Sample records for effects including endocrine

  1. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs.

    PubMed Central

    Brouwer, A; Longnecker, M P; Birnbaum, L S; Cogliano, J; Kostyniak, P; Moore, J; Schantz, S; Winneke, G

    1999-01-01

    This article addresses issues related to the characterization of endocrine-related health effects resulting from low-level exposures to polychlorinated biphenyls (PCBs). It is not intended to be a comprehensive review of the literature but reflects workshop discussions. "The Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels," workshop provided a forum to discuss the methods and data needed to improve risk assessments of endocrine disruptors. This article contains an overview of endocrine-related (estrogen and thyroid system) interactions and other low-dose effects of PCBs. The data set on endocrine effects includes results obtained from mechanistic methods/ and models (receptor based, metabolism based, and transport protein based), as well as from (italic)in vivo(/italic) models, including studies with experimental animals and wildlife species. Other low-dose effects induced by PCBs, such as neurodevelopmental and reproductive effects and endocrine-sensitive tumors, have been evaluated with respect to a possible causative linkage with PCB-induced alterations in endocrine systems. In addition, studies of low-dose exposure and effects in human populations are presented and critically evaluated. A list of conclusions and recommendations is included. PMID:10421775

  2. Key Lessons from Performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 Male and Female Pubertal Assays

    PubMed Central

    Stump, Donald G; O'Connor, John C; Lewis, Joseph M; Marty, M Sue

    2014-01-01

    The male and female pubertal assays, which are included in the U.S. Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) Tier 1 battery, can detect endocrine-active compounds operating by various modes of action. This article uses the collective experience of three laboratories to provide information on pubertal assay conduct, interlaboratory reproducibility, endpoint redundancy, and data interpretation. The various criteria used to select the maximum tolerated dose are described. A comparison of historical control data across laboratories confirmed reasonably good interlaboratory reproducibility. With a reliance on apical endpoints, interpretation of pubertal assay effects as specifically endocrine-mediated or secondary to other systemic effects can be problematic and mode of action may be difficult to discern. Across 21–23 data sets, relative liver weight, a nonspecific endocrine endpoint, was the most commonly affected endpoint in male and female assays. For endocrine endpoints, patterns of effects were generally seen; rarely was an endocrine-sensitive endpoint affected in isolation. In males, most frequently missed EPA-established performance criteria included mean weights for kidney and thyroid, and the coefficient of variation for age and body weight at preputial separation, seminal vesicle weight, and final body weight. In females, the frequently missed EPA-established performance criteria included mean adrenal weight and mean age at vaginal opening. To ensure specificity for endocrine effects, the pubertal assays should be interpreted using a weight-of-evidence approach as part of the entire EDSP battery. Based on the frequency with which certain performance criteria were missed, an EPA review of these criteria is warranted. PMID:24510766

  3. Endocrine Disrupting Chemicals and Disease Susceptibility

    PubMed Central

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. PMID:21899826

  4. Endocrine disrupting chemicals and disease susceptibility.

    PubMed

    Schug, Thaddeus T; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J

    2011-11-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. Published by Elsevier Ltd.

  5. Initial experience with gamma knife surgery for endocrine ophthalmopathy.

    PubMed

    Antico, Julio C; Crovetto, Luis; Tenca, Eduardo; Artes, Carlos

    2005-01-01

    The aim of this study was to evaluate both the effectiveness and safety of the treatment of endocrine ophthalmopathy with gamma knife surgery (GKS). Five patients were included in a prospective study designed to assess the results of GKS of endocrine ophthalmopathy secondary to Graves disease. All the patients completed a 2-year follow-up period. During this period, the patients were evaluated both clinically and by means of additional methods, including computerized tomography and magnetic resonance imaging studies. The minimum dose delivered to the 50% isodose line was 6.5 Gy in all the patients. In all cases, a clinical improvement was observed. The best effect was seen in symptom regression related to soft-tissue involvement. No treatment-related side effects were detected. In light of the results obtained the authors consider that GKS may be a safe and effective way to treat endocrine ophthalmopathy.

  6. Uncertainties in biological responses that influence hazard and risk approaches to the regulation of endocrine active substances

    EPA Science Inventory

    Endocrine Disrupting Substances (EDSs) may have certain biological effects including delayed effects, multigenerational effects, and non-monotonic dose response relationships (NMDRs) that require careful consideration when determining environmental hazards. The case studies evalu...

  7. SETAC: Uncertainties in biological responses that influence hazard or risk approaches to the regulation of endocrine active substances

    EPA Science Inventory

    Endocrine Disrupting Substances (EDSs) may have certain biological effects including delayed effects, multigenerational effects, and non-monotonic dose response relationships (NMDRs) that require careful consideration when determining environmental hazards. The case studies evalu...

  8. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    USGS Publications Warehouse

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. 

  9. Endocrine Disruptors

    MedlinePlus

    ... cans, detergents, flame retardants, food, toys, cosmetics, and pesticides. NIEHS supports studies to determine whether exposure to endocrine disruptors may result in human health effects including lowered fertility and an increased incidence ...

  10. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminantsmore » in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.« less

  11. Endocrine disruption, parasites and pollutants in wild freshwater fish.

    PubMed

    Jobling, S; Tyler, C R

    2003-01-01

    Disruption of the endocrine system has been shown to occur in wild freshwater fish populations across the globe. Effects range from subtle changes in the physiology and sexual behaviour of fish to permanently altered sexual differentiation, impairment of gonad development and/or altered fertility. A wide variety of adverse environmental conditions may induce endocrine disruption, including sub-optimal temperatures, restricted food supply, low pH, environmental pollutants, and/or parasites. Furthermore, it is conceivable that any/all of these factors could act simultaneously to cause a range of disparate or inter-related effects. Some of the strongest evidence for a link between an adverse health effect, as a consequence of endocrine disruption, and a causative agent(s) is between the condition of intersex in wild roach (Rutlius rutilus) in UK rivers and exposure to effluents from sewage treatment works. The evidence to indicate that intersex in roach (and other cyprinid fish living in these rivers) is caused by chemicals that mimic and/or disrupt hormone function/balance in treated sewage effluent is substantial. There are a few parasites that affect the endocrine system directly in fish, including the tape worm Ligula intestinalis and a few parasites from the micropsora phylum. L. intestinalis acts at the level of the hypothalamus restricting GnRH secretion (resulting in poorly developed gonads) and is one of the very few examples where an endocrine disrupting event has been shown to result in a population-level effect (reducing it). It is well established that many parasites affect the immune system and thus the most common effect of parasites on the endocrine system in fish is likely to be an indirect one.

  12. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  13. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  14. Current limitations and recommendations to improve testing ...

    EPA Pesticide Factsheets

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizations, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormonal pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1)adequately sensitive species and life-stages, 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern, and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive in regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to, and guidance for existing test methods, and to reduce uncertainty. For example, in vitro high throughput

  15. Circadian, endocrine, and metabolic effects of prolonged bedrest: Two 56-day bedrest studies

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rambaut, P. C.

    1974-01-01

    Two bedrest studies of 56 days each have been conducted to evaluate the effects of prolonged bedrest on circadian synchrony and endocrine and metabolic function. Measurements included the pituitary-adrenal, thyroid, parathyroid, insulin-glucose-growth hormones, catecholamine excretion, body temperature, and heart rate. The results indicated that a rigorous regimen of exercise did not prevent the endocrine and metabolic effects of prolonged bedrest. Changes in circadian, endocrine, and metabolic functions in bedrest appear to be due to changes in hydrostatic pressure and lack of postural cues rather than to inactivity, confinement, or the bleeding schedule. Prolonged bedrest, particularly beyond 24 days, resulted in rhythm desynchronization in spite of well regulated light/dark cycles, temperature, humidity, activity, and meal times and meal composition and in increased lability of all endocrine parameter measured. It also resulted in an apparent insensitivity of the glucose response to insulin, of cortisol secretion to ACTH, and of growth hormone secretion to hypoglycemia.

  16. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

    PubMed Central

    De Coster, Sam; van Larebeke, Nicolas

    2012-01-01

    The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand. PMID:22991565

  17. Endocrine Dysregulation in Anorexia Nervosa Update

    PubMed Central

    2011-01-01

    Context: Anorexia nervosa is a primary psychiatric disorder with serious endocrine consequences, including dysregulation of the gonadal, adrenal, and GH axes, and severe bone loss. This Update reviews recent advances in the understanding of the endocrine dysregulation observed in this state of chronic starvation, as well as the mechanisms underlying the disease itself. Evidence Acquisition: Findings of this update are based on a PubMed search and the author's knowledge of this field. Evidence Synthesis: Recent studies have provided insights into the mechanisms underlying endocrine dysregulation in states of chronic starvation as well as the etiology of anorexia nervosa itself. This includes a more complex understanding of the pathophysiologic bases of hypogonadism, hypercortisolemia, GH resistance, appetite regulation, and bone loss. Nevertheless, the etiology of the disease remains largely unknown, and effective therapies for the endocrine complications and for the disease itself are lacking. Conclusions: Despite significant progress in the field, further research is needed to elucidate the mechanisms underlying the development of anorexia nervosa and its endocrine complications. Such investigations promise to yield important advances in the therapeutic approach to this disease as well as to the understanding of the regulation of endocrine function, skeletal biology, and appetite regulation. PMID:21976742

  18. Fifteen Years after “Wingspread”—Environmental Endocrine Disrupters and Human and Wildlife Health: Where We are Today and Where We Need to Go

    PubMed Central

    Hotchkiss, Andrew K.; Rider, Cynthia V.; Blystone, Chad R.; Wilson, Vickie S.; Hartig, Phillip C.; Ankley, Gerald T.; Foster, Paul M.; Gray, Clark L.; Gray, L. Earl

    2008-01-01

    In 1991, a group of expert scientists at a Wingspread work session on endocrine-disrupting chemicals (EDCs) concluded that “Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. Endocrine disruption can be profound because of the crucial role hormones play in controlling development.” Since that time, there have been numerous documented examples of adverse effects of EDCs in invertebrates, fish, wildlife, domestic animals, and humans. Hormonal systems can be disrupted by numerous different anthropogenic chemicals including antiandrogens, androgens, estrogens, AhR agonists, inhibitors of steroid hormone synthesis, antithyroid substances, and retinoid agonists. In addition, pathways and targets for endocrine disruption extend beyond the traditional estrogen/androgen/thyroid receptor–mediated reproductive and developmental systems. For example, scientists have expressed concern about the potential role of EDCs in increasing trends in early puberty in girls, obesity and type II diabetes in the United States and other populations. New concerns include complex endocrine alterations induced by mixtures of chemicals, an issue broadened due to the growing awareness that EDCs present in the environment include a variety of potent human and veterinary pharmaceutical products, personal care products, nutraceuticals and phytosterols. In this review we (1) address what have we learned about the effects of EDCs on fish, wildlife, and human health, (2) discuss representative animal studies on (anti)androgens, estrogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin–like chemicals, and (3) evaluate regulatory proposals being considered for screening and testing these chemicals. PMID:18281716

  19. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577

  20. Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays.

    PubMed Central

    Zacharewski, T

    1998-01-01

    It has been suggested that chemicals and complex mixtures capable of modulating the endocrine system may contribute to adverse health, reproduction, and developmental effects in humans and wildlife. These effects include increased incidence of hormone-dependent cancers, compromised reproductive fitness, and abnormal reproductive system development. In response to public concern, regulatory agencies in North America and Europe are formulating potential strategies to systematically test chemicals and complex mixtures for their endocrine-disrupting activities. Because of the complexity of the endocrine system and the number of potential endocrine disruptor targets, a tiered approach involving a complementary battery of short- and long-term in vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of action is being considered. However, the available established assays use a limited number of end points, and significant information gaps exist for other potential targets in the endocrine system. In addition to discussing the merits and limitations of the assays that may be adopted, this paper also highlights potential problems associated with the use of a tiered testing strategy. PMID:9599705

  1. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond.

    PubMed

    Reichrath, Jörg; Saternus, Roman; Vogt, Thomas

    2017-09-15

    The skin represents a pivotal organ for the human body's vitamin D endocrine system, being both the site of ultraviolet (UV)-B-induced vitamin D synthesis and a target tissue for the pluripotent effects of 1,25(OH) 2 D 3 and other biologically active vitamin D metabolites. As many other steroid hormones, 1,25(OH) 2 D 3 exerts its effects via two independent signal transduction pathways: the classical genomic and the non-genomic pathway. While non-genomic effects of 1,25(OH) 2 D 3 are in part exerted via effects on intracellular calcium, genomic effects are mediated by the vitamin D receptor (VDR). Recent findings convincingly support the concept of a new function of the VDR as a tumor suppressor in skin, with key components of the vitamin D endocrine system, including VDR, CYP24A1, CYP27A1, and CYP27B1 being strongly expressed in non-melanoma skin cancer (NMSC). It has now been shown that anti-tumor effects of VDR, that include some of its ligand-induced growth-regulatory effects, are at least in part mediated by interacting in a highly coordinated manner with the p53 family (p53/p63/p73) in response to a large number of alterations in cell homeostasis, including UV-induced DNA damage, a hallmark for skin photocarcinogenesis. Considering the relevance of the vitamin D endocrine system for carcinogenesis of skin cancer, it is not surprising that low 25(OH)D serum concentrations and genetic variants (SNPs) of the vitamin D endocrine system have been identified as potential risk factors for occurrence and prognosis of skin malignancies. In conclusion, an increasing body of evidence now convincingly supports the concept that the vitamin D endocrine system is of relevance for photocarcinogenesis and progression of NMSC and that its pharmacologic modulation by vitamin D, 1,25(OH) 2 D 3, and analogs represents a promising new strategy for prevention and/or treatment of these malignancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    This Executive Summary to the Endocrine Society's second Scientific Statement on environmental endocrine-disrupting chemicals (EDCs) provides a synthesis of the key points of the complete statement. The full Scientific Statement represents a comprehensive review of the literature on seven topics for which there is strong mechanistic, experimental, animal, and epidemiological evidence for endocrine disruption, namely: obesity and diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer, thyroid, and neurodevelopment and neuroendocrine systems. EDCs such as bisphenol A, phthalates, pesticides, persistent organic pollutants such as polychlorinated biphenyls, polybrominated diethyl ethers, and dioxins were emphasized because these chemicals had the greatest depth and breadth of available information. The Statement also included thorough coverage of studies of developmental exposures to EDCs, especially in the fetus and infant, because these are critical life stages during which perturbations of hormones can increase the probability of a disease or dysfunction later in life. A conclusion of the Statement is that publications over the past 5 years have led to a much fuller understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability. These findings will prove useful to researchers, physicians, and other healthcare providers in translating the science of endocrine disruption to improved public health. PMID:26414233

  3. ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.

    PubMed

    Fegert, Ivana

    2013-12-16

    The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the guidance was advanced further. For human health assessments it is based on the relevance to humans of the endocrine mechanism of toxicity, the specificity of the endocrine effects with respect to other toxic effects, the potency of the chemical to induce endocrine toxicity and consideration of exposure levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Hypopituitarism in pediatric survivors of inflicted traumatic brain injury.

