imani, Jafargholi; Kogel, Karl-Heinz

    2015-01-01

    Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica's genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (PiΔ08944) showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid (SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected. PMID:26579156

  13. Computational investigation of miniature trailing edge effectors

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Tae

    Miniature trailing edge effectors (MiTEs) are small flaps (typically 1% to 5% chord) actuated with deflection angles of up to 90 degrees. The small size, combined with little required power and good control authority, enables the device to be used for high bandwidth control as well as conventional attitude control. However, some of the aerodynamic characteristics of these devices are complex and poorly understood. This research investigated the aerodynamics of MiTEs using incompressible Navier-Stokes flow solvers, INS2D and INS3D. To understand the flow structure and establish a parametric database, two dimensional steady-state computations were performed for MiTEs with various geometries and flow conditions. Time accurate computations were used to resolve the unsteady characteristics including transient response and vortex shedding phenomena. The frequency response was studied to fully identify the dynamics of MiTEs. Three dimensional computations show the change in control effectiveness with respect to the spanwise length of MiTEs as well as the spanwise lift distribution induced by these devices. Based on the CFD results, an approximate vortex panel model was developed for design purposes that reproduces the key characteristics of MiTEs. Two application areas for MiTEs were explored. Flutter suppression was demonstrated by combining a finite element structural model with the vortex panel model. The application of MiTEs to augment maximum lift and improve the post stall behavior of an airfoil was also investigated.

  14. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  15. Effector biology during biotrophic invasion of plant cells

    PubMed Central

    Chaudhari, Prateek; Ahmed, Bulbul; Joly, David L; Germain, Hugo

    2014-01-01

    Several obligate biotrophic phytopathogens, namely oomycetes and fungi, invade and feed on living plant cells through specialized structures known as haustoria. Deploying an arsenal of secreted proteins called effectors, these pathogens balance their parasitic propagation by subverting plant immunity without sacrificing host cells. Such secreted proteins, which are thought to be delivered by haustoria, conceivably reprogram host cells and instigate structural modifications, in addition to the modulation of various cellular processes. As effectors represent tools to assist disease resistance breeding, this short review provides a bird’s eye view on the relationship between the virulence function of effectors and their subcellular localization in host cells. PMID:25513771

  16. Catch me if you can: bacterial effectors and plant targets.

    PubMed

    Deslandes, Laurent; Rivas, Susana

    2012-11-01

    To suppress plant defense responses and favor the establishment of disease, phytopathogenic bacteria have gained the ability to deliver effector molecules inside host cells through the type III secretion system. Inside plant cells, bacterial effector proteins may be addressed to different subcellular compartments where they are able to manipulate a variety of host cellular components and molecular functions. Here we review how the recent identification and functional characterization of plant components targeted by bacterial effectors, as well as the discovery of new pathogen recognition capabilities evolved in turn by plant cells, have significantly contributed to further our knowledge about the intricate molecular interactions that are established between plants and their invading bacteria.

  17. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, D.B.; Williams, P.M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures.

  18. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, David B.; Williams, Paul M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  19. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a Phytophthora infestans RXLR Effector, Is a Susceptibility Factor1[OPEN

    PubMed Central

    Yang, Lina; Naqvi, Shaista; Boevink, Petra C.; Armstrong, Miles; Giuliani, Licida M.; Zhan, Jiasui; Birch, Paul R.J.

    2016-01-01

    Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease. PMID:26966171

  20. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a Phytophthora infestans RXLR Effector, Is a Susceptibility Factor.

    PubMed

    Yang, Lina; McLellan, Hazel; Naqvi, Shaista; He, Qin; Boevink, Petra C; Armstrong, Miles; Giuliani, Licida M; Zhang, Wei; Tian, Zhendong; Zhan, Jiasui; Gilroy, Eleanor M; Birch, Paul R J

    2016-05-01

    Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease. PMID:26966171

  1. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a Phytophthora infestans RXLR Effector, Is a Susceptibility Factor.

    PubMed

    Yang, Lina; McLellan, Hazel; Naqvi, Shaista; He, Qin; Boevink, Petra C; Armstrong, Miles; Giuliani, Licida M; Zhang, Wei; Tian, Zhendong; Zhan, Jiasui; Gilroy, Eleanor M; Birch, Paul R J

    2016-05-01

    Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease.

  2. Specific in planta recognition of two GKLR proteins of the downy mildew Bremia lactucae revealed in a large effector screen in lettuce.

    PubMed

    Stassen, Joost H M; den Boer, Erik; Vergeer, Pim W J; Andel, Annemiek; Ellendorff, Ursula; Pelgrom, Koen; Pel, Mathieu; Schut, Johan; Zonneveld, Olaf; Jeuken, Marieke J W; Van den Ackerveken, Guido

    2013-11-01

    Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by suppression of effector-triggered immunity. We have previously identified 34 potential RXLR(-like) effector proteins of B. lactucae that were here tested for specific recognition within a collection of 129 B. lactucae-resistant Lactuca lines. Two effectors triggered a hypersensitive response: BLG01 in 52 lines, predominantly L. saligna, and BLG03 in two L. sativa lines containing Dm2 resistance. The N-terminal sequences of BLG01 and BLG03, containing the signal peptide and GKLR variant of the RXLR translocation motif, are not required for in planta recognition but function in effector delivery. The locus responsible for BLG01 recognition maps to the bottom of lettuce chromosome 9, whereas recognition of BLG03 maps in the RGC2 cluster on chromosome 2. Lactuca lines that recognize the BLG effectors are not resistant to Bremia isolate Bl:24 that expresses both BLG genes, suggesting that Bl:24 can suppress the triggered immune responses. In contrast, lettuce segregants displaying Dm2-mediated resistance to Bremia isolate Bl:5 are responsive to BLG03, suggesting that BLG03 is a candidate Avr2 protein. PMID:23883357

  3. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires.

    PubMed

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-02-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ∼ 300 virulence proteins, termed effectors, which manipulate host cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species and predicted their effector repertoires using a previously validated machine learning approach. This analysis identified 5,885 predicted effectors. The effector repertoires of different Legionella species were found to be largely non-overlapping, and only seven core effectors were shared by all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from the natural protozoan hosts of these species. Furthermore, we detected numerous new conserved effector domains and discovered new domain combinations, which allowed the inference of as yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution.

  4. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    PubMed

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery.

  5. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    PubMed Central

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  6. Molecular Determinants of Resistance Activation and Suppression by Phytophthora infestans Effector IPI-O

    PubMed Central

    Chen, Yu; Liu, Zhenyu; Halterman, Dennis A.

    2012-01-01

    Despite intensive breeding efforts, potato late blight, caused by the oomycete pathogen Phytophthora infestans, remains a threat to potato production worldwide because newly evolved pathogen strains have consistently overcome major resistance genes. The potato RB gene, derived from the wild species Solanum bulbocastanum, confers resistance to most P. infestans strains through recognition of members of the pathogen effector family IPI-O. While the majority of IPI-O proteins are recognized by RB to elicit resistance (e.g. IPI-O1, IPI-O2), some family members are able to elude detection (e.g. IPI-O4). In addition, IPI-O4 blocks recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death. Here, we report results that elucidate molecular mechanisms governing resistance elicitation or suppression of RB by IPI-O. Our data indicate self-association of the RB coiled coil (CC) domain as well as a physical interaction between this domain and the effectors IPI-O4 and IPI-O1. We identified four amino acids within IPI-O that are critical for interaction with the RB CC domain and one of these amino acids, at position 129, determines hypersensitive response (HR) elicitation in planta. IPI-O1 mutant L129P fails to induce HR in presence of RB while IPI-O4 P129L gains the ability to induce an HR. Like IPI-O4, IPI-O1 L129P is also able to suppress the HR mediated by RB, indicating a critical step in the evolution of this gene family. Our results point to a model in which IPI-O effectors can affect RB function through interaction with the RB CC domain. PMID:22438813

  7. Plant Photosynthetic Responses During Insect Effector-Triggered Plant Susceptibility and Immunity.

    PubMed

    Gramig, Greta G; Harris, Marion O

    2015-06-01

    Gall-inducing insects are known for altering source-sink relationships within plants. Changes in photosynthesis may contribute to this phenomenon. We investigated photosynthetic responses in wheat [Triticum aestivum L. (Poaceae: Triticeae)] seedlings attacked by the Hessian fly [Mayetiola destructor (Say) (Diptera: Cecidomyiidae], which uses a salivary effector-based strategy to induce a gall nutritive tissue in susceptible plants. Resistant plants have surveillance systems mediated by products of Resistance (R) genes. Detection of a specific salivary effector triggers downstream responses that result in a resistance that kills neonate larvae. A 2 × 2 factorial design was used to study maximum leaf photosynthetic assimilation and stomatal conductance rates. The plant treatments were-resistant or susceptible wheat lines expressing or not expressing the H13 resistance gene. The insect treatments were-no attack (control) or attack by larvae killed by H13 gene-mediated resistance. Photosynthesis was measured for the second and third leaves of the seedling, the latter being the only leaf directly attacked by larvae. We predicted effector-based attack would trigger increases in photosynthetic rates in susceptible but not resistant plants. For susceptible plants, attack was associated with increases (relative to controls) in photosynthesis for the third but not the second leaf. For resistant plants, attack was associated with increases in photosynthesis for both the second and third leaves. Mechanisms underlying the increases appeared to differ. Resistant plants exhibited responses suggesting altered source-sink relationships. Susceptible plants exhibited responses suggesting a mechanism other than altered source-sink relationships, possibly changes in water relations that contributed to increased stomatal conductance.

  8. Gunite Scarifying End Effector. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    The Gunite Scarifying End Effector (GSEE) is designed to remove a layer of the gunite tank walls, which are contaminated with radioactivity. Removing this radioactivity is necessary to close the tank.

  9. Interactions of legionella effector proteins with host phosphoinositide lipids.

    PubMed

    Weber, Stephen; Dolinsky, Stephanie; Hilbi, Hubert

    2013-01-01

    By means of the Icm/Dot type IV secretion system Legionella pneumophila translocates several effector proteins into host cells, where they anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. Thus, phosphatidylinositol-4-phosphate anchors the effector proteins SidC and SidM, which promote the interaction of LCVs with the ER and the secretory vesicle trafficking -pathway. In this chapter, we describe protocols to (1) identify PI-binding proteins in Legionella lysates using PI-beads, (2) determine PI-binding specificities and affinities of recombinant Legionella effector proteins by protein-lipid overlays, and (3) use Legionella effectors to identify cellular PI lipids.

  10. An intelligent end-effector for a rehabilitation robot.

    PubMed

    Gosine, R G; Harwin, W S; Furby, L J; Jackson, R D

    1989-01-01

    A UMI RTX robot, modified with limited end-effector sensors and a restricted but effective vision system, is currently used in a developmental education setting for severely physically disabled children. The low physical and cognitive abilities of the children involved in the project require a semi-autonomous robot with environmental sensing capability to operate in a task oriented mode. A variety of low-cost sensors including proximity, distance, force and slip sensors, have been investigated for integration in end-effectors for the RTX robot. The sensors employed on a modified end-effector are detailed and experimental results are presented. A design for an end-effector with integrated sensors is discussed. The integration of the sensor information into a high-level, task-oriented programming language is detailed and examples of high-level control sequences using sensor inputs are presented. Finally, the development of intelligent gripping strategies based on sensor information is discussed. PMID:2733012

  11. An intelligent end-effector for a rehabilitation robot.

    PubMed

    Gosine, R G; Harwin, W S; Furby, L J; Jackson, R D

    1989-01-01

    A UMI RTX robot, modified with limited end-effector sensors and a restricted but effective vision system, is currently used in a developmental education setting for severely physically disabled children. The low physical and cognitive abilities of the children involved in the project require a semi-autonomous robot with environmental sensing capability to operate in a task oriented mode. A variety of low-cost sensors including proximity, distance, force and slip sensors, have been investigated for integration in end-effectors for the RTX robot. The sensors employed on a modified end-effector are detailed and experimental results are presented. A design for an end-effector with integrated sensors is discussed. The integration of the sensor information into a high-level, task-oriented programming language is detailed and examples of high-level control sequences using sensor inputs are presented. Finally, the development of intelligent gripping strategies based on sensor information is discussed.

  12. Vision-based end-effector position error compensation

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Backes, Paul; DiCicco, Matthew

    2006-01-01

    This paper describes a computationally efficient algorithm that provides the ability to accurately place an arm end-effector on a target designated in an image using low speed feed back from a fixed stero camera.

  13. Robotic end-effector for rewaterproofing shuttle tiles

    NASA Technical Reports Server (NTRS)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-01-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  14. Amotl2a interacts with the Hippo effector Yap1 and the Wnt/β-catenin effector Lef1 to control tissue size in zebrafish

    PubMed Central

    Agarwala, Sobhika; Duquesne, Sandra; Liu, Kun; Boehm, Anton; Grimm, Lin; Link, Sandra; König, Sabine; Eimer, Stefan; Ronneberger, Olaf; Lecaudey, Virginie

    2015-01-01

    During development, proliferation must be tightly controlled for organs to reach their appropriate size. While the Hippo signaling pathway plays a major role in organ growth control, how it senses and responds to increased cell density is still unclear. In this study, we use the zebrafish lateral line primordium (LLP), a group of migrating epithelial cells that form sensory organs, to understand how tissue growth is controlled during organ formation. Loss of the cell junction-associated Motin protein Amotl2a leads to overproliferation and bigger LLP, affecting the final pattern of sensory organs. Amotl2a function in the LLP is mediated together by the Hippo pathway effector Yap1 and the Wnt/β-catenin effector Lef1. Our results implicate for the first time the Hippo pathway in size regulation in the LL system. We further provide evidence that the Hippo/Motin interaction is essential to limit tissue size during development. DOI: http://dx.doi.org/10.7554/eLife.08201.001 PMID:26335201

  15. Design, testing and evaluation of latching end effector

    NASA Technical Reports Server (NTRS)

    Walker, B.; Vandersluis, R.

    1995-01-01

    The Latching End Effector (LEE) forms part of the Space Station Remote Manipulator System (SSRMS) for which Spar Aerospace Ltd, Space Systems Division is the prime contractor. The design, testing and performance evaluation of the Latching End Effector mechanisms is the subject of this paper focusing on: (1) ambient, thermal and vibration testing; (2) snare/rigidize performance testing and interaction during payload acquisition; and (3) latch/umbilical test results and performance.

  16. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells.

    PubMed

    Rana, Sabita; Byrne, Scott Napier; MacDonald, Linda Joanne; Chan, Carling Yan-Yan; Halliday, Gary Mark

    2008-04-01

    Contact hypersensitivity is a T-cell-mediated response to a hapten. Exposing C57BL/6 mice to UV B radiation systemically suppresses both primary and secondary contact hypersensitivity responses. The effects of UVB on in vivo T-cell responses during UVB-induced immunosuppression are unknown. We show here that UVB exposure, before contact sensitization, inhibits the expansion of effector CD4+ and CD8+ T cells in skin-draining lymph nodes and reduces the number of CD4+ and IFN-gamma+ CD8+ T cells infiltrating challenged ear skin. In the absence of UVB, at 10 weeks after initial hapten exposure, the ear skin of sensitized mice was infiltrated by dermal effector memory CD8+ T cells at the site of challenge. However, if mice were previously exposed to UVB, this cell population was absent, suggesting an impaired development of peripheral memory T cells. This finding occurred in the absence of UVB-induced regulatory CD4+ T cells and did not involve prostaglandin E2, suggesting that the importance of these two factors in mediating or initiating UVB-induced immunosuppression is dependent on UVB dose. Together these data indicate that in vivo T-cell responses are prone to immunoregulation by UVB, including a novel effect on both the activated T-cell pool size and the development of memory T cells in peripheral compartments. PMID:18292235

  17. ULtiMATE System for Rapid Assembly of Customized TAL Effectors

    PubMed Central

    Wen, Dingqiao; Sheng, Ying; Zhu, Shiyou; Yu, Yuezhou; Gao, Xiang; Wei, Wensheng

    2013-01-01

    Engineered TAL-effector nucleases (TALENs) and TALE-based constructs have become powerful tools for eukaryotic genome editing. Although many methods have been reported, it remains a challenge for the assembly of designer-based TALE repeats in a fast, precise and cost-effective manner. We present an ULtiMATE (USER-based Ligation Mediated Assembly of TAL Effector) system for speedy and accurate assembly of customized TALE constructs. This method takes advantage of uracil-specific excision reagent (USER) to create multiple distinct sticky ends between any neighboring DNA fragments for specific ligation. With pre-assembled templates, multiple TALE DNA-binding domains could be efficiently assembled in order within hours with minimal manual operation. This system has been demonstrated to produce both functional TALENs for effective gene knockout and TALE-mediated gene-specific transcription activation (TALE-TA). The feature of both ease-of-operation and high efficiency of ULtiMATE system makes it not only an ideal method for biologic labs, but also an approach well suited for large-scale assembly of TALENs and any other TALE-based constructions. PMID:24228087

  18. S-maltoheptaose targets syndecan-bound effectors to reduce smoking-related neutrophilic inflammation

    PubMed Central

    Lam, David CL; Chan, Stanley CH; Mak, Judith CW; Freeman, Craig; Ip, Mary SM; Shum, Daisy KY

    2015-01-01

    Cigarette smoke induces injury and neutrophilic inflammation in the airways of smokers. The stability and activity of inflammatory effectors, IL8 and neutrophil elastase (NE), can be prolonged by binding to airway heparan sulfate (HS)/syndecan-1, posing risk for developing chronic obstructive pulmonary disease(COPD). We hypothesize that antagonizing HS/syndecan-1 binding of the inflammatory effectors could reduce smoking-related neutrophil-mediated airway inflammation. Analysis of bronchoalveolar lavage fluid(BALF) of COPD patients found both total and unopposed NE levels to be significantly higher among smokers with COPD than non-COPD subjects. Similar NE burden was observed in smoke-exposed rats compared to sham air controls. We chose sulfated-maltoheptaose(SM), a heparin-mimetic, to antagonize HS/sydecan-1 binding of the inflammatory mediators in airway fluids and lung tissues of the smoke-exposed rat model. Airway treatment with SM resulted in displacement of CINC-1 and NE from complexation with bronchio-epithelial HS/syndecan-1, dissipating the chemokine gradient for neutrophil flux across to the bronchial lumen. Following SM displacement of NE from shed HS/syndecan-1 in bronchial fluids, NE became accessible to inhibition by α1-antitrypsin endogenous in test samples. The antagonistic actions of SM against syndecan-1 binding of NE and CINC-1 in smoke-exposed airways suggest new therapeutic opportunities for modulating airway inflammation in smokers with SM delivery. PMID:26256047

  19. Characterization of the largest effector gene cluster of Ustilago maydis.

    PubMed

    Brefort, Thomas; Tanaka, Shigeyuki; Neidig, Nina; Doehlemann, Gunther; Vincon, Volker; Kahmann, Regine

    2014-07-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  20. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins.

    PubMed

    Tan, Leitao; Rong, Wei; Luo, Hongli; Chen, Yinhua; He, Chaozu

    2014-11-01

    Plants protect themselves from the harmful effects of pathogens by resistance and tolerance. Disease resistance, which eliminates pathogens, can be modulated by bacterial type III effectors. Little is known about whether disease tolerance, which sustains host fitness with a given pathogen burden, is regulated by effectors. Here, we examined the effects of the Xanthomonas effector protein XopDXcc8004 on plant disease defenses by constructing knockout and complemented Xanthomonas strains, and performing inoculation studies in radish (Raphanus sativus L. var. radiculus XiaoJinZhong) and Arabidopsis plants. XopDXcc8004 suppresses disease symptoms without changing bacterial titers in infected leaves. In Arabidopsis, XopDXcc8004 delays the hormone gibberellin (GA)-mediated degradation of RGA (repressor of ga1-3), one of five DELLA proteins that repress GA signaling and promote plant tolerance under biotic and abiotic stresses. The ERF-associated amphiphilic repression (EAR) motif-containing region of XopDXcc8004 interacts with the DELLA domain of RGA and might interfere with the GA-induced binding of GID1, a GA receptor, to RGA. The EAR motif was found to be present in a number of plant transcriptional regulators. Thus, our data suggest that bacterial pathogens might have evolved effectors, which probably mimic host components, to initiate disease tolerance and enhance their survival.

  1. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species.

    PubMed

    Bolton, Melvin D; van Esse, H Peter; Vossen, Jack H; de Jonge, Ronnie; Stergiopoulos, Ioannis; Stulemeijer, Iris J E; van den Berg, Grardy C M; Borrás-Hidalgo, Orlando; Dekker, Henk L; de Koster, Chris G; de Wit, Pierre J G M; Joosten, Matthieu H A J; Thomma, Bart P H J

    2008-07-01

    During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that might play a role in virulence, we utilized two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to visualize proteins secreted during C. fulvum-tomato interactions. Three novel C. fulvum proteins were identified: CfPhiA, Ecp6 and Ecp7. CfPhiA shows homology to proteins found on fungal sporogenous cells called phialides. Ecp6 contains lysin motifs (LysM domains) that are recognized as carbohydrate-binding modules. Ecp7 encodes a small, cysteine-rich protein with no homology to known proteins. Heterologous expression of Ecp6 significantly increased the virulence of the vascular pathogen Fusarium oxysporum on tomato. Furthermore, by RNA interference (RNAi)-mediated gene silencing we demonstrate that Ecp6 is instrumental for C. fulvum virulence on tomato. Hardly any allelic variation was observed in the Ecp6 coding region of a worldwide collection of C. fulvum strains. Although none of the C. fulvum effectors identified so far have obvious orthologues in other organisms, conserved Ecp6 orthologues were identified in various fungal species. Homology-based modelling suggests that the LysM domains of C. fulvum Ecp6 may be involved in chitin binding.

  2. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants

    PubMed Central

    Dashivets, Tetyana; Thomann, Marco; Rueger, Petra; Knaupp, Alexander; Buchner, Johannes; Schlothauer, Tilman

    2015-01-01

    Therapeutic performance of recombinant antibodies relies on two independent mechanisms: antigen recognition and Fc-mediated antibody effector functions. Interaction of Fc-fragment with different FcR triggers antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity and determines longevity of the antibody in serum. In context of therapeutic antibodies FcγRs play the most important role. It has been demonstrated that the Fc-attached sugar moiety is essential for IgG effector functionality, dictates its affinity to individual FcγRs and determines binding to different receptor classes: activating or inhibitory. In this study, we systematically analyze effector functions of monoclonal IgG1 and its eight enzymatically engineered glycosylation variants. The analysis of interaction of glycovariants with FcRs was performed for single, as well as for antigen-bound antibodies and IgGs in a form of immune complex. In addition to functional properties we addressed impact of glycosylation on the structural properties of the tested glycovariants. We demonstrate a clear impact of glycosylation pattern on antibody stability and interaction with different FcγRs. Consistent with previous reports, deglycosylated antibodies failed to bind all Fcγ-receptors, with the exception of high affinity FcγRI. The FcγRII and FcγRIIIa binding activity of IgG1 was observed to depend on the galactosylation level, and hypergalactosylated antibodies demonstrated increased receptor interaction. Sialylation did not decrease the FcγR binding of the tested IgGs; in contrast, sialylation of antibodies improved binding to FcγRIIa and IIb. We demonstrate that glycosylation influences to some extent IgG1 interaction with FcRn. However, independent of glycosylation pattern the interaction of IgG1 with a soluble monomeric target surprisingly resulted in an impaired receptor binding. Here, we demonstrate, that immune complexes (IC), induced by multimeric ligand, compensated for the

  3. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow

    SciTech Connect

    Nakamura, H.; Gress, R.E. )

    1990-02-01

    Cellular effector mechanisms of allograft rejection remain incompletely described. Characterizing the rejection of foreign-marrow allografts rather than solid-organ grafts has the advantage that the cellular composition of the marrow graft, as a single cell suspension, can be altered to include cellular components with differing antigen expression. Rejection of marrow grafts is sensitive to lethal doses of radiation in the mouse but resistant to sublethal levels of radiation. In an effort to identify cells mediating host resistance, lymphocytes were isolated and cloned from spleens of mice 7 days after sublethal TBI (650 cGy) and inoculation with allogeneic marrow. All clones isolated were cytolytic with specificity for MHC encoded gene products of the allogeneic marrow donor. When cloned cells were transferred in vivo into lethally irradiated (1025 cGy) recipients unable to reject allogeneic marrow, results utilizing splenic 125IUdR uptake indicated that these MHC-specific cytotoxic clones could suppress marrow proliferation. In order to characterize the effector mechanism and the ability of the clones to affect final engraftment, double donor chimeras were constructed so that 2 target cell populations differing at the MHC from each other and from the host were present in the same marrow allograft. Results directly demonstrated an ability of CTL of host MHC type to mediate graft rejection and characterized the effector mechanism as one with specificity for MHC gene products.