    PubMed

    Auble, Bethany A; Bollepalli, Sureka; Makoroff, Kathi; Weis, Tammy; Khoury, Jane; Colliers, Tracy; Rose, Susan R

    2014-02-15

    Endocrine dysfunction is common after accidental traumatic brain injury (TBI). Prevalence of endocrine dysfunction after inflicted traumatic brain injury (iTBI) is not known. The aim of this study was to examine endocrinopathy in children after moderate-to-severe iTBI. Children with previous iTBI (n=14) were evaluated for growth/endocrine dysfunction, including anthropometric measurements and hormonal evaluation (nocturnal growth hormone [GH], thyrotropin surge, morning and low-dose adrenocorticotropin stimulated cortisol, insulin-like growth factor 1, IGF-binding protein 3, free thyroxine, prolactin [PRL], and serum/urine osmolality). Analysis used Fisher's exact test and Wilcoxon's rank-sum test, as appropriate. Eighty-six percent of subjects had endocrine dysfunction with at least one abnormality, whereas 50% had two or more abnormalities, significantly increased compared to an estimated 2.5% with endocrine abnormality in the general population (p<0.001). Elevated prolactin was common (64%), followed by abnormal thyroid function (33%), short stature (29%), and low GH peak (17%). High prolactin was common in subjects with other endocrine abnormalities. Two were treated with thyroid hormone and 2 may require GH therapy. In conclusion, children with a history of iTBI show high risk for endocrine dysfunction, including elevated PRL and growth abnormalities. This effect of iTBI has not been well described in the literature. Larger, multi-center, prospective studies would provide more data to determine the extent of endocrine dysfunction in iTBI. We recommend that any child with a history of iTBI be followed closely for growth velocity and pubertal changes. If growth velocity is slow, PRL level and a full endocrine evaluation should be performed.

  5. Obesity: an endocrine tumor?

    PubMed

    Dizdar, Omer; Alyamaç, Evrim

    2004-01-01

    Obesity is one of the most common disorders in clinical practice. The prevalance of obesity has increased by more than 60% since 1990. Adipose tissue acts as an endocrine organ secreting many factors into the blood, known as adipokines, including leptin, adipsin, acylation-stimulating protein, adiponectin, etc. This article examines the hypothesis that obesity may be evaluated as an endocrine tumor, regarding its genetic basis, hyperplasia and hypertrophy of adipocytes, neovascularisation within the adipose tissue associated with growth, and beneficisal metabolic effects of surgical removal of excess adipose tissue by liposuction. Assuming obesity as an endocrine tumor may bring out new treatment modalities. Liposuction as "cytoreductive surgery", antiangiogenic teraphy or anti-neoplastic drugs may be important components of obesity treatment in future.

  6. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries.

    PubMed

    Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle

    2018-08-01

    The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Cross-species extrapolation of toxicity information using the ...

    EPA Pesticide Factsheets

    In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two tiered approach for screening chemicals that applied standardized in vitro and in vivo toxicity tests. The Tier 1 screening assays were designed to identify substances that have the potential of interacting with the endocrine system and Tier 2 testing was developed to identify adverse effects caused by the chemical, with documentation of dose-response relationships. While this tiered approach was effective in identifying possible endocrine disrupting chemicals, the cost and time to screen a single chemical was significant. Therefore, in 2012 the EDSP proposed a transition to make greater use of computational approaches (in silico) and high-throughput screening (HTS; in vitro) assays to more rapidly and cost-efficiently screen chemicals for endocrine activity. This transition from resource intensive, primarily in vivo, screening methods to more pathway-based approaches aligns with the simultaneously occurring transformation in toxicity testing termed “Toxicity Testing in the 21st Century” which shifts the focus to the disturbance of the biological pathway predictive of the observable toxic effects. An example of such screening tools include the US Environmental Protection Agency’s

  8. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    PubMed Central

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977

  9. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    PubMed

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  10. Nanotoxicity: a growing need for study in the endocrine system.

    PubMed

    Lu, Xuefei; Liu, Ying; Kong, Xiangjun; Lobie, Peter E; Chen, Chunying; Zhu, Tao

    2013-05-27

    Nanomaterials (NMs) are engineered for commercial purposes such as semiconductors, building materials, cosmetics, and drug carriers, while natural nanoparticles (NPs) already exist in the environment. Due to their unique physicochemical properties, they may interact actively with biological systems. Some of these interactions might be detrimental to human health, and therefore studies on the potential 'nanotoxicity' of these materials in different organ systems are warranted. The purpose of developing the concept of nanotoxicity is to recognize and evaluate the hazards and risks of NMs and evaluate safety. This review will summarize and discuss recent reports derived from cell lines or animal models concerning the effects of NMs on, and their application in, the endocrine system of mammalian and other species. It will present an update on current studies of the effects of some typical NMs-such as metal-based NMs, carbon-based NMs, and dendrimers-on endocrine functions, in which some effects are adverse or unwanted and others are favorable or intended. Disruption of endocrine function is associated with adverse health outcomes including reproductive failure, metabolic syndrome, and some types of cancer. Further investigations are therefore required to obtain a thorough understanding of any potential risk of pathological endocrine disruption from products containing NMs. This review aims to provide impetus for further studies on the interactions of NMs with endocrine functions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Overview of air pollution and endocrine disorders

    PubMed Central

    Darbre, Philippa D

    2018-01-01

    Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health. PMID:29872334

  12. The clandestine organs of the endocrine system.

    PubMed

    Garcia-Reyero, Natàlia

    2018-02-01

    This review analyzes what could be regarded as the "clandestine organs" of the endocrine system: the gut microbiome, the immune system, and the stress system. The immune system is very closely related to the endocrine system, with many intertwined processes and signals. Many researchers now consider the microbiome as an 'organ' that affects the organism at many different levels. While stress is certainly not an organ, it affects so many processes, including endocrine-related processes, that the stress response system deserved a special section in this review. Understanding the connections, effects, and feedback mechanisms between the different "clandestine organs" and the endocrine system will provide us with a better understanding of how an organism functions, as well as reinforce the idea that there are no independent organs or systems, but a complex, interacting network of molecules, cells, tissues, signaling pathways, and mechanisms that constitute an individual. Published by Elsevier Inc.

  13. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

    PubMed Central

    Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.

    2009-01-01

    There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515

  14. Herbal Medicine for Hot Flushes Induced by Endocrine Therapy in Women with Breast Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Li, Yuanqing; Zhu, Xiaoshu; Bensussan, Alan; Li, Pingping; Moylan, Eugene; Delaney, Geoff; McPherson, Luke

    2016-01-01

    Objective. This systematic review was conducted to evaluate the clinical effectiveness and safety of herbal medicine (HM) as an alternative management for hot flushes induced by endocrine therapy in breast cancer patients. Methods. Key English and Chinese language databases were searched from inception to July 2015. Randomized Controlled Trials (RCTs) evaluating the effects of HM on hot flushes induced by endocrine therapy in women with breast cancer were retrieved. We conducted data collection and analysis in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analysis was performed with the software (Review Manager 5.3). Results. 19 articles were selected from the articles retrieved, and 5 articles met the inclusion criteria for analysis. Some included individual studies showed that HM can relieve hot flushes as well as other menopausal symptoms induced by endocrine therapy among women with breast cancer and improve the quality of life. There are minor side effects related to HM which are well tolerated. Conclusion. Given the small number of included studies and relatively poor methodological quality, there is insufficient evidence to draw positive conclusions regarding the objective benefit of HM. Additional high quality studies are needed with more rigorous methodological approach to answer this question.

  15. Endocrine Disruptor Screening Program Reports to Congress

    EPA Pesticide Factsheets

    This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.

  16. EDSP Tier 2 test (T2T) guidances and protocols are delivered, including web-based guidance for diagnosing and scoring, and evaluating EDC-induced pathology in fish and amphibian

    EPA Science Inventory

    The Agency’s Endocrine Disruptor Screening Program (EDSP) consists of two tiers. The first tier provides information regarding whether a chemical may have endocrine disruption properties. Tier 2 tests provide confirmation of ED effects and dose-response information to be us...

  17. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    PubMed

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  18. Endocrine and reproductive dysfunction in men associated with occupational inorganic lead intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, M.R.; Kayne, R.D.; Robins, J.M.

    In an attempt to define a postulated effect of lead on male endocrine function, seven men with symptomatic occupational lead intoxication (maximum whole blood lead levels 66-139 ..mu..g/dl) underwent in-patient endocrine evaluation at the time of diagnosis. Defects in thyroid function probably of central origin, were present in three patients. Six patients had subnormal glucocorticoid production measured by 24-hr urinary 17-hydroxy-corticosteroids and plasma cortisol responses to vasopressin- and/or insulin-induced hypoglycemia. Although serum testosterone concentration was normal in six patients, five had defects in spermatogenesis, including two with ologospermia and two with azoospermia. Repeat examinations after chelation therapy showed only partialmore » improvement. It is concluded that heavy occupational exposure to lead, sufficient to cause clinical poisoning, may be associated with diffuse disturbances of endocrine and reproductive functions in men which are not rapidly reversible with standard treatment. Since men without overt poisoning have not been studied, these results cannot yet be included as sequelae of low-dose exposures.« less

  19. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  20. Environmental epigenetics: a role in endocrine disease?

    PubMed

    Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A

    2012-10-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.

  1. A review on endocrine disruptors and their possible impacts on human health.

    PubMed

    Kabir, Eva Rahman; Rahman, Monica Sharfin; Rahman, Imon

    2015-07-01

    Endocrine disruption is a named field of research which has been very active for over 10 years, although the effects of endocrine disruptors in wildlife have been studied mainly in vast since the 1940s. A large number of chemicals have been identified as endocrine disruptors and humans can be exposed to them either due to their occupations or through dietary and environmental exposure (water, soil and air). Endocrine disrupting chemicals are compounds that alter the normal functioning of the endocrine system of both humans and wildlife. In order to understand the vulnerability and risk factors of people due to endocrine disruptors as well as the remedies for these, methods need to be developed in order to predict effects on populations and communities from the knowledge of effects on individuals. For several years there have been a growing interest on the mechanism and effect of endocrine disruptors and their relation with environment and human health effect. This paper, based on extensive literature survey, briefly studies the progress mainly in human to provide information concerning causative substances, mechanism of action, ubiquity of effects and important issues related to endocrine disruptors. It also reviews the current knowledge of the potential impacts of endocrine disruptors on human health so that the effects can be known and remedies applied for the problem as soon as possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case-control study.

    PubMed

    Brophy, James T; Keith, Margaret M; Watterson, Andrew; Park, Robert; Gilbertson, Michael; Maticka-Tyndale, Eleanor; Beck, Matthias; Abu-Zahra, Hakam; Schneider, Kenneth; Reinhartz, Abraham; Dematteo, Robert; Luginaah, Isaac

    2012-11-19

    Endocrine disrupting chemicals and carcinogens, some of which may not yet have been classified as such, are present in many occupational environments and could increase breast cancer risk. Prior research has identified associations with breast cancer and work in agricultural and industrial settings. The purpose of this study was to further characterize possible links between breast cancer risk and occupation, particularly in farming and manufacturing, as well as to examine the impacts of early agricultural exposures, and exposure effects that are specific to the endocrine receptor status of tumours. 1005 breast cancer cases referred by a regional cancer center and 1146 randomly-selected community controls provided detailed data including occupational and reproductive histories. All reported jobs were industry- and occupation-coded for the construction of cumulative exposure metrics representing likely exposure to carcinogens and endocrine disruptors. In a frequency-matched case-control design, exposure effects were estimated using conditional logistic regression. Across all sectors, women in jobs with potentially high exposures to carcinogens and endocrine disruptors had elevated breast cancer risk (OR = 1.42; 95% CI, 1.18-1.73, for 10 years exposure duration). Specific sectors with elevated risk included: agriculture (OR = 1.36; 95% CI, 1.01-1.82); bars-gambling (OR = 2.28; 95% CI, 0.94-5.53); automotive plastics manufacturing (OR = 2.68; 95% CI, 1.47-4.88), food canning (OR = 2.35; 95% CI, 1.00-5.53), and metalworking (OR = 1.73; 95% CI, 1.02-2.92). Estrogen receptor status of tumors with elevated risk differed by occupational grouping. Premenopausal breast cancer risk was highest for automotive plastics (OR = 4.76; 95% CI, 1.58-14.4) and food canning (OR = 5.70; 95% CI, 1.03-31.5). These observations support hypotheses linking breast cancer risk and exposures likely to include carcinogens and endocrine disruptors, and demonstrate the value of detailed work histories in environmental and occupational epidemiology.

  3. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case–control study

    PubMed Central

    2012-01-01

    Background Endocrine disrupting chemicals and carcinogens, some of which may not yet have been classified as such, are present in many occupational environments and could increase breast cancer risk. Prior research has identified associations with breast cancer and work in agricultural and industrial settings. The purpose of this study was to further characterize possible links between breast cancer risk and occupation, particularly in farming and manufacturing, as well as to examine the impacts of early agricultural exposures, and exposure effects that are specific to the endocrine receptor status of tumours. Methods 1005 breast cancer cases referred by a regional cancer center and 1146 randomly-selected community controls provided detailed data including occupational and reproductive histories. All reported jobs were industry- and occupation-coded for the construction of cumulative exposure metrics representing likely exposure to carcinogens and endocrine disruptors. In a frequency-matched case–control design, exposure effects were estimated using conditional logistic regression. Results Across all sectors, women in jobs with potentially high exposures to carcinogens and endocrine disruptors had elevated breast cancer risk (OR = 1.42; 95% CI, 1.18-1.73, for 10 years exposure duration). Specific sectors with elevated risk included: agriculture (OR = 1.36; 95% CI, 1.01-1.82); bars-gambling (OR = 2.28; 95% CI, 0.94-5.53); automotive plastics manufacturing (OR = 2.68; 95% CI, 1.47-4.88), food canning (OR = 2.35; 95% CI, 1.00-5.53), and metalworking (OR = 1.73; 95% CI, 1.02-2.92). Estrogen receptor status of tumors with elevated risk differed by occupational grouping. Premenopausal breast cancer risk was highest for automotive plastics (OR = 4.76; 95% CI, 1.58-14.4) and food canning (OR = 5.70; 95% CI, 1.03-31.5). Conclusions These observations support hypotheses linking breast cancer risk and exposures likely to include carcinogens and endocrine disruptors, and demonstrate the value of detailed work histories in environmental and occupational epidemiology. PMID:23164221

  4. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active.

    PubMed

    Fort, Douglas J; Fort, Troy D; Mathis, Michael B; Ball, R Wayne

    2016-11-01

    The potential reproductive and endocrine toxicity of boric acid (BA) in the African clawed frog, Xenopus laevis, was evaluated using a 30-day exposure of adult frogs. Adult female and male frogs established as breeders were exposed to a culture water control and 4 target (nominal) test concentrations [5.0, 7.5, 10.0, and 15 mg boron (B)/L, equivalent to 28.5, 42.8, 57.0, and 85.5 mg BA/L] using flow-through diluter exposure system. The primary endpoints measured were adult survival, growth (weight and snout-vent length [SVL]), necropsy data, reproductive fecundity, and development of progeny (F1) from the exposed frogs. Necropsy endpoints included gonad weight, gonado-somatic index (GSI), ovary profile (oocyte normalcy and stage distribution), sperm count, and dysmorphology. Endocrine endpoints included plasma estradiol (E2), testosterone (T), dihydrotestosteone (DHT), gonadal CYP 19 (aromatase), and gonadal 5α-reductase (5-AR). BA exposure to adult female X. laevis increased the proportion of immature oocytes (< stage II) in the ovaries of females, reduced sperm counts and increased sperm cell dysmorphology frequency in male frogs exposed to 15 mg B/L. No effects on the other general, developmental (F1), or endocrine endpoints were observed. Based on the results of the present study, the no observed adverse effects concentration (NOAEC) for the reproductive endpoints was 10 mg B/L; and 15 mg B/L for reproductive fecundity, F1 embryo larval development, and endocrine function. These results confirmed that although BA is capable of inducing reproductive toxicity at high concentrations, it is not an endocrine disrupting agent. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife.

    PubMed

    Annamalai, Jayshree; Namasivayam, Vasudevan

    2015-03-01

    Endocrine disrupting chemicals (EDCs) are exogenous agents that interfere or disrupt the normal synthesis, secretion, transportation, binding and metabolism of natural hormones; eventually dysregulating homeostatic mechanisms, reproduction and development. They are emitted into the atmosphere during anthropogenic activities and physicochemical reactions in nature. Inhalation of these EDCs as particulate and gaseous vapors triggers their interaction with endocrine glands and exerts agonist or antagonists actions at hormone receptors. The endocrine disruption at nanogram levels of EDC's has gained concern in the last decade, due to infertility among men and women, early puberty, obesity, diabetes and cancer. Thus, the review explores the literature that addresses the major occurring EDCs in the atmosphere including phthalates, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), dioxins, alkylphenols (APs) and perfluorinated chemicals (PFCs). Sources, fate, half-life, mechanism, measured concentrations in air, bioaccumulation in tissues, laboratory exposures correlating to toxicological effects of these EDCs in humans and wildlife are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours

    PubMed Central

    Patisaul, Heather B.

    2017-01-01

    A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is ‘synthetic’ v. what is ‘natural,’ shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour. PMID:27389644

  7. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.

    PubMed

    Buchholz, Daniel R

    2015-12-15

    Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases of adulthood, including diabetes and cardiovascular disease. Endocrine and molecular mechanisms that regulate perinatal development and that underlie the connections between early life events and adult diseases are not well elucidated. Such mechanisms are difficult to study in uterus-enclosed mammalian embryos because of confounding maternal effects. To elucidate mechanisms of developmental endocrinology in the perinatal period, Xenopus laevis the African clawed frog is a valuable vertebrate model. Frogs and humans have identical hormones which peak at birth and metamorphosis, have conserved hormone receptors and mechanisms of gene regulation, and have comparable roles for hormones in many target organs. Study of molecular and endocrine mechanisms of hormone-dependent development in frogs is advantageous because an extended free-living larval period followed by metamorphosis (1) is independent of maternal endocrine influence, (2) exhibits dramatic yet conserved developmental effects induced by thyroid and glucocorticoid hormones, and (3) begins at a developmental stage with naturally undetectable hormone levels, thereby facilitating endocrine manipulation and interpretation of results. This review highlights the utility of frog metamorphosis to elucidate molecular and endocrine actions, hormone interactions, and endocrine disruption, especially with respect to thyroid hormone. Knowledge from the frog model is expected to provide fundamental insights to aid medical understanding of endocrine disease, stress, and endocrine disruption affecting the perinatal period in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, J.

    1998-06-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animalsmore » (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'« less

  9. The role of toxicology to characterize biomarkers for agrochemicals with potential endocrine activities.

    PubMed

    Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio

    2008-09-01

    The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.

  10. Endocrine hypertension: An overview on the current etiopathogenesis and management options.

    PubMed

    Thomas, Reena M; Ruel, Ewa; Shantavasinkul, Prapimporn Ch; Corsino, Leonor

    Endocrine causes of secondary hypertension include primary aldosteronism, pheochromocytoma, cushing's syndrome, hyperparathyroidism and hypo- and hyperthyroidism. They comprise of the 5%-10% of the causes of secondary hypertension. Primary hyperaldosteronism, the most common of the endocrine cause of hypertension often presents with resistant or difficult to control hypertension associated with either normo-or hypokalemia. Pheochromocytoma, the great mimicker of many conditions, is associated with high morbidity and mortality if left untreated. A complete history including pertinent family history, physical examination along with a high index of suspicion with focused biochemical and radiological evaluation is important to diagnose and effectively treat these conditions. The cost effective targeted genetic screening for current known mutations associated with pheochromocytoma are important for early diagnosis and management in family members. The current review focuses on the most recent evidence regarding causes, clinical features, methods of diagnosis, and management of these conditions. A multidisciplinary approach involving internists, endocrinologists and surgeons is recommended in optimal management of these conditions.

  11. The Effects of Nanomaterials as Endocrine Disruptors

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-01-01

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited. PMID:23949635

  12. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.

  13. Regulatory Decisions on Endocrine Disrupting Chemicals Should be Based on the Principles of Endocrinology

    PubMed Central

    Vandenberg, Laura N.; Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Myers, John Peterson; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2013-01-01

    For years, scientists from various disciplines have studied the effects of endocrine disrupting chemicals (EDCs) on the health and wellbeing of humans and wildlife. Some studies have specifically focused on the effects of low doses, i.e. those in the range that are thought to be safe for humans and/or animals. Others have focused on the existence of non-monotonic dose-response curves. These concepts challenge the way that chemical risk assessment is performed for EDCs. Continued discussions have clarified exactly what controversies and challenges remain. We address several of these issues, including why the study and regulation of EDCs should incorporate endocrine principles; what level of consensus there is for low dose effects; challenges to our understanding of non-monotonicity; and whether EDCs have been demonstrated to produce adverse effects. This discussion should result in a better understanding of these issues, and allow for additional dialogue on their impact on risk assessment. PMID:23411111

  14. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    PubMed

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  15. Endocrine disruptors and prostate cancer risk

    PubMed Central

    Prins, Gail S

    2010-01-01

    There is increasing evidence both from epidemiology studies and animal models that specific endocrine-disrupting compounds may influence the development or progression of prostate cancer. In large part, these effects appear to be linked to interference with estrogen signaling, either through interacting with ERs or by influencing steroid metabolism and altering estrogen levels within the body. In humans, epidemiologic evidence links specific pesticides, PCBs and inorganic arsenic exposures to elevated prostate cancer risk. Studies in animal models also show augmentation of prostate carcinogenesis with several other environmental estrogenic compounds including cadmium, UV filters and BPA. Importantly, there appears to be heightened sensitivity of the prostate to these endocrine disruptors during the critical developmental windows including in utero and neonatal time points as well as during puberty. Thus infants and children may be considered a highly susceptible population for ED exposures and increased risk of prostate cancers with aging. PMID:18524946

  16. Rare diseases in clinical endocrinology: a taxonomic classification system.

    PubMed

    Marcucci, G; Cianferotti, L; Beck-Peccoz, P; Capezzone, M; Cetani, F; Colao, A; Davì, M V; degli Uberti, E; Del Prato, S; Elisei, R; Faggiano, A; Ferone, D; Foresta, C; Fugazzola, L; Ghigo, E; Giacchetti, G; Giorgino, F; Lenzi, A; Malandrino, P; Mannelli, M; Marcocci, C; Masi, L; Pacini, F; Opocher, G; Radicioni, A; Tonacchera, M; Vigneri, R; Zatelli, M C; Brandi, M L

    2015-02-01

    Rare endocrine-metabolic diseases (REMD) represent an important area in the field of medicine and pharmacology. The rare diseases of interest to endocrinologists involve all fields of endocrinology, including rare diseases of the pituitary, thyroid and adrenal glands, paraganglia, ovary and testis, disorders of bone and mineral metabolism, energy and lipid metabolism, water metabolism, and syndromes with possible involvement of multiple endocrine glands, and neuroendocrine tumors. Taking advantage of the constitution of a study group on REMD within the Italian Society of Endocrinology, consisting of basic and clinical scientists, a document on the taxonomy of REMD has been produced. This document has been designed to include mainly REMD manifesting or persisting into adulthood. The taxonomy of REMD of the adult comprises a total of 166 main disorders, 338 including all variants and subtypes, described into 11 tables. This report provides a complete taxonomy to classify REMD of the adult. In the future, the creation of registries of rare endocrine diseases to collect data on cohorts of patients and the development of common and standardized diagnostic and therapeutic pathways for each rare endocrine disease is advisable. This will help planning and performing intervention studies in larger groups of patients to prove the efficacy, effectiveness, and safety of a specific treatment.

  17. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance

    PubMed Central

    García-Becerra, Rocío; Santos, Nancy; Díaz, Lorenza; Camacho, Javier

    2013-01-01

    Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients. PMID:23344024

  18. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance.

    PubMed

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S; Bowden, Michaela; Rao, Prakash; Long, Henry W; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-05-30

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2-ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists.

  19. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance

    PubMed Central

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S.; Bowden, Michaela; Rao, Prakash; Long, Henry W.; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-01-01

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2–ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists. PMID:28507152

  20. Meeting Report: Measuring Endocrine-Sensitive Endpoints within the First Years of Life

    PubMed Central

    Arbuckle, Tye E.; Hauser, Russ; Swan, Shanna H.; Mao, Catherine S.; Longnecker, Matthew P.; Main, Katharina M.; Whyatt, Robin M.; Mendola, Pauline; Legrand, Melissa; Rovet, Joanne; Till, Christine; Wade, Mike; Jarrell, John; Matthews, Stephen; Van Vliet, Guy; Bornehag, Carl-Gustaf; Mieusset, Roger

    2008-01-01

    An international workshop titled “Assessing Endocrine-Related Endpoints within the First Years of Life” was held 30 April–1 May 2007, in Ottawa, Ontario, Canada. Representatives from a number of pregnancy cohort studies in North America and Europe presented options for measuring various endocrine-sensitive endpoints in early life and discussed issues related to performing and using those measures. The workshop focused on measuring reproductive tract developmental endpoints [e.g., anogenital distance (AGD)], endocrine status, and infant anthropometry. To the extent possible, workshop participants strove to develop or recommend standardized measurements that would allow comparisons and pooling of data across studies. The recommended outcomes include thigh fat fold, breast size, vaginal cytology, AGD, location of the testis, testicular size, and growth of the penis, with most of the discussion focusing on the genital exam. Although a number of outcome measures recommended during the genital exam have been associated with exposure to endocrine-disrupting chemicals, little is known about how predictive these effects are of later reproductive health or other chronic health conditions. PMID:18629319

  1. The Effect of Folate and Folate Plus Zinc Supplementation on Endocrine Parameters and Sperm Characteristics in Sub-Fertile Men: A Systematic Review and Meta-Analysis.

    PubMed

    Irani, Morvarid; Amirian, Malihe; Sadeghi, Ramin; Lez, Justine Le; Latifnejad Roudsari, Robab

    2017-08-29

    To evaluate the effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub fertile men. We conducted a systematic review and meta-analysis. Electronic databases of Medline, Scopus , Google scholar and Persian databases (SID, Iran medex, Magiran, Medlib, Iran doc) were searched from 1966 to December 2016 using a set of relevant keywords including "folate or folic acid AND (infertility, infertile, sterility)".All available randomized controlled trials (RCTs), conducted on a sample of sub fertile men with semen analyses, who took oral folic acid or folate plus zinc, were included. Data collected included endocrine parameters and sperm characteristics. Statistical analyses were done by Comprehensive Meta-analysis Version 2. In total, seven studies were included. Six studies had sufficient data for meta-analysis. "Sperm concentration was statistically higher in men supplemented with folate than with placebo (P < .001)". However, folate supplementation alone did not seem to be more effective than the placebo on the morphology (P = .056) and motility of the sperms (P = .652). Folate plus zinc supplementation did not show any statistically different effect on serum testosterone (P = .86), inhibin B (P = .84), FSH (P = .054), and sperm motility (P = .169) as compared to the placebo. Yet, folate plus zinc showed statistically higher effect on the sperm concentration (P < .001), morphology (P < .001), and serum folate level (P < .001) as compared to placebo. Folate plus zinc supplementation has a positive effect on sperm characteristics in sub fertile men. However, these results should be interpreted with caution due to the important heterogeneity of the studies included in this meta-analysis. Further trials are still needed to confirm the current findings.

  2. Endocrine and Metabolic Adverse Effects of Psychotropic Medications in Children and Adolescents

    ERIC Educational Resources Information Center

    Correll, Christoph U.; Carlson, Harold E.

    2006-01-01

    Objective: Despite increasing use of psychotropic medications in children and adolescents, data regarding their efficacy and safety are limited. Endocrine and metabolic adverse effects are among the most concerning adverse effects of commonly used psychotropic medications. Method: Selective review of endocrine and metabolic effects of psychotropic…

  3. The endocrine effects of nicotine and cigarette smoke

    PubMed Central

    Tweed, Jesse Oliver; Hsia, Stanley H.; Lutfy, Kabirullah; Friedman, Theodore C.

    2012-01-01

    With a current prevalence of approximately 20%, smoking continues to impact negatively upon health. Tobacco or nicotine use influences the endocrine system, with important clinical implications. In this review we critically evaluate the literature concerning the impact of nicotine as well as tobacco use on several parameters of the endocrine system and on glucose and lipid homeostasis. Emphasis is on the effect of smoking on diabetes mellitus and obesity and the consequences of smoking cessation on these disorders. Understanding the effects of nicotine and cigarettes on the endocrine system and how these changes contribute to the pathogenesis of various endocrine diseases will allow for targeted therapies and more effective approaches for smoking cessation. PMID:22561025

  4. Male reprotoxicity and endocrine disruption

    PubMed Central

    Campion, Sarah; Catlin, Natasha; Heger, Nicholas; McDonnell, Elizabeth V.; Pacheco, Sara E.; Saffarini, Camelia; Sandrof, Moses A.; Boekelheide, Kim

    2013-01-01

    Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine disrupting chemicals or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood and senescence. Special attention is given to the discussion of endocrine disrupting chemicals, chemical mixtures, low dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers. PMID:22945574

  5. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples

    PubMed Central

    Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan

    2013-01-01

    Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329

  6. Possible endocrine disrupting effects of parabens and their metabolites.

    PubMed

    Boberg, Julie; Taxvig, Camilla; Christiansen, Sofie; Hass, Ulla

    2010-09-01

    Parabens are preservatives used in a wide range of cosmetic products, including products for children, and some are permitted in foods. However, there is concern for endocrine disrupting effects. This paper critically discusses the conclusions of recent reviews and original research papers and provides an overview of studies on toxicokinetics. After dermal uptake, parabens are hydrolyzed and conjugated and excreted in urine. Despite high total dermal uptake of paraben and metabolites, little intact paraben can be recovered in blood and urine. Paraben metabolites may play a role in the endocrine disruption seen in experimental animals and studies are needed to determine human levels of parabens and metabolites. Overall, the estrogenic burden of parabens and their metabolites in blood may exceed the action of endogenous estradiol in childhood and the safety margin for propylparaben is very low when comparing worst-case exposure to NOAELs from experimental studies in rats and mice. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Tributyltin: Advancing the science on assessing endocrine disruption with an unconventional endocrine-disrupting compound

    USGS Publications Warehouse

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ronald C.; Guiney, Patrick; Karouna-Renier, Natalie K.; Schwarz, Tamar; Meador, James P.

    2018-01-01

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated—interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.

  8. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound.

    PubMed

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ron; Guiney, Patrick D; Karouna-Renier, Natalie; Schwarz, Tamar; Meador, James P

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.

  9. Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach.

    PubMed

    Safe, S H

    1998-08-01

    There is considerable public, regulatory, and scientific concern regarding human exposure to endocrine-disrupting chemicals, which include compounds that directly modulate steroid hormone receptor pathways (estrogens, antiestrogens, androgens, antiandrogens) and aryl hydrocarbon receptor (AhR) agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Based on quantitative structure-activity relationships for both AhR and estrogen receptor (ER) agonists, the relative potency (RP) of individual compounds relative to a standard (e.g. TCDD and 17-beta-estradiol) have been determined for several receptor-mediated responses. Therefore, the TCDD or estrogenic equivalent (TEQ or EQ, respectively) of a mixture is defined as TEQ = sigma[T(i)]xRP(i)or EQ=sigma[E(i)]xRP(i), where T(i) and E(i) are concentrations of individual AhR or ER agonists in any mixture. This approach for risk assessment of endocrine-disrupting mixtures assumes that for each endocrine response pathway, the effects of individual compounds are essentially additive. This paper will critically examine the utility of the TEQ/EQ approach for risk assessment, the validity of the assumptions used for this approach, and the problems associated with comparing low dose exposures to xeno and natural (dietary) endocrine disruptors.