  4. Isolation and characterization of cytotoxic effector cells and antibody producing cells from human intestine.

    PubMed

    MacDermott, R P

    1985-01-01

    We have examined the ability of intestinal and peripheral blood mononuclear cells isolated from patients with inflammatory bowel disease to mediate killing against cell line targets in spontaneous, antibody-dependent, lectin-induced, and interferon-induced cell-mediated cytotoxicity assays, as well as responsiveness in the allogeneic mixed leukocyte reaction, and effector capabilities in cell-mediated lympholysis. IMC were poor mediators of spontaneous or antibody-dependent cellular cytotoxicity with cell line cells as targets (in comparison to normal PBMC, but were capable of killing antibody coated chicken red blood cells. Although IMC were capable of responding to allogeneic cell surface antigens in the mixed leukocyte reaction, they did not exhibit effector function in cell-mediated lympholysis. Mitogenic lectins induced cell-mediated cytotoxicity by isolated intestinal mononuclear cells from controls and patients. HFIF induces cytotoxicity by control but not inflammatory bowel disease intestinal cells. Pokeweed mitogen was the lectin which induced the greatest amount of killing against human cell line targets. We therefore speculate that exogenous agents, or endogenous factors released during viral infection, could play a role in inducing cell mediated cytotoxic damage to the intestine in inflammatory bowel disease patients. In addition, the functional differences between IMC and PBMC indicate that intestinal MNC may have unique cell capabilities which must be better understood prior to the delineation of immunopathologic events in solid organ tissues. We have also examined the secretion of IgA, IgM, and IgG by isolated human IMC, human bone marrow MNC from rib specimens, and PBMC from patients with CD, UC, SLE, or Henoch-Schoenlein purpura (HSP). Control IMC exhibited high spontaneous secretion of IgA, while intestinal MNC from UC and CD patients exhibited only modest increases in IgA secretion. PBMC from patients with CD, UC, SLE, or HSP exhibited markedly

  5. Serine protease inhibitor-6 differentially affects the survival of effector and memory alloreactive CD8-T cells.

    PubMed

    Azzi, J; Ohori, S; Ting, C; Uehara, M; Abdoli, R; Smith, B D; Safa, K; Solhjou, Z; Lukyanchykov, P; Patel, J; McGrath, M; Abdi, R

    2015-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6(-/-) mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6(-/-) CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells.

  6. Serine Protease Inhibitor-6 Differentially Affects the Survival of Effector and Memory Alloreactive CD8-T Cells

    PubMed Central

    Azzi, J.; Ohori, S.; Ting, C.; Uehara, M.; Abdoli, R.; Smith, B. D.; Safa, K.; Solhjou, Z.; Lukyanchykov, P.; Patel, J.; McGrath, M.; Abdi, R.

    2016-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6−/− mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6−/− CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells. PMID:25534448

  7. B7-H1 limits the entry of effector CD8+ T cells to the memory pool by upregulating Bim

    PubMed Central

    Gibbons, Rachel M.; Liu, Xin; Pulko, Vesna; Harrington, Susan M.; Krco, Christopher J.; Kwon, Eugene D.; Dong, Haidong

    2012-01-01

    Protective T‑cell immunity against cancer and infections is dependent on the generation of a durable effector and memory T‑cell pool. Studies from cancer and chronic infections reveal that B7-H1 (PD-L1) engagement with its receptor PD-1 promotes apoptosis of effector T cells. It is not clear how B7-H1 regulates T‑cell apoptosis and the subsequent impact of B7-H1 on the generation of memory T cells. In immunized B7-H1-deficient mice, we detected an increased expansion of effector CD8+ T cells and a delayed T‑cell contraction followed by the emergence of a protective CD8+ T‑cell memory capable of completely rejecting tumor metastases in the lung. Intracellular staining revealed that antigen-primed CD8+ T cells in B7-H1-deficient mice express lower levels of the pro-apoptotic molecule Bim. The engagement of activated CD8+ T cells by a plate-bound B7-H1 fusion protein led to the upregulation of Bim and increased cell death. Assays based on blocking antibodies determined that both PD-1 and CD80 are involved in the B7-H1-mediated regulation of Bim in activated CD8+ T cells. Our results suggest that B7-H1 may negatively regulate CD8+ T‑cell memory by enhancing the depletion of effector CD8+ T cells through the upregulation of Bim. Our findings may provide a new strategy for targeting B7-H1 signaling in effector CD8+ T cells to achieve protective antitumor memory responses. PMID:23170254

  8. Target selection biases from recent experience transfer across effectors.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions. PMID:26563393

  9. Characterization of a chemoattractant for endothelium induced by angiogenesis effectors.

    PubMed

    Raju, K S; Alessandri, G; Gullino, P M

    1984-04-01

    The mechanism of neovascularization was further explored by the use of chemically defined angiogenesis effectors. The vascularization of the rabbit cornea was selected as an experimental approach that permits comparison of one cornea treated by the angiogenesis effector with the contralateral cornea of the same subject treated by the same molecule deprived of angiogenic capacity. Under these conditions, we observed that neovascularization was initiated by the appearance of a chemoattractant for the bovine capillary endothelium only in the cornea treated by the angiogenesis effector. The chemoattractant was purified about 150-fold by a single-step procedure, using gelatin:Sepharose affinity chromatography. Chemoattraction resulted from the combined effect of a chemotactic factor(s) and an activating factor(s). The association of the two enhanced 5- to 8-fold the motility of the capillary endothelium in a concentration-dependent manner with optimum at 0.2 mg/ml. The activating factor(s) does not have chemotactic capacity, but without it, chemotaxis is reduced to about one half. The chemotactic complex was present in the cornea regardless of the nature of the angiogenesis effector used as the triggering device. Heat and proteases eliminated chemotaxis and destroyed the chemotactic complex. Thus, neovascularization may be triggered by effectors able to induce in the cornea proteins, normally not present, that influence angiogenesis via mobilization of capillary endothelium. PMID:6200213

  10. The Xanthomonas campestris Type III Effector XopJ Proteolytically Degrades Proteasome Subunit RPT61[OPEN

    PubMed Central

    2015-01-01

    Many animal and plant pathogenic bacteria inject type III effector (T3E) proteins into their eukaryotic host cells to suppress immunity. The Yersinia outer protein J (YopJ) family of T3Es is a widely distributed family of effector proteins found in both animal and plant pathogens, and its members are highly diversified in virulence functions. Some members have been shown to possess acetyltransferase activity; however, whether this is a general feature of YopJ family T3Es is currently unknown. The T3E Xanthomonas outer protein J (XopJ), a YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with the proteasomal subunit Regulatory Particle AAA-ATPase6 (RPT6) in planta to suppress proteasome activity, resulting in the inhibition of salicylic acid-related immune responses. Here, we show that XopJ has protease activity to specifically degrade RPT6, leading to reduced proteasome activity in the cytoplasm as well as in the nucleus. Proteolytic degradation of RPT6 was dependent on the localization of XopJ to the plasma membrane as well as on its catalytic triad. Mutation of the Walker B motif of RPT6 prevented XopJ-mediated degradation of the protein but not XopJ interaction. This indicates that the interaction of RPT6 with XopJ is dependent on the ATP-binding activity of RPT6, but proteolytic cleavage additionally requires its ATPase activity. Inhibition of the proteasome impairs the proteasomal turnover of Nonexpressor of Pathogenesis-Related1 (NPR1), the master regulator of salicylic acid responses, leading to the accumulation of ubiquitinated NPR1, which likely interferes with the full induction of NPR1 target genes. Our results show that YopJ family T3Es are not only highly diversified in virulence function but also appear to possess different biochemical activities. PMID:25739698

  11. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation.

    PubMed

    Gong, Qian; Hazen, Meredith; Marshall, Brett; Crowell, Susan R; Ou, Qinglin; Wong, Athena W; Phung, Wilson; Vernes, Jean-Michel; Meng, Y Gloria; Tejada, Max; Andersen, Dana; Kelley, Robert F

    2016-01-01

    For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal ("afucosylation"). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody. PMID:27216702

  12. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy

    PubMed Central

    Rajasekaran, Kamalakannan; Riese, Matthew J.; Rao, Sridhar; Wang, Li; Thakar, Monica S.; Sentman, Charles L.; Malarkannan, Subramaniam

    2016-01-01

    Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects. PMID:27242783

  13. Effector proteins that modulate plant--insect interactions.

    PubMed

    Hogenhout, Saskia A; Bos, Jorunn I B

    2011-08-01

    Insect herbivores have highly diverse life cycles and feeding behaviors. They establish close interactions with their plant hosts and suppress plant defenses. Chewing herbivores evoke characteristic defense responses distinguishable from general mechanical damage. In addition, piercing-sucking hemipteran insects display typical feeding behavior that suggests active suppression of plant defense responses. Effectors that modulate plant defenses have been identified in the saliva of these insects. Tools for high-throughput effector identification and functional characterization have been developed. In addition, in some insect species it is possible to silence gene expression by RNAi. Together, this technological progress has enabled the identification of insect herbivore effectors and their targets that will lead to the development of novel strategies for pest resistances in plants.

  14. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  15. Identification of Anaplasma marginale Type IV Secretion System Effector Proteins

    PubMed Central

    Brayton, Kelly A.; Beare, Paul A.; Brown, Wendy C.; Heinzen, Robert A.; Broschat, Shira L.

    2011-01-01

    Background Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now. Results By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141) of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system. Conclusions The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work. PMID:22140462

  16. Development and testing of the cooling coil cleaning end effector

    SciTech Connect

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-09-30

    The Retrieval Process Development and Enhancement (KPD{ampersand}E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design.

  17. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  18. Identification of new secreted effectors in Salmonella enterica serovar Typhimurium.

    PubMed

    Geddes, Kaoru; Worley, Micah; Niemann, George; Heffron, Fred

    2005-10-01

    A common theme in bacterial pathogenesis is the secretion of bacterial products that modify cellular functions to overcome host defenses. Gram-negative bacterial pathogens use type III secretion systems (TTSSs) to inject effector proteins into host cells. The genes encoding the structural components of the type III secretion apparatus are conserved among bacterial species and can be identified by sequence homology. In contrast, the sequences of secreted effector proteins are less conserved and are therefore difficult to identify. A strategy was developed to identify virulence factors secreted by Salmonella enterica serovar Typhimurium into the host cell cytoplasm. We constructed a transposon, which we refer to as mini-Tn5-cycler, to generate translational fusions between Salmonella chromosomal genes and a fragment of the calmodulin-dependent adenylate cyclase gene derived from Bordetella pertussis (cyaA'). In-frame fusions to bacterial proteins that are secreted into the eukaryotic cell cytoplasm were identified by high levels of cyclic AMP in infected cells. The assay was sufficiently sensitive that a single secreted fusion could be identified among several hundred that were not secreted. This approach identified three new effectors as well as seven that have been previously characterized. A deletion of one of the new effectors, steA (Salmonella translocated effector A), attenuated virulence. In addition, SteA localizes to the trans-Golgi network in both transfected and infected cells. This approach has identified new secreted effector proteins in Salmonella and will likely be useful for other organisms, even those in which genetic manipulation is more difficult.

  19. Yersinia type III effectors perturb host innate immune responses.

    PubMed

    Pha, Khavong; Navarro, Lorena

    2016-02-26

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  20. Visual End-Effector Position Error Compensation for Planetary Robotics

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; DiCicco, Matthew; Backes, Paul; Nickels, Kevin

    2007-01-01

    This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and 'ground-in-the-loop' technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data.

  1. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    NASA Astrophysics Data System (ADS)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  2. Assaying effector function in planta using double-barreled particle bombardment.

    PubMed

    Kale, Shiv D; Tyler, Brett M

    2011-01-01

    The biolistic transient gene expression assay is a beneficial tool for studying gene function in vivo. However, biolistic transient assay systems have inherent pitfalls that often cause experimental inaccuracies such as poor transformation efficiency, which can be confused with biological phenomena. The double-barreled gene gun device is an inexpensive and highly effective attachment that enables statistically significant data to be obtained with one-tenth the number of experimental replicates compared to conventional biolistic assays. The principle behind the attachment is to perform two simultaneous bombardments with control and test DNA preparations onto the same leaf. The control bombardment measures the efficiency of the transformation while the ratio of the test bombardment to the control bombardment measures the activity of the gene of interest. With care, the ratio between the pair of bombardments can be highly reproducible from bombardment to bombardment. The double-barreled attachment has been used to study plant resistance (R) gene-mediated responses to effectors, induction and suppression of cell death by a wide variety of pathogen and host molecules, and the role of oömycete effector RXLR motifs in cell reentry.

  3. ICAM-1–expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    PubMed Central

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1–deficient mice were defective in these effector functions. Mechanistically, ICAM-1–mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  4. The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation

    PubMed Central

    Young, Joanna C.; Clements, Abigail; Lang, Alexander E.; Garnett, James A.; Munera, Diana; Arbeloa, Ana; Pearson, Jaclyn; Hartland, Elizabeth L.; Matthews, Stephen J.; Mousnier, Aurelie; Barry, David J.; Way, Michael; Schlosser, Andreas; Aktories, Klaus; Frankel, Gad

    2014-01-01

    The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck–WIP–N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose. PMID:25523213

  5. The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation.

    PubMed

    Young, Joanna C; Clements, Abigail; Lang, Alexander E; Garnett, James A; Munera, Diana; Arbeloa, Ana; Pearson, Jaclyn; Hartland, Elizabeth L; Matthews, Stephen J; Mousnier, Aurelie; Barry, David J; Way, Michael; Schlosser, Andreas; Aktories, Klaus; Frankel, Gad

    2014-01-01

    The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.

  6. mTORC1-dependent metabolic reprogramming is a prerequisite for Natural Killer cell effector function

    PubMed Central

    Donnelly, Raymond P.; Loftus, Róisín M.; Keating, Sinéad E.; Liou, Kevin T.; Biron, Christine A.; Gardiner, Clair M.; Finlay, David K.

    2014-01-01

    The mammalian target of rapamcyin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of natural killer (NK) cells, lymphocytes that play key roles in anti-viral and anti-tumour immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell pro-inflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFNγ, important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, up-regulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFNγ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions. PMID:25261477

  7. A cotton rat model of effectors of immunity to respiratory syncytial virus other than serum antibody.

    PubMed

    Piazza, F M; Schmidt, H J; Johnson, S A; Dotson, D L; Darnell, M E; Ottolini, M G; Porter, D D; Prince, G A

    1995-06-01

    A model for studying effectors of immunity to respiratory syncytial virus (RSV) was developed. Paris of inbred cotton rats (Sigmodon hispidus) were joined surgically using the technique of parabiosis. One week later, one animal of each pair was primed intranasally with a small volume of RSV suspension. Fourteen days after priming, both animals of each pair were bled for determination of serum neutralizing antibody titers, and challenged intranasally with a standard dose of RSV suspension. Single, unprimed cotton rats were challenged concomitantly and served as controls. Four days after challenge, all animals were sacrificed for virus titration of nasal tissues and lungs. Parabiosed cotton rats were surgically separated at varying intervals between priming and challenge (days 7, 9, 12, or 14 after priming) or were kept joined until sacrificed (day 18). Significant transfer of nasal and pulmonary immunity from primed to unprimed parabionts began 9 days after priming, gradually increasing through 18 days. Resistance to RSV challenge in spite of low levels of serum neutralizing antibody suggests that non-antibody immunologic mediators were responsible for the transferred immunity. Evidence is presented for three broad categories of RSV immunologic effectors: systemic, local with a transient systemic phase, and local without a systemic phase. These categories are now amenable to further study using the described model.

  8. Altered effector functions of NK cells in chronic hepatitis C are associated with IFNL3 polymorphism.

    PubMed

    Rogalska-Taranta, Magdalena; Markova, Antoaneta A; Taranta, Andrzej; Lunemann, Sebastian; Schlaphoff, Verena; Flisiak, Robert; Manns, Michael P; Cornberg, Markus; Kraft, Anke R M; Wedemeyer, Heiner

    2015-08-01

    Interferon α-mediated effector functions of NK cells may contribute to the control of HCV replication and the pathogenesis of liver disease. The single-nucleotide polymorphism rs12979860 near IFNL3 (previously known as IL28B) is important in response to IFN-α treatment and in spontaneous resolution of acute hepatitis C. The role of the IFNL3 polymorphism in NK cell function is unclear. Thus, we investigated the role of IFNL3 polymorphism in type I IFN-dependent regulation of NK cell functions in patients with cHC and healthy control subjects. We demonstrated a marked polarization of NK cells toward cytotoxicity in response to IFN-α stimulation in patients with hepatitis C. That TRAIL up-regulation was present, particularly in patients with the IFNL3-TT allele, was supported by a shift in the pSTAT-1:pSTAT-4 ratios toward pSTAT-1. In patients bearing the IFNL3-TT allele, NK cell effector function correlated with liver disease activity. In contrast, higher cytokine production of NK cells was observed in healthy individuals with the IFNL3-CC genotype, which may support spontaneous HCV clearance in acute infection. Overall, these findings show that the role of NK cells may differ in chronic infection vs. early antiviral defense and that the IFNL3 genotype differentially influences NK cell function. PMID:26034208

  9. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC.

    PubMed

    Natsume, Akito; Niwa, Rinpei; Satoh, Mitsuo

    2009-09-21

    As platforms for therapeutic agents, monoclonal antibodies (MAbs) have already been approved, and several MAbs have demonstrated clinical effectiveness in a variety of malignancies. However, several issues have also been emerging in antibody therapy, such as high cost and insufficient drug action. Recently, to improve MAb activity in humans, effector functions have been subjects of focus, especially antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Extensive efforts have been made to enhance these effector functions of MAbs, and successful approaches have been reported by us and others, wherein the binding activity of MAbs to FcgammaRIIIa or C1q is increased by introducing amino acid mutations into heavy chain constant regions or through glyco-modification of Fc-linked oligosaccharides. In addition, one of the next approaches to optimizing therapeutic antibodies would be to combine multiple enhancing modifications into a single antibody platform to overcome the diverse mechanisms of clinical resistance of tumor cells. For this aim, we have recently developed a successful combination composed of ADCC-enhancing modification by the fucose depletion from Fc-linked oligosaccharides and CDC-enhancing modification by IgG1 and IgG3 isotype shuffling in heavy chains, which could be of great value for the development of third-generation antibody therapeutics.

  10. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    PubMed Central

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291

  11. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes.

    PubMed

    Doucette, Carolyn D; Rodgers, Gemma; Liwski, Robert S; Hoskin, David W

    2015-11-01

    Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders. PMID:25900378

  12. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  13. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes.

    PubMed

    Doucette, Carolyn D; Rodgers, Gemma; Liwski, Robert S; Hoskin, David W

    2015-11-01

    Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders.

  14. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector.

    PubMed

    Goritschnig, Sandra; Steinbrenner, Adam D; Grunwald, Derrick J; Staskawicz, Brian J

    2016-05-01

    Nucleotide-binding leucine-rich repeat (NB-LRR, or NLR) receptors mediate pathogen recognition. The Arabidopsis thaliana NLR RPP1 recognizes the tandem WY-domain effector ATR1 from the oomycete Hyaloperonospora arabidopsidis through direct association with C-terminal LRRs. We isolated and characterized homologous NLR genes RPP1-EstA and RPP1-ZdrA from two Arabidopsis ecotypes, Estland (Est-1) and Zdarec (Zdr-1), responsible for recognizing a novel spectrum of ATR1 alleles. RPP1-EstA and -ZdrA encode nearly identical NLRs that are phylogenetically distinct from known immunity-activating RPP1 homologs and possess greatly expanded LRR domains. Site-directed mutagenesis and truncation analysis of ATR1 suggests that these homologs recognize a novel surface of the 2(nd) WY domain of ATR1, partially specified by a C-terminal region of the LRR domain. Synteny comparison with RPP1 loci involved in hybrid incompatibility suggests that these functions evolved independently. Closely related RPP1 homologs have diversified their recognition spectra through LRR expansion and sequence variation, allowing them to detect multiple surfaces of the same pathogen effector. Engineering NLR receptor specificity may require a similar combination of repeat expansion and tailored amino acid variation. PMID:26725254

  15. Identification of a novel effector domain of BIN1 for cancer suppression

    PubMed Central

    Lundgaard, Greta L.; Daniels, Natae E.; Pyndiah, Slovénie; Cassimere, Erica K.; Ahmed, Kazi M.; Rodrigue, Amélie; Kihara, Daisuke; Post, Carol B.; Sakamuro, Daitoku

    2011-01-01

    Bridging integrator 1 (BIN1) is a nucleocytoplasmic adaptor protein with tumor suppressor properties. The protein interacts with and inhibits the c-MYC transcription factor through the BIN1 MYC-binding domain (MBD). However, in vitro colony formation assays have clearly demonstrated that the MBD is not essential for BIN1-mediated growth arrest. We hypothesized that BIN1 contains a MYC-independent effector domain (MID) for cancer suppression. Because a functionally unique domain frequently contains a distinct structure, the human full-length BIN1 protein was subjected to limited trypsin digestion and the digested peptides were analyzed with Edman sequencing and mass spectrometry. We identified a trypsin-resistant peptide that corresponds to amino acids 146–268 of BIN1. It encompassed part of the BAR region, a putative effector region of BIN1. Computational analysis predicted that the peptide is very likely to exhibit coiled-coil motifs, implying a potential role for this region in sustaining the BIN1 structure and function. Like MBD-deleted BIN1, the trypsin-resistant peptide of BIN1 was predominantly present in the cytoplasm and was sufficient to inhibit cancer growth, regardless of dysregulated c-MYC activity. Our results suggest that the coiled-coil BIN1 BAR peptide encodes a novel BIN1 MID domain, through which BIN1 acts as a MYC-independent cancer suppressor. PMID:21678469

  16. Identification of a novel effector domain of BIN1 for cancer suppression.

    PubMed

    Lundgaard, Greta L; Daniels, Natae E; Pyndiah, Slovénie; Cassimere, Erica K; Ahmed, Kazi M; Rodrigue, Amélie; Kihara, Daisuke; Post, Carol B; Sakamuro, Daitoku

    2011-10-01

    Bridging integrator 1 (BIN1) is a nucleocytoplasmic adaptor protein with tumor suppressor properties. The protein interacts with and inhibits the c-MYC transcription factor through the BIN1 MYC-binding domain (MBD). However, in vitro colony formation assays have clearly demonstrated that the MBD is not essential for BIN1-mediated growth arrest. We hypothesized that BIN1 contains a MYC-independent effector domain (MID) for cancer suppression. Because a functionally unique domain frequently contains a distinct structure, the human full-length BIN1 protein was subjected to limited trypsin digestion and the digested peptides were analyzed with Edman sequencing and mass spectrometry. We identified a trypsin-resistant peptide that corresponds to amino acids 146-268 of BIN1. It encompassed part of the BAR region, a putative effector region of BIN1. Computational analysis predicted that the peptide is very likely to exhibit coiled-coil motifs, implying a potential role for this region in sustaining the BIN1 structure and function. Like MBD-deleted BIN1, the trypsin-resistant peptide of BIN1 was predominantly present in the cytoplasm and was sufficient to inhibit cancer growth, regardless of dysregulated c-MYC activity. Our results suggest that the coiled-coil BIN1 BAR peptide encodes a novel BIN1 MID domain, through which BIN1 acts as a MYC-independent cancer suppressor. PMID:21678469

  17. Robotic End Effectors for Hard-Rock Climbing

    NASA Technical Reports Server (NTRS)