  10. Weight classification does not influence the short-term endocrine or metabolic effects of high-fructose corn syrup-sweetened beverages.

    PubMed

    Heden, Timothy D; Liu, Ying; Kearney, Monica L; Kanaley, Jill A

    2014-05-01

    Obesity and high-fructose corn syrup (HFCS)-sweetened beverages are associated with an increased risk of chronic disease, but it is not clear whether obese (Ob) individuals are more susceptible to the detrimental effects of HFCS-sweetened beverages. The purpose of this study was to examine the endocrine and metabolic effects of consuming HFCS-sweetened beverages, and whether weight classification (normal weight (NW) vs. Ob) influences these effects. Ten NW and 10 Ob men and women who habitually consumed ≤355 mL per day of sugar-sweetened beverages were included in this study. Initially, the participants underwent a 4-h mixed-meal test after a 12-h overnight fast to assess insulin sensitivity, pancreatic and gut endocrine responses, insulin secretion and clearance, and glucose, triacylglycerol, and cholesterol responses. Next, the participants consumed their normal diet ad libitum, with 1065 mL per day (117 g·day(-1)) of HFCS-sweetened beverages added for 2 weeks. After the intervention, the participants repeated the mixed-meal test. HFCS-sweetened beverages did not significantly alter body weight, insulin sensitivity, insulin secretion or clearance, or endocrine, glucose, lipid, or cholesterol responses in either NW or Ob individuals. Regardless of previous diet, Ob individuals, compared with NW individuals, had ∼28% lower physical activity levels, 6%-9% lower insulin sensitivity, 12%-16% lower fasting high-density-lipoprotein cholesterol concentrations, 84%-144% greater postprandial triacylglycerol concentrations, and 46%-79% greater postprandial insulin concentrations. Greater insulin responses were associated with reduced insulin clearance, and there were no differences in insulin secretion. These findings suggest that weight classification does not influence the short-term endocrine and metabolic effects of HFCS-sweetened beverages.

  11. ENDOCRINE-DISRUPTING CHEMICALS: PREPUBERTAL EXPOSURES AND EFFECTS ON SEXUAL MATURATION AND THYROID FUNCTION IN THE MALE RAT. A FOCUS ON THE EDSTAC RECOMMENDATIONS. ENDOCRINE DISRUPTER SCREENING AND TESTING ADVISORY COMMITTEE

    EPA Science Inventory

    Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.

    Stoker TE, Parks LG, Gray LE, Cooper RL.

  12. American Society of Clinical Oncology Clinical Practice Guideline: Update on Adjuvant Endocrine Therapy for Women With Hormone Receptor–Positive Breast Cancer

    PubMed Central

    Burstein, Harold J.; Prestrud, Ann Alexis; Seidenfeld, Jerome; Anderson, Holly; Buchholz, Thomas A.; Davidson, Nancy E.; Gelmon, Karen E.; Giordano, Sharon H.; Hudis, Clifford A.; Malin, Jennifer; Mamounas, Eleftherios P.; Rowden, Diana; Solky, Alexander J.; Sowers, MaryFran R.; Stearns, Vered; Winer, Eric P.; Somerfield, Mark R.; Griggs, Jennifer J.

    2010-01-01

    Purpose To develop evidence-based guidelines, based on a systematic review, for endocrine therapy for postmenopausal women with hormone receptor–positive breast cancer. Methods A literature search identified relevant randomized trials. Databases searched included MEDLINE, PREMEDLINE, the Cochrane Collaboration Library, and those for the Annual Meetings of the American Society of Clinical Oncology (ASCO) and the San Antonio Breast Cancer Symposium (SABCS). The primary outcomes of interest were disease-free survival, overall survival, and time to contralateral breast cancer. Secondary outcomes included adverse events and quality of life. An expert panel reviewed the literature, especially 12 major trials, and developed updated recommendations. Results An adjuvant treatment strategy incorporating an aromatase inhibitor (AI) as primary (initial endocrine therapy), sequential (using both tamoxifen and an AI in either order), or extended (AI after 5 years of tamoxifen) therapy reduces the risk of breast cancer recurrence compared with 5 years of tamoxifen alone. Data suggest that including an AI as primary monotherapy or as sequential treatment after 2 to 3 years of tamoxifen yields similar outcomes. Tamoxifen and AIs differ in their adverse effect profiles, and these differences may inform treatment preferences. Conclusion The Update Committee recommends that postmenopausal women with hormone receptor–positive breast cancer consider incorporating AI therapy at some point during adjuvant treatment, either as up-front therapy or as sequential treatment after tamoxifen. The optimal timing and duration of endocrine treatment remain unresolved. The Update Committee supports careful consideration of adverse effect profiles and patient preferences in deciding whether and when to incorporate AI therapy. PMID:20625130

  13. IDENTIFYING ENDOCRINE DISRUPTORS BY HIGH-RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    The EPA is currently interested in human and ecosystem exposure to endocrine disruptors (1)-compounds that interfere with endogenous hormone systems. Possible endocrine disruptors in the environment include certain pesticides, industrial by-products, and pharmaceuticals. Such c...

  14. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings.

    PubMed

    Arentz, Susan; Abbott, Jason Anthony; Smith, Caroline Anne; Bensoussan, Alan

    2014-12-18

    Polycystic ovary syndrome (PCOS) is a prevalent, complex endocrine disorder characterised by polycystic ovaries, chronic anovulation and hyperandrogenism leading to symptoms of irregular menstrual cycles, hirsutism, acne and infertility. Evidence based medical management emphasises a multidisciplinary approach for PCOS, as conventional pharmaceutical treatment addresses single symptoms, may be contra-indicated, is often associated with side effects and not effective in some cases. In addition women with PCOS have expressed a strong desire for alternative treatments. This review examines the reproductive endocrine effects in PCOS for an alternative treatment, herbal medicine. The aim of this review was to identify consistent evidence from both pre-clinical and clinical research, to add to the evidence base for herbal medicine in PCOS (and associated oligo/amenorrhoea and hyperandrogenism) and to inform herbal selection in the provision clinical care for these common conditions. We undertook two searches of the scientific literature. The first search sought pre-clinical studies which explained the reproductive endocrine effects of whole herbal extracts in oligo/amenorrhoea, hyperandrogenism and PCOS. Herbal medicines from the first search informed key words for the second search. The second search sought clinical studies, which corroborated laboratory findings. Subjects included women with PCOS, menstrual irregularities and hyperandrogenism. A total of 33 studies were included in this review. Eighteen pre-clinical studies reported mechanisms of effect and fifteen clinical studies corroborated pre-clinical findings, including eight randomised controlled trials, and 762 women with menstrual irregularities, hyperandrogenism and/or PCOS. Interventions included herbal extracts of Vitex agnus-castus, Cimicifuga racemosa, Tribulus terrestris, Glycyrrhiza spp., Paeonia lactiflora and Cinnamomum cassia. Endocrine outcomes included reduced luteinising hormone (LH), prolactin, fasting insulin and testosterone. There was evidence for the regulation of ovulation, improved metabolic hormone profile and improved fertility outcomes in PCOS. There was evidence for an equivalent effect of two herbal medicines and the pharmaceutical agents bromocriptine (and Vitex agnus-castus) and clomiphene citrate (and Cimicifuga racemosa). There was less robust evidence for the complementary combination of spirinolactone and Glycyrrhiza spp. for hyperandrogenism. Preclinical and clinical studies provide evidence that six herbal medicines may have beneficial effects for women with oligo/amenorrhea, hyperandrogenism and PCOS. However the quantity of pre-clinical data was limited, and the quality of clinical evidence was variable. Further pre-clinical studies are needed to explain the effects of herbal medicines not included in this review with current clinical evidence but an absence of pre-clinical data.

  15. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  16. Lead Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.

  17. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sleep and the endocrine system.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems.

    PubMed

    Satoh, Kanako; Nonaka, Ryouichi; Ohyama, Ken-ichi; Nagai, Fumiko; Ogata, Akio; Iida, Mitsuru

    2008-03-01

    Disposable gloves made of nitrile-butadiene rubber (NBR) are used for contact with foodstuffs rather than polyvinyl chloride gloves containing di(2-ethylhexyl)phthalate (DEHP), because endocrine-disruptive effects are suspected for phthalate diesters including DEHP. However, 4,4'-butylidenebis(6-t-butyl-m-cresol) (BBBC), 2,4-di-t-butylphenol, and 2,2,4-trimetyl-1,3-pentanediol diisobutyrate can be eluted from NBR gloves, and possibly also detected in food. In this study, we examined the endocrine-disrupting effects of these chemicals via androgen receptor (AR) and estrogen receptor (ER)-mediated pathways using stably transfected reporter gene cell lines expressing AR (AR-EcoScreen system) and ER (MVLN cells), respectively. We also examined the binding activities of these chemicals to AR and ER. The IC50 value of BBBC for antagonistic androgen was in the range of 10(-6)M. The strength of inhibition was about 5 times that of a known androgen antagonist, 1,1'-(2,2-dichloroethylidene)bis[4-chlorobenzene] (p,p'-DDE), and similar to that of bisphenol A. The IC50 value of BBBC for antagonistic estrogen was in the range of 10(-6)M. These results suggest that BBBC and its structural homologue, 4,4'-thiobis(6-t-butyl-m-cresol) are androgen and estrogen antagonists. It is therefore necessary to study these chemicals in vivo, and clarify their effect on the endocrine system.

  20. A RESEARCH AGENDA FOR RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    To date, research on suspected endocrine disrupting chemicals (EDCs) has focused on determining health effects in humans and wildlife and on occurrence of these chemicals in the environment. There is strong evidence that certain chemicals are causing endocrine-related effects in...

  1. Methods to assess the effects of environmental chemicals on the brain-pituitary-gonad axis of the reproductive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magliulo-Cepriano, L.; Schreibman, M.P.

    1999-07-01

    In all vertebrates, the neuroendocrine system serves as the primary and essential link between the external and internal environments and a multitude of physiological systems, including the reproductive system. In response to changes in the environment and fluctuations in levels of circulating humoral agents, the neuroendocrine system is able to reverse, maintain or advance physiological events. Endocrine disrupting compounds are believed to wreak havoc on reproduction and development by interfering in the normal flow of information along the brain-pituitary-gonad axis. While the final effects of these compounds may be easily determined in a number of species, utilization of non-traditional researchmore » animals, such as some fishes in which the pattern of information flow along the brain-pituitary-gonad axis has been meticulously detailed and documented, will provide excellent and novel means of elucidating not only the final effects but the cytological, histological and systemic mechanisms of action of these endocrine disruptors. This report presents methods of assessing the effects of endocrine disrupting compounds on a variety of physiological and morphological parameters in fishes.« less

  2. A path forward in the debate over health impacts of endocrine disrupting chemicals.

    PubMed

    Zoeller, R Thomas; Bergman, Åke; Becher, Georg; Bjerregaard, Poul; Bornman, Riana; Brandt, Ingvar; Iguchi, Taisen; Jobling, Susan; Kidd, Karen A; Kortenkamp, Andreas; Skakkebaek, Niels E; Toppari, Jorma; Vandenberg, Laura N

    2014-12-22

    Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system". The second is focused on elements of hormone action including "potency", "endpoints", "timing", "dose" and "thresholds". The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate.

  3. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review.

    PubMed

    Giulivo, Monica; Lopez de Alda, Miren; Capri, Ettore; Barceló, Damià

    2016-11-01

    Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system.

    PubMed

    Maqdasy, Salwan; Trousson, Amalia; Tauveron, Igor; Volle, David H; Baron, Silvère; Lobaccaro, Jean-Marc A

    2016-06-01

    Liver X receptors (LXRs) α and β are nuclear receptors whose transcriptional activity is regulated by oxysterols, the oxidized forms of cholesterol. Described in the late 1990s as lipid sensors, both LXRs regulate cholesterol and fatty acid homeostasis. Over the years, deep phenotypic analyses of mouse models deficient for LXRα and/or LXRβ have pointed out various other physiological functions including glucose homeostasis, immunology, and neuroprotection. This review enlightens the "endocrine" functions of LXRs; they deeply impact plasma glucose directly and by modulating insulin signaling, renin-angiotensin-aldosterone axis, thyroid and pituitary hormone levels, and bone homeostasis. Besides, LXR signaling is also involved in adrenal physiology, steroid synthesis, and male and female reproduction. Hence, LXRs are definitely involved in the endocrine system and could thus be considered as endocrine receptors, even though oxysterols do not fully correspond to the definition of hormones. Finally, because they are ligand-regulated transcription factors, LXRs are potential pharmacological targets with promising beneficial metabolic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Endocrine check-up in adolescents and indications for referral: A guide for health care providers

    PubMed Central

    De Sanctis, Vincenzo; Soliman, Ashraf T; Fiscina, Bernadette; Elsedfy, Heba; Elalaily, Rania; Yassin, Mohamed; Skordis, Nicos; Di Maio, Salvatore; Piacentini, Giorgio; Kholy, Mohamed El

    2014-01-01

    The American Academy of Pediatrics recommends that young people between the ages of 11 and 21 years should be seen annually by their pediatricians, since annual checkups can be an important opportunity for health evaluation and anticipatory guidance. Parents of infants and young children are accustomed to regularly visiting a pediatrician for their child's checkups. Unfortunately, when children reach the teen years, these annual checkups may decrease in frequency. In routine check-ups and medical office visits, particular attention should be paid to the possibility of a developmental or endocrine disorder. Early diagnosis and treatment may prevent medical complications in adulthood and foster age-appropriate development. Our purpose is to acquaint readers with the concept, based on current scientific understanding, that some endocrine disorders may be associated with a wide range of deleterious health consequences including an increased risk of hypertension and hyperlipidemia, increased risk of coronary artery disease, type 2 diabetes, significant anxiety and lack of self-esteem. Understanding the milestones and developmental stages of adolescence is essential for pediatricians and all other health providers who care for adolescents. Treating adolescents involves knowledge of a variety of medical, social and legal information; in addition, close working relationships must be established within the adolescent's network to create an effective care system. In summary, we underline the importance of a periodic endocrine checkup in adolescents in order to identify endocrine problems early and develop an approach to treatment for those patients who need help during this time. Indications for endocrine referral for professional and other healthcare providers are also included. These lists are clearly not intended to be comprehensive, but will hopefully serve as a guide for specific clinical circumstances. PMID:25538875

  6. Selected highlights of the VIII International Symposium of Clinicians for Endocrinopathies in Thalassemia and Adolescent Medicine (ICET-A) on Growth, Puberty and Endocrine Complications in Thalassaemia. Auditorium of the Sultan Qaboos University (SQU) Muscat (Sultanate of Oman), 20th of December 2014.