    Kennedy, Brett; Leger, Patrick

    2004-01-01

    Special-purpose robot hands (end effectors) now under development are intended to enable robots to traverse cliffs much as human climbers do. Potential applications for robots having this capability include scientific exploration (both on Earth and other rocky bodies in space), military reconnaissance, and outdoor search and rescue operations. Until now, enabling robots to traverse cliffs has been considered too difficult a task because of the perceived need of prohibitively sophisticated planning algorithms as well as end effectors as dexterous as human hands. The present end effectors are being designed to enable robots to attach themselves to typical rock-face features with less planning and simpler end effectors. This advance is based on the emulation of the equipment used by human climbers rather than the emulation of the human hand. Climbing-aid equipment, specifically cams, aid hooks, and cam hooks, are used by sport climbers when a quick ascent of a cliff is desired (see Figure 1). Currently two different end-effector designs have been created. The first, denoted the simple hook emulator, consists of three "fingers" arranged around a central "palm." Each finger emulates the function of a particular type of climbing hook (aid hook, wide cam hook, and a narrow cam hook). These fingers are connected to the palm via a mechanical linkage actuated with a leadscrew/nut. This mechanism allows the fingers to be extended or retracted. The second design, denoted the advanced hook emulator (see Figure 2), shares these features, but it incorporates an aid hook and a cam hook into each finger. The spring-loading of the aid hook allows the passive selection of the type of hook used. The end effectors can be used in several different modes. In the aid-hook mode, the aid hook on one of the fingers locks onto a horizontal ledge while the other two fingers act to stabilize the end effector against the cliff face. In the cam-hook mode, the broad, flat tip of the cam hook is

  18. Apoptosis and expression of cytotoxic T lymphocyte effector molecules in renal allografts.

    PubMed

    Olive, C; Cheung, C; Falk, M C

    1999-03-01

    Cytotoxic T lymphocyte (CTL) mediated apoptosis is thought to play a major role in the rejection of renal allografts following transplantation, however, the CTL effector mechanism that is primarily responsible for immunological rejection is unknown. The two major effector pathways of CTL killing which lead to apoptosis involve the Fas/Fas ligand (Fas L) lytic pathway, and the perforin/granzyme degranulation pathway. The expression of CTL effector molecules which influence these pathways include Fas, Fas L and TiA-1 (cytotoxic granule protein). This study has investigated apoptosis by in situ terminal deoxytransferase-catalysed DNA nick end labelling (TUNEL), and the expression of CTL effector molecules by immunohistochemistry, in renal allograft biopsies obtained from patients following kidney transplantation. Renal biopsies were classified into three histological groups; acute cellular rejection, chronic rejection, or no rejection. The extent of T-cell infiltration of renal tissues was assessed by immunohistochemical staining with an anti-CD3 monoclonal antibody. Numerous TUNEL positive cells were detected in all transplant biopsies examined; these consisted mainly of renal tubular cells and infiltrating cells, with some TUNEL positive cells also detected in the glomeruli. In the case of normal kidney tissue, renal cells also stained positive for TUNEL but there was no lymphocytic infiltration. There was significantly more T-cell infiltration observed in acute rejection biopsies compared to the no rejection biopsies. In the case of Fas L expression, there was little expression in all three biopsy groups, apart from one case of chronic rejection. Conversely, although there were no significant differences in TiA-1 expression between the three biopsy groups, TiA-1 expression was more prominent in acute rejection biopsies. Furthermore, Fas expression was significantly decreased in acute rejection biopsies when compared to those of chronic and no rejection in which Fas

  19. Effectors of hemoglobin. Separation of allosteric and affinity factors.

    PubMed Central

    Marden, M C; Bohn, B; Kister, J; Poyart, C

    1990-01-01

    The relative contributions of the allosteric and affinity factors toward the change in p50 have been calculated for a series of effectors of hemoglobin (Hb). Shifts in the ligand affinity of deoxy Hb and the values for 50% ligand saturation (p50) were obtained from oxygen equilibrium data. Because the high-affinity parameters (liganded conformation) are poorly determined from the equilibrium curves, they were determined from kinetic measurements of the association and dissociation rates with CO as ligand. The CO on-rates were obtained by flash photolysis measurements. The off-rates were determined from the rate of oxidation of HbCO by ferricyanide, or by replacement of CO with NO. The partition function of fully liganded hemoglobin for oxygen and CO is only slightly changed by the effectors. Measurements were made in the presence of the effectors 2,3-diphosphoglycerate (DPG), inositol hexakisphosphate (IHP), bezafibrate (Bzf), and two recently synthesized derivatives of Bzf (LR16 and L35). Values of p50 change by over a factor of 60; the on-rates decrease by nearly a factor of 8, with little change in the off-rates for the liganded conformation. The data indicate that both allosteric and affinity parameters are changed by the effectors; the changes in ligand affinity represent the larger contribution toward shifts in p50. PMID:2306490

  20. The Coding and Effector Transfer of Movement Sequences

    ERIC Educational Resources Information Center

    Kovacs, Attila J.; Muhlbauer, Thomas; Shea, Charles H.

    2009-01-01

    Three experiments utilizing a 14-element arm movement sequence were designed to determine if reinstating the visual-spatial coordinates, which require movements to the same spatial locations utilized during acquisition, results in better effector transfer than reinstating the motor coordinates, which require the same pattern of homologous muscle…

  1. Hand to Mouth: Automatic Imitation across Effector Systems

    ERIC Educational Resources Information Center

    Leighton, Jane; Heyes, Cecilia

    2010-01-01

    The effector dependence of automatic imitation was investigated using a stimulus-response compatibility (SRC) procedure during which participants were required to make an open or closed response with their hand or their mouth. The correct response for each trial was indicated by a pair of letters in Experiments 1 and 2 and by a colored square in…

  2. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    SciTech Connect

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  3. [PROBLEM OF END EFFECTOR OF ISCHEMIC POSTCONDITIONING OF THE HEART].

    PubMed

    Maslov, L N; Naryzhnaya, N V; Pei, J-M; Zhang, Y; Wang, H; Khaliulin, I J; Lishmanov, Yu B

    2015-06-01

    It is well known that cardiovascular disease and in particular acute myocardial infarction are a major cause of death among working-age population in Russia. Some of the patients die after successful recanalization of the infarct-related coronary artery as a result of ischemic and reperfusion injury of the heart. It is obvious that there is an urgent need to develop new approaches to prevention reoxygenation heart damages. In this regard the study of adaptive phenomenon postconditioning is of particular interest. This analysis of literature source preformed by authors of the article indicates that main pretenders to the role of end-effectors of ischemic postconditioning of the heart are: (1) Ca(2+)-dependent K+ channel of BK-type (big conductance K+ channel), (2) mitoKATp channel (mitochondrial ATP-sensitive K+ channel), (3) MPT pore (mitochondrial permeability transition pore). At the same time, some investigators consider that mitoK(ATP) channel is only an intermediate link in the series of signaling events ensured an increase in cardiac tolerance to impact of ischemia-reperfusion. The most likely end effector of these three structures is MPT pore. Alternatively, it is possible, that unique molecular complex appearing a single end effector of postconditioning does not exist. Perhaps, that there are several effectors ensured cardioprotective effect of an adaptive phenomenon of postconditioning. PMID:26470485

  4. Robot End Effector To Place and Solder Solar Cells

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1982-01-01

    Encapsulated in robot end effector is RF induction-heating coil for heating solar cell while in transit. Holes in encapsulant permit end of unit to act as vacuum pickup to grip solar cell. Use of RF induction heating allows cell to be heated without requiring direct mechanical and thermal contact of bonding tool such as soldering iron.

  5. Upstream regulators and downstream effectors of NF-κB in Alzheimer's disease.

    PubMed

    Shi, Zhe-Min; Han, Ya-Wei; Han, Xiao-Hui; Zhang, Kun; Chang, Ya-Nan; Hu, Zhi-Mei; Qi, Hai-Xia; Ting, Chen; Zhen, Zhang; Hong, Wei

    2016-07-15

    Since Alzheimer's disease (AD) is becoming the prevalent dementia in the whole world, more underlying mechanisms are emerging. Long time has the transcription factor NF-κB been identified to participate in AD pathogenesis, various studies have focused on the causes and effects of AD that are linked to NF-κB. In this review we discuss diverse environmental stimuli including oxidative stress, neuroinflammation and metabolism, involved signaling pathways such as PI3K/AKT, MAPK and AGE/RAGE/GSK-3 and newly found ncRNAs that mediate neuron toxicity or neuron protection through NF-κB activation and the following response associated with the same factors in AD. These may provide future orientation of investigation at transcription level and support efficient treatment to AD by a better understanding of the upstream regulators and downstream effectors of NF-κB. PMID:27288790

  6. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi

    PubMed Central

    Gracy, Jérome; Fournier, Elisabeth; Kroj, Thomas; Padilla, André

    2015-01-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. PMID:26506000

  7. The Shigella flexneri OspB effector: an early immunomodulator.

    PubMed

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection.

  8. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  9. Extracellular Vesicles – Biomarkers and Effectors of the Cellular Interactome in Cancer

    PubMed Central

    Rak, Janusz

    2013-01-01

    In multicellular organisms both health and disease are defined by patterns of communication between the constituent cells. In addition to networks of soluble mediators, cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of membraneous structures known extracellular vesicles (EV). Several biogenetic pathways produce EVs with different properties, and known as exosomes, ectosomes, and apoptotic bodies. In cancer, EVs carry molecular signatures and effectors of the disease, such as mutant oncoproteins, oncogenic transcripts, microRNA, and DNA sequences. Intercellular trafficking of such EVs (oncosomes) may contribute to horizontal cellular transformation, phenotypic reprograming, and functional re-education of recipient cells, both locally and systemically. The EV-mediated, reciprocal molecular exchange also includes tumor suppressors, phosphoproteins, proteases, growth factors, and bioactive lipids, all of which participate in the functional integration of multiple cells and their collective involvement in tumor angiogenesis, inflammation, immunity, coagulopathy, mobilization of bone marrow-derived effectors, metastasis, drug resistance, or cellular stemness. In cases where the EV role is rate limiting their production and uptake may represent and unexplored anticancer therapy target. Moreover, oncosomes circulating in biofluids of cancer patients offer an unprecedented, remote, and non-invasive access to crucial molecular information about cancer cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. New nanotechnologies are being developed to exploit this unique biomarker platform. Indeed, embracing the notion that human cancers are defined not only by processes occurring within cancer cells, but also between them, and amidst the altered tumor and systemic microenvironment may open new diagnostic and therapeutic opportunities. PMID:23508692

  10. KLRG+ invariant natural killer T cells are long-lived effectors.

    PubMed

    Shimizu, Kanako; Sato, Yusuke; Shinga, Jun; Watanabe, Takashi; Endo, Takaho; Asakura, Miki; Yamasaki, Satoru; Kawahara, Kazuyoshi; Kinjo, Yuki; Kitamura, Hiroshi; Watarai, Hiroshi; Ishii, Yasuyuki; Tsuji, Moriya; Taniguchi, Masaru; Ohara, Osamu; Fujii, Shin-ichiro

    2014-08-26

    Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3β by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells. PMID:25118276

  11. Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules.

    PubMed Central

    Fortier, A H; Polsinelli, T; Green, S J; Nacy, C A

    1992-01-01

    Francisella tularensis live vaccine strain (LVS) was grown in culture with nonadherent resident, starch-elicited, or Proteose Peptone-elicited peritoneal cells. Numbers of bacteria increased 4 logs over the input inoculum in 48 to 72 h. Growth rates were faster in inflammatory cells than in resident cells: generation times for the bacterium were 3 h in inflammatory cells and 6 h in resident macrophages. LVS-infected macrophage cultures treated with lymphokines did not support growth of the bacterium, although lymphokines alone had no inhibitory effects on replication of LVS in culture medium devoid of cells. Removal of gamma interferon (IFN-gamma) by immunoaffinity precipitation rendered lymphokines ineffective for induction of macrophage anti-LVS activity, and recombinant IFN-gamma stimulated both resident and inflammatory macrophage populations to inhibit LVS growth in vitro. Inflammatory macrophages were more sensitive to effects of IFN-gamma: half-maximal activity was achieved at 5 U/ml for inflammatory macrophages and 20 U/ml for resident macrophages. IFN-gamma-induced anti-LVS activity correlated with the production of nitrite (NO2-), an oxidative end product of L-arginine-derived nitric oxide (NO). Anti-LVS activity and nitrite production were both completely inhibited by the addition of either the L-arginine analog NG-monomethyl-L-arginine or anti-tumor necrosis factor antibodies to activated macrophage cultures. Thus, macrophages can be activated by IFN-gamma to suppress the growth of F. tularensis by generation of toxic levels of NO, and inflammatory macrophages are substantially more sensitive to activation activities of IFN-gamma for this effector reaction than are more differentiated resident cells. PMID:1541555

  12. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing.

    PubMed

    de Jonge, Ronnie; van Esse, H Peter; Maruthachalam, Karunakaran; Bolton, Melvin D; Santhanam, Parthasarathy; Saber, Mojtaba Keykha; Zhang, Zhao; Usami, Toshiyuki; Lievens, Bart; Subbarao, Krishna V; Thomma, Bart P H J

    2012-03-27

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and Verticillium albo-atrum, but the corresponding Verticillium effector remained unknown thus far. By high-throughput population genome sequencing, a single 50-Kb sequence stretch was identified that only occurs in race 1 strains, and subsequent transcriptome sequencing of Verticillium-infected Nicotiana benthamiana plants revealed only a single highly expressed ORF in this region, designated Ave1 (for Avirulence on Ve1 tomato). Functional analyses confirmed that Ave1 activates Ve1-mediated resistance and demonstrated that Ave1 markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis. Interestingly, Ave1 is homologous to a widespread family of plant natriuretic peptides. Besides plants, homologous proteins were only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Colletotrichum higginsianum, Cercospora beticola, and Fusarium oxysporum f. sp. lycopersici. The distribution of Ave1 homologs, coincident with the presence of Ave1 within a flexible genomic region, strongly suggests that Verticillium acquired Ave1 from plants through horizontal gene transfer. Remarkably, by transient expression we show that also the Ave1 homologs from F. oxysporum and C. beticola can activate Ve1-mediated resistance. In line with this observation, Ve1 was found to mediate resistance toward F. oxysporum in tomato, showing that this immune receptor is involved in resistance against multiple fungal pathogens. PMID:22416119

  13. Modification of monoclonal antibody carbohydrates by oxidation, conjugation, or deoxymannojirimycin does not interfere with antibody effector functions.

    PubMed

    Awwad, M; Strome, P G; Gilman, S C; Axelrod, H R

    1994-01-01

    Site-specific attachment of metal chelators or cytotoxic agents to the carbohydrate region of monoclonal antibodies results in clinically useful immunoconjugates [Doerr et al. (1991) Ann Surg 214: 118, Wynant et al. (1991) Prostate 18: 229]. Since the capacity of monoclonal antibodies (mAb) to mediate tumor cell lysis via antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) may accentuate the therapeutic effectiveness of immunoconjugates, we determined whether site-specific modification of mAb carbohydrates interfered with these functions. The chemical modifications examined consisted of periodate oxidation and subsequent conjugation to either a peptide linker/chelator (GYK-DTPA) or a cytotoxic drug (doxorubicin adipic dihydrazide). mAb-associated carbohydrates were also modified metabolically by incubating hybridoma cells in the presence of a glucosidase inhibitor deoxymannojirimycin to produce high-mannose antibody. All four forms (unaltered, oxidized, conjugated and high-mannose) of murine mAb OVB-3 mediated tumor cell lysis via CDC. Similarly, equivalent ADCC was observed with native and conjugated forms of mAb OVB-3 and EGFR.1. ADCC was achieved with different murine effector cells such as naive (NS), poly (I*C)- and lipopolysaccharide-stimulated (SS) spleen cells, or Corynebacterium-parvum-elicited peritoneal cells (PEC). All murine effector cell types mediated tumor cell lysis but differed in potency such that PEC > SS > NS. Excellent ADCC activity was also demonstrable by human peripheral blood mononuclear cells with OVB-3-GYK-DTPA and high-mannose OVB-3 mAb. ADCC activity was detectable in vivo: both native and conjugated OVB-3 inhibited growth of OVCAR-3 xenografts in nude mice primed with C. parvum. In conclusion, modification of mAb carbohydrates did not compromise their in vivo or in vitro biological functions. Therefore, combination therapy using immunomodulators to enhance the effector functions of site

  14. Die another day: molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial pathogens inject type III secreted effector (T3SE) proteins into their hosts where they display dual roles depending on the host genotype. T3SEs promote bacterial virulence in susceptible hosts, and elicit immunity in resistant hosts. T3SEs are typically recognized when they modify a host ...

  15. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    PubMed

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components. PMID:22935613

  16. Developmentally determined reduction in CD31 during gestation is associated with CD8+ T cell effector differentiation in preterm infants.

    PubMed

    Scheible, Kristin M; Emo, Jason; Yang, Hongmei; Holden-Wiltse, Jeanne; Straw, Andrew; Huyck, Heidie; Misra, Sara; Topham, David J; Ryan, Rita M; Reynolds, Anne Marie; Mariani, Thomas J; Pryhuber, Gloria S

    2015-12-01

    Homeostatic T cell proliferation is more robust during human fetal development. In order to understand the relative effect of normal fetal homeostasis and perinatal exposures on CD8+ T cell behavior in PT infants, we characterized umbilical cord blood CD8+ T cells from infants born between 23-42weeks gestation. Subjects were recruited as part of the NHLBI-sponsored Prematurity and Respiratory Outcomes Program. Cord blood from PT infants had fewer naïve CD8+ T cells and lower regulatory CD31 expression on both naïve and effector, independent of prenatal exposures. CD8+ T cell in vitro effector function was greater at younger gestational ages, an effect that was exaggerated in infants with prior inflammatory exposures. These results suggest that CD8+ T cells earlier in gestation have loss of regulatory co-receptor CD31 and greater effector differentiation, which may place PT neonates at unique risk for CD8+ T cell-mediated inflammation and impaired T cell memory formation.

  17. Identification of the Docking Site between a Type III Secretion System ATPase and a Chaperone for Effector Cargo*

    PubMed Central

    Allison, Sarah E.; Tuinema, Brian R.; Everson, Ellen S.; Sugiman-Marangos, Seiji; Zhang, Kun; Junop, Murray S.; Coombes, Brian K.

    2014-01-01

    A number of Gram-negative pathogens utilize type III secretion systems (T3SSs) to inject bacterial effector proteins into the host. An important component of T3SSs is a conserved ATPase that captures chaperone-effector complexes and energizes their dissociation to facilitate effector translocation. To date, there has been limited work characterizing the chaperone-T3SS ATPase interaction despite it being a fundamental aspect of T3SS function. In this study, we present the 2.1 Å resolution crystal structure of the Salmonella enterica SPI-2-encoded ATPase, SsaN. Our structure revealed a local and functionally important novel feature in helix 10 that we used to define the interaction domain relevant to chaperone binding. We modeled the interaction between the multicargo chaperone, SrcA, and SsaN and validated this model using mutagenesis to identify the residues on both the chaperone and ATPase that mediate the interaction. Finally, we quantified the benefit of this molecular interaction on bacterial fitness in vivo using chromosomal exchange of wild-type ssaN with mutants that retain ATPase activity but no longer capture the chaperone. Our findings provide insight into chaperone recognition by T3SS ATPases and demonstrate the importance of the chaperone-T3SS ATPase interaction for the pathogenesis of Salmonella. PMID:25035427

  18. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    PubMed

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  19. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem

    PubMed Central

    Niu, Xiaowei; Zhao, Xiaoqiang; Ling, Kai-Shu; Levi, Amnon; Sun, Yuyan; Fan, Min

    2016-01-01

    When infecting a host plant, the fungus Fusarium oxysporum secretes several effector proteins into the xylem tissue to promote virulence. However, in a host plant with an innate immune system involving analogous resistance proteins, the fungus effector proteins may trigger resistance, rather than promoting virulence. Identity of the effector genes of Fusarium oxysporum f. sp. niveum (Fon) races that affect watermelon (Citrullus lanatus) are currently unknown. In this study, the SIX6 (secreted in xylem protein 6) gene was identified in Fon races 0 and 1 but not in the more virulent Fon race 2. Disrupting the FonSIX6 gene in Fon race 1 did not affect the sporulation or growth rate of the fungus but significantly enhanced Fon virulence in watermelon, suggesting that the mutant ΔFon1SIX6 protein allowed evasion of R protein-mediated host resistance. Complementation of the wild-type race 2 (which lacks FonSIX6) with FonSIX6 reduced its virulence. These results provide evidence supporting the hypothesis that FonSIX6 is an avirulence gene. The identification of FonSix6 as an avirulence factor may be a first step in understanding the mechanisms of Fon virulence and resistance in watermelon and further elucidating the role of Six6 in Fusarium-plant interactions. PMID:27320044

  20. Analysis of three Xanthomonas axonopodis pv. citri effector proteins in pathogenicity and their interactions with host plant proteins.

    PubMed

    Dunger, Germán; Garofalo, Cecilia G; Gottig, Natalia; Garavaglia, Betiana S; Rosa, María C Pereda; Farah, Chuck S; Orellano, Elena G; Ottado, Jorgelina

    2012-10-01

    Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, uses effector proteins secreted by a type III protein secretion system to colonize its hosts. Among the putative effector proteins identified for this bacterium, we focused on the analysis of the roles of AvrXacE1, AvrXacE2 and Xac3090 in pathogenicity and their interactions with host plant proteins. Bacterial deletion mutants in avrXacE1, avrXacE2 and xac3090 were constructed and evaluated in pathogenicity assays. The avrXacE1 and avrXacE2 mutants presented lesions with larger necrotic areas relative to the wild-type strain when infiltrated in citrus leaves. Yeast two-hybrid studies were used to identify several plant proteins likely to interact with AvrXacE1, AvrXacE2 and Xac3090. We also assessed the localization of these effector proteins fused to green fluorescent protein in the plant cell, and observed that they co-localized to the subcellular spaces in which the plant proteins with which they interacted were predicted to be confined. Our results suggest that, although AvrXacE1 localizes to the plant cell nucleus, where it interacts with transcription factors and DNA-binding proteins, AvrXacE2 appears to be involved in lesion-stimulating disease 1-mediated cell death, and Xac3090 is directed to the chloroplast where its function remains to be clarified. PMID:22435635

  1. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb

    PubMed Central

    Weigelin, Bettina; Bolaños, Elixabet; Teijeira, Alvaro; Martinez-Forero, Ivan; Labiano, Sara; Azpilikueta, Arantza; Morales-Kastresana, Aizea; Quetglas, José I.; Wagena, Esther; Sánchez-Paulete, Alfonso Rodríguez; Chen, Lieping; Friedl, Peter; Melero, Ignacio

    2015-01-01

    Cancer immunotherapy is undergoing significant progress due to recent clinical successes by refined adoptive T-cell transfer and immunostimulatory monoclonal Ab (mAbs). B16F10-derived OVA-expressing mouse melanomas resist curative immunotherapy with either adoptive transfer of activated anti-OVA OT1 CTLs or agonist anti-CD137 (4-1BB) mAb. However, when acting in synergistic combination, these treatments consistently achieve tumor eradication. Tumor-infiltrating lymphocytes that accomplish tumor rejection exhibit enhanced effector functions in both transferred OT-1 and endogenous cytotoxic T lymphocytes (CTLs). This is consistent with higher levels of expression of eomesodermin in transferred and endogenous CTLs and with intravital live-cell two-photon microscopy evidence for more efficacious CTL-mediated tumor cell killing. Anti-CD137 mAb treatment resulted in prolonged intratumor persistence of the OT1 CTL-effector cells and improved function with focused and confined interaction kinetics of OT-1 CTL with target cells and increased apoptosis induction lasting up to six days postadoptive transfer. The synergy of adoptive T-cell therapy and agonist anti-CD137 mAb thus results from in vivo enhancement and sustainment of effector functions. PMID:26034288

  2. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration

    PubMed Central

    Kurachi, Makoto; Kurachi, Junko; Suenaga, Fumiko; Tsukui, Tatsuya; Abe, Jun; Ueha, Satoshi; Tomura, Michio; Sugihara, Kei; Takamura, Shiki; Kakimi, Kazuhiro

    2011-01-01

    Strength of inflammatory stimuli during the early expansion phase plays a crucial role in the effector versus memory cell fate decision of CD8+ T cells. But it is not known how early lymphocyte distribution after infection has an impact on this process. We demonstrate that the chemokine receptor CXCR3 is involved in promoting CD8+ T cell commitment to an effector fate rather than a memory fate by regulating T cell recruitment to an antigen/inflammation site. After systemic viral or bacterial infection, the contraction of CXCR3−/− antigen-specific CD8+ T cells is significantly attenuated, resulting in massive accumulation of fully functional memory CD8+ T cells. Early after infection, CXCR3−/− antigen-specific CD8+ T cells fail to cluster at the marginal zone in the spleen where inflammatory cytokines such as IL-12 and IFN-α are abundant, thus receiving relatively weak inflammatory stimuli. Consequently, CXCR3−/− CD8+ T cells exhibit transient expression of CD25 and preferentially differentiate into memory precursor effector cells as compared with wild-type CD8+ T cells. This series of events has important implications for development of vaccination strategies to generate increased numbers of antigen-specific memory CD8+ T cells via inhibition of CXCR3-mediated T cell migration to inflamed microenvironments. PMID:21788406

  3. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem.

    PubMed

    Niu, Xiaowei; Zhao, Xiaoqiang; Ling, Kai-Shu; Levi, Amnon; Sun, Yuyan; Fan, Min

    2016-01-01

    When infecting a host plant, the fungus Fusarium oxysporum secretes several effector proteins into the xylem tissue to promote virulence. However, in a host plant with an innate immune system involving analogous resistance proteins, the fungus effector proteins may trigger resistance, rather than promoting virulence. Identity of the effector genes of Fusarium oxysporum f. sp. niveum (Fon) races that affect watermelon (Citrullus lanatus) are currently unknown. In this study, the SIX6 (secreted in xylem protein 6) gene was identified in Fon races 0 and 1 but not in the more virulent Fon race 2. Disrupting the FonSIX6 gene in Fon race 1 did not affect the sporulation or growth rate of the fungus but significantly enhanced Fon virulence in watermelon, suggesting that the mutant ΔFon1SIX6 protein allowed evasion of R protein-mediated host resistance. Complementation of the wild-type race 2 (which lacks FonSIX6) with FonSIX6 reduced its virulence. These results provide evidence supporting the hypothesis that FonSIX6 is an avirulence gene. The identification of FonSix6 as an avirulence factor may be a first step in understanding the mechanisms of Fon virulence and resistance in watermelon and further elucidating the role of Six6 in Fusarium-plant interactions. PMID:27320044

  4. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities.

    PubMed

    Russo, Ilaria; Frangogiannis, Nikolaos G

    2016-01-01

    Both type 1 and type 2 diabetes are associated with cardiac fibrosis that may reduce myocardial compliance, contribute to the pathogenesis of heart failure, and trigger arrhythmic events. Diabetes-associated fibrosis is mediated by activated cardiac fibroblasts, but may also involve fibrogenic actions of macrophages, cardiomyocytes and vascular cells. The molecular basis responsible for cardiac fibrosis in diabetes remains poorly understood. Hyperglycemia directly activates a fibrogenic program, leading to accumulation of advanced glycation end-products (AGEs) that crosslink extracellular matrix proteins, and transduce fibrogenic signals through reactive oxygen species generation, or through activation of Receptor for AGEs (RAGE)-mediated pathways. Pro-inflammatory cytokines and chemokines may recruit fibrogenic leukocyte subsets in the cardiac interstitium. Activation of transforming growth factor-β/Smad signaling may activate fibroblasts inducing deposition of structural extracellular matrix proteins and matricellular macromolecules. Adipokines, endothelin-1 and the renin-angiotensin-aldosterone system have also been implicated in the diabetic myocardium. This manuscript reviews our current understanding of the cellular effectors and molecular pathways that mediate fibrosis in diabetes. Based on the pathophysiologic mechanism, we propose therapeutic interventions that may attenuate the diabetes-associated fibrotic response and discuss the challenges that may hamper clinical translation.

  5. Pseudomonas syringae type III effector repertoires: last words in endless arguments.

    PubMed

    Lindeberg, Magdalen; Cunnac, Sébastien; Collmer, Alan

    2012-04-01

    Many plant pathogens subvert host immunity by injecting compositionally diverse but functionally similar repertoires of cytoplasmic effector proteins. The bacterial pathogen Pseudomonas syringae is a model for exploring the functional structure of such repertoires. The pangenome of P. syringae encodes 57 families of effectors injected by the type III secretion system. Distribution of effector genes among phylogenetically diverse strains reveals a small set of core effectors targeting antimicrobial vesicle trafficking and a much larger set of variable effectors targeting kinase-based recognition processes. Complete disassembly of the 28-effector repertoire of a model strain and reassembly of a minimal functional repertoire reveals the importance of simultaneously attacking both processes. These observations, coupled with growing knowledge of effector targets in plants, support a model for coevolving molecular dialogs between effector repertoires and plant immune systems that emphasizes mutually-driven expansion of the components governing recognition. PMID:22341410

  6. Operation and maintenance manual for the common video end effector system (CVEE) system 6260

    SciTech Connect

    Pardini, A.F., Westinghouse Hanford

    1996-07-24

    This document defines the requirements for the operation,maintenance, and storage of the Common Video End Effector System (CVEE) used with the video end effectors as part of the Light Duty Utility Arm (LDUA) system.

  7. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms.

    PubMed

    Deslandes, Laurent; Genin, Stephane

    2014-08-01

    Effectors delivered to host cells by the Type III secretion system are essential to Ralstonia solanacearum pathogenicity, as in several other plant pathogenic bacteria. The establishment of exhaustive effector repertoires in multiple R. solanacearum strains drew a first picture of the evolutionary dynamics of the pathogen effector suites. Effector repertoires are diversified, with a core of 20-30 effectors present in most of the strains and the obtention of mutants lacking one or more effector genes revealed the functional overlap among this effector network. Recent functional studies have provided insights into the ability of single effectors to manipulate the host proteasome, elicit cell death, trigger the expression of plant genes, and/or display biochemical activities on plant protein targets.

  8. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells.

    PubMed

    Opata, Michael M; Carpio, Victor H; Ibitokou, Samad A; Dillon, Brian E; Obiero, Joshua M; Stephens, Robin

    2015-06-01

    CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.

  9. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells.

    PubMed

    Opata, Michael M; Carpio, Victor H; Ibitokou, Samad A; Dillon, Brian E; Obiero, Joshua M; Stephens, Robin

    2015-06-01

    CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection. PMID:25911759

  10. End-Effector Development for the PIP Puck Handling Robot

    SciTech Connect

    Fowley, M.D.

    2001-01-31

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  11. End-Effector Development for the PIP Puck Handling Robot

    SciTech Connect

    Fowley, M.D.

    2001-01-03

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  12. Identification of divergent type VI secretion effectors using a conserved chaperone domain

    PubMed Central

    Liang, Xiaoye; Moore, Richard; Wilton, Mike; Wong, Megan J. Q.; Lam, Linh; Dong, Tao G.

    2015-01-01

    The type VI secretion system (T6SS) is a lethal weapon used by many bacteria to kill eukaryotic predators or prokaryotic competitors. Killing by the T6SS results from repetitive delivery of toxic effectors. Despite their importance in dictating bacterial fitness, systematic prediction of T6SS effectors remains challenging due to high effector diversity and the absence of a conserved signature sequence. Here, we report a class of T6SS effector chaperone (TEC) proteins that are required for effector delivery through binding to VgrG and effector proteins. The TEC proteins share a highly conserved domain (DUF4123) and are genetically encoded upstream of their cognate effector genes. Using the conserved TEC domain sequence, we identified a large family of TEC genes coupled to putative T6SS effectors in Gram-negative bacteria. We validated this approach by verifying a predicted effector TseC in Aeromonas hydrophila. We show that TseC is a T6SS-secreted antibacterial effector and that the downstream gene tsiC encodes the cognate immunity protein. Further, we demonstrate that TseC secretion requires its cognate TEC protein and an associated VgrG protein. Distinct from previous effector-dependent bioinformatic analyses, our approach using the conserved TEC domain will facilitate the discovery and functional characterization of new T6SS effectors in Gram-negative bacteria. PMID:26150500

  13. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis.

    PubMed

    Nomura, Kinya; Mecey, Christy; Lee, Young-Nam; Imboden, Lori Alice; Chang, Jeff H; He, Sheng Yang

    2011-06-28

    Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.

  14. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist

    PubMed Central

    Cohen, Louis J.; Kang, Hahk-Soo; Chu, John; Huang, Yun-Han; Gordon, Emma A.; Reddy, Boojala Vijay B.; Ternei, Melinda A.; Craig, Jeffrey W.; Brady, Sean F.

    2015-01-01

    The trillions of bacteria that make up the human microbiome are believed to encode functions that are important to human health; however, little is known about the specific effectors that commensal bacteria use to interact with the human host. Functional metagenomics provides a systematic means of surveying commensal DNA for genes that encode effector functions. Here, we examine 3,000 Mb of metagenomic DNA cloned from three phenotypically distinct patients for effectors that activate NF-κB, a transcription factor known to play a central role in mediating responses to environmental stimuli. This screen led to the identification of 26 unique commensal bacteria effector genes (Cbegs) that are predicted to encode proteins with diverse catabolic, anabolic, and ligand-binding functions and most frequently interact with either glycans or lipids. Detailed analysis of one effector gene family (Cbeg12) recovered from all three patient libraries found that it encodes for the production of N-acyl-3-hydroxypalmitoyl-glycine (commendamide). This metabolite was also found in culture broth from the commensal bacterium Bacteroides vulgatus, which harbors a gene highly similar to Cbeg12. Commendamide resembles long-chain N-acyl-amides that function as mammalian signaling molecules through activation of G-protein–coupled receptors (GPCRs), which led us to the observation that commendamide activates the GPCR G2A/GPR132. G2A has been implicated in disease models of autoimmunity and atherosclerosis. This study shows the utility of functional metagenomics for identifying potential mechanisms used by commensal bacteria for host interactions and outlines a functional metagenomics-based pipeline for the systematic identification of diverse commensal bacteria effectors that impact host cellular functions. PMID:26283367

  15. Phytopathogen type III effector weaponry and their plant targets

    PubMed Central

    Block, Anna; Li, Guangyong; Fu, Zheng Qing; Alfano, James R.

    2008-01-01

    Summary Phytopathogenic bacteria suppress plant innate immunity and promote pathogenesis by injecting proteins called type III effectors into plant cells using a type III protein secretion system. These type III effectors use at least three major strategies to alter host responses. One strategy is to alter host protein turnover, either by direct cleavage or by modulating ubiquitination and targeting to the 26S proteasome. Another strategy involves alteration of RNA metabolism by transcriptional activation or ADP-ribosylation of RNA-binding proteins. A third major strategy is to inhibit the kinases involved in plant defence signalling, either by removing phosphates or by direct inhibition. The wide array of strategies bacterial pathogens employ to suppress innate immunity suggest that circumvention of innate immunity is critical for bacterial pathogenicity of plants. PMID:18657470

  16. Interchangeable end effector tools utilized on the protoflight manipulator arm

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A subset of teleoperator and effector tools was designed, fabricated, delivered and successfully demonstrated on the Marshall Space Flight Center (MSFC) protoflight manipulator arm (PFMA). The tools delivered included a rotary power tool with interchangeable collets and two fluid coupling mate/demate tools; one for a Fairchild coupling and the other for a Purolator coupling. An electrical interface connector was also provided for the rotary power tool. A tool set, from which the subset was selected, for performing on-orbit satellite maintenance was identified and conceptionally designed. Maintenance requirements were synthesized, evaluated and prioritized to develop design requirements for a set of end effector tools representative of those needed to provide on-orbit maintenance of satellites to be flown in the 1986 to 2000 timeframe.

  17. Proteomics of effector-triggered immunity (ETI) in plants

    PubMed Central

    Hurley, Brenden; Subramaniam, Rajagopal; Guttman, David S; Desveaux, Darrell

    2014-01-01

    Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant “resistance” proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field. PMID:25513776

  18. Proteomics of effector-triggered immunity (ETI) in plants.

    PubMed

    Hurley, Brenden; Subramaniam, Rajagopal; Guttman, David S; Desveaux, Darrell

    2014-01-01

    Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant "resistance" proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field. PMID:25513776

  19. Subversion of Retrograde Trafficking by Translocated Pathogen Effectors.

    PubMed

    Personnic, Nicolas; Bärlocher, Kevin; Finsel, Ivo; Hilbi, Hubert

    2016-06-01

    Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication. PMID:26924068

  20. Xanthomonas and the TAL Effectors: Nature's Molecular Biologist.

    PubMed

    White, Frank

    2016-01-01

    Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants. PMID:26443209

  1. Autonomous dexterous end-effectors for space robotics

    NASA Technical Reports Server (NTRS)

    Bekey, George A.; Iberall, Thea; Liu, Huan

    1989-01-01

    The development of a knowledge-based controller is summarized for the Belgrade/USC robot hand, a five-fingered end effector, designed for maximum autonomy. The biological principles of the hand and its architecture are presented. The conceptual and software aspects of the grasp selection system are discussed, including both the effects of the geometry of the target object and the task to be performed. Some current research issues are presented.

  2. Multiple Regulatory and Effector Roles of Autophagy in Immunity

    PubMed Central

    Deretic, Vojo

    2009-01-01

    Summary Autophagy is a cytoplasmic homeostasis pathway, enabling cells to digest their own cytosol, remove toxic protein aggregates, and eliminate deffective or surplus organelles. A plenitude of studies have now expanded roles of autophagy to both effector and regulatory functions in innate and adaptive immunity. In its role of an immunological effector, autophagy plays many parts: (i) In its most primeval manifestation, autophagy captures and digests intracellular microbes; (ii) it is an anti-microbial output of Toll-like receptor (TLR) response to pathogen associated molecular patterns (PAMP); and (iii) autophagy is an effector of Th1-Th2 polarization in resistance or susceptibility to intracellular pathogens. As a regulator of immunity, autophagy plays a multitude of functions: (i) It acts as a topological inversion device servicing both innate and adaptive immunity by delivering cytosolic antigens to the lumen of MHC II compartments and cytosolic PAMPs to endosomal TLRs; (ii) autophagy is critical in T cell repertoire selection in the thymus and control of central tolerance; (iii) it plays a role in T and B cell homeostasis; and (iv) autophagy is of significance for inflammatory pathology. A properly functioning autophagy helps prevent autoimmunity and assists in clearing pathogens. When aberrant, it contributes to human inflammatory disorders such as Crohn’s disease. PMID:19269148

  3. Current activities of the Yersinia effector protein YopM.

    PubMed

    Höfling, Sabrina; Grabowski, Benjamin; Norkowski, Stefanie; Schmidt, M Alexander; Rüter, Christian

    2015-05-01

    Yersinia outer protein M (YopM) belongs to the group of Yop effector proteins, which are highly conserved among pathogenic Yersinia species. During infection, the effectors are delivered into the host cell cytoplasm via the type 3 secretion system to subvert the host immune response and support the survival of Yersinia. In contrast to the other Yop effectors, YopM does not possess a known enzymatic activity and its molecular mechanism(s) of action remain(s) poorly understood. However, YopM was shown to promote colonization and dissemination of Yersinia, thus being crucial for the pathogen's virulence in vivo. Moreover, YopM interacts with several host cell proteins and might utilize them to execute its anti-inflammatory activities. The results obtained so far indicate that YopM is a multifunctional protein that counteracts the host immune defense by multiple activities, which are at least partially independent of each other. Finally, its functions seem to be also influenced by differences between the specific YopM isoforms expressed by Yersinia subspecies. In this review, we focus on the global as well as more specific contribution of YopM to virulence of Yersinia during infection and point out the various extra- and intracellular molecular functions of YopM. In addition, the novel cell-penetrating ability of recombinant YopM and its potential applications as a self-delivering immunomodulatory therapeutic will be discussed.

  4. A smart end-effector for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Rhodes, Marvin D.; Wise, Marion A.; Armistead, Maurice F.

    1992-01-01

    A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software.

  5. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans.

    PubMed

    Lee, Hyun-Ah; Kim, Shin-Young; Oh, Sang-Keun; Yeom, Seon-In; Kim, Saet-Byul; Kim, Myung-Shin; Kamoun, Sophien; Choi, Doil

    2014-08-01

    Nonhost resistance (NHR) is a plant immune response to resist most pathogens. The molecular basis of NHR is poorly understood, but recognition of pathogen effectors by immune receptors, a response known as effector-triggered immunity, has been proposed as a component of NHR. We performed transient expression of 54 Phytophthora infestansRXLR effectors in pepper (Capsicum annuum) accessions. We used optimized heterologous expression methods and analyzed the inheritance of effector-induced cell death in an F2 population derived from a cross between two pepper accessions. Pepper showed a localized cell death response upon inoculation with P. infestans, suggesting that recognition of effectors may contribute to NHR in this system. Pepper accessions recognized as many as 36 effectors. Among the effectors, PexRD8 and Avrblb2 induced cell death in a broad range of pepper accessions. Segregation of effector-induced cell death in an F2 population derived from a cross between two pepper accessions fit 15:1, 9:7 or 3:1 ratios, depending on the effector. Our genetic data suggest that a single or two independent/complementary dominant genes are involved in the recognition of RXLR effectors. Multiple loci recognizing a series of effectors may underpin NHR of pepper to P. infestans and confer resistance durability.

  6. Activated Ras Induces Cytoplasmic Vacuolation and Non-Apoptotic Death in Glioblastoma Cells via Novel Effector Pathways

    PubMed Central

    Kaul, Aparna; Overmeyer, Jean H.; Maltese, William A.

    2007-01-01

    Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles and increased autophagic activity. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer. PMID:17210246

  7. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions.

    PubMed

    Grevys, Algirdas; Bern, Malin; Foss, Stian; Bratlie, Diane Bryant; Moen, Anders; Gunnarsen, Kristin Støen; Aase, Audun; Michaelsen, Terje Einar; Sandlie, Inger; Andersen, Jan Terje

    2015-06-01

    Engineering of the constant Fc part of monoclonal human IgG1 (hIgG1) Abs is an approach to improve effector functions and clinical efficacy of next-generation IgG1-based therapeutics. A main focus in such development is tailoring of in vivo half-life and transport properties by engineering the pH-dependent interaction between IgG and the neonatal Fc receptor (FcRn), as FcRn is the main homeostatic regulator of hIgG1 half-life. However, whether such engineering affects binding to other Fc-binding molecules, such as the classical FcγRs and complement factor C1q, has not been studied in detail. These effector molecules bind to IgG1 in the lower hinge-CH2 region, structurally distant from the binding site for FcRn at the CH2-CH3 elbow region. However, alterations of the structural composition of the Fc may have long-distance effects. Indeed, in this study we show that Fc engineering of hIgG1 for altered binding to FcRn also influences binding to both the classical FcγRs and complement factor C1q, which ultimately results in alterations of cellular mechanisms such as Ab-dependent cell-mediated cytotoxicity, Ab-dependent cellular phagocytosis, and Ab-dependent complement-mediated cell lysis. Thus, engineering of the FcRn-IgG1 interaction may greatly influence effector functions, which has implications for the therapeutic efficacy and use of Fc-engineered hIgG1 variants.

  8. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions

    PubMed Central

    Grevys, Algirdas; Bern, Malin; Foss, Stian; Bratlie, Diane Bryant; Moen, Anders; Gunnarsen, Kristin Støen; Aase, Audun; Michaelsen, Terje Einar; Sandlie, Inger

    2015-01-01

    Engineering of the constant Fc part of monoclonal human IgG1 (hIgG1) Abs is an approach to improve effector functions and clinical efficacy of next-generation IgG1-based therapeutics. A main focus in such development is tailoring of in vivo half-life and transport properties by engineering the pH-dependent interaction between IgG and the neonatal Fc receptor (FcRn), as FcRn is the main homeostatic regulator of hIgG1 half-life. However, whether such engineering affects binding to other Fc-binding molecules, such as the classical FcγRs and complement factor C1q, has not been studied in detail. These effector molecules bind to IgG1 in the lower hinge–CH2 region, structurally distant from the binding site for FcRn at the CH2–CH3 elbow region. However, alterations of the structural composition of the Fc may have long-distance effects. Indeed, in this study we show that Fc engineering of hIgG1 for altered binding to FcRn also influences binding to both the classical FcγRs and complement factor C1q, which ultimately results in alterations of cellular mechanisms such as Ab-dependent cell-mediated cytotoxicity, Ab-dependent cellular phagocytosis, and Ab-dependent complement-mediated cell lysis. Thus, engineering of the FcRn–IgG1 interaction may greatly influence effector functions, which has implications for the therapeutic efficacy and use of Fc-engineered hIgG1 variants. PMID:25904551

  9. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  10. Expression Profile of Human Fc Receptors in Mucosal Tissue: Implications for Antibody-Dependent Cellular Effector Functions Targeting HIV-1 Transmission

    PubMed Central

    Cheeseman, Hannah M.; Carias, Ann M.; Evans, Abbey B.; Olejniczak, Natalia J.; Ziprin, Paul; King, Deborah F. L.; Hope, Thomas J.; Shattock, Robin J.

    2016-01-01

    The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the initial events in

  11. STAT3 signaling contributes to the high effector activities of interleukin-15-derived dendritic cells

    PubMed Central

    Okada, Starlyn; Han, Shuhong; Patel, Ekta S; Yang, Li-Jun; Chang, Lung-Ji

    2015-01-01

    Dendritic cells (DCs) are important innate and adaptive immune effectors, and have a key role in antigen presentation and T-cell activation. Different lineages of DCs can be developed from hematopoietic progenitors following cytokine signaling, and the various lineages of DCs display distinct morphology, phenotype and functions. There has been limited information on differential cytokine-mediated molecular signaling in DCs. Analyses of surface molecules by flow cytometry and quantitative RNA profiling revealed differences between DCs derived from interleukin-4 (IL-4) versus IL-15 signaling, yet both lineages of DCs exhibited similar levels of surface molecules key to immune activation. Functional assays confirmed that IL-15-derived DCs elicited greater antigen-specific, primary and secondary CD8 and CD4 T-cell responses than did IL-4-derived DCs. Importantly, IL-15 DCs secreted substantial amounts of proinflammatory cytokines, including IL-6, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNFα), which helped polarize a strong T-cell response. Assessment of signaling pathways revealed that IL-15 DCs exhibited a lower levels of activated signal transducer and activator of transcription 5 (STAT5), STAT6 and extracellular signal-regulated kinase 1/2 than IL-4 DCs, but after lipopolysaccharide (LPS)/TNFα treatment, the STAT3 and p38 mitogen-activated protein kinase (MAPK) activities were significantly enhanced in the IL-15 DCs. Surprisingly, contrary to the canonical IL-15-mediated STAT5 signaling pathway in lymphoid cells, IL-15 did not mediate a strong STAT5 or STAT3 activation in DCs. Further analysis using specific inhibitors to STAT3 and p38 MAPK pathways revealed that the STAT3 signaling, but not p38 MAPK signaling, contributed to IFN-γ production in DCs. Therefore, while IL-15 does not promote the STAT signaling in DCs, the increased STAT3 activity after LPS/TNFα treatment of the IL-15 DCs has a key role in their high IFN-γ effector activities. PMID

  12. Prediction of bacterial type IV secreted effectors by C-terminal features

    PubMed Central

    2014-01-01

    Background Many bacteria can deliver pathogenic proteins (effectors) through type IV secretion systems (T4SSs) to eukaryotic cytoplasm, causing host diseases. The inherent property, such as sequence diversity and global scattering throughout the whole genome, makes it a big challenge to effectively identify the full set of T4SS effectors. Therefore, an effective inter-species T4SS effector prediction tool is urgently needed to help discover new effectors in a variety of bacterial species, especially those with few known effectors, e.g., Helicobacter pylori. Results In this research, we first manually annotated a full list of validated T4SS effectors from different bacteria and then carefully compared their C-terminal sequential and position-specific amino acid compositions, possible motifs and structural features. Based on the observed features, we set up several models to automatically recognize T4SS effectors. Three of the models performed strikingly better than the others and T4SEpre_Joint had the best performance, which could distinguish the T4SS effectors from non-effectors with a 5-fold cross-validation sensitivity of 89% at a specificity of 97%, based on the training datasets. An inter-species cross prediction showed that T4SEpre_Joint could recall most known effectors from a variety of species. The inter-species prediction tool package, T4SEpre, was further used to predict new T4SS effectors from H. pylori, an important human pathogen associated with gastritis, ulcer and cancer. In total, 24 new highly possible H. pylori T4S effector genes were computationally identified. Conclusions We conclude that T4SEpre, as an effective inter-species T4SS effector prediction software package, will help find new pathogenic T4SS effectors efficiently in a variety of pathogenic bacteria. PMID:24447430

  13. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling

    PubMed Central

    Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng; Cao, Yan; Sasaki, Keita; Lai, Chun Wan J; Han, Pyung-Lim; Ueda, Hiroshi; Dessauer, Carmen W; Ehrlich, Michelle E; Xu, Baoji; Willardson, Barry M; Martemyanov, Kirill A

    2015-01-01

    In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly. DOI: http://dx.doi.org/10.7554/eLife.10451.001 PMID:26613416

  14. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling.