    PubMed

    De Sanctis, Vincenzo; Soliman, Ashraf T; Wali, Yasser; Elsedfy, Heba; Daar, Shahina; Al-Yaarubi, Saif A H; Mevada, Surekha Tony; Tony, Surekha; Elshinawy, Mohamed; Fawzy, Hanan; Al-Subhi, Taimoora; Al-Rawas, Abulhakim; Al-Muslehi, Muhanna; El Kholy, Mohamed

    2015-03-01

    The VIII ICET-A International Symposium was held in Muscat (Sultanate of Oman) on the 20th of December, 2014. The symposium included four sessions on a wide range of topics covering growth disorders and endocrine complications in thalassaemia. Despite the fact that endocrine complications are very common in multi-transfused thalassaemia patients a recent survey conducted by the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescent Medicine (ICET-A) in 2014 in Acitrezza (Catania, Italy) showed that the major difficulties reported by hematologists or pediatricians experienced in thalassaemias or thalassaemia syndromes in following endocrine complications included: Lack of familiarity with medical treatment of endocrine complications, interpretation of endocrine tests, lack of collaboration and on-time consultation between thalassaemic centres supervised by haematologists and endocrinologists. Endocrine monitoring of growth, pubertal development, reproductive ability and endocrine function in general are essential to achieve a good quality of life as well as controlling the pain which results from the defects of bone structure, all of which increase with the age of patients. Such comprehensive care is best provided by coordinated, multidisciplinary teams working in expert centres. The multidisciplinary team must include an endocrinologist, preferably someone experienced in the management of hormonal deficiencies caused early in life by transfusion-induced iron overload.

  7. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  8. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Gordon, Catherine M; Ackerman, Kathryn E; Berga, Sarah L; Kaplan, Jay R; Mastorakos, George; Misra, Madhusmita; Murad, M Hassan; Santoro, Nanette F; Warren, Michelle P

    2017-05-01

    The American Society for Reproductive Medicine, the European Society of Endocrinology, and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the diagnosis and treatment of functional hypothalamic amenorrhea (FHA). The participants include an Endocrine Society-appointed task force of eight experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and cosponsoring organizations reviewed and commented on preliminary drafts of this guideline. FHA is a form of chronic anovulation, not due to identifiable organic causes, but often associated with stress, weight loss, excessive exercise, or a combination thereof. Investigations should include assessment of systemic and endocrinologic etiologies, as FHA is a diagnosis of exclusion. A multidisciplinary treatment approach is necessary, including medical, dietary, and mental health support. Medical complications include, among others, bone loss and infertility, and appropriate therapies are under debate and investigation. Copyright © 2017 Endocrine Society

  10. 77 FR 12297 - Petition To Demonstrate Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening Program; Notice of Availability... chemicals to receive orders under the Endocrine Disruptor Screening Program by demonstrating the information... potential endocrine effects. Potentially affected entities identified by the North American Industrial...

  11. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies.

    PubMed

    Pinson, Anneline; Franssen, Delphine; Gérard, Arlette; Parent, Anne-Simone; Bourguignon, Jean-Pierre

    Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  12. Exposures to Endocrine Disrupting Chemicals in Consumer Products-A Guide for Pediatricians.

    PubMed

    Wong, Katelyn H; Durrani, Timur S

    2017-05-01

    Endocrine disrupting chemicals, a group of exogenous chemicals that can interfere with hormone action in the body, have been implicated in disrupting endocrine function, which negatively affects human health and development. Endocrine disrupting chemicals are ubiquitously detected in consumer products, foods, beverages, personal care products, and household cleaning products. Due to concerns about their negative effects on human health, several professional health provider societies have recommended the reduction of common endocrine disrupting chemical exposures. The purpose of this review is to provide a brief overview of common endocrine disrupting chemicals (bisphenol A, phthalates, triclosan, polybrominated ethers, and parabens) and potential effects on child development and health. In addition, we aim to provide guidance and resources for pediatricians and other health care providers with counseling strategies to help patients to minimize exposures to common endocrine disrupting chemicals. Copyright © 2017 Mosby, Inc. All rights reserved.

  13. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.

    PubMed

    Hofmann, Lars; Forschner, Andrea; Loquai, Carmen; Goldinger, Simone M; Zimmer, Lisa; Ugurel, Selma; Schmidgen, Maria I; Gutzmer, Ralf; Utikal, Jochen S; Göppner, Daniela; Hassel, Jessica C; Meier, Friedegund; Tietze, Julia K; Thomas, Ioannis; Weishaupt, Carsten; Leverkus, Martin; Wahl, Renate; Dietrich, Ursula; Garbe, Claus; Kirchberger, Michael C; Eigentler, Thomas; Berking, Carola; Gesierich, Anja; Krackhardt, Angela M; Schadendorf, Dirk; Schuler, Gerold; Dummer, Reinhard; Heinzerling, Lucie M

    2016-06-01

    Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma as well as for other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects affect skin, gastrointestinal tract, liver, endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. In total, 496 patients with metastatic melanoma from 15 skin cancer centers were treated with pembrolizumab or nivolumab; 242 side-effects were described in 138 patients. In 116 of the 138 patients, side-effects affected the skin, gastrointestinal tract, liver, endocrine, and renal system. Rare side-effects included diabetes mellitus, lichen planus, and pancreas insufficiency due to pancreatitis. Anti-PD1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dermatologic manifestations of endocrine disorders

    PubMed Central

    Lause, Michael; Kamboj, Alisha

    2017-01-01

    The skin serves as a window for clinicians to understand, diagnose, and monitor endocrine disease. Dermatologic manifestations of endocrinopathies contribute significantly to an individual’s health and quality of life. In this review, we outline various disorders of the hypothalamic-pituitary axis, thyroid gland, pancreas, adrenal gland, and androgen axis as well as hereditary endocrine syndromes. In acromegaly, glycosaminoglycan deposition contributes to a thickening of skin and soft tissue, which manifests as coarsening and enlargement of facial and acral structures. Stimulation of the thyrotropin receptor in hyperthyroidism results in mesenchymal tissue proliferation and consequent pretibial myxedema; other associated cutaneous features include onycholysis, and hyperhidrosis. Individuals with hypothyroidism exhibit cold, dry skin and brittle hair as well as a jaundice-like appearance due to carotene excess. The cutaneous features of diabetes mellitus (DM), mediated to a large extent by hyperglycemia and hyperinsulinemia, include necrobiosis lipoidica diabeticorum (NLD), diabetic dermopathy, and acanthosis nigricans. Pediatric patients with Cushing’s syndrome almost invariably present with truncal obesity and growth retardation; disruption of collagen formation and the catabolic effects of hypercortisolism result in skin atrophy and purple abdominal striae. In patients with Addison’s disease, generalized hyperpigmentation, secondary to elevated levels of melanocyte-stimulating hormone (MSH), is most prominent in sun-exposed areas. Due to hyperandrogenism, individuals with polycystic ovarian syndrome (PCOS) often exhibit hirsutism, acne vulgaris, and androgenetic alopecia. In multiple endocrine neoplasia (MEN) syndromes, specific gene mutations may lead to angiofibromas, lichen amyloidosis, and ganglioneuromas. Disruptions of immune regulation result in autoimmune polyglandular syndromes (APS) and associated clinical features including chronic mucocutaneous candidiasis, vitiligo, and alopecia areata. This paper highlights the underlying pathophysiology, dermatologic manifestations, and treatment of the aforementioned endocrine disorders. PMID:29184811

  15. Proceedings of the 1972 Lyndon B. Johnson Space Center Endocrine Program Conference

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Subjects covered during the Endocrine Program Conference include the following: (1) endocrine/metabolic studies on the Apollo 16 crewmen; (2) changes in glucose, insulin, and growth hormone levels associated with bed rest; (3) circadian rhythms of heart rate and body temperature during 56 days of bed rest; (4) stress-induced changes in corticosteroid metabolism in man; (5) present status of physiological studies on parathyroid hormone and vitamin D; (6) antagonistic effect of lithium on antidiuretic hormone action; (7) proposed Skylab body-fluid volumes study; (8) daily rhythmic changes in serotonin content in areas of the mouse brain and norepinephrine content in areas of the hamster brain; (9) studies of sodium homeostasis during simulated weightlessness; and (10) application of the water immersion model to man.

  16. Endocrine disrupters--testing strategies to assess human hazard.

    PubMed

    Baker, V A

    2001-01-01

    During the last decade an hypothesis has been developed linking certain chemicals (natural and synthetic) to observed and suspected adverse effects on reproduction in both wildlife and humans. The issue of 'endocrine disruption' originally focused on chemicals that mimic the action of the natural hormone oestrogen. However, the concern is now encompassing effects on the whole endocrine system. In response to public awareness, regulatory agencies (including the US EPA) and the OECD are formulating potential testing strategies and have begun the process of validating defined tests to systematically assess chemicals for their endocrine-disrupting activities. In order to investigate chemicals that have the potential to cause endocrine disruption, a large number of in vitro and in vivo assays have been identified. In vitro test systems (particularly when used in combination) offer the possibility of providing an early screen for large numbers of chemicals and can be useful in characterising the mechanism of action and potency. In vitro assays in widespread use for the screening/characterisation of endocrine disrupting potential include hormone receptor ligand binding assays (determination of the ability of a chemical to bind to the hormone receptor), cell proliferation assays (analysis of the ability of a chemical to stimulate growth of oestrogen sensitive cells), reporter gene assays in yeast or mammalian cells (analysis of the ability of a chemical to stimulate the transcription of a reporter gene construct in cell culture), and the analysis of the regulation of endogenous oestrogen sensitive genes in cell lines. However, in vitro assays do not always reliably predict the outcome in vivo due to differences in metabolic capabilities of the test systems used and the diverse range of mechanisms by which endocrine disrupting chemicals may act. Therefore a complementary battery of short- and long-term in vitro and in vivo assays (that assess both receptor and non-receptor mediated mechanisms of action) seems the most appropriate way at present of assessing the potential endocrine disrupting activities of chemicals. At Unilever we have used a combination of in vitro assays (receptor binding, reporter gene and cell proliferation assays) together with short-term in vivo tests (uterotrophic assay in immature rodents) to examine the oestrogenic potential of a large number of chemicals. An evaluation of the advantages and limitations of these methods is provided. Finally, any potential test system needs to be validated and standardized before the information generated can be for the identification of hazard, and possibly for risk assessment purposes.

  17. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences

    PubMed Central

    Quagliariello, Vincenzo; Rossetti, Sabrina; Cavaliere, Carla; Di Palo, Rossella; Lamantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Romano, Francesco Jacopo; Piscitelli, Raffaele; Iovane, Gelsomina; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; Iaffaioli, Rosario Vincenzo; Facchini, Gaetano

    2017-01-01

    This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the worlds leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease. PMID:28389628

  18. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences.

    PubMed

    Quagliariello, Vincenzo; Rossetti, Sabrina; Cavaliere, Carla; Di Palo, Rossella; Lamantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Romano, Francesco Jacopo; Piscitelli, Raffaele; Iovane, Gelsomina; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; Iaffaioli, Rosario Vincenzo; Facchini, Gaetano

    2017-05-02

    This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the world's leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease.

  19. 76 FR 49473 - Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Utility of List 1 Chemicals Screened Through EPA's Endocrine Disruptor Screening Program; Notice of... to the test orders issued under the Endocrine Disruptor Screening Program. DATES: Comments must be... testing of chemical substances for potential endocrine effects. Potentially affected entities, identified...

  20. Neuroendocrine regulation of somatic growth in fishes.

    PubMed

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  1. Competitive binding comparison of endocrine-disrupting compounds to recombinant androgen receptor from fathead minnow, rainbow trout, and human

    EPA Science Inventory

    Typically, in vitro hazard assessments for the identification of endocrine-disrupting compounds (EDCs), including those outlined in the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) Tier 1 Screening protocols, utilize mammalian receptors. Evidence, however...

  2. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  3. Endocrine causes of calcium disorders.

    PubMed

    Greco, Deborah S

    2012-11-01

    Endocrine diseases that may cause hypercalcemia and hypocalcemia include hyperparathyroidism, hypoparathyroidism, thyroid disorders, hyperadrenocorticism, hypoadrenocorticism, and less commonly pheochromocytoma and multiple endocrine neoplasias. The differential diagnosis of hypercalcemia may include malignancy (lymphoma, anal sac carcinoma, and squamous cell carcinoma), hyperparathyroidism, vitamin D intoxication, chronic renal disease, hypoadrenocorticism, granulomatous disorders, osteolysis, or spurious causes. Hypocalcemia may be caused by puerperal tetany, pancreatitis, intestinal malabsorption, ethlyene glycol intoxication, acute renal failure, hypopararthyroidism, hypovitaminosis D, hypomagnesemia, and low albumin. This article focuses on the endocrine causes of calcium imbalance and provides diagnostic and therapeutic guidelines for identifying the cause of hypercalcemia and hypocalcemia in veterinary patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Palbociclib (PD0332991)-a Selective and Potent Cyclin-Dependent Kinase Inhibitor: A Review of Pharmacodynamics and Clinical Development.

    PubMed

    Clark, Amy S; Karasic, Thomas B; DeMichele, Angela; Vaughn, David J; O'Hara, Mark; Perini, Rodolfo; Zhang, Paul; Lal, Priti; Feldman, Michael; Gallagher, Maryann; O'Dwyer, Peter J

    2016-02-01

    Palbociclib (PD0332991) is a newly developed drug that received breakthrough designation and recent US Food and Drug Administration approval in combination with endocrine therapy in the treatment of hormone receptor positive, ERBB2-negative (formerly HER2 or HER2/neu) breast cancer in the first-line metastatic setting. Herein we describe the preclinical and translational data and early- and late-phase clinical trials in which palbociclib has been investigated in a broad array of tumor types. We discuss the pharmacodynamics, pharmacokinetics, toxic effects, and clinical response rates. On March 1, 2015, we conducted a review of the literature describing the development of palbociclib. We used the PubMed search terms "PD0332991," "palbociclib," and "CDK4/6 inhibitor" to find all published articles of interest, without limitation as to publication date. Palbociclib is a potent and specific oral cyclin-dependent kinase (CDK) 4/6 inhibitor that has strong preclinical data to support its activity in retinoblastoma protein-expressing tumors. Phase 1 trials have demonstrated safety, and phase 2 trials have shown single-agent activity in mantle-cell lymphoma, breast cancer, liposarcoma, and teratoma with reversible neutropenia as the main toxic effect. Addition of palbociclib to endocrine therapy improves progression-free survival in endocrine therapy-naïve and endocrine therapy-resistant metastatic settings. Palbociclib is well tolerated and has therapeutic potential for multiple cancers, including breast cancer, where its efficacy has been demonstrated alone and in combination with endocrine therapy. Additional combinations of palbociclib with endocrine therapy, chemotherapy, and targeted therapy have potential in various tumors, and phase 3 trials are under way.

  5. Lifestyle intervention and anti-obesity therapies in the polycystic ovary syndrome: impact on metabolism and fertility.

    PubMed

    Panidis, Dimitrios; Tziomalos, Konstantinos; Papadakis, Efstathios; Vosnakis, Christos; Chatzis, Panagiotis; Katsikis, Ilias

    2013-12-01

    Obesity is frequently present in patients with polycystic ovary syndrome (PCOS) and plays an important role in the pathogenesis of the metabolic, endocrine, and reproductive abnormalities associated with this syndrome. We aimed to summarize the effects of lifestyle changes and anti-obesity pharmacotherapy in patients with PCOS. We reviewed the literature regarding the effects of lifestyle changes and anti-obesity agents on the metabolic and endocrine abnormalities of PCOS. Lifestyle changes, including diet, exercise, and behavioral modification, appear to improve the metabolic and reproductive abnormalities of overweight and obese patients with PCOS. Therefore, lifestyle changes appear to represent the first-line management for all overweight and obese patients with PCOS. However, the optimal composition of diet and the optimal type of exercise in these patients are unknown. Anti-obesity agents that have been studied in PCOS include orlistat, sibutramine, and rimonabant. However, the latter two agents have been withdrawn from the market because of side effects. Long-term studies with orlistat in overweight and obese diabetic patients showed greater weight loss and metabolic and cardiovascular benefits than those achieved with lifestyle changes alone. However, there are limited data on the efficacy of orlistat in women with PCOS. In conclusion, lifestyle changes (diet, exercise and behavioral modification), particularly when combined with anti-obesity agents, exert beneficial effects on the endocrine abnormalities of obese patients with PCOS and improve metabolic parameters.