    PubMed

    Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng; Cao, Yan; Sasaki, Keita; Lai, Chun Wan J; Han, Pyung-Lim; Ueda, Hiroshi; Dessauer, Carmen W; Ehrlich, Michelle E; Xu, Baoji; Willardson, Barry M; Martemyanov, Kirill A

    2015-01-01

    In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly. PMID:26613416

  15. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion

    PubMed Central

    Kavanagh, Brian; O'Brien, Shaun; Lee, David; Hou, Yafei; Weinberg, Vivian; Rini, Brian; Allison, James P.; Small, Eric J.

    2008-01-01

    Cytotoxic T lymphocyte–associated antigen 4 (CTLA4) delivers inhibitory signals to activated T cells. CTLA4 is constitutively expressed on regulatory CD4+ T cells (Tregs), but its role in these cells remains unclear. CTLA4 blockade has been shown to induce antitumor immunity. In this study, we examined the effects of anti-CTLA4 antibody on the endogenous CD4+ T cells in cancer patients. We show that CTLA4 blockade induces an increase not only in the number of activated effector CD4+ T cells, but also in the number of CD4+ FoxP3+ Tregs. Although the effects were dose-dependent, CD4+ FoxP3+ regulatory T cells could be expanded at lower antibody doses. In contrast, expansion of effector T cells was seen only at the highest dose level studied. Moreover, these expanded CD4+ FoxP3+ regulatory T cells are induced to proliferate with treatment and possess suppressor function. Our results demonstrate that treatment with anti-CTLA4 antibody does not deplete human CD4+ FoxP3+ Tregs in vivo, but rather may mediate its effects through the activation of effector T cells. Our results also suggest that CTLA4 may inhibit Treg proliferation similar to its role on effector T cells. This study is registered at http://www.clinicaltrials.gov/ct2/show/NCT00064129, registry number NCT00064129. PMID:18523152

  16. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner

    PubMed Central

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-01-01

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63. PMID:27243217

  17. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.; Bogdanove, Adam J.

    2016-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  18. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA

    PubMed Central

    Cunha, Larissa D.; Ribeiro, Juliana M.; Fernandes, Talita D.; Massis, Liliana M.; Khoo, Chen Ai; Moffatt, Jennifer H.; Newton, Hayley J.; Roy, Craig R.; Zamboni, Dario S.

    2015-01-01

    Coxiella burnetii is a highly infectious bacterium that promotes its own replication in macrophages by inhibiting several host cell responses. Here, we show that C. burnetii inhibits caspase-1 activation in primary mouse macrophages. By using co-infection experiments, we determine that the infection of macrophages with C. burnetii inhibits the caspase-11-mediated non-canonical activation of the NLRP3 inflammasome induced by subsequent infection with Escherichia coli or Legionella pneumophila. Genetic screening using flagellin mutants of L. pneumophila as a surrogate host, reveals a novel C. burnetii gene (IcaA) involved in the inhibition of caspase activation. Expression of IcaA in L. pneumophila inhibited the caspase-11 activation in macrophages. Moreover, icaA- mutants of C. burnetii failed to suppress the caspase-11-mediated inflammasome activation induced by L. pneumophila. Our data reveal IcaA as a novel C. burnetii effector protein that is secreted by the Dot/Icm type IV secretion system and interferes with the caspase-11-induced, non-canonical activation of the inflammasome. PMID:26687278

  19. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity.

    PubMed

    Lozano-Durán, Rosa; Bourdais, Gildas; He, Sheng Yang; Robatzek, Silke

    2014-04-01

    Successful pathogens counter immunity at multiple levels, mostly through the action of effectors. Pseudomonas syringae secretes c. 30 effectors, some of which have been shown to inhibit plant immunity triggered upon perception of conserved pathogen-associated molecular patterns (PAMPs). One of these is HopM1, which impairs late immune responses through targeting the vesicle trafficking-related AtMIN7 for degradation. Here, we report that in planta expressed HopM1 suppresses two early PAMP-triggered responses, the oxidative burst and stomatal immunity, both of which seem to require proteasomal function but are independent of AtMIN7. Notably, a 14-3-3 protein, GRF8/AtMIN10, was found previously to be a target of HopM1 in vivo, and expression of HopM1 mimics the effect of chemically and genetically disrupting 14-3-3 function. Our data further show that the function of 14-3-3 proteins is required for PAMP-triggered oxidative burst and stomatal immunity, and chemical-mediated disruption of the 14-3-3 interactions with their client proteins restores virulence of a HopM1-deficient P. syringae mutant, providing a link between HopM1 and the involvement of 14-3-3 proteins in plant immunity. Taken together, these results unveil the impact of HopM1 on the PAMP-triggered oxidative burst and stomatal immunity in an AtMIN7-independent manner, most likely acting at the function of (a) 14-3-3 protein(s). PMID:24372399

  20. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    PubMed

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. PMID:27373538

  1. Cathepsin G-regulated Release of Formyl Peptide Receptor Agonists Modulate Neutrophil Effector Functions*

    PubMed Central

    Woloszynek, Josh C.; Hu, Ying; Pham, Christine T. N.

    2012-01-01

    Neutrophil serine proteases play an important role in inflammation by modulating neutrophil effector functions. We have previously shown that neutrophils deficient in the serine proteases cathepsin G and neutrophil elastase (CG/NE neutrophils) exhibit severe defects in chemokine CXCL2 release and reactive oxygen species (ROS) production when activated on immobilized immune complex. Exogenously added active CG rescues these defects, but the mechanism remains undefined. Using a protease-based proteomic approach, we found that, in vitro, the addition of exogenous CG to immune complex-stimulated CG/NE neutrophils led to a decrease in the level of cell-associated annexin A1 (AnxA1) and cathelin-related antimicrobial peptide (CRAMP), both known inflammatory mediators. We further confirmed that, in vivo, CG was required for the extracellular release of AnxA1 and CRAMP in a subcutaneous air pouch model. In vitro, CG efficiently cleaved AnxA1, releasing the active N-terminal peptide Ac2-26, and processed CRAMP in limited fashion. Ac2-26 and CRAMP peptides enhanced the release of CXCL2 by CG/NE neutrophils in a dose-dependent manner via formyl peptide receptor (FPR) stimulation. Blockade of FPRs by an antagonist, Boc2 (t-Boc-Phe-d-Leu-Phe-d-Leu-Phe), abrogates CXCL2 release, whereas addition of FPR agonists, fMLF and F2L, relieves Boc2 inhibition. Furthermore, the addition of active CG, but not inactive CG, also relieves Boc2 inhibition. These findings suggest that CG modulates neutrophil effector functions partly by controlling the release (and proteolysis) of FPR agonists. Unexpectedly, we found that mature CRAMP, but not Ac2-26, induced ROS production through an FPR-independent pathway. PMID:22879591

  2. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence

    PubMed Central

    Tufariello, JoAnn M.; Chapman, Jessica R.; Kerantzas, Christopher A.; Wong, Ka-Wing; Vilchèze, Catherine; Jones, Christopher M.; Cole, Laura E.; Tinaztepe, Emir; Thompson, Victor; Fenyö, David; Niederweis, Michael; Ueberheide, Beatrix; Philips, Jennifer A.; Jacobs, William R.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1–ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG–EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG–EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15–PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5–PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion. PMID:26729876

  3. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine.

    PubMed

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Biswas, Jaydip; Mallick, Atanu; Bose, Anamika; Baral, Rathindranath

    2016-07-01

    One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8(+) T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4(+) helper T cells towards generation and maintenance of CD8(+) effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4(+) helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8(+) T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8(+) T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α(+) dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8(+) T cell functions. In order to search the mechanism of CD4(+) T cell help on NLGP-mediated CD8 effector functions, the role of CD4(+) helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4(+) helper T cells with its CD8 counterpart. In conclusion, it was found that CD4(+) T cell help is not required to generate CD8(+) T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction.

  4. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine.

    PubMed

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Biswas, Jaydip; Mallick, Atanu; Bose, Anamika; Baral, Rathindranath

    2016-07-01

    One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8(+) T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4(+) helper T cells towards generation and maintenance of CD8(+) effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4(+) helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8(+) T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8(+) T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α(+) dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8(+) T cell functions. In order to search the mechanism of CD4(+) T cell help on NLGP-mediated CD8 effector functions, the role of CD4(+) helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4(+) helper T cells with its CD8 counterpart. In conclusion, it was found that CD4(+) T cell help is not required to generate CD8(+) T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction. PMID:27178306

  5. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity

    PubMed Central

    Stam, Remco; Jupe, Julietta; Howden, Andrew J. M.; Morris, Jenny A.; Boevink, Petra C.; Hedley, Pete E.; Huitema, Edgar

    2013-01-01

    Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions. PMID:23536880

  6. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2.

    PubMed

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I B; Schornack, Sebastian; Jones, Alexandra M E; Bozkurt, Tolga O; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  7. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2

    PubMed Central

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I. B.; Schornack, Sebastian; Jones, Alexandra M. E.; Bozkurt, Tolga O.; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  8. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    PubMed Central

    Lina, Taslima T.; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W.

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  9. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    PubMed

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  10. Complement--tapping into new sites and effector systems.

    PubMed

    Kolev, Martin; Le Friec, Gaelle; Kemper, Claudia

    2014-12-01

    Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.

  11. Exact positioning of the robotic arm end effector

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  12. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    PubMed

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  13. p53 as an Effector or Inhibitor of Therapy Response.

    PubMed

    Ablain, Julien; Poirot, Brigitte; Esnault, Cécile; Lehmann-Che, Jacqueline; de Thé, Hugues

    2015-12-04

    Although integrity of the p53 signaling pathway in a given tumor was expected to be a critical determinant of response to therapies, most clinical studies failed to link p53 status and treatment outcome. Here, we present two opposite situations: one in which p53 is an essential effector of cure by targeted leukemia therapies and another one in advanced breast cancers in which p53 inactivation is required for the clinical efficacy of dose-dense chemotherapy. If p53 promotes or blocks therapy response, therapies must be tailored on its status in individual tumors.

  14. Differential role of CD4+ cells in the sensitization and effector phases of accelerated graft rejection.

    PubMed

    Sablinski, T; Sayegh, M H; Hancock, W W; Kut, J P; Kwok, C A; Milford, E L; Tilney, N L; Kupiec-Weglinski, J W

    1991-01-01

    Although CD4-targeted therapy markedly prolongs survival of organ allografts in naive rodents, its effects in primed hosts have not been studied. In our model of accelerated rejection (ACCR) of cardiac Tx in rats, treatment with BWH-4, a CD4 mAb (IgG2a), in the sensitization (between skin and heart Tx) but not in the effector (after cardiac Tx) phase, abrogated fulminant less than 36 hr rejection response and prolonged Tx survival to ca. 11 days. This effect correlated with decreased frequency of circulating CD4+ cells, but it did not depend upon their total depletion. It was also related to BWH-4 mAb-mediated elimination/depression of strong anti-donor humoral responses and cellular responses as determined by lymphocyte-mediated cytotoxicity and mixed lymphocyte reaction and mounted otherwise at the time of engraftment by untreated sensitized hosts. Immunoperoxidase studies of cardiac Tx from BWH-4-conditioned recipients revealed reduced T and B cell activities, reflected in abolition/reduction in deposition of humoral mediators, infiltrating cells, intra-Tx elaboration of interleukin-2 and interferon-gamma, and cell activation. This first report of the successful use of CD4 mAb in sensitized recipients of vascularized organ Tx, stresses the role of CD4+ cells as potential targets for immunosuppression in the sensitization phase of accelerated Tx injury. The beneficial therapeutic effect, probably due to both depletion and functional inhibition of CD4+ T cells, has been achieved by using relatively low doses of BWH-4 mAb. PMID:1824805

  15. IgGA: a "cross-isotype" engineered human Fc antibody domain that displays both IgG-like and IgA-like effector functions.

    PubMed

    Kelton, William; Mehta, Nishant; Charab, Wissam; Lee, Jiwon; Lee, Chang-han; Kojima, Takaaki; Kang, Tae Hyun; Georgiou, George

    2014-12-18

    All clinically approved antibodies are of the IgG isotype and mediate the clearance of target cells via binding to Fcγ receptors and complement (C1q). Even though IgA can elicit powerful cytotoxic action via FcαRI receptor binding, IgA antibodies have not been amenable to therapeutic development. Here, we report the engineering of a "cross-isotype" antibody, IgGA, which combines the effector functions of both IgG and IgA. IgGA binds to FcαRI with an affinity comparable to that of IgA, and to the activating Fcγ receptors, FcγRI and FcγRIIa, with high affinity, and displays increased binding to C1q compared to IgG. Unlike trastuzumab-IgG, trastuzumab-IgGA potently activates both neutrophils and macrophages to kill Her2(+) cancer cells. Furthermore, IgGA mediates greater complement-dependent cytotoxicity than IgG1 or IgA antibodies. The multitude of IgGA effector functions could be important for therapeutic purposes and highlights the concept of engineering antibodies that combine effector functions from multiple antibody isotypes. PMID:25500223

  16. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  17. A New Method To Determine In Vivo Interactomes Reveals Binding of the Legionella pneumophila Effector PieE to Multiple Rab GTPases

    PubMed Central

    Mousnier, Aurélie; Schroeder, Gunnar N.; Stoneham, Charlotte A.; So, Ernest C.; Garnett, James A.; Yu, Lu; Matthews, Steve J.; Choudhary, Jyoti S.; Hartland, Elizabeth L.

    2014-01-01

    ABSTRACT Legionella pneumophila, the causative agent of Legionnaires’ disease, uses the Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effectors into host cells, where they subvert host cell signaling. The function and host cell targets of most effectors remain unknown. PieE is a 69-kDa Dot/Icm effector containing three coiled-coil (CC) regions and 2 transmembrane (TM) helices followed by a fourth CC region. Here, we report that PieE dimerized by an interaction between CC3 and CC4. We found that ectopically expressed PieE localized to the endoplasmic reticulum (ER) and induced the formation of organized smooth ER, while following infection PieE localized to the Legionella-containing vacuole (LCV). To identify the physiological targets of PieE during infection, we established a new purification method for which we created an A549 cell line stably expressing the Escherichia coli biotin ligase BirA and infected the cells with L. pneumophila expressing PieE fused to a BirA-specific biotinylation site and a hexahistidine tag. Following tandem Ni2+ nitrilotriacetic acid (NTA) and streptavidin affinity chromatography, the effector-target complexes were analyzed by mass spectrometry. This revealed interactions of PieE with multiple host cell proteins, including the Rab GTPases 1a, 1b, 2a, 5c, 6a, 7, and 10. Binding of the Rab GTPases, which was validated by yeast two-hybrid binding assays, was mediated by the PieE CC1 and CC2. In summary, using a novel, highly specific strategy to purify effector complexes from infected cells, which is widely applicable to other pathogens, we identified PieE as a multidomain LCV protein with promiscuous Rab GTPase-binding capacity. PMID:25118235

  18. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    PubMed

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.

  19. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.

    PubMed

    Lu, Shunwen; Edwards, Michael C

    2016-02-01

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (FHB), a devastating disease of wheat. We report here a comprehensive analysis of SSCPs encoded in the genome of this fungus and selection of candidate effector proteins through proteomics and sequence/transcriptional analyses. A total of 190 SSCPs were identified in the genome of F. graminearum (isolate PH-1) based on the presence of N-terminal signal peptide sequences, size (≤200 amino acids), and cysteine content (≥2%) of the mature proteins. Twenty-five (approximately 13%) SSCPs were confirmed to be true extracellular proteins by nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis of a minimal medium-based in vitro secretome. Sequence analysis suggested that 17 SSCPs harbor conserved functional domains, including two homologous to Ecp2, a known effector produced by the tomato pathogen Cladosporium fulvum. Transcriptional analysis revealed that at least 34 SSCPs (including 23 detected in the in vitro secretome) are expressed in infected wheat heads; about half are up-regulated with expression patterns correlating with the development of FHB. This work provides a solid candidate list for SSCP-derived effectors that may play roles in mediating F. graminearum-wheat interactions. The in vitro secretome-based method presented here also may be applicable for identifying candidate effectors in other ascomycete pathogens of crop plants. PMID:26524547

  20. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.

    PubMed

    Lu, Shunwen; Edwards, Michael C

    2016-02-01

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (FHB), a devastating disease of wheat. We report here a comprehensive analysis of SSCPs encoded in the genome of this fungus and selection of candidate effector proteins through proteomics and sequence/transcriptional analyses. A total of 190 SSCPs were identified in the genome of F. graminearum (isolate PH-1) based on the presence of N-terminal signal peptide sequences, size (≤200 amino acids), and cysteine content (≥2%) of the mature proteins. Twenty-five (approximately 13%) SSCPs were confirmed to be true extracellular proteins by nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis of a minimal medium-based in vitro secretome. Sequence analysis suggested that 17 SSCPs harbor conserved functional domains, including two homologous to Ecp2, a known effector produced by the tomato pathogen Cladosporium fulvum. Transcriptional analysis revealed that at least 34 SSCPs (including 23 detected in the in vitro secretome) are expressed in infected wheat heads; about half are up-regulated with expression patterns correlating with the development of FHB. This work provides a solid candidate list for SSCP-derived effectors that may play roles in mediating F. graminearum-wheat interactions. The in vitro secretome-based method presented here also may be applicable for identifying candidate effectors in other ascomycete pathogens of crop plants.

  1. Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana.

    PubMed

    Johansson, Oskar N; Fahlberg, Per; Karimi, Elham; Nilsson, Anders K; Ellerström, Mats; Andersson, Mats X

    2014-01-01

    Plants possess a highly sophisticated system for defense against microorganisms. So called MAMP (microbe-associated molecular patterns) triggered immunity (MTI) prevents the majority of non-adapted pathogens from causing disease. Adapted plant pathogens use secreted effector proteins to interfere with such signaling. Recognition of microbial effectors or their activity by plant resistance (R)-proteins triggers a second line of defense resulting in effector triggered immunity (ETI). The latter usually comprises the hypersensitive response (HR) which includes programmed cell death at the site of infection. Phospholipase D (PLD) mediated production of phosphatidic acid (PA) has been linked to both MTI and ETI in plants. Inhibition of PLD activity has been shown to attenuate MTI as well as ETI. In this study, we systematically tested single and double knockouts in all 12 genes encoding PLDs in Arabidopsis thaliana for effects on ETI and MTI. No single PLD could be linked to ETI triggered by recognition of effectors secreted by the bacterium Pseudomonas syringae. However, repression of PLD dependent PA production by n-butanol strongly inhibited the HR following Pseudomonas syringae effector recognition. In addition some pld mutants were more sensitive to n-butanol than wild type. Thus, the effect of mutations of PLDs could become detectable, and the corresponding genes can be proposed to be involved in the HR. Only knockout of PLDδ caused a loss of MTI-induced cell wall based defense against the non-host powdery mildew Erysiphe pisi. This is thus in stark contrast to the involvement of a multitude of PLD isoforms in the HR triggered by AvrRpm1 recognition. PMID:25431578

  2. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication.

    PubMed

    Rai, Amrita; Oprisko, Anastasia; Campos, Jeremy; Fu, Yangxue; Friese, Timon; Itzen, Aymelt; Goody, Roger S; Gazdag, Emerich Mihai; Müller, Matthias P

    2016-01-01

    In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking. PMID:27552051

  3. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    PubMed Central

    Rafiqi, Maryam; Jelonek, Lukas; Akum, Ndifor F.; Zhang, Feng; Kogel, Karl-Heinz

    2013-01-01

    One of the emerging systems in plant–microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis. PMID:23874344

  4. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication.

    PubMed

    Rai, Amrita; Oprisko, Anastasia; Campos, Jeremy; Fu, Yangxue; Friese, Timon; Itzen, Aymelt; Goody, Roger S; Gazdag, Emerich Mihai; Müller, Matthias P

    2016-08-23

    In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking.

  5. Local sensory control of a dexterous end effector

    NASA Technical Reports Server (NTRS)

    Pinto, Victor H.; Everett, Louis J.; Driels, Morris

    1990-01-01

    A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented.

  6. Innovative technology summary report: Confined sluicing end effector

    SciTech Connect

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed.

  7. Genome-Wide Silencing in Drosophila Captures Conserved Apoptotic Effectors

    PubMed Central

    Chew, Su Kit; Chen, Po; Link, Nichole; Galindo, Kathleen A.; Pogue, Kristi; Abrams, John M.

    2009-01-01

    Summary Apoptosis is a conserved form of programmed cell death (PCD) firmly established in the etiology, pathogenesis and treatment of many human diseases. Central to the core machinery of apoptosis are the caspases and their proximal regulators. Current models for caspase control envision a balance of opposing elements, with variable contributions from positive regulators and negative regulators among different cell types and species1. To advance a comprehensive view of components that support caspase-dependent cell death, we conducted a genome-wide silencing screen in the Drosophila model. Our strategy combined a library of dsRNAs together with a chemical antagonist of Inhibitor of Apoptosis Proteins (IAPs) that simulates the action of native regulators in the Reaper/Smac family2. A highly validated set of targets necessary for death provoked by multiple stimuli was identified. Among these, Tango7 is advanced here as a novel effector. Cells depleted for this gene resisted apoptosis at a step prior to induction of effector caspase activity and directed silencing of Tango7 in the animal prevented caspase-dependent PCD. Unlike known apoptosis regulators in this model3, Tango7 activity did not influence stimulus-dependent loss of Drosophila IAP1 (DIAP1) but, instead, regulated levels of the apical caspase Dronc. Likewise, the human Tango7 counterpart, PCID1, similarly impinged on caspase 9, revealing a novel regulatory axis impacting the apoptosome. PMID:19483676

  8. Flight Control Using Distributed Shape-Change Effector Arrays

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Montgomery, Raymond C.; Green, Lawrence I.; Park, Michael A.

    2000-01-01

    Recent discoveries in material science and fluidics have been used to create a variety of novel effector devices that offer great potential to enable new approaches to aerospace vehicle flight control. Examples include small inflatable blisters, shape-memory alloy diaphragms, and piezoelectric patches that may be used to produce distortions or bumps on the surface of an airfoil to generate control moments. Small jets have also been used to produce a virtual shape-change through fluidic means by creating a recirculation bubble on the surface of an airfoil. An advanced aerospace vehicle might use distributed arrays of hundreds of such devices to generate moments for stabilization and maneuver control, either augmenting or replacing conventional ailerons, flaps or rudders. This research demonstrates the design and use of shape-change device arrays for a tailless aircraft in a low-rate maneuvering application. A methodology for assessing the control authority of the device arrays is described, and a suite of arrays is used in a dynamic simulation to illustrate allocation and deployment methodologies. Although the authority of the preliminary shape-change array designs studied in this paper appeared quite low, the simulation results indicate that the effector suite possessed sufficient authority to stabilize and maneuver the vehicle in mild turbulence.

  9. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    PubMed

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  10. Heat shock proteins, end effectors of myocardium ischemic preconditioning?

    PubMed Central

    Guisasola, María Concepcion; Desco, Maria del Mar; Gonzalez, Fernanda Silvana; Asensio, Fernando; Dulin, Elena; Suarez, Antonio; Garcia Barreno, Pedro

    2006-01-01

    The purpose of this study was to investigate (1) whether ischemia-reperfusion increased the content of heat shock protein 72 (Hsp72) transcripts and (2) whether myocardial content of Hsp72 is increased by ischemic preconditioning so that they can be considered as end effectors of preconditioning. Twelve male minipigs (8 protocol, 4 sham) were used, with the following ischemic preconditioning protocol: 3 ischemia and reperfusion 5-minute alternative cycles and last reperfusion cycle of 3 hours. Initial and final transmural biopsies (both in healthy and ischemic areas) were taken in all animals. Heat shock protein 72 messenger ribonucleic acid (mRNA) expression was measured by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method using complementary DNA normalized against the housekeeping gene cyclophilin. The identification of heat shock protein 72 was performed by immunoblot. In our “classic” preconditioning model, we found no changes in mRNA hsp72 levels or heat shock protein 72 content in the myocardium after 3 hours of reperfusion. Our experimental model is valid and the experimental techniques are appropriate, but the induction of heat shock proteins 72 as end effectors of cardioprotection in ischemic preconditioning does not occur in the first hours after ischemia, but probably at least 24 hours after it, in the so-called “second protection window.” PMID:17009598

  11. X-ray structures of NS1 effector domain mutants.

    PubMed

    Xia, Shuangluo; Robertus, Jon D

    2010-02-15

    The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.

  12. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    PubMed Central

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  13. STAR: a simple TAL effector assembly reaction using isothermal assembly

    PubMed Central

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M.

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly (‘Gibson assembly’) that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  14. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    PubMed

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-09-12

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology.

  15. Evaluation of Secretion Prediction Highlights Differing Approaches Needed for Oomycete and Fungal Effectors

    PubMed Central

    Sperschneider, Jana; Williams, Angela H.; Hane, James K.; Singh, Karam B.; Taylor, Jennifer M.

    2015-01-01

    The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen's advantage. Proteinaceous effectors are synthesized intracellularly and must be externalized to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score) and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localization predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes. PMID:26779196

  16. Evaluation of Secretion Prediction Highlights Differing Approaches Needed for Oomycete and Fungal Effectors.

    PubMed

    Sperschneider, Jana; Williams, Angela H; Hane, James K; Singh, Karam B; Taylor, Jennifer M

    2015-01-01

    The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen's advantage. Proteinaceous effectors are synthesized intracellularly and must be externalized to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score) and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localization predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes. PMID:26779196

  17. Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response

    PubMed Central

    Pernas, Lena; Adomako-Ankomah, Yaw; Shastri, Anjali J.; Ewald, Sarah E.; Treeck, Moritz; Boyle, Jon P.; Boothroyd, John C.

    2014-01-01

    Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA−) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA− strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. PMID:24781109

  18. Neutrophil activation induced by ArtinM: release of inflammatory mediators and enhancement of effector functions.

    PubMed

    Toledo, Karina Alves; Scwartz, Carolina; Oliveira, Aline Ferreira; Conrado, Marina Cavalcanti Albuquerque Veiga; Bernardes, Emerson Soares; Fernandes, Luiz Cláudio; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela; Moreno, Andréa Novais

    2009-03-24

    The D-mannose binding lectin ArtinM from Artocarpus integrifolia, previously known as KM+ and artocarpin, is considered a stimulant of Th1-type immunity, which is able to confer resistance to some intracellular pathogens. In addition, ArtinM induces neutrophil migration by haptotaxis through simultaneous interactions of its carbohydrate recognition domains (CRDs) with glycans expressed on the extracellular matrix and the neutrophil surface. In the present study, we have expanded the characterization of ArtinM as a neutrophil activator. Exposure of neutrophils to ArtinM for 15 min resulted in tyrosine phosphorylation of intracellular proteins, a process that was selectively inhibited by d-mannose or mannotriose. Shortly after stimulation, neutrophils secreted high levels of LTB(4) and underwent shedding of L-selectin from their surface. Exposure to ArtinM enhanced neutrophil functions, such as respiratory burst and zymozan and Listeria monocytogenes phagocytosis. In addition, ArtinM-stimulated neutrophils displayed increased CXCL-8 secretion and TLR2 gene transcription. These results demonstrate that ArtinM is able to induce potent neutrophil activation, a feature that should be strongly considered in the assessment of the lectin capacity to confer resistance against infections.

  19. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    PubMed Central

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  20. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  1. Candidate Effector Proteins of the Rust Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments.

    PubMed

    Petre, Benjamin; Saunders, Diane G O; Sklenar, Jan; Lorrain, Cécile; Win, Joe; Duplessis, Sébastien; Kamoun, Sophien

    2015-06-01

    Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalog of secreted proteins, some of which have been considered candidate effectors. Unraveling how these proteins function in host cells is a key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localization and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria, and discrete cellular bodies. We also used coimmunoprecipitation (coIP) and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and TOPLESS-related protein 4 from poplar by in planta coIP. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.

  2. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ.

    PubMed

    Lilo, Sarit; Zheng, Ying; Bliska, James B

    2008-09-01

    Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1beta (IL-1beta) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1beta was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1beta following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1beta were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.

  3. Caspase-1 Activation in Macrophages Infected with Yersinia pestis KIM Requires the Type III Secretion System Effector YopJ▿

    PubMed Central

    Lilo, Sarit; Zheng, Ying; Bliska, James B.

    2008-01-01

    Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1β (IL-1β) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1β was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1β following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1β were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages. PMID:18559430

  4. USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level

    PubMed Central

    Pouly, Daniel; Chenaux, Sébastien; Martin, Virginie; Babis, Maja; Koch, Rafael; Nagoshi, Emi; Katanaev, Vladimir L.; Gachon, Frédéric; Staub, Olivier

    2016-01-01

    The mammalian circadian clock influences most aspects of physiology and behavior through the transcriptional control of a wide variety of genes, mostly in a tissue-specific manner. About 20 clock-controlled genes (CCGs) oscillate in virtually all mammalian tissues and are generally considered as core clock components. One of them is Ubiquitin-Specific Protease 2 (Usp2), whose status remains controversial, as it may be a cogwheel regulating the stability or activity of core cogwheels or an output effector. We report here that Usp2 is a clock output effector related to bodily Ca2+ homeostasis, a feature that is conserved across evolution. Drosophila with a whole-body knockdown of the orthologue of Usp2, CG14619 (dUsp2-kd), predominantly die during pupation but are rescued by dietary Ca2+ supplementation. Usp2-KO mice show hyperabsorption of dietary Ca2+ in small intestine, likely due to strong overexpression of the membrane scaffold protein NHERF4, a regulator of the Ca2+ channel TRPV6 mediating dietary Ca2+ uptake. In this tissue, USP2-45 is found in membrane fractions and negatively regulates NHERF4 protein abundance in a rhythmic manner at the protein level. In clock mutant animals (Cry1/Cry2-dKO), rhythmic USP2-45 expression is lost, as well as the one of NHERF4, confirming the inverse relationship between USP2-45 and NHERF4 protein levels. Finally, USP2-45 interacts in vitro with NHERF4 and endogenous Clathrin Heavy Chain. Taken together these data prompt us to define USP2-45 as the first clock output effector acting at the post-translational level at cell membranes and possibly regulating membrane permeability of Ca2+. PMID:26756164

  5. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection.

    PubMed

    Peters, Nathan C; Pagán, Antonio J; Lawyer, Phillip G; Hand, Timothy W; Henrique Roma, Eric; Stamper, Lisa W; Romano, Audrey; Sacks, David L

    2014-12-01

    In contrast to the ability of long-lived CD8(+) memory T cells to mediate protection against systemic viral infections, the relationship between CD4(+) T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44(+)CD62L(-)T-bet(+)Ly6C+ effector (T(EFF)) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C(+) T(EFF) cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44(+)CD62L(-)Ly6C(-) effector memory or CD44(+)CD62L(+)Ly6C(-) central memory cells. During chronic infection, Ly6C(+) T(EFF) cells were maintained at high frequencies via reactivation of T(CM) and the T(EFF) themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing T(EFF) cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.

  6. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness.

    PubMed

    Ziblat, Andrea; Domaica, Carolina I; Spallanzani, Raúl G; Iraolagoitia, Ximena L Raffo; Rossi, Lucas E; Avila, Damián E; Torres, Nicolás I; Fuertes, Mercedes B; Zwirner, Norberto W

    2015-01-01

    IL-27, a member of the IL-12 family of cytokines, is produced by APCs, and displays pro- and anti-inflammatory effects. How IL-27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL-27 and that blockade of IL-27R (CD130) reduced the amount of IFN-γ produced by NK cells during their coculture, showing the importance of IL-27 during DC-NK-cell crosstalk. Accordingly, human rIL-27 stimulated IFN-γ secretion by NK cells in a STAT1-dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL-18. Preincubation experiments demonstrated that IL-27 primed NK cells for IL-18-induced IFN-γ secretion, which was associated with an IL-27-driven upregulation of T-bet expression. Also, IL-27 triggered NKp46-dependent NK-cell-mediated cytotoxicity against Raji, T-47D, and HCT116 cells, and IL-18 enhanced this cytotoxic response. Such NK-cell-mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL-mediated cytotoxicity but not Fas-FasL interaction. Moreover, IL-27 also potentiated Ab-dependent cell-mediated cytotoxicity against mAb-coated target cells. Taken together, IL-27 stimulates NK-cell effector functions, which might be relevant in different physiological and pathological situations. PMID:25308526

  7. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    PubMed

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora.

  8. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    PubMed

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. PMID:26443834

  9. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    PubMed Central

    2010-01-01

    Background Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a

  10. Macrophages as effector cells of protective immunity in murine schistosomiasis: macrophage activation in mice vaccinated with radiation-attenuated cercariae.

    PubMed Central

    James, S L; Natovitz, P C; Farrar, W L; Leonard, E J

    1984-01-01

    Cell-mediated immune responses contributing to macrophage activation were compared in mice that demonstrated partial resistance to challenge Schistosoma mansoni infection as a result of vaccination with radiation-attenuated cercariae or of ongoing low-grade primary infection. Vaccinated mice developed significant delayed hypersensitivity reactions to soluble schistosome antigens in vivo. Splenocytes from vaccinated animals responded to in vitro culture with various specific antigens (soluble adult worm extract, living or disrupted schistosomula) by proliferation and production of macrophage-activating lymphokines as did lymphocytes from S. mansoni-infected animals. Macrophage-activating factors produced by spleen cells from vaccinated mice upon specific antigen stimulation eluted as a single peak on Sephadex G-100 with a molecular weight of approximately 50,000 and contained gamma interferon activity. Moreover, peritoneal macrophages with larvicidal and tumoricidal activity were recovered from vaccinated mice after intraperitoneal challenge with soluble schistosome antigens, a procedure also observed to elicit activated macrophages in S. mansoni-infected animals. These observations demonstrate that vaccination with irradiated cercariae stimulates many of the same cellular responses observed after primary S. mansoni infection, and suggest that lymphokine-activated macrophages may participate in the effector mechanism of vaccine-induced and concomitant immunity to challenge schistosome infection. This is the first demonstration of a potential immune effector mechanism in the irradiated vaccine model. PMID:6609885

  11. Structures of the PelD Cyclic Diguanylate Effector Involved in Pellicle Formation in Pseudomonas aeruginosa PAO1

    PubMed Central

    Li, Zhi; Chen, Jui-Hui; Hao, Yue; Nair, Satish K.

    2012-01-01

    The second messenger bis-(3′–5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) plays a vital role in the global regulation in bacteria. Here, we describe structural and biochemical characterization of a novel c-di-GMP effector PelD that is critical to the formation of pellicles by Pseudomonas aeruginosa. We present high-resolution structures of a cytosolic fragment of PelD in apo form and its complex with c-di-GMP. The structure contains a bi-domain architecture composed of a GAF domain (commonly found in cyclic nucleotide receptors) and a GGDEF domain (found in c-di-GMP synthesizing enzymes), with the latter binding to one molecule of c-di-GMP. The GGDEF domain has a degenerate active site but a conserved allosteric site (I-site), which we show binds c-di-GMP with a Kd of 0.5 μm. We identified a series of residues that are crucial for c-di-GMP binding, and confirmed the roles of these residues through biochemical characterization of site-specific variants. The structures of PelD represent a novel class of c-di-GMP effector and expand the knowledge of scaffolds that mediate c-di-GMP recognition. PMID:22810222

  12. Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation

    PubMed Central

    Trautmann, Axel; Rückert, Beate; Schmid-Grendelmeier, Peter; Niederer, Eva; Bröcker, Eva-B; Blaser, Kurt; Akdis, Cezmi A

    2003-01-01

    Heterogeneity of lymphocyte populations demonstrates the diversity of cellular immune responses and provide a better understanding of the immune system. CD3+ CD8+ T cells exhibit a low CD8 expressing (CD8low) population in flow cytometric analysis of peripheral blood T cells. In healthy donors, this population consists of 0·2–7·0% of all CD8 T cells. The majority of the CD8low T cell population showed an elevated expression of CD25, CD45RA, and CD95L, and low levels of CD28, CD62L and CD45RO. Circulating CD8low T cells resemble cytotoxic effector cells because they express cytolytic mediators and are able to execute cytotoxicity. A restricted T cell receptor profile with increased Vβ9, Vβ14 and Vβ23 expression was observed and the CD8low T cell population contain Epstein–Barr virus-specific T cells. Therefore, the CD8low population represent a subset of activated CD8 effector T cells, resulting most probably from a continous and/or balanced immune response to intracellular pathogens. PMID:12603596

  13. Ralstonia solanacearum type III secretion system effector Rip36 induces a hypersensitive response in the nonhost wild eggplant Solanum torvum.

    PubMed

    Nahar, Kamrun; Matsumoto, Iyo; Taguchi, Fumiko; Inagaki, Yoshishige; Yamamoto, Mikihiro; Toyoda, Kazuhiro; Shiraishi, Tomonori; Ichinose, Yuki; Mukaihara, Takafumi

    2014-04-01

    Ralstonia solanacearum is a Gram-negative soil-borne bacterium that causes bacterial wilt disease in more than 200 plant species, including economically important Solanaceae species. In R. solanacearum, the hypersensitive response and pathogenicity (Hrp) type III secretion system is required for both the ability to induce the hypersensitive response (HR) in nonhost plants and pathogenicity in host plants. Recently, 72 effector genes, called rip (Ralstonia protein injected into plant cells), have been identified in R. solanacearum RS1000. RS1002, a spontaneous nalixidic acid-resistant derivative of RS1000, induced strong HR in the nonhost wild eggplant Solanum torvum in an Hrp-dependent manner. An Agrobacterium-mediated transient expression system revealed that Rip36, a putative Zn-dependent protease effector of R. solanacearum, induced HR in S. torvum. A mutation in the putative Zn-binding motif (E149A) completely abolished the ability to induce HR. In agreement with this result, the RS1002-derived Δrip36 and rip36E149A mutants lost the ability to induce HR in S. torvum. An E149A mutation had no effect on the translocation of Rip36 into plant cells. These results indicate that Rip36 is an avirulent factor that induces HR in S. torvum and that a putative Zn-dependent protease motif is essential for this activity.

  14. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes

    SciTech Connect

    Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; Tainer, John A.

    2014-12-08

    Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.

  15. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes

    DOE PAGES

    Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; Tainer, John A.

    2014-12-08

    Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.

  16. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling.

    PubMed

    Athuluri-Divakar, Sai Krishna; Vasquez-Del Carpio, Rodrigo; Dutta, Kaushik; Baker, Stacey J; Cosenza, Stephen C; Basu, Indranil; Gupta, Yogesh K; Reddy, M V Ramana; Ueno, Lynn; Hart, Jonathan R; Vogt, Peter K; Mulholland, David; Guha, Chandan; Aggarwal, Aneel K; Reddy, E Premkumar

    2016-04-21

    Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling. PMID:27104980

  17. Co-inhibitory molecules: Controlling the effectors or controlling the controllers?

    PubMed

    Thangavelu, Govindarajan; Smolarchuk, Christa; Anderson, Colin C

    2010-04-01

    Nearly forty years ago the concept was proposed that lymphocytes are negatively regulated by what are now called co-inhibitory signals. Nevertheless, it is only the more recent identification of numerous co-inhibitors and their critical functions that has brought co-inhibition to the forefront of immunologic research. Although co-inhibitory signals have been considered to directly regulate conventional T cells, more recent data has indicated a convergence between co-inhibitory signals and the other major negative control mechanism in the periphery that is mediated by regulatory T cells. Furthermore, it is now clear that lymphocytes are not the sole domain of co-inhibitory signals, as cells of the innate immune system, themselves controllers of immunity, are regulated by co-inhibitors they express. Thus, in order to better understand negative regulation in the periphery and apply this knowledge to the treatment of disease, a major focus for the future should be the definition of the conditions where co-inhibition controls effector cells intrinsically versus extrinsically (via regulatory or innate cells).

  18. Potential Role of the Last Half Repeat in TAL Effectors Revealed by a Molecular Simulation Study

    PubMed Central

    Wan, Hua; Chang, Shan; Hu, Jian-ping; Tian, Xu-hong

    2016-01-01

    TAL effectors (TALEs) contain a modular DNA-binding domain that is composed of tandem repeats. In all naturally occurring TALEs, the end of tandem repeats is invariantly a truncated half repeat. To investigate the potential role of the last half repeat in TALEs, we performed comparative molecular dynamics simulations for the crystal structure of DNA-bound TALE AvrBs3 lacking the last half repeat and its modeled structure having the last half repeat. The structural stability analysis indicates that the modeled system is more stable than the nonmodeled system. Based on the principle component analysis, it is found that the AvrBs3 increases its structural compactness in the presence of the last half repeat. The comparison of DNA groove parameters of the two systems implies that the last half repeat also causes the change of DNA major groove binding efficiency. The following calculation of hydrogen bond reveals that, by stabilizing the phosphate binding with DNA at the C-terminus, the last half repeat helps to adopt a compact conformation at the protein-DNA interface. It further mediates more contacts between TAL repeats and DNA nucleotide bases. Finally, we suggest that the last half repeat is required for the high-efficient recognition of DNA by TALE. PMID:27803930

  19. Prophage-Encoded Peroxidase in 'Candidatus Liberibacter asiaticus' Is a Secreted Effector That Suppresses Plant Defenses.

    PubMed

    Jain, Mukesh; Fleites, Laura A; Gabriel, Dean W

    2015-12-01

    'Candidatus Liberibacter asiaticus' is transmitted by psyllids and causes huanglongbing (HLB), a lethal disease of citrus. Most pathogenic 'Ca. L. asiaticus' strains carry two nearly identical prophages similar to SC1 and SC2 in strain UF506. SC2 was observed to replicate as a moderately high-copy excision plasmid encoding a reactive oxygen species-scavenging peroxidase (SC2_gp095), a predicted lysogenic conversion factor. SC2_gp095 was expressed at significantly higher levels in periwinkle than in citrus and was suppressed in psyllids. SC2_gp095 was cloned in a shuttle vector and transformed into Escherichia coli and Liberibacter crescens, a culturable proxy for 'Ca. L. asiaticus'. Transformed L. crescens cells showed 20 to 25% enhanced resistance to H₂O₂on agar plates, 47% greater enzymatic activity, and enhanced growth in liquid cultures. A nonclassical secretion potential was predicted for SC2_gp095 and secretion from L. crescens was confirmed by enzymatic and Western blot analyses. Transient expression of SC2_gp095 in planta resulted in strong transcriptional downregulation of RbohB, the key gatekeeper of the H₂O₂-mediated defense signaling in plants, helping explain the surprisingly long incubation period (years) before HLB symptoms appear in 'Ca. L. asiaticus'-infected citrus. 'Ca. L. asiaticus' peroxidase is likely a secreted, horizontally acquired effector that suppresses host symptom development, a tactic used by most biotrophic plant pathogens. PMID:26313412

  20. Effector, Memory, and Dysfunctional CD8+ T Cell Fates in the Antitumor Immune Response

    PubMed Central

    2016-01-01

    The adaptive immune system plays a pivotal role in the host's ability to mount an effective, antigen-specific immune response against tumors. CD8+ tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host's ability to eradicate the tumor. In addition to effector and memory CD8+ T cells, populations described as exhausted, anergic, senescent, and regulatory CD8+ T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8+ T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8+ T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8+ T cell dysfunction. PMID:27314056

  1. IgG Subclasses and Allotypes: From Structure to Effector Functions

    PubMed Central

    Vidarsson, Gestur; Dekkers, Gillian; Rispens, Theo

    2014-01-01

    Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review. PMID:25368619

  2. Coronin-1 is a neurotrophin endosomal effector required for developmental competition for survival

    PubMed Central

    Suo, Dong; Park, Juyeon; Harrington, Anthony W.; Zweifel, Larry S.; Mihalas, Stefan; Deppmann, Christopher D.

    2014-01-01

    Retrograde communication from axonal targets to neuronal cell bodies is critical for both development and function of the nervous system. Much progress has been made in recent years linking long-distance, retrograde signaling to a signaling endosome, yet the mechanisms governing the trafficking and signaling of these endosomes remain mainly uncharacterized. Here we report that in mouse sympathetic neurons the target-derived NGF-TrkA signaling endosome, upon arrival at the cell body, induces the expression and recruitment of a novel effector protein known as Coronin-1. In the absence of Coronin-1, the NGF-TrkA signaling endosome fuses to lysosomes 6–10 fold faster than when Coronin-1 is intact. We also define a novel Coronin-1-dependent trafficking event where signaling endosomes recycle and re-internalize upon arrival at the cell body. Beyond influencing endosomal trafficking, Coronin-1 is also required for several NGF-TrkA dependent-signaling events including calcium release, calcineurin activation, and CREB phosphorylation. These results establish Coronin-1 as an essential component of a novel feedback loop mediating NGF-TrkA endosome stability, recycling, and signaling as a critical mechanism governing developmental competition for survival. PMID:24270184

  3. Expression cloning of a periodontitis-associated apoptotic effector, cagE homologue, in Actinobacillus actinomycetemcomitans.

    PubMed

    Teng, Yen-Tung A; Hu, Wenqi

    2003-04-18

    To study anti-bacterial immunity and to identify critical bacterial antigens associated with specific periodontal infection, we screened the genomic library of Actinobacillus actinomycetemcomitans, a major Gram(-) anaerobe causing human periodontitis, by expression cloning using disease-associated periodontal CD4(+)T cells derived from HuPBL-engrafted NOD/SCID mice. Here, we report one of the novel genes identified and designated, cagE homologue (in short: cagE) of A. actinomycetemcomitans, which encodes a putative bacterial type IV secretion system with significant homology to Helicobacter pylori CagE and Agrobacterium tumefaciens VirB4. All serum samples from A. actinomycetemcomitans-infected periodontitis patients, but not from the healthy controls, readily recognized CagE by ELISA and Western blot, suggesting its biological and clinical significance. The CagE protein, upon secretion, elicited significant apoptosis on primary human epithelia, endothelia, osteoblasts, and T cells by 4-12h in vitro. Importantly, both cagE(-) mutant strain and N-terminus truncated CagE protein drastically reduced (p<0.001) the induction of apoptosis on human epithelia in vitro. These data strongly suggest that a novel effector protein, CagE in A. actinomycetemcomitans, induces apoptosis of human cells and destructive immunity, thereby it may play an important role in the pathogenesis of A. actinomycetemcomitans-mediated infections. PMID:12684047

  4. Lim kinase, a bi-functional effector in injury-induced structural plasticity of synapses

    PubMed Central

    Wang, Weiwei; Townes-Anderson, Ellen

    2016-01-01

    The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization. The dual effects of LIMK activity make LIMK a potential target of therapeutic intervention for injury-induced synaptic plasticity, as LIMK inhibition can stabilize actin cytoskeleton and preserve existing structure. This therapeutic benefit of LIMK inhibition has been demonstrated in animal models of injury-induced axon retraction and neuritic sprouting by rod photoreceptors. A better understanding of the regulation of LIMK-cofilin activity and the interaction with the microtubular cytoskeleton may open new ways to promote synaptic regeneration that can benefit neuronal degenerative disease.

  5. Lim kinase, a bi-functional effector in injury-induced structural plasticity of synapses

    PubMed Central

    Wang, Weiwei; Townes-Anderson, Ellen

    2016-01-01

    The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization. The dual effects of LIMK activity make LIMK a potential target of therapeutic intervention for injury-induced synaptic plasticity, as LIMK inhibition can stabilize actin cytoskeleton and preserve existing structure. This therapeutic benefit of LIMK inhibition has been demonstrated in animal models of injury-induced axon retraction and neuritic sprouting by rod photoreceptors. A better understanding of the regulation of LIMK-cofilin activity and the interaction with the microtubular cytoskeleton may open new ways to promote synaptic regeneration that can benefit neuronal degenerative disease. PMID:27630670

  6. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis.