  6. Diagnosis and treatment of endocrine comorbidities in patients with cystic fibrosis.

    PubMed

    Siwamogsatham, Oranan; Alvarez, Jessica A; Tangpricha, Vin

    2014-10-01

    The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis. As life expectancy in cystic fibrosis has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes, cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with cystic fibrosis. This review summarizes the updated screening and management of endocrine diseases in the cystic fibrosis population.

  7. TRIENNIAL REPRODUCTION SYMPOSIUM: Environmental programming of reproduction during fetal life: Effects of intrauterine position and the endocrine disrupting chemical bisphenol A.

    PubMed

    Vom Saal, F S

    2016-07-01

    During critical periods in fetal life, there is an increased vulnerability to perturbations in endocrine function due to environmental factors. Small shifts in concentrations of hormones that regulate the differentiation of organs, such as estradiol and testosterone, can have permanent effects on morphology, enzymatic activity, and hormone receptors in tissues as well as neurobehavioral effects. These changes can lead to effects throughout life, including impacting the risk for various diseases (referred to as the Developmental Origins of Adult Health and Disease hypothesis). The intrauterine position phenomenon concerns the consequence for fetuses of randomly implanting next to embryos of the same or opposite sex. An intrauterine position next to males vs. females results in small differences in serum testosterone and estradiol during fetal life that are associated with marked effects on life history (such as lifetime fecundity) in both males and females born in litters (mice, rats, gerbils, rabbits, and swine) as well as human twins. Research with mice subsequently demonstrated that a very small experimental change in fetal serum estradiol levels altered organogenesis and caused permanent changes in organ function. Taken together, these findings led to the hypothesis that environmental chemicals that mimic or antagonize hormone action (e.g., endocrine disrupting chemicals) could also be causing harm at very low exposures (the "low dose" hypothesis) within the range of exposure of humans, domesticated animals, and wildlife. There is now extensive evidence from experimental laboratory animals, sheep, and humans that fetal exposure to very low (presumably safe) doses of the endocrine disrupting chemical bisphenol A (BPA), which exhibits estrogenic activity, can cause permanent changes that can increase the risk of a wide array of diseases. The reasons that federal regulatory agencies are ignoring the massive literature showing adverse effects of BPA and other endocrine disrupting chemicals are discussed.

  8. Molecular essence and endocrine responsiveness of estrogen receptor-negative, progesterone receptor-positive, and HER2-negative breast cancer.

    PubMed

    Yu, Ke-Da; Jiang, Yi-Zhou; Hao, Shuang; Shao, Zhi-Ming

    2015-10-05

    The clinical significance of progesterone receptor (PgR) expression in estrogen receptor-negative (ER-) breast cancer is controversial. Herein, we systemically investigate the clinicopathologic features, molecular essence, and endocrine responsiveness of ER-/PgR+/HER2- phenotype. Four study cohorts were included. The first and second cohorts were from the Surveillance, Epidemiology, and End Results database (n = 67,932) and Fudan University Shanghai Cancer Center (n = 2,338), respectively, for clinicopathologic and survival analysis. The third and fourth cohorts were from two independent publicly available microarray datasets including 837 operable cases and 483 cases undergoing neoadjuvant chemotherapy, respectively, for clinicopathologic and gene-expression analysis. Characterized genes defining subgroups within the ER-/PgR+/HER2- phenotype were determined and further validated. Clinicopathologic features and survival outcomes of the ER-/PgR+ phenotype fell in between the ER+/PgR+ and ER-/PgR- phenotypes, but were more similar to ER-/PgR-. Among the ER-/PgR+ phenotype, 30% (95% confidence interval [CI] 17-42%, pooled by a fixed-effects method) were luminal-like and 59% (95% CI 45-72%, pooled by a fixed-effects method) were basal-like. We further refined the characterized genes for subtypes within the ER-/PgR+ phenotype and developed an immunohistochemistry-based method that could determine the molecular essence of ER-/PgR+ using three markers, TFF1, CK5, and EGFR. Either PAM50-defined or immunohistochemistry-defined basal-like ER-/PgR+ cases have a lower endocrine therapy sensitivity score compared with luminal-like ER-/PgR+ cases (P <0.0001 by Mann-Whitney test for each study set and P <0.0001 for pooled standardized mean difference in meta-analysis). Immunohistochemistry-defined basal-like ER-/PgR+ cases might not benefit from adjuvant endocrine therapy (log-rank P = 0.61 for sufficient versus insufficient endocrine therapy). The majority of ER-/PgR+/HER2- phenotype breast cancers are basal-like and associated with a lower endocrine therapy sensitivity score. Additional studies are needed to validate these findings.

  9. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors.more » Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between nitrogen fixing rhizobial bacteria and leguminous plants. This research will form the foundation for future experiments into the genetic manipulation of plants to potentially promote greater or more specific symbiotic relationships between plant and Rhizobium allowing this biological phenomenon to be used in a greater number of crop types. Future technology developments could include the genetic engineering of crops suitable for in situ vadose zone 2 bioremediation (via microbes) and phytoremediation (through the crop, itself) in contaminated DOE sites.« less

  10. 75 FR 67963 - Endocrine Disruptor Screening Program (EDSP); Announcing the Availability of a Draft for Weight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPPT-2010-0877; FRL-8849-8] Endocrine Disruptor Screening...-tiered paradigm for screening and testing chemicals for endocrine activity (i.e., estrogen, androgen, and... 5417), e.g., persons who conduct testing of chemical substances for endocrine effects. This listing is...

  11. Occurrence and effects of endocrine-disrupting chemicals in the St. Croix River

    USGS Publications Warehouse

    Elliott, Sarah M.; Lee, Kathy E.

    2016-01-01

    The St. Croix River is one of the last undisturbed, large floodplain rivers in the upper Mississippi River System. The Saint Croix National Scenic Riverway encompasses 255 river miles from the St. Croix Flowage and Namekagon River to the confluence of the St. Croix River with the Mississippi River at Prescott, Wisconsin. The Wild and Scenic Rivers Act of 1968 includes protection of the “outstandingly remarkable values” of the St. Croix and Namekagon rivers, which are included in the first eight designated wild and scenic rivers. The National Park Service (NPS) supports efforts to ensure these high-quality waters are not degraded by endocrine-disrupting or pharmaceutically active chemicals.

  12. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model

    PubMed Central

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus; Freeman, Jennifer L.

    2016-01-01

    The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed. PMID:28217008

  13. Multiple endocrine diseases in dogs: 35 cases (1996-2009).

    PubMed

    Blois, Shauna L; Dickie, Erica; Kruth, Stephen A; Allen, Dana G

    2011-06-15

    To characterize a population of dogs from a tertiary care center with 2 or more endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Retrospective case series. 35 dogs with 2 or more endocrine disorders. Medical records were reviewed, and the following was recorded: clinical signs, physical examination findings, and the results of CBC, serum biochemical analysis, urinalysis, aerobic bacterial culture of urine samples, endocrine testing, diagnostic imaging, and necropsy. 35 dogs with more than 1 endocrine disorder were identified. Seventy-seven percent (27/35) of the dogs were male, and the mean age at the time of diagnosis of the first endocrinopathy was 7.9 years. Miniature Schnauzer was the most common breed. Twenty-eight of 35 (80%) dogs had 2 disorders; 7 (20%) had 3 disorders. The most common combinations of disorders included diabetes mellitus and hyperadrenocorticism in 57.1 % (20/35) of dogs; hypoadrenocorticism and hypothyroidism in 22.9% (8/35) of dogs; and diabetes mellitus and hypothyroidism in 28.6% (10/35) of dogs. A mean of 14.5 months elapsed between diagnosis of the first and second endocrine disorders, whereas there was a mean of 31.1 months between diagnosis of the first and third endocrine disorders. Results suggested that the occurrence of multiple endocrine disorders was uncommon in dogs. The most common combinations of endocrine disorders in this population of dogs were diabetes mellitus and hyperadrenocorticism, followed by hypoadrenocorticism and hypothyroidism.

  14. Syndromes that Link the Endocrine System and Genitourinary Tract.

    PubMed

    Özlük, Yasemin; Kılıçaslan, Işın

    2015-01-01

    The endocrine system and genitourinary tract unite in various syndromes. Genitourinary malignancies may cause paraneoplastic endocrine syndromes by secreting hormonal substances. These entities include Cushing`s syndrome, hypercalcemia, hyperglycemia, polycythemia, hypertension, and inappropriate ADH or HCG production. The most important syndromic scenarios that links these two systems are hereditary renal cancer syndromes with specific genotype/phenotype correlation. There are also some very rare entities in which endocrine and genitourinary systems are involved such as Carney complex, congenital adrenal hyperplasia and Beckwith-Wiedemann syndrome. We will review all the syndromes regarding manifestations present in endocrine and genitourinary organs.

  15. Clinical review: kinase inhibitors: adverse effects related to the endocrine system.

    PubMed

    Lodish, Maya B

    2013-04-01

    The use of kinase inhibitors (KIs) in the treatment of cancer has become increasingly common, and practitioners must be familiar with endocrine-related side effects associated with these agents. This review provides an update to the clinician regarding the management of potential endocrinological effects of KIs. PubMed was employed to identify relevant manuscripts. A review of the literature was conducted, and data were summarized and incorporated. KIs, including small molecule KIs and monoclonal antibodies directed against kinases, have emerged over the past decade as an important class of anticancer agents. KIs specifically interfere with signaling pathways that are dysregulated in certain types of cancers and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. Currently, at least 20 KIs are approved as cancer therapeutics. However, KIs may affect a broad spectrum of targets and may have additional, unidentified mechanisms of action at the cellular level due to overlap between signaling pathways in the tumor cell and endocrine system. Recent reports in the literature have identified side effects associated with KIs, including alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, adrenal function, and glucose metabolism. Clinicians need to monitor the thyroid functions of patients on KIs. In addition, bone density and vitamin D status should be assessed. Special care should be taken to follow linear growth and development in children taking these agents. Clinicians should counsel patients appropriately on the potential adverse effects of KIs on fetal development.

  16. Endocrine effects of the tyrosine kinase inhibitor vandetanib in patients treated for thyroid cancer.

    PubMed

    Brassard, Maryse; Neraud, Barbara; Trabado, Séverine; Salenave, Sylvie; Brailly-Tabard, Sylvie; Borget, Isabelle; Baudin, Eric; Leboulleux, Sophie; Chanson, Philippe; Schlumberger, Martin; Young, Jacques

    2011-09-01

    The purpose of the study was to assess the endocrine effects of vandetanib, a multikinase inhibitor targeting RET, vascular endothelial growth factor receptor, and epidermal growth factor receptor, in 39 patients with progressive thyroid cancer included in two randomized placebo-controlled trials using vandetanib 300 mg/d. Endocrine samplings were performed at baseline and then every 6 months. We compared differences in endocrine parameters between baseline and on vandetanib therapy or placebo. During vandetanib treatment, several changes were observed. 1) Calcium (P = 0.0004) and vitamin D (P = 0.001) mean replacement doses were increased; calcium level remained unchanged, but serum 25(OH) vitamin D level decreased (P = 0.001); and serum PTH (P = 0.01) and 1,25(OH)(2) vitamin D (P = 0.01) levels increased, suggesting a decreased intestinal absorption of vitamin D or lack of sun exposure as a result of photosensitization. 2) l-T(4) doses were increased (P < 0.0001) to maintain serum TSH within the normal range. 3) In male patients, total testosterone (P = 0.048), bioavailable testosterone (P = 0.03), and SHBG (P = 0.02) levels increased. Serum inhibin B decreased (P = 0.02) and stimulated FSH increased (P = 0.006), suggesting a Sertoli cells insufficiency. 4) Cortisol level increased (P = 0.007) as well as ACTH level (P = 0.03) and cortisol-binding globulin (P = 0.02), but free urinary cortisol levels remained in the normal range. None of these changes were observed in patients randomized to the placebo arm. In patients with locally advanced or metastatic thyroid cancer, the tyrosine kinase inhibitor vandetanib has several endocrine effects. Thyroid hormone, calcium, and vitamin D analog requirements increased, but consequences of the biological alterations on phosphocalcic metabolism and gonadotrope and adrenal functions are unknown.

  17. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    PubMed

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  18. Sperm quality biomarkers complement reproductive and endocrine parameters in investigating environmental contaminants in common carp (Cyprinus carpio) from the Lake Mead National Recreation Area

    USGS Publications Warehouse

    Jenkins, Jill A.; Rosen, Michael R.; Dale, Rassa O.; Echols, Kathy R.; Torres, Leticia; Wieser, Carla M.; Kersten, Constance A.; Goodbred, Steven L.

    2018-01-01

    Lake Mead National Recreational Area (LMNRA) serves as critical habitat for several federally listed species and supplies water for municipal, domestic, and agricultural use in the Southwestern U.S. Contaminant sources and concentrations vary among the sub-basins within LMNRA. To investigate whether exposure to environmental contaminants is associated with alterations in male common carp (Cyprinus carpio) gamete quality and endocrine- and reproductive parameters, data were collected among sub-basins over 7 years (1999–2006). Endpoints included sperm quality parameters of motility, viability, mitochondrial membrane potential, count, morphology, and DNA fragmentation; plasma components were vitellogenin (VTG), 17ß-estradiol, 11-keto-testosterone, triiodothyronine, and thyroxine. Fish condition factor, gonadosomatic index, and gonadal histology parameters were also measured. Diminished biomarker effects were noted in 2006, and sub-basin differences were indicated by the irregular occurrences of contaminants and by several associations between chemicals (e.g., polychlorinated biphenyls, hexachlorobenzene, galaxolide, and methyl triclosan) and biomarkers (e.g., plasma thyroxine, sperm motility and DNA fragmentation). By 2006, sex steroid hormone and VTG levels decreased with subsequent reduced endocrine disrupting effects. The sperm quality bioassays developed and applied with carp complemented endocrine and reproductive data, and can be adapted for use with other species.

  19. Sperm quality biomarkers complement reproductive and endocrine parameters in investigating environmental contaminants in common carp (Cyprinus carpio) from the Lake Mead National Recreation Area.

    PubMed

    Jenkins, Jill A; Rosen, Michael R; Draugelis-Dale, Rassa O; Echols, Kathy R; Torres, Leticia; Wieser, Carla M; Kersten, Constance A; Goodbred, Steven L

    2018-05-01

    Lake Mead National Recreational Area (LMNRA) serves as critical habitat for several federally listed species and supplies water for municipal, domestic, and agricultural use in the Southwestern U.S. Contaminant sources and concentrations vary among the sub-basins within LMNRA. To investigate whether exposure to environmental contaminants is associated with alterations in male common carp (Cyprinus carpio) gamete quality and endocrine- and reproductive parameters, data were collected among sub-basins over 7 years (1999-2006). Endpoints included sperm quality parameters of motility, viability, mitochondrial membrane potential, count, morphology, and DNA fragmentation; plasma components were vitellogenin (VTG), 17ß-estradiol, 11-keto-testosterone, triiodothyronine, and thyroxine. Fish condition factor, gonadosomatic index, and gonadal histology parameters were also measured. Diminished biomarker effects were noted in 2006, and sub-basin differences were indicated by the irregular occurrences of contaminants and by several associations between chemicals (e.g., polychlorinated biphenyls, hexachlorobenzene, galaxolide, and methyl triclosan) and biomarkers (e.g., plasma thyroxine, sperm motility and DNA fragmentation). By 2006, sex steroid hormone and VTG levels decreased with subsequent reduced endocrine disrupting effects. The sperm quality bioassays developed and applied with carp complemented endocrine and reproductive data, and can be adapted for use with other species. Published by Elsevier Inc.