    PubMed

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen

    2014-02-01

    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  7. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana.

    PubMed

    Oh, Sookyung; Warnasooriya, Sankalpi N; Montgomery, Beronda L

    2013-04-01

    Arabidopsis, like most plants, exhibits tissue-specific, light-dependent growth responses. Cotyledon and leaf growth and the accumulation of photosynthetic pigments are promoted by light, whereas hypocotyl growth is inhibited. The identification and characterization of distinct phytochrome-dependent molecular effectors that are associated with these divergent tissue-specific, light-dependent growth responses are limited. To identify phytochrome-dependent factors that impact the photoregulation of hypocotyl length, we conducted comparative gene expression studies using Arabidopsis lines exhibiting distinct patterns of phytochrome chromophore inactivation and associated disparate hypocotyl elongation responses under far-red (FR) light. A large number of genes was misregulated in plants lacking mesophyll-specific phytochromes relative to constitutively-deficient phytochrome lines. We identified and characterized genes whose expression is impacted by light and by phyA and phyB that have roles in the photoregulation of hypocotyl length. We characterized the functions of several identified target genes by phenotyping of T-DNA mutants. Among these genes is a previously uncharacterized LHE (LIGHT-INDUCED HYPOCOTYL ELONGATION) gene, which we show impacts light- and phytochrome-mediated regulation of hypocotyl elongation under red (R) and FR illumination. We describe a new approach for identifying genes involved in light- and phytochrome-dependent, tissue-specific growth regulation and confirmed the roles of three such genes in the phytochrome-dependent photoregulation of hypocotyl length.

  8. Lim kinase, a bi-functional effector in injury-induced structural plasticity of synapses.

    PubMed

    Wang, Weiwei; Townes-Anderson, Ellen

    2016-07-01

    The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization. The dual effects of LIMK activity make LIMK a potential target of therapeutic intervention for injury-induced synaptic plasticity, as LIMK inhibition can stabilize actin cytoskeleton and preserve existing structure. This therapeutic benefit of LIMK inhibition has been demonstrated in animal models of injury-induced axon retraction and neuritic sprouting by rod photoreceptors. A better understanding of the regulation of LIMK-cofilin activity and the interaction with the microtubular cytoskeleton may open new ways to promote synaptic regeneration that can benefit neuronal degenerative disease. PMID:27630670

  9. PI(4,5)P2-binding effector proteins for vesicle exocytosis

    PubMed Central

    Martin, Thomas F. J.

    2014-01-01

    PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637

  10. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells.

    PubMed

    Lee, Kyoo-A; Song, You Chan; Kim, Ga-Young; Choi, Gyeyoung; Lee, Yoon-Sook; Lee, Jung-Mi; Kang, Chang-Yuil

    2012-07-01

    Retinoic acid (RA) is a diverse regulator of immune responses. Although RA promotes natural killer T (NKT) cell activation in vitro by increasing CD1d expression on antigen-presenting cells (APCs), the direct effects of RA on NKT-cell responses in vivo are not known. In the present study, we demonstrated the effect of RA on the severity of Con A-induced hepatitis and molecular changes of NKT cells. First, we demonstrated that Con A-induced liver damage was ameliorated by RA. In correlation with cytokine levels in serum, RA regulated the production of IFN-γ and IL-4 but not TNF-α by NKT cells without influencing the NKT-cell activation status. However, RA did not alleviate α-GalCer-induced liver injury, even though it reduced IFN-γ and IL-4 but not TNF-α levels in serum. This regulation was also detected when liver mononuclear cells (MNCs) or NKT hybridoma cells were treated with RA in vitro. The regulatory effect of RA on NKT cells was mediated by RAR-α, and RA reduced the phosphorylation of MAPK. These results suggest that RA differentially modulates the production of effector cytokines by NKT cells in hepatitis, and the suppressive effect of RA on hepatitis varies with the pathogenic mechanism of liver injury.

  11. Myosin 1b functions as an effector of EphB signaling to control cell repulsion

    PubMed Central

    Prospéri, Marie-Thérèse; Lépine, Priscilla; Dingli, Florent; Paul-Gilloteaux, Perrine; Martin, René; Loew, Damarys; Knölker, Hans-Joachim

    2015-01-01

    Eph receptors and their membrane-tethered ligands, the ephrins, have important functions in embryo morphogenesis and in adult tissue homeostasis. Eph/ephrin signaling is essential for cell segregation and cell repulsion. This process is accompanied by morphological changes and actin remodeling that drives cell segregation and tissue patterning. The actin cortex must be mechanically coupled to the plasma membrane to orchestrate the cell morphology changes. Here, we demonstrate that myosin 1b that can mechanically link the membrane to the actin cytoskeleton interacts with EphB2 receptors via its tail and is tyrosine phosphorylated on its tail in an EphB2-dependent manner. Myosin 1b regulates the redistribution of myosin II in actomyosin fibers and the formation of filopodia at the interface of ephrinB1 and EphB2 cells, which are two processes mediated by EphB2 signaling that contribute to cell repulsion. Together, our results provide the first evidence that a myosin 1 functions as an effector of EphB2/ephrinB signaling, controls cell morphology, and thereby cell repulsion. PMID:26195670

  12. NOD-like receptor cooperativity in effector-triggered immunity.

    PubMed

    Griebel, Thomas; Maekawa, Takaki; Parker, Jane E

    2014-11-01

    Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations.

  13. End effectors and attachments for buried waste excavation equipment

    SciTech Connect

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  14. Intervention of Phytohormone Pathways by Pathogen Effectors[OPEN

    PubMed Central

    Kazan, Kemal; Lyons, Rebecca

    2014-01-01

    The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies. PMID:24920334

  15. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use. PMID:26443210

  16. Identifying a Rab effector on the macroautophagy pathway.

    PubMed

    Wang, Juan; Cervantes, Serena; Davis, Saralin; Ferro-Novick, Susan

    2015-01-01

    Rab GTPases are key regulators of membrane traffic. The Rab GTPase Ypt1 is essential for endoplasmic reticulum (ER)-Golgi traffic, intra-Golgi traffic, and the macroautophagy pathway. To identify effectors on the macroautophagy pathway, known autophagy-related genes (Atg genes) required for macroautophagy were tagged with GFP and screened for mislocalization in the ypt1-2 mutant. At the pre-autophagosomal structure (PAS), the localization of the serine/threonine kinase Atg1 was affected in the ypt1-2 mutant. We then used an in vitro binding assay to determine if Atg1 and Ypt1 physically interact with each other and co-immunoprecipitation experiments were performed to address if Atg1 preferentially interacts with the GTP-bound form of Ypt1.

  17. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.

  18. Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition

    NASA Astrophysics Data System (ADS)

    Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping

    Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.

  19. [Transcription activator-like effectors(TALEs)based genome engineering].

    PubMed

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  20. Protection after stroke: cellular effectors of neurovascular unit integrity

    PubMed Central

    Posada-Duque, Rafael Andres; Barreto, George E.; Cardona-Gomez, Gloria Patricia

    2014-01-01

    Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term. PMID:25177270

  1. Protection after stroke: cellular effectors of neurovascular unit integrity.

    PubMed

    Posada-Duque, Rafael Andres; Barreto, George E; Cardona-Gomez, Gloria Patricia

    2014-01-01

    Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.

  2. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.

    PubMed

    Westfall, Corey S; Xu, Ang; Jez, Joseph M

    2014-10-10

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.

  3. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence is emerging that proteins secreted by gall forming plant-parasites are the effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are hypothesized to be the effectors respon...

  4. Putative rust fungal effector proteins in infected bean and soybean leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but the effector repertoire for U. appendiculatus and P. pachyrhizi is not fully def...

  5. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges

    PubMed Central

    Selin, Carrie; de Kievit, Teresa R.; Belmonte, Mark F.; Fernando, W. G. Dilantha

    2016-01-01

    Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930

  6. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  7. The canonical Notch pathway effector RBP-J regulates neuronal plasticity and expression of GABA transporters in hippocampal networks.

    PubMed

    Liu, Shuxi; Wang, Yue; Worley, Paul F; Mattson, Mark P; Gaiano, Nicholas

    2015-05-01

    Activation of the Notch pathway in neurons is essential for learning and memory in various species from invertebrates to mammals. However, it remains unclear how Notch signaling regulates neuronal plasticity, and whether the transcriptional regulator and canonical pathway effector RBP-J plays a role. Here, we report that conditional disruption of RBP-J in the postnatal hippocampus leads to defects in long-term potentiation, long-term depression, and in learning and memory. Using gene expression profiling and chromatin immunoprecipitation, we identified two GABA transporters, GAT2 and BGT1, as putative Notch/RBP-J pathway targets, which may function downstream of RBP-J to limit the accumulation of GABA in the Schaffer collateral pathway. Our results reveal an essential role for canonical Notch/RBP-J signaling in hippocampal synaptic plasticity and suggest that role, at least in part, is mediated by the regulation of GABAergic signaling. PMID:25515406

  8. The canonical Notch pathway effector RBP-J regulates neuronal plasticity and expression of GABA transporters in hippocampal networks

    PubMed Central

    Liu, Shuxi; Wang, Yue; Worley, Paul F.; Mattson, Mark P.; Gaiano, Nicholas

    2014-01-01

    Activation of the Notch pathway in neurons is essential for learning and memory in various species from invertebrates to mammals. However, it remains unclear how Notch signaling regulates neuronal plasticity, and whether the transcriptional regulator and canonical pathway effector RBP-J plays a role. Here we report that conditional disruption of RBP-J in the postnatal hippocampus leads to defects in long-term potentiation (LTP), long-term depression (LTD), and in learning and memory. Using gene expression profiling and chromatin immunoprecipitation, we identified two GABA transporters, GAT2 and BGT1, as putative Notch/RBP-J pathway targets, which may function downstream of RBP-J to limit the accumulation of GABA in the Schaffer collateral pathway. Our results reveal an essential role for canonical Notch/RBP-J signaling in hippocampal synaptic plasticity and suggest that role, at least in part, is mediated by the regulation of GABAergic signaling. PMID:25515406

  9. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation.

    PubMed

    van Gisbergen, Klaas P J M; Kragten, Natasja A M; Hertoghs, Kirsten M L; Wensveen, Felix M; Jonjic, Stipan; Hamann, Jörg; Nolte, Martijn A; van Lier, Rene A W

    2012-09-01

    The transcriptional repressor Blimp-1 mediates the terminal differentiation of many cell types, including T cells. Here we identified Hobit (Znf683) as a previously unrecognized homolog of Blimp-1 that was specifically expressed in mouse natural killer T cells (NKT cells). Through studies of Hobit-deficient mice, we found that Hobit was essential for the formation of mature thymic NKT cells. In the periphery, Hobit repressed the accumulation of interferon-γ (IFN-γ)-producing NK1.1(lo) NKT cells at steady state. After antigenic stimulation, Hobit repressed IFN-γ expression, whereas after innate stimulation, Hobit induced granzyme B expression. Thus, reminiscent of the function of Blimp-1 in other lymphocytes, Hobit controlled the maintenance of quiescent, fully differentiated NKT cells and regulated their immediate effector functions.

  10. The canonical Notch pathway effector RBP-J regulates neuronal plasticity and expression of GABA transporters in hippocampal networks.

    PubMed

    Liu, Shuxi; Wang, Yue; Worley, Paul F; Mattson, Mark P; Gaiano, Nicholas

    2015-05-01

    Activation of the Notch pathway in neurons is essential for learning and memory in various species from invertebrates to mammals. However, it remains unclear how Notch signaling regulates neuronal plasticity, and whether the transcriptional regulator and canonical pathway effector RBP-J plays a role. Here, we report that conditional disruption of RBP-J in the postnatal hippocampus leads to defects in long-term potentiation, long-term depression, and in learning and memory. Using gene expression profiling and chromatin immunoprecipitation, we identified two GABA transporters, GAT2 and BGT1, as putative Notch/RBP-J pathway targets, which may function downstream of RBP-J to limit the accumulation of GABA in the Schaffer collateral pathway. Our results reveal an essential role for canonical Notch/RBP-J signaling in hippocampal synaptic plasticity and suggest that role, at least in part, is mediated by the regulation of GABAergic signaling.

  11. Transgenic Plants That Express the Phytoplasma Effector SAP11 Show Altered Phosphate Starvation and Defense Responses1[W][OPEN

    PubMed Central

    Lu, Yen-Ting; Li, Meng-Ying; Cheng, Kai-Tan; Tan, Choon Meng; Su, Li-Wen; Lin, Wei-Yi; Shih, Hsien-Tzung; Chiou, Tzyy-Jen; Yang, Jun-Yi

    2014-01-01

    Phytoplasmas have the smallest genome among bacteria and lack many essential genes required for biosynthetic and metabolic functions, making them unculturable, phloem-limited plant pathogens. In this study, we observed that transgenic Arabidopsis (Arabidopsis thaliana) expressing the secreted Aster Yellows phytoplasma strain Witches’ Broom protein11 shows an altered root architecture, similarly to the disease symptoms of phytoplasma-infected plants, by forming hairy roots. This morphological change is paralleled by an accumulation of cellular phosphate (Pi) and an increase in the expression levels of Pi starvation-induced genes and microRNAs. In addition to the Pi starvation responses, we found that secreted Aster Yellows phytoplasma strain Witches’ Broom protein11 suppresses salicylic acid-mediated defense responses and enhances the growth of a bacterial pathogen. These results contribute to an improved understanding of the role of phytoplasma effector SAP11 and provide new insights for understanding the molecular basis of plant-pathogen interactions. PMID:24464367

  12. Purification of effector-target protein complexes via transient expression in Nicotiana benthamiana.

    PubMed

    Win, Joe; Kamoun, Sophien; Jones, Alexandra M E

    2011-01-01

    Effectors of plant pathogens play important roles in not only pathogenesis but also plant immunity. Plant pathogens use these effectors to manipulate host cells for colonization, and their activities likely influence the evolution of plant immune responses. Analyses of genome sequences revealed that oomycete pathogens, such as Phytophthora spp., possess hundreds of RXLR effectors that are thought to be delivered into the host cells and hence function inside the cells by interacting with the host protein complexes. This article describes a co-immunoprecipitation protocol aimed at identifying putative target complexes of the effectors by transiently overexpressing the tagged effectors in planta. The identification of the eluted protein complexes was achieved by LC-MS/MS mass spectrometry and peptide spectrum matching. PMID:21359809

  13. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition.

    PubMed

    Unterweger, Daniel; Miyata, Sarah T; Bachmann, Verena; Brooks, Teresa M; Mullins, Travis; Kostiuk, Benjamin; Provenzano, Daniele; Pukatzki, Stefan

    2014-04-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species.

  14. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    PubMed Central

    Hutin, Mathilde; Pérez-Quintero, Alvaro L.; Lopez, Camilo; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance. PMID:26236326

  15. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world.

    PubMed

    Ensminger, Alexander W

    2016-02-01

    Many bacterial pathogens use dedicated translocation systems to deliver arsenals of effector proteins to their hosts. Once inside the host cytosol, these effectors modulate eukaryotic cell biology to acquire nutrients, block microbial degradation, subvert host defenses, and enable pathogen transmission to other hosts. Among all bacterial pathogens studied to date, the gram-negative pathogen, Legionella pneumophila, maintains the largest arsenal of effectors, with over 330 effector proteins translocated by the Dot/Icm type IVB translocation system. In this review, I will discuss some of the recent work on understanding the consequences of this large arsenal. I will also present several models that seek to explain how L. pneumophila has acquired and subsequently maintained so many more effectors than its peers.

  16. Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network

    PubMed Central

    Mukhtar, M. Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T.; Pevzner, Samuel J.; Donovan, Susan E.; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M.; Gebreab, Fana; Gutierrez, Bryan J.; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J.; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P.; Hill, David E.; Ecker, Joseph R.; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L.

    2011-01-01

    Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated a plant-pathogen immune system protein interaction network using effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins and ~8,000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins, and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life cycle strategies. PMID:21798943

  17. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    SciTech Connect

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D.

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  18. Molecular weaponry: diverse effectors delivered by the Type VI secretion system

    PubMed Central

    Alcoforado Diniz, Juliana; Liu, Yi‐Chia

    2015-01-01

    Summary The Type VI secretion system is a widespread bacterial nanomachine, used to deliver toxins directly into eukaryotic or prokaryotic target cells. These secreted toxins, or effectors, act on diverse cellular targets, and their action provides the attacking bacterial cell with a significant fitness advantage, either against rival bacteria or eukaryotic host organisms. In this review, we discuss the delivery of diverse effectors by the Type VI secretion system, the modes of action of the so‐called ‘anti‐bacterial’ and ‘anti‐eukaryotic’ effectors, the mechanism of self‐resistance against anti‐bacterial effectors and the evolutionary implications of horizontal transfer of Type VI secretion system‐associated toxins. Whilst it is likely that many more effectors remain to be identified, it is already clear that toxins delivered by this secretion system represent efficient weapons against both bacteria and eukaryotes. PMID:26432982

  19. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    PubMed

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  20. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    PubMed

    Saunders, Diane G O; Win, Joe; Cano, Liliana M; Szabo, Les J; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  1. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    SciTech Connect

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  2. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  3. Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi

    PubMed Central

    Saunders, Diane G. O.; Win, Joe; Cano, Liliana M.; Szabo, Les J.; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components. PMID:22238666

  4. Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity.

    PubMed

    Popov, Georgy; Fraiture, Malou; Brunner, Frederic; Sessa, Guido

    2016-08-01

    Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms. PMID:27529660

  5. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically.

    PubMed

    Pérez-Quintero, Alvaro L; Lamy, Léo; Gordon, Jonathan L; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.

  6. The regulatory T cell effector soluble fibrinogen-like protein 2 induces tubular epithelial cell apoptosis in renal transplantation.

    PubMed

    Zhao, Zitong; Yang, Cheng; Wang, Lingyan; Li, Long; Zhao, Tian; Hu, Linkun; Rong, Ruiming; Xu, Ming; Zhu, Tongyu

    2014-02-01

    Acute rejection (AR) hinders renal allograft survival. Tubular epithelial cell (TEC) apoptosis contributes to premature graft loss in AR, while the mechanism remains unclear. Soluble fibrinogen-like protein 2 (sFGL2), a novel effector of regulatory T cells (Treg), induces apoptosis to mediate tissue injury. We previously found that serum sFGL2 significantly increased in renal allograft rejection patients. In this study, the role of sFGL2 in AR was further investigated both in vivo and in vitro. The serum level of sFGL2 and the percentage of CD4(+)CD25(+)Foxp3(+) Treg in the peripheral blood were measured in renal allograft recipients with AR or stable renal function (n = 30 per group). The human TEC was stimulated with sFGL2, tumor necrosis factor (TNF)-α, or phosphate buffered saline and investigated for apoptosis in vitro. Apoptosis-associated genes expression in TEC was further assessed. Approval for this study was obtained from the Ethics Committee of Fudan University. Our results showed that the serum level of sFGL2, correlated with Treg in the peripheral blood, was significantly increased in the AR patients. In vitro, sFGL2 remarkably induced TEC apoptosis, with a significant up-regulation of proapoptotic genes, including CASP-3, CASP-8, CASP-9, CASP-10, TRADD, TNFSF10, FADD, FAS, FASLG, BAK1, BAD, BAX, and NF-KB1. However, no significant changes were observed in the expression of antiapoptotic genes, including CARD-18, NAIP, BCL2, IKBKB, and TBK1. Therefore, sFGL2, an effector of Treg, induces TEC apoptosis. Our study suggests that sFGL2 is a potential mediator in the pathogenesis of allograft rejection and provides novel insights into the role of Treg in AR. PMID:24414480

  7. Hepatitis C Virus Attenuates Interferon-Induced MHC Class I Expression and Decreases CD8+ T-Cell Effector Functions

    PubMed Central

    Kang, Wonseok; Sung, Pil Soo; Park, Su-Hyung; Yoon, Sarah; Chang, Dong-Yeop; Kim, Seungtaek; Han, Kwang Hyub; Kim, Ja Kyung; Rehermann, Barbara; Chwae, Yong-Joon; Shin, Eui-Cheol

    2015-01-01

    BACKGROUND & AIMS MHC class I-restricted CD8+ T cells are required for clearance of hepatitis C virus (HCV) infection. MHC class I expression is upregulated by type I and II interferons (IFNs). However, little is known about the effects of HCV infection on IFN-induced expression of MHC class I. METHODS We used the HCV cell culture system (HCVcc) with the genotype 2a Japanese Fulminant Hepatitis-1 strain to investigate IFN-induced expression of MHC class I and its regulatory mechanisms. HCVcc-infected Huh-7.5 cells were analyzed by flow cytometry, metabolic labeling, immunoprecipitation, and immunoblotting analyses. Protein kinase R (PKR) was knocked-down with lentiviruses that express small hairpin (sh)RNAs. The functional effects of MHC class I regulation by HCV were demonstrated in co-culture studies, using HCV-specific CD8+ T cells. RESULTS Although the baseline level of MHC class I was not affected by HCV infection, IFN-induced expression of MHC class I was notably attenuated in HCV-infected cells. This was associated with replicating HCV RNA, not with viral protein. HCV infection reduced IFN-induced synthesis of MHC class I protein and induced phosphorylation of PKR and eIF2α. IFN-induced MHC class I expression was restored by shRNA-mediated knockdown of PKR in HCV-infected cells. Co-culture of HCV-specific CD8+ T cells and HCV-infected cells that expressed HLA-A2 demonstrated that HCV infection reduced the effector functions of HCV-specific CD8+ T cells; these functions were restored by shRNA-mediated knockdown of PKR. CONCLUSIONS IFN-induced expression of MHC class I is attenuated in HCV-infected cells by activation of PKR, which reduces the effector functions of HCV-specific CD8+ T cells. This appears to be an important mechanism by which HCV circumvents antiviral adaptive immune responses. PMID:24486950

  8. The Conformation of a Plasma Membrane-Localized Somatic Embryogenesis Receptor Kinase Complex Is Altered by a Potato Aphid-Derived Effector.

    PubMed

    Peng, Hsuan-Chieh; Mantelin, Sophie; Hicks, Glenn R; Takken, Frank L W; Kaloshian, Isgouhi

    2016-07-01

    Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261

  9. The Conformation of a Plasma Membrane-Localized Somatic Embryogenesis Receptor Kinase Complex Is Altered by a Potato Aphid-Derived Effector1[OPEN

    PubMed Central

    Peng, Hsuan-Chieh; Hicks, Glenn R.; Kaloshian, Isgouhi

    2016-01-01

    Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261

  10. Plant signaling: brassinosteroids, immunity and effectors are BAK !

    PubMed

    Vert, Grégory

    2008-10-28

    Plants use the same set of co-receptors to mediate distinct responses to external signals. Brassinosteroid signaling serves as a test case to unravel the mechanisms of receptor-co-receptor activation and initiation of a specific signaling cascade.

  11. Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1.

    PubMed

    Lewis, George K; Finzi, Andrés; DeVico, Anthony L; Pazgier, Marzena

    2015-09-01

    The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function. PMID:26393642

  12. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria

    PubMed Central

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.

    2016-01-01

    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  13. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.

    PubMed

    Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla

    2012-09-01

    The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. PMID:22738163

  14. Proline Isomerization of the Immune Receptor-Interacting Protein RIN4 by a Cyclophilin Inhibits Effector-Triggered Immunity in Arabidopsis

    PubMed Central

    Li, Meng; Ma, Xiqing; Chiang, Yi-Hsuan; Yadeta, Koste A.; Ding, Pengfei; Dong, Liansai; Zhao, Yan; Li, Xiuming; Yu, Yufei; Zhang, Ling; Shen, Qian-Hua; Xia, Bin; Coaker, Gitta; Liu, Dong; Zhou, Jian-Min

    2016-01-01

    SUMMARY In the absence of pathogen infection, plant effector-triggered immune (ETI) receptors are maintained in a preactivation state by intermolecular interactions with other host proteins. Pathogen effector-induced alterations activate the receptor. In Arabidopsis, the ETI receptor RPM1 is activated via bacterial effector AvrB-induced phosphorylation of the RPM1-interacting protein RIN4 at Threonine 166. We find that RIN4 also interacts with the prolyl-peptidyl isomerase (PPIase) ROC1, which is reduced upon RIN4 Thr166 phosphorylation. ROC1 suppresses RPM1 immunity in a PPIase-dependent manner. Consistent with this, RIN4 Pro149 undergoes cis/trans isomerization in the presence of ROC1. While the RIN4P149V mutation abolishes RPM1 resistance, the deletion of Pro149 leads to RPM1 activation in the absence of RIN4 phosphorylation. These results support a model in which RPM1 directly senses conformational changes in RIN4 surrounding Pro149 that is controlled by ROC1. RIN4 Thr166 phosphorylation indirectly regulates RPM1 resistance by modulating the ROC1-mediated RIN4 isomerization. PMID:25299333

  15. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9.