  20. Correlation of treatment-emergent adverse events and clinical response to endocrine therapy in early breast cancer: a retrospective analysis of the German cohort of TEAM.

    PubMed

    Hadji, P; Kieback, D G; Tams, J; Hasenburg, A; Ziller, M

    2012-10-01

    Previous studies have suggested a correlation between the occurrence of vasomotor or joint symptoms during tamoxifen or aromatase inhibitor treatment and improved clinical response. A retrospective analysis of the German cohort of the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial was carried out to assess disease-free survival (DFS) and overall survival (OS) in patients with and without arthralgia/myalgia and/or menopausal symptoms during adjuvant endocrine treatment. A total of 1502 patients were included; 739 patients received tamoxifen followed by exemestane and 763 received exemestane. Patients reporting arthralgia/myalgia and patients reporting menopausal symptoms during endocrine treatment had significantly longer OS and DFS than those not reporting these events. The effect on OS was irrespective of treatment. DFS was significantly improved in exemestane-treated patients reporting arthralgia/myalgia or those reporting menopausal symptoms versus those not reporting these events. This effect on DFS was not observed in patients receiving sequential treatment. A combined analysis of patients reporting either menopausal symptoms or arthralgia/myalgia showed that OS and DFS were significantly improved in patients reporting one of these symptoms versus those not reporting either symptom. The occurrence of arthralgia/myalgia or menopausal symptoms during endocrine treatment is associated with significantly improved OS.

  1. In vitro steroid profiling system for the evaluation of endocrine disruptors.

    PubMed

    Nakano, Yosuke; Yamashita, Toshiyuki; Okuno, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-09-01

    Endocrine disruptors (ED) are chemicals that affect various aspects of the endocrine system, often leading to the inhibition of steroidogenesis. Current chemical safety policies that restrict human exposure to such chemicals describe often time-consuming and costly methods for the evaluation of ED effects. We aimed to develop an effective tool for accurate phenotypic chemical toxicology studies. We developed an in vitro ED evaluation system using gas chromatography/mass spectrometry (GC/MS/MS) methods for metabolomic analysis of multi-marker profiles. Accounting for sample preparation and GC/MS/MS conditions, we established a screening method that allowed the simultaneous analysis of 17 steroids with good reproducibility and a linear calibration curve. Moreover, we applied the developed system to H295R human adrenocortical cells exposed to forskolin and prochloraz in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines and observed dose-dependent variations in steroid profiles. While the OECD guidelines include only testosterone and 17β-estradiol, our system enabled a comprehensive and highly sensitive analysis of steroid profile alteration due to ED exposure. The application of our ED evaluation screen could be economical and provide novel insights into the hazards of ED exposure to the endocrine system. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Is adjuvant chemotherapy of benefit for postmenopausal women who receive endocrine treatment for highly endocrine-responsive, node-positive breast cancer? International Breast Cancer Study Group Trials VII and 12-93.

    PubMed

    Pagani, Olivia; Gelber, Shari; Simoncini, Edda; Castiglione-Gertsch, Monica; Price, Karen N; Gelber, Richard D; Holmberg, Stig B; Crivellari, Diana; Collins, John; Lindtner, Jurij; Thürlimann, Beat; Fey, Martin F; Murray, Elizabeth; Forbes, John F; Coates, Alan S; Goldhirsch, Aron

    2009-08-01

    To compare the efficacy of chemoendocrine treatment with that of endocrine treatment (ET) alone for postmenopausal women with highly endocrine responsive breast cancer. In the International Breast Cancer Study Group (IBCSG) Trials VII and 12-93, postmenopausal women with node-positive, estrogen receptor (ER)-positive or ER-negative, operable breast cancer were randomized to receive either chemotherapy or endocrine therapy or combined chemoendocrine treatment. Results were analyzed overall in the cohort of 893 patients with endocrine-responsive disease, and according to prospectively defined categories of ER, age and nodal status. STEPP analyses assessed chemotherapy effect. The median follow-up was 13 years. Adding chemotherapy reduced the relative risk of a disease-free survival event by 19% (P = 0.02) compared with ET alone. STEPP analyses showed little effect of chemotherapy for tumors with high levels of ER expression (P = 0.07), or for the cohort with one positive node (P = 0.03). Chemotherapy significantly improves disease-free survival for postmenopausal women with endocrine-responsive breast cancer, but the magnitude of the effect is substantially attenuated if ER levels are high.

  3. Diagnosis and Treatment of Endocrine Co-Morbidities in Patients with Cystic Fibrosis

    PubMed Central

    Siwamogsatham, Oranan; Alvarez, Jessica

    2015-01-01

    Purpose of review The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis (CF). Recent findings As life expectancy in CF has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes (CFRD), cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Summary Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with CF. This review summarizes the updated screening and management of endocrine diseases in the CF population. PMID:25105995

  4. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary.

    USDA-ARS?s Scientific Manuscript database

    It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the ef...

  5. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    Daily oscillations characterize the release of nearly every hormone. The circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, generates circadian, approximately 24-hour rhythms in many physiologic functions. However, the observed hormonal oscillations do not simply reflect the output of this internal clock. Instead, daily hormonal profiles are the product of a complex interaction between the output of the circadian pacemaker, periodic changes in behavior, light exposure, neuroendocrine feedback mechanisms, gender, age, and the timing of sleep and wakefulness. The interaction of these factors can affect hormonal secretory pulse frequency and amplitude, with each endocrine system differentially affected by these factors. This chapter examines recent advances in understanding the effects on endocrine rhythms of a number of these factors. Sleep exerts a profound effect on endocrine secretion. Sleep is a dynamic process that is characterized by periodic changes in electrophysiologic activity. These electrophysiologic changes, which are used to mark the state and depth of sleep, are associated with periodic, short-term variations in hormonal levels. The secretion of hormones such as renin and human growth hormone are strongly influenced by sleep or wake state, while melatonin and cortisol levels are relatively unaffected by sleep or wake state. In addition, sleep is associated with changes in posture, behavior, and light exposure, each of which is known to affect endocrine secretion. Furthermore, the tight concordance of habitual sleep and wake times with certain circadian phases has made it difficult to distinguish sleep and circadian effects on these hormones. Specific protocols, designed to extract circadian and sleep information semi-independently, have been developed and have yielded important insights into the effects of these regulatory processes. These results may help to account for changes in endocrine rhythms observed in circadian rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  6. Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems

    PubMed Central

    Gore, Andrea C.

    2009-01-01

    The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690

  7. Amenorrhoea and reversible infertility due to obstructive hydrocephalus: literature review and case report.

    PubMed

    Hamilton, Kimberly; Iskandar, Bermans

    2018-02-12

    Endocrine abnormalities are well-recognized consequences of intracranial pathology such as pituitary tumours. Less commonly, hydrocephalus may lead to dysfunction of the endocrine system, presenting as amenorrhoea or precocious puberty. We present a case report and literature review of hydrocephalus causing endocrine abnormalities including reversible infertility. A 34 year-old female presented with amenorrhoea and infertility. MRI showed a third ventricular mass and hydrocephalus. The amenorrhoea resolved within weeks of endoscopic third ventriculostomy and tumour biopsy; pregnancy ensued within 6 months. Thirty-two cases of hydrocephalus-related amenorrhoea were reported between 1915 and 2007. All patients who underwent modern hydrocephalus treatment experienced partial or complete resolution of endocrine dysfunction. Successful pregnancy was reported in three patients, as in our case presentation. While mechanisms of dysfunction have not been completely elucidated, studies point toward loss of GnRH pulsatility due to compression of the medio-basal hypothalamic structures. Hydrocephalus can cause endocrine dysfunction, including amenorrhoea, which may reverse with CSF diversion. Therefore, cranial imaging is an important component in the evaluation of such endocrine abnormalities.

  8. The Vitamin D Endocrine System.

    ERIC Educational Resources Information Center

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  9. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain.

    PubMed

    Rebuli, Meghan E; Patisaul, Heather B

    2016-06-01

    Brain sex differences are found in nearly every region of the brain and fundamental to sexually dimorphic behaviors as well as disorders of the brain and behavior. These differences are organized during gestation and early adolescence and detectable prior to puberty. Endocrine disrupting compounds (EDCs) interfere with hormone action and are thus prenatal exposure is hypothesized to disrupt the formation of sex differences, and contribute to the increased prevalence of pediatric neuropsychiatric disorders that present with a sex bias. Available evidence for the ability of EDCs to impact the emergence of brain sex differences in the rodent brain was reviewed here, with a focus on effects detected at or before puberty. The peer-reviewed literature was searched using PubMed, and all relevant papers published by January 31, 2015 were incorporated. Endpoints of interest included molecular cellular and neuroanatomical effects. Studies on behavioral endpoints were not included because numerous reviews of that literature are available. The hypothalamus was found to be particularly affected by estrogenic EDCs in a sex, time, and exposure dependent manner. The hippocampus also appears vulnerable to endocrine disruption by BPA and PCBs although there is little evidence from the pre-pubertal literature to make any conclusions about sex-specific effects. Gestational EDC exposure can alter fetal neurogenesis and gene expression throughout the brain including the cortex and cerebellum. The available literature primarily focuses on a few, well characterized EDCs, but little data is available for emerging contaminants. The developmental EDC exposure literature demonstrates evidence of altered neurodevelopment as early as fetal life, with sex specific effects observed throughout the brain even before puberty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Scientific and regulatory policy committee (SRPC) paper: Assessment of Circulating Hormones in Nonclinical Toxicity Studies. III Female Reproductive Hormones

    EPA Science Inventory

    Hormonally mediated effects on the female reproductive system may manifest in pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies of female reprod...

  11. Perturbation of Gene Expression and Steroidogenesis with In vitro Exposure of Fathead Minnow Ovaries to Ketoconazole

    EPA Science Inventory

    Various chemicals in the environment can disrupt normal endocrine function, including steroid hormone synthesis, causing deleterious effects. Because these compounds can act at different levels of the hypothalamus-pituitary-gonadal (HPG) axis, their effects can lead to a mixture...

  12. Are In Vitro Methods for the Detection of Endocrine Potentials in the Aquatic Environment Predictive for In Vivo Effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany

    PubMed Central

    Henneberg, Anja; Bender, Katrin; Blaha, Ludek; Giebner, Sabrina; Kuch, Bertram; Köhler, Heinz-R.; Maier, Diana; Oehlmann, Jörg; Richter, Doreen; Scheurer, Marco; Schulte-Oehlmann, Ulrike; Sieratowicz, Agnes; Ziebart, Simone; Triebskorn, Rita

    2014-01-01

    Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1) chemical analyses, (2) in vitro bioassays, and (3) in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7) and reporter gene assays (human cell line HeLa-9903 and MDA-kb2). In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario) to water downstream of a wastewater outfall (Schussen River) or to water from a reference site (Argen River) to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus) and spirlin (Alburnoides bipunctatus), were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test) in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests) and an occasional endocrine action (vitellogenin levels) in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index). We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine disruption observed in snails and field-exposed fish, respectively. PMID:24901835

  13. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  14. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society

    PubMed Central

    Brown, T. R.; Doan, L. L.; Gore, A. C.; Skakkebaek, N. E.; Soto, A. M.; Woodruff, T. J.; Vom Saal, F. S.

    2012-01-01

    An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive “safe” dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures. PMID:22733974

  15. Endocrine Disruptors: Adverse Health Effects Mediated by EGFR?

    PubMed

    Stolz, Ailine; Schönfelder, Gilbert; Schneider, Marlon R

    2018-02-01

    Although endocrine disruptors represent a serious concern to human health, the underlying molecular mechanisms leading to diseases such as cancer remain poorly understood. Recent work has uncovered the epidermal growth factor receptor (EGFR) as a possible mediator of these adverse health effects, with important implications for the role of endocrine disruptors in human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Treatment of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline

    PubMed Central

    Nieman, Lynnette K.; Biller, Beverly M. K.; Findling, James W.; Murad, M. Hassan; Newell-Price, John; Savage, Martin O.; Tabarin, Antoine

    2015-01-01

    Objective: The objective is to formulate clinical practice guidelines for treating Cushing's syndrome. Participants: Participants include an Endocrine Society-appointed Task Force of experts, a methodologist, and a medical writer. The European Society for Endocrinology co-sponsored the guideline. Evidence: The Task Force used the Grading of Recommendations, Assessment, Development, and Evaluation system to describe the strength of recommendations and the quality of evidence. The Task Force commissioned three systematic reviews and used the best available evidence from other published systematic reviews and individual studies. Consensus Process: The Task Force achieved consensus through one group meeting, several conference calls, and numerous e-mail communications. Committees and members of The Endocrine Society and the European Society of Endocrinology reviewed and commented on preliminary drafts of these guidelines. Conclusions: Treatment of Cushing's syndrome is essential to reduce mortality and associated comorbidities. Effective treatment includes the normalization of cortisol levels or action. It also includes the normalization of comorbidities via directly treating the cause of Cushing's syndrome and by adjunctive treatments (eg, antihypertensives). Surgical resection of the causal lesion(s) is generally the first-line approach. The choice of second-line treatments, including medication, bilateral adrenalectomy, and radiation therapy (for corticotrope tumors), must be individualized to each patient. PMID:26222757

  17. Effects of disease severity and necrosis on pancreatic dysfunction after acute pancreatitis.

    PubMed

    Garip, Gokhan; Sarandöl, Emre; Kaya, Ekrem

    2013-11-28

    To evaluate the effects of disease severity and necrosis on organ dysfunctions in acute pancreatitis (AP). One hundred and nine patients treated as AP between March 2003 and September 2007 with at least 6 mo follow-up were included. Patients were classified according to severity of the disease, necrosis ratio and localization. Subjective clinical evaluation and fecal pancreatic elastase-I (FPE-I) were used for exocrine dysfunction evaluation, and oral glucose tolerance test was completed for endocrine dysfunction. The correlation of disease severity, necrosis ratio and localization with exocrine and endocrine dysfunction were investigated. There were 58 male and 51 female patients, and mean age was 56.5 ± 15.7. Of the patients, 35.8% had severe AP (SAP) and 27.5% had pancreatic necrosis. Exocrine dysfunction was identified in 13.7% of the patients [17.9% were in SAP, 11.4% were in mild AP (MAP)] and 34.7% of all of the patients had endocrine dysfunction (56.4% in SAP and 23.2% in MAP). In patients with SAP and necrotizing AP (NAP), FPE-Ilevels were lower than the others (P < 0.05 and 0.001 respectively) and in patients having pancreatic head necrosis or near total necrosis, FPE-1 levels were lower than 200 μg/g stool. Forty percent of the patients who had undergone necrosectomy developed exocrine dysfunction. Endocrine dysfunction was more significant in patients with SAP and NAP (P < 0.001). All of the patients in the necrosectomy group had endocrine dysfunction. Patients with SAP, NAP, pancreatic head necrosis and necrosectomy should be followed for pancreatic functions.

  18. Marital Conflict and Endocrine Function: Are Men Really More Physiologically Affected than Women?.

    ERIC Educational Resources Information Center

    Kiecolt-Glaser, Janice K.; And Others

    1996-01-01

    Assessed marital conflict and endocrine function in 90 newlywed couples. Blood samples were examined to provide composite and daytime values for three stress hormones and three related hormones. Data provided a window on endocrine function in couples for whom the day included conflicts. Discusses findings in the context of gender models of marital…

  19. Fifteen years after "Wingspread"- Environmental Endocrine Disrupters and human and wildlife health: Where we are today and where we need to go.

    EPA Science Inventory

    In 1991 a group of expert scientists at a Wingspread work session on endocrine disrupting chemicals (EDCs) concluded that "Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and hum...

  20. Principles of Pharmacology and Toxicology Also Govern Effects of Chemicals on the Endocrine System.

    PubMed

    Autrup, Herman; Barile, Frank A; Blaauboer, Bas J; Degen, Gisela H; Dekant, Wolfgang; Dietrich, Daniel; Domingo, Jose L; Gori, Gio Batta; Greim, Helmuth; Hengstler, Jan G; Kacew, Sam; Marquardt, Hans; Pelkonen, Olavi; Savolainen, Kai; Vermeulen, Nico P

    2015-07-01

    The present debate on chemicals with Hormonal activity, often termed 'endocrine disruptors', is highly controversial and includes challenges of the present paradigms used in toxicology and in hazard identification and risk characterization. In our opinion, chemicals with hormonal activity can be subjected to the well-evaluated health risk characterization approach used for many years including adverse outcome pathways. Many of the points arguing for a specific approach for risk characterization of chemicals with hormonal activity are based on highly speculative conclusions. These conclusions are not well supported when evaluating the available information. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Adjuvant endocrine therapy for premenopausal women with hormone-responsive breast cancer.

    PubMed

    Mathew, Aju; Davidson, Nancy E

    2015-11-01

    Multiple strategies for endocrine treatment of premenopausal women with hormone-responsive breast cancer have been assessed and results have been presented over the last two years. These include tamoxifen for 5-10 years (ATLAS and aTTom), tamoxifen for 5 years followed by aromatase inhibitor (AI) for 5 years for women who have become postmenopausal (MA-17); ovarian ablation (OA) by surgery (EBCTCG overview); ovarian function suppression (OFS) by LHRH agonist (LHRH agonist meta-analysis); or combinations of approaches including OFS plus tamoxifen or AI (SOFT, TEXT, ABCSG 12 and E3193). Many of these trials have taken place in the backdrop of (neo)adjuvant chemotherapy which can confound interpretation because such therapy can suppress ovarian function either transiently or permanently. Nonetheless these trials suggest in aggregate that 10 years of tamoxifen are better than 5 years and that a program of extended adjuvant therapy of tamoxifen for 5 years followed by aromatase inhibitor for 5 years is effective for suitable candidates. The SOFT and E3193 trials do not show a major advantage for use of OFS + tamoxifen compared to tamoxifen alone. The joint SOFT/TEXT analysis and ABCGS12 trials both suggest that outcomes can be excellent with the use of combined endocrine therapy alone in properly selected patients but give conflicting results with regard to potential benefits for OFS + AI compared with OFS + tamoxifen. Further work will be needed to ascertain long-term outcomes, identify factors that predict who will benefit from extended adjuvant endocrine therapy, and assess role of OFS by medical or surgical means. It is clear, however, that endocrine therapy is a critical part of the adjuvant regimen for most premenopausal women with hormone-responsive breast cancer, and a subset of these women with luminal A-type tumors can be safely treated with endocrine therapy alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Endocrine manifestations and management of Prader-Willi syndrome.

    PubMed

    Emerick, Jill E; Vogt, Karen S

    2013-08-21

    Prader-Willi syndrome (PWS) is a complex genetic disorder, caused by lack of expression of genes on the paternally inherited chromosome 15q11.2-q13. In infancy it is characterized by hypotonia with poor suck resulting in failure to thrive. As the child ages, other manifestations such as developmental delay, cognitive disability, and behavior problems become evident. Hypothalamic dysfunction has been implicated in many manifestations of this syndrome including hyperphagia, temperature instability, high pain threshold, sleep disordered breathing, and multiple endocrine abnormalities. These include growth hormone deficiency, central adrenal insufficiency, hypogonadism, hypothyroidism, and complications of obesity such as type 2 diabetes mellitus. This review summarizes the recent literature investigating optimal screening and treatment of endocrine abnormalities associated with PWS, and provides an update on nutrition and food-related behavioral intervention. The standard of care regarding growth hormone therapy and surveillance for potential side effects, the potential for central adrenal insufficiency, evaluation for and treatment of hypogonadism in males and females, and the prevalence and screening recommendations for hypothyroidism and diabetes are covered in detail. PWS is a genetic syndrome in which early diagnosis and careful attention to detail regarding all the potential endocrine and behavioral manifestations can lead to a significant improvement in health and developmental outcomes. Thus, the important role of the provider caring for the child with PWS cannot be overstated.

  3. A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems.

    PubMed

    LaFleur, Alesha D; Schug, Kevin A

    2011-06-24

    Recent methods of separation and detection for the quantification of trace-level concentrations of selected endocrine disrupting compounds (EDCs) from aqueous systems are reviewed. A brief introduction of the selected EDCs (natural and synthetic estrogens and plastics-derived xenoestrogens), including their characteristics and importance, is presented. Sample preparation and extraction trends are discussed. Various types of separation techniques are presented, with the express goal of emphasizing time and cost-effective methods that isolate and quantify trace-levels of multiple endocrine disruptors from aqueous systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Environmental endocrine disruption: an effects assessment and analysis.

    PubMed Central

    Crisp, T M; Clegg, E D; Cooper, R L; Wood, W P; Anderson, D G; Baetcke, K P; Hoffmann, J L; Morrow, M S; Rodier, D J; Schaeffer, J E; Touart, L W; Zeeman, M G; Patel, Y M

    1998-01-01

    This report is an overview of the current state of the science relative to environmental endocrine disruption in humans, laboratory testing, and wildlife species. Background information is presented on the field of endocrinology, the nature of hormones, and potential sites for endocrine disruption, with specific examples of chemicals affecting these sites. An attempt is made to present objectively the issue of endocrine disruption, consider working hypotheses, offer opposing viewpoints, analyze the available information, and provide a reasonable assessment of the problem. Emphasis is placed on disruption of central nervous system--pituitary integration of hormonal and sexual behavioral activity, female and male reproductive system development and function, and thyroid function. In addition, the potential role of environmental endocrine disruption in the induction of breast, testicular, and prostate cancers, as well as endometriosis, is evaluated. The interrelationship of the endocrine and immune system is documented. With respect to endocrine-related ecological effects, specific case examples from the peer-reviewed literature of marine invertebrates and representatives of the five classes of vertebrates are presented and discussed. The report identifies some data gaps in our understanding of the environmental endocrine disruption issue and recommends a few research needs. Finally, the report states the U.S. Environmental Protection Agency Science Policy Council's interim position on endocrine disruption and lists some of the ongoing activities to deal with this matter. PMID:9539004

  5. Behavioral and endocrine changes following antisense oligonucleotide-induced reduction in the rat NOP receptor.

    PubMed

    Blakley, Gregory G; Pohorecky, Larissa A; Benjamin, Daniel

    2004-02-01

    Compared with the use of classic receptor ligands, antisense oligonucleotides (ASO) targeted at specific central nervous system receptors are an effective alternative in experiments designed to examine the behavioral role of such systems. The nociception/orphaninFQ (N/OFQ) system has been implicated in mediating endocrine function, feeding, stress, pain, anxiety, and the rewarding effects of drugs of abuse. The objective of the current study was to examine whether long-term ASO-induced downregulation of N/OFQ's receptor (NOP) produced changes in endocrine, anxiety, nociception and ethanol's (EtOH's) locomotor activating properties. Male Long Evans rats were implanted with osmotic mini-pumps containing ASO for the NOP receptor. ASO was chronically infused for 26 days and, during this time, multiple behavioral and physiological measurements were conducted. ASO infusion significantly reduced expression of the NOP receptor in brain, confirmed by significant reductions of OFQ-stimulated [(35)S]-GTPgammaS binding in the paraventricular nucleus, prefrontal cortex, and septum. Behavioral changes were observed in ASO-treated animals including higher body temperature, increased water intake, decreased corticosterone (CORT) levels, decreased grooming in the open field, increased tail-flick latency, shorter durations on the open arms of the elevated plus maze, and heightened locomotor activity following EtOH. These behavioral, physiological and endocrine changes are relatively consistent with previous findings with agonists and antagonists for the NOP receptor and, taken together, suggest that ASO-induced downregulation of the NOP receptor is an effective method for studying the N/OFQ system.

  6. Effect of first-line endocrine therapy in patients with hormone-sensitive advanced breast cancer: a network meta-analysis.

    PubMed

    Zhang, Tingting; Feng, Fubin; Zhao, Wenge; Tian, Jinhui; Yao, Yan; Zhou, Chao; Dong, Shengjie; Wang, Congcong; Zang, Chuanxin; Lv, Qingliang; Sun, Changgang

    2018-01-01

    Endocrine therapy is the cornerstone treatment for patients with hormone receptor-positive advanced breast cancer. We aimed to assess the effectiveness of various first-line endocrine monotherapies or combinations to determine the optimal sequence in a network meta-analysis. We searched PubMed, EMBASE, and the Cochrane Library for randomized controlled trials (RCTs) from inception up to November 21, 2017. We included only RCTs that assessed the effectiveness of the following treatments as a monotherapy or in combination as the first-line treatment: tamoxifen, anastrozole, letrozole, exemestane, fulvestrant, palbociclib, and ribociclib. The results were presented with pooled odds ratio or hazard ratio (HR), and 95% credible interval (CrI). The primary outcomes were objective response rate (ORR) and progression-free survival/time to progression. A total of 16 eligible articles (14 RCTs) involving 6,602 patients treated with 10 different first-line endocrine therapies were assessed in our network meta-analysis. Palbociclib plus letrozole was superior to anastrozole, letrozole, exemestane, fulvestrant 500 mg, and anastrozole plus fulvestrant (loading dose) (HR=0.44, 95% CrI: 0.33-0.58; HR=0.56, 95% CrI: 0.45-0.68; HR=0.45, 95% CrI: 0.32-0.61; HR=0.58, 95% CrI: 0.42-0.81; HR=0.50, 95% CrI: 0.37-0.68; respectively). However, there is no significant advantage compared with ribociclib plus letrozole (HR=1.00, 95% CrI: 0.72-1.39). In terms of ORR, ribociclib plus letrozole is more effective than palbociclib plus letrozole (odds ratio=1.30, 95% CrI: 0.83-2.02). Palbociclib plus letrozole and ribociclib plus letrozole might be the optimal first-line endocrine therapeutic choices for hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer due to a longer progression-free survival/time to progression and a more efficacious ORR.

  7. Medical Consequences of Chernobyl with Focus on the Endocrine System - Part 2.

    PubMed

    Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška

    2015-01-01

    In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.

  8. Medical consequences of Chernobyl with focus on the endocrine system: Part 1.

    PubMed

    Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška

    2015-01-01

    In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information on effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.

  9. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals

    USDA-ARS?s Scientific Manuscript database

    Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of the...

  10. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss.

    PubMed

    Bajer, B; Vlcek, M; Galusova, A; Imrich, R; Penesova, A

    2015-07-01

    Obesity management for achieving an effective weight loss includes dietary modification and exercise [resistance (strength), endurance (cardiovascular) or intervals training (high-intensity intermittent exercise)]. Regular exercise acutely increases fat oxidation, which induces loss of fat mass and increases energy expenditure. Moreover, it has a positive effect on the physical (improved insulin sensitivity, lipid profile, etc.) and mental health (mood, cognition, memory, sleep, etc.). Endocrine responses to muscle actions are affected by many factors, including the exercise muscle groups (lower and upper body), load/volume, time-under tension, and rest-period intervals between sets, training status, gender, and age. The aim of this review is to summarize, evaluate, and clarify the literature data focusing on the endocrine responses to different types of exercise, including the frequency, intensity, and type of movement with regard to the fat loss strategies. Many studies have investigated anabolic [growth hormone, insulin-like growth factor-1 (IGF-1), testosterone] and gluco- and appetite- regulatory (insulin, cortisol, ghrelin) hormone responses and adaptations of skeletal muscles to exercise. Muscle tissue is a critical endocrine organ, playing important role in the regulation of several physiological and metabolic events. Moreover, we are also describing the response of some other substances to exercise, such as myokines [irisin, apelin, brain-derived neurotrophic factor (BDNF), myostatin, and fibroblast growth factor 21 (FGF21)]. It is proposed that reducing intra-abdominal fat mass and increasing cardiorespiratory fitness through improving nutritional quality, reducing sedentary behavior, and increase the participation in physical activity/exercise, might be associated with clinical benefits, sometimes even in the absence of weight loss.

  11. Endocrine Disruptors in Domestic Animal Reproduction: A Clinical Issue?

    PubMed Central

    Magnusson, Ulf; Persson, Sara

    2015-01-01

    Contents The objective of this review was to discuss whether endocrine disruption is a clinical concern in domestic animal reproduction. To that end, we firstly summarize the phenomenon of endocrine disruption, giving examples of the agents of concern and their effects on the mammalian reproductive system. Then there is a brief overview of the literature on endocrine disruptors and domestic animal reproduction. Finally, the clinical implications of endocrine disruptors on the reproductive system of farm animals as well as in dogs and cats are discussed. It is concluded that the evidence for clinical cases of endocrine disruption by chemical pollutants is weak, whereas for phytooestrogens, it is well established. However, there is concern that particular dogs and cats may be exposed to man-made endocrine disruptors. PMID:26382024

  12. [Synergistic effect of cell kinetics-directed chemo-endocrine therapy on experimental mammary tumors].

    PubMed

    Ueki, H

    1987-11-01

    We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.

  13. Biological Profiling of Endocrine Related Effects of Chemicals in ToxCast

    EPA Science Inventory

    The Food Quality Protection Act of 1996 mandates that EPA implement a validated screening program for detecting estrogenic chemicals, as well as other endocrine targets deemed appropriate by the Administrator. EPA’s Endocrine Disruptor Screening Program (EDSP) has been developing...

  14. Biological Profiling of Endocrine Related Effects of Chemicals Using ToxCast

    EPA Science Inventory

    The Food Quality Protection Act of 1996 mandates that EPA implement a validated screening program for detecting estrogenic chemicals, as well as other endocrine targets deemed appropriate by the Administrator. EPA’s Endocrine Disruptor Screening Program (EDSP) has been developing...

  15. New insights into the endocrine disrupting effects of brominated flame retardants.

    PubMed

    Legler, Juliette

    2008-09-01

    The objective of this review is to provide an overview of recent studies demonstrating the endocrine disrupting (ED) effects of brominated flame retardants (BFRs), while highlighting interesting data presented at the recent international BFR workshop in Amsterdam in April, 2007. A review written in 2002 was used as a starting point and about 60 publications published since 2003 were reviewed. New insights into the in vivo effects of BFRs on thyroid hormone, estrogen and androgen pathways in both mammalian and non-mammalian models are provided, and novel (in vitro) findings on the mechanisms underlying ED effects are highlighted. Special attention is also given to reports on neurotoxicological effects at relatively low doses of BFRs, although an endocrine-related mechanism is disputable. Convincing evidence has been published showing that BFRs and importantly, BFR metabolites, have the potential to disrupt endocrine systems at multiple target sites. While some studies suggest a wide margin of safety between effect concentrations in rodent models and levels encountered in humans and the environment, other studies demonstrate that exposure to low doses relevant for humans and wildlife at critical time points in development can result in profound effects on both endocrine pathways and (neuro)development.

  16. Comparative effectiveness of everolimus-based therapy