    PubMed

    Fang, Yufeng; Tyler, Brett M

    2016-01-01

    Phytophthora sojae is an oomycete pathogen of soybean. As a result of its economic importance, P. sojae has become a model for the study of oomycete genetics, physiology and pathology. The lack of efficient techniques for targeted mutagenesis and gene replacement have long hampered genetic studies of pathogenicity in Phytophthora species. Here, we describe a CRISPR/Cas9 system enabling rapid and efficient genome editing in P. sojae. Using the RXLR effector gene Avr4/6 as a target, we observed that, in the absence of a homologous template, the repair of Cas9-induced DNA double-strand breaks (DSBs) in P. sojae was mediated by non-homologous end-joining (NHEJ), primarily resulting in short indels. Most mutants were homozygous, presumably as a result of gene conversion triggered by Cas9-mediated cleavage of non-mutant alleles. When donor DNA was present, homology-directed repair (HDR) was observed, which resulted in the replacement of Avr4/6 with the NPT II gene. By testing the specific virulence of several NHEJ mutants and HDR-mediated gene replacements in soybean, we have validated the contribution of Avr4/6 to recognition by soybean R gene loci, Rps4 and Rps6, but also uncovered additional contributions to resistance by these two loci. Our results establish a powerful tool for the study of functional genomics in Phytophthora, which provides new avenues for better control of this pathogen.

  16. A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity.

    PubMed

    Nociari, M M; Shalev, A; Benias, P; Russo, C

    1998-04-15

    In this study, a fluorometric method using alamarBlue has been developed for detecting cell-mediated cytotoxicity in vitro. AlamarBlue is a non-toxic metabolic indicator of viable cells that becomes fluorescent upon mitochondrial reduction. Specific lysis of targets by effector cells is quantified by comparing the total number of viable cells in wells containing effector and targets together, with wells where target and effector cells were separately seeded. Cell-mediated cytotoxic activity by alloreactive T cells and natural killer cells has been detected using a novel application of the alamarBlue technique. The assay that we have developed to detect cell-mediated cytotoxicity is extremely sensitive and specific and requires a significant lower number of effector cells than the standard 51Cr assay. Since alamarBlue reagent is non-toxic to cells and the assay can be performed under sterile conditions, effector cells may be recovered at the end for further analysis or cell expansion, if desired. Direct comparison of cell-mediated cytotoxicity measured by the alamarBlue method with the standard 51Cr release assay revealed that the former method is as specific and more sensitive than the conventional assay. Moreover, very small inter and intra-assay variations have been observed for alamarBlue cytotoxicity assays. In conclusion, this study shows that the alamarBlue assay is an extremely sensitive, economical, simple and non-toxic procedure to evaluate cell-mediated cytotoxicity that yields accurate results using a limited number of effector cells. Furthermore, since this assay is a one-step procedure, and does not involve any risk for the personnel, it may be useful to analyze automatically cell-mediated cytotoxicity in a large number of samples.

  17. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35.

    PubMed

    Huang, Chiung-Hui; Loo, Evelyn Xiu-Ling; Kuo, I-Chun; Soh, Gim Hooi; Goh, Denise Li-Meng; Lee, Bee Wah; Chua, Kaw Yan

    2011-07-01

    CD4(+) memory/effector T cells play a central role in orchestrating the rapid and robust immune responses upon re-encounter with specific Ags. However, the immunologic mechanism(s) underlying these responses are still not fully understood. To investigate this, we generated an allergen (major house dust mite allergen, Blo t 5)-specific murine Th2 cell line that secreted IL-4, IL-5, IL-10, and IL-13, but not IL-9 or TNF-α, upon activation by the cognate Ag. These cells also exhibited CD44(high)CD62L(-) and CD127(+) (IL-7Rα(+)) phenotypes, which are characteristics of memory/effector T cells. Experiments involving adoptive transfer of this Th2 cell line in mice, followed by three intranasal challenges with Blo t 5, induced a dexamethasone-sensitive eosinophilic airway inflammation. This was accompanied by elevation of Th2 cytokines and CC- and CXC-motif chemokines, as well as recruitment of lymphocytes and polymorphic mononuclear cells into the lungs. Moreover, Blo t 5-specific IgE was detected 4 d after the last intranasal challenge, whereas elevation of Blo t 5-specific IgG1 was found at week two. Finally, pulmonary delivery of the pVAX-IL-35 DNA construct effectively downregulated Blo t 5-specific allergic airway inflammation, and i.m. injection of pVAX-IL-35 led to long-lasting suppression of circulating Blo t 5-specific and total IgE. This model provides a robust research tool to elucidate the immunopathogenic role of memory/effector Th2 cells in allergic airway inflammation. Our results suggested that IL-35 could be a potential therapeutic target for allergic asthma through its attenuating effects on allergen-specific CD4(+) memory/effector Th2 cell-mediated airway inflammation.

  18. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.

    PubMed

    Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F

    2016-03-01

    The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.

  19. Studying the Mechanism of Plasmopara viticola RxLR Effectors on Suppressing Plant Immunity

    PubMed Central

    Xiang, Jiang; Li, Xinlong; Wu, Jiao; Yin, Ling; Zhang, Yali; Lu, Jiang

    2016-01-01

    The RxLR effector family, produced by oomycete pathogens, may manipulate host physiological and biochemical events inside host cells. A group of putative RxLR effectors from Plasmopara viticola have been recently identified by RNA-Seq analysis in our lab. However, their roles in pathogenesis are poorly understood. In this study, we attempted to characterize 23 PvRxLR effector candidates identified from a P. viticola isolate “ZJ-1-1.” During host infection stages, expression patterns of the effector genes were varied and could be categorized into four different groups. By using transient expression assays in Nicotiana benthamiana, we found that 17 of these effector candidates fully suppressed programmed cell death elicited by a range of cell death-inducing proteins, including BAX, INF1, PsCRN63, PsojNIP, PvRxLR16 and R3a/Avr3a. We also discovered that all these PvRxLRs could target the plant cell nucleus, except for PvRxLR55 that localized to the membrane. Furthermore, we identified a single effector, PvRxLR28, that showed the highest expression level at 6 hpi. Functional analysis revealed that PvRxLR28 could significantly enhance susceptibilities of grapevine and tobacco to pathogens. These results suggest that most P. viticola effectors tested in this study may act as broad suppressors of cell death to manipulate immunity in plant. PMID:27242731

  20. Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization.

    PubMed

    Luo, L; Lee, T; Tsai, L; Tang, G; Jan, L Y; Jan, Y N

    1997-11-25

    The small GTPases Cdc42 and Rac regulate a variety of biological processes, including actin polymerization, cell proliferation, and JNK/mitogen-activated protein kinase activation, conceivably via distinct effectors. Whereas the effector for mitogen-activated protein kinase activation appears to be p65PAK, the identity of effector(s) for actin polymerization remains unclear. We have found a putative effector for Drosophila Cdc42, Genghis Khan (Gek), which binds to Dcdc42 in a GTP-dependent and effector domain-dependent manner. Gek contains a predicted serine/threonine kinase catalytic domain that is 63% identical to human myotonic dystrophy protein kinase and has protein kinase activities. It also possesses a large coiled-coil domain, a putative phorbol ester binding domain, a pleckstrin homology domain, and a Cdc42 binding consensus sequence that is required for its binding to Dcdc42. To study the in vivo function of gek, we generated mutations in the Drosophila gek locus. Egg chambers homozygous for gek mutations exhibit abnormal accumulation of F-actin and are defective in producing fertilized eggs. These phenotypes can be rescued by a wild-type gek transgene. Our results suggest that this multidomain protein kinase is an effector for the regulation of actin polymerization by Cdc42.

  1. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    PubMed

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  2. Receptor-coupled effector systems and their interactions

    SciTech Connect

    Wiener, E.C.

    1988-01-01

    We investigated the modulation of intracellular signal generation by receptor-coupled effector systems in B lymphocytes, and whether these alterations are consistent with the effects of prostaglandins. TPA (12-O-tetradecanoyl phorbol-13-acetate) and sn-1,2,-dioctanoylglycerol (diC{sub 8}) substitute for lipid derived signals which activate protein kinase C. Pretreating splenocytes from athymic nude mice with 100nM TPA or 5 {mu}M diC{sub 8} potentiated the forskolin-induced increased in cAMP (measured by radioimmunoassay) 2.5 and 3.0 times (respectively), but they decreased the PGE{sub 1}-induced cAMP rise 48% and 35% (respectively). Goat anti-mouse IgM, which activates diacylglycerol production, potentiated the forskolin-induced cAMP increase by 76%, but reduced that of PGE{sub 1} by 30%. Rabbit anti-mouse IgG, its F(ab{prime}){sub 2} fragment, or goat anti-mouse IGM induced increases in the cytosolic free (Ca{sup 2+}), (Ca{sup 2+}){sub i}, which TPA inhibited. In contrast, TPA potential antibody-induced {sup 3}H-thymidine (85x) and {sup 3}H-uridine (30x) uptake in B lymphocytes.

  3. Characteristics of Unintentional Movements by a Multi-Joint Effector

    PubMed Central

    Zhou, Tao; Zhang, Lei; Latash, Mark L.

    2015-01-01

    We explored the phenomenon of unintentional changes in the equilibrium state of a multi-joint effector produced by transient changes in the external force. The subjects performed a position-holding task against a constant force produced by a robot and were instructed not to intervene voluntarily with movements produced by changes in the robot force. The robot produced a smooth force increase leading to a hand movement, followed by a dwell time. Then, the force dropped to its initial value leading to hand movement towards the initial position, but the hand stopped short of the initial position. The undershoot magnitude increased linearly with the peak hand displacement and exponentially with dwell time (time constant of about 1 s). For long dwell times, the hand stopped at about half the total distance to the initial position. We interpret the results as consequences of a drift of the referent hand coordinate. Our results provide support for back-coupling between the referent and actual body configurations during multi-joint actions and produce the first quantitative analysis of this phenomenon. This mechanism can also explain the phenomena of “slacking” and force drop after turning visual feedback off during accurate force production task. PMID:25565394

  4. The molecular makeup and function of regulatory and effector synapses.

    PubMed

    Reichardt, Peter; Dornbach, Bastian; Gunzer, Matthias

    2007-08-01

    Physical interactions between T cells and antigen-presenting cells (APCs) form the basis of any specific immune response. Upon cognate contacts, a multimolecular assembly of receptors and adhesion molecules on both cells is created, termed the immunological synapse (IS). Very diverse structures of ISs have been described, yet the functional importance for T-cell differentiation is largely unclear. Here we discuss the principal structure and function of ISs. We then focus on two characteristic T-cell-APC pairs, namely T cells contacting dendritic cells (DCs) or naive B cells, for which extremely different patterns of the IS have been observed as well as fundamentally different effects on the function of the activated T cells. We provide a model on how differences in signaling and the involvement of adhesion molecules might lead to diverse interaction kinetics and, eventually, diverse T-cell differentiation. We hypothesize that the preferred activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and of the negative regulator for T-cell activation, cytotoxic T-lymphocyte antigen-4 (CTLA-4), through contact with naive B cells, lead to prolonged cell-cell contacts and the generation of T cells with regulatory capacity. In contrast, DCs might have evolved mechanisms to avoid LFA-1 overactivation and CTLA-4 triggering, thereby promoting more dynamic contacts that lead to the preferential generation of effector cells.

  5. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    PubMed

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  6. Exosomes: novel effectors of human platelet lysate activity.

    PubMed

    Torreggiani, E; Perut, F; Roncuzzi, L; Zini, N; Baglìo, S R; Baldini, N

    2014-01-01

    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies. PMID:25241964

  7. Membrane flickering of the human erythrocyte: physical and chemical effectors.

    PubMed

    Puckeridge, Max; Chapman, Bogdan E; Conigrave, Arthur D; Kuchel, Philip W

    2014-05-01

    Recent studies suggest a link between adenosine triphosphate (ATP) concentration and the amplitude of cell membrane flickering (CMF) in the human erythrocyte (red blood cell; RBC). Potentially, the origin of this phenomenon and the unique discocyte shape could be active processes that account for some of the ATP turnover in the RBC. Active flickering could depend on several factors, including pH, osmolality, enzymatic rates and metabolic fluxes. In the present work, we applied the data analysis described in the previous article to study time courses of flickering RBCs acquired using differential interference contrast light microscopy in the presence of selected effectors. We also recorded images of air bubbles in aqueous detergent solutions and oil droplets in water, both of which showed rapid fluctuations in image intensity, the former showing the same type of spectral envelope (relative frequency composition) to RBCs. We conclude that CMF is not directly an active process, but that ATP affects the elastic properties of the membrane that flickers in response to molecular bombardment in a manner that is described mathematically by a constrained random walk. PMID:24668224

  8. [Advances in transcription activator-like effectors--a review].

    PubMed

    Yu, Tang; Li, Lisha; Lin, Jun

    2015-07-01

    As a protein originally found in plant pathogenic bacteria, transcription activator-like effectors (TALEs) can be fused with the cleaving domain of restriction endonuclease (For example Fok I) to form artificial nucleases named TALENs. These proteins are dependent on variable numbers of tandem Repeats of TALEs to recognize and bind DNA sequences. Each of these repeats consists of a set of approximately 34 amino acids, composed of about 32 conserved amino acids and 2 highly variable amino acids called repeat variant di-residues (RVDs). RVDs distinguish one TALE from another and can make TALEs have a simple cipher for the one-to-one recognition for proteins and DNA bases. Based on this, in theory, artificially constructed TALENs could recognize and break DNA sites specifically and arbitrarily to perform gene knockout, insertion or modification. We reviewed the development of this technology in multi-level and multi species, and its advantages and disadvantages compared with ZFNs and CRISPR/Cas technology. We also address its special advantages in industrial microbe breeding, vector construction, targeting precision, high efficiency of editing and biological safety. PMID:26647578

  9. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  10. Characteristics of unintentional movements by a multijoint effector.

    PubMed

    Zhou, Tao; Zhang, Lei; Latash, Mark L

    2015-01-01

    The authors explored the phenomenon of unintentional changes in the equilibrium state of a multijoint effector produced by transient changes in the external force. The subjects performed a position-holding task against a constant force produced by a robot and were instructed not to intervene voluntarily with movements produced by changes in the robot force. The robot produced a smooth force increase leading to a hand movement, followed by a dwell time. Then, the force dropped to its initial value leading to hand movement toward the initial position, but the hand stopped short of the initial position. The undershoot magnitude increased linearly with the peak hand displacement and exponentially with dwell time (time constant of about 1 s). For long dwell times, the hand stopped at about half the total distance to the initial position. The authors interpret the results as consequences of a drift of the referent hand coordinate. Our results provide support for back-coupling between the referent and actual body configurations during multijoint actions and produce the first quantitative analysis of this phenomenon. This mechanism can also explain the phenomena of slacking and force drop after turning visual feedback off during accurate force production task. PMID:25565394

  11. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    PubMed

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  12. Space-based multifunctional end effector systems functional requirements and proposed designs

    NASA Technical Reports Server (NTRS)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  13. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.

    PubMed

    Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J

    2014-09-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.

  14. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.

    PubMed

    Brokaw, Elizabeth B; Lum, Peter S; Cooper, Rory A; Brewer, Bambi R

    2013-06-01

    Abnormal kinematics and the use of compensation strategies during training limit functional improvement from therapy. The Kinect is a low cost ($100) sensor that does not require any markers to be placed on the user. Integration of this sensor into currently used therapy systems can provide feedback about the user's movement quality, and the use of compensatory strategies to complete tasks. This paper presents a novel technique of adding the Kinect to an end effector robot to limit compensation strategies and to train normal joint coordination during movements with an end effector robot. This methodology has wider implications for other robotic and passively actuated end effector rehabilitation devices.

  15. Transcriptional regulation of effector and memory CD8+ T cell fates

    PubMed Central

    Thaventhiran, James E. D.; Fearon, Douglas T.; Gattinoni, Luca

    2013-01-01

    Immunity to intracellular pathogens and cancer relies on the generation of robust CD8+ T cell effector responses as well as the establishment of immunological memory. During a primary immune response CD8+ T cells experience diverse extracellular environmental cues and cell-cell interactions that trigger downstream transcriptional programs ultimately guiding a CD8+ T cell to undertake either an effector or a memory cell fate. Here, we discuss our current understanding of the signaling pathways and transcriptional networks that regulate effector and memory commitment in CD8+ T lymphocytes. PMID:23747000

  16. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.

    PubMed

    Brokaw, Elizabeth B; Lum, Peter S; Cooper, Rory A; Brewer, Bambi R

    2013-06-01

    Abnormal kinematics and the use of compensation strategies during training limit functional improvement from therapy. The Kinect is a low cost ($100) sensor that does not require any markers to be placed on the user. Integration of this sensor into currently used therapy systems can provide feedback about the user's movement quality, and the use of compensatory strategies to complete tasks. This paper presents a novel technique of adding the Kinect to an end effector robot to limit compensation strategies and to train normal joint coordination during movements with an end effector robot. This methodology has wider implications for other robotic and passively actuated end effector rehabilitation devices. PMID:24187203

  17. Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors.

    PubMed

    Yuan, Amy; Lee, Yashang; Choi, Uimook; Moeckel, Gilbert; Karihaloo, Anil

    2015-03-01

    Kidney fibrosis is the final common pathway for virtually every type of chronic kidney disease and is a consequence of a prolonged healing response that follows tissue inflammation. Chronic kidney inflammation ultimately leads to progressive tissue injury and scarring/fibrosis. Several pathways have been implicated in the progression of kidney fibrosis. In the present study, we demonstrate that G protein-coupled chemokine (C-X-C motif) receptor (CXCR)4 was significantly upregulated after renal injury and that sustained activation of Cxcr4 expression augmented the fibrotic response. We demonstrate that after unilateral ureteral obstruction (UUO), both gene and protein expression of Cxcr4 were highly upregulated in tubular cells of the nephron. The increased Cxcr4 expression in tubules correlated with their increased dedifferentiated state, leading to increased mRNA expression of platelet-derived growth factor (PDGF)-α, transforming growth factor (TGF)-β1, and concurrent loss of bone morphogenetic protein 7 (Bmp7). Ablation of tubular Cxcr4 attenuated UUO-mediated fibrotic responses, which correlated with a significant reduction in PDGF-α and TGF-β1 levels and preservation of Bmp7 expression after UUO. Furthermore, Cxcr4(+) immune cells infiltrated the obstructed kidney and further upregulate their Cxcr4 expression. Genetic ablation of Cxcr4 from macrophages was protective against UUO-induced fibrosis. There was also reduced total kidney TGF-β1, which correlated with reduced Smad activation and α-smooth muscle actin levels. We conclude that chronic high Cxcr4 expression in multiple effector cell types can contribute to the pathogenesis of renal fibrosis by altering their biological profile. This study uncovered a novel cross-talk between Cxcr4-TGF-β1 and Bmp7 pathways and may provide novel targets for interrupting the progression of fibrosis. PMID:25537742

  18. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

    PubMed

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC.

  19. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

    PubMed

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  20. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    PubMed Central

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous sclerosis 1 (TSC1) is an important negative regulator of mTOR signaling, which regulates T cell differentiation, function, and trafficking. Here, we determined that mice lacking TSC1 exhibit a developmental block of iNKT differentiation at stage 2 and skew from a predominantly iNKT-1 population toward a predominantly iNKT-17 population, leading to enhanced airway hypersensitivity. Evaluation of purified iNKT cells revealed that TSC1 promotes T-bet, which regulates iNKT maturation, but downregulates ICOS expression in iNKT cells by inhibiting mTOR complex 1 (mTORC1). Furthermore, mice lacking T-bet exhibited both a terminal maturation defect of iNKT cells and a predominance of iNKT-17 cells, and increased ICOS expression was required for the predominance of iNKT-17 cells in the population of TSC1-deficient iNKT cells. Our data indicate that TSC1-dependent control of mTORC1 is crucial for terminal iNKT maturation and effector lineage decisions, resulting in the predominance of iNKT-1 cells. PMID:24614103

  1. A diametric role for OX40 in the response of effector/memory CD4+ T cells and regulatory T cells to alloantigen

    PubMed Central

    Kinnear, Gillian; Wood, Kathryn J.; Fallah-Arani, Farnaz; Jones, Nick D.

    2013-01-01

    OX40 is a member of the TNFR superfamily that has potent costimulatory properties. Although the impact of blockade of the OX40-OX40L pathway has been well documented in models of autoimmune disease, its effect on the rejection of allografts is less well defined. Here we show that the alloantigen-mediated activation of naïve and memory CD4+ T cells results in the induction of OX40 expression and that blockade of OX40-OX40L interactions prevents skin allograft rejection mediated by either subset of T cells. Moreover, a blocking anti-OX40 was found to have no effect on the activation and proliferation of T cells, but rather effector T cells failed to accumulate in peripheral lymph nodes and subsequently migrate to skin allografts. This was found to be the result of an enhanced degree of cell death amongst proliferating effector cells. In clear contrast, blockade of OX40-OX40L interactions at the time of exposure to alloantigen enhanced the ability of regulatory T cells to suppress T cell responses to alloantigen by supporting rather than diminishing regulatory T cell survival. These data show that OX40-OX40L signalling contributes to the evolution of the adaptive immune response to an allograft via the differential control of alloreactive effector and regulatory T cell survival. Moreover, these data serve to further highlight OX40 and OX40L as therapeutic targets to assist the induction of tolerance to allografts and self-antigens. PMID:23817421

  2. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence.

    PubMed

    Ratner, Dmitry; Orning, M Pontus A; Starheim, Kristian K; Marty-Roix, Robyn; Proulx, Megan K; Goguen, Jon D; Lien, Egil

    2016-05-01

    Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence. PMID:26884330

  3. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining.

    PubMed

    Clement, Mathew; Ladell, Kristin; Ekeruche-Makinde, Julia; Miles, John J; Edwards, Emily S J; Dolton, Garry; Williams, Tamsin; Schauenburg, Andrea J A; Cole, David K; Lauder, Sarah N; Gallimore, Awen M; Godkin, Andrew J; Burrows, Scott R; Price, David A; Sewell, Andrew K; Wooldridge, Linda

    2011-07-15

    CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.

  4. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence.

    PubMed

    Ratner, Dmitry; Orning, M Pontus A; Starheim, Kristian K; Marty-Roix, Robyn; Proulx, Megan K; Goguen, Jon D; Lien, Egil

    2016-05-01

    Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence.

  5. End-effector: Joint conjugates for robotic assembly of large truss structures in space: Extended concepts

    NASA Technical Reports Server (NTRS)

    Brewer, W. V.; Rasis, E. P.; Shih, H. R.

    1993-01-01

    Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.

  6. [Problem of end-effector of ischemic postconditioning of the heart].

    PubMed

    Maslov, L N; Naryzhnaia, N V; Hanuš, L; Pei, J-M; Baĭkov, A N; Zhang, I; Wang, H; Khaliulin, I G

    2013-05-01

    Analysis of literature source indicates that main pretenders to the role of end-effectors of ischemic postconditioning of the heart are: 1) Ca(2+)-dependent K+ channel of BK-type (big conductance K+ channel), 2) mitoK(ATP) channel (mitochondrial ATP-sensitive K(+)-channel), 3) MPT pore (mitochondrial permeability transition pore). At the same time, some investigators consider that mitoK(ATP) channel is only an intermediate link in the series of signaling events ensured an increase in cardiac tolerance to impact of ischemia-reperfusion. The most likely end-effector of the three structures is MPT pore. Alternatively, it is possible, that unique molecular complex appearing a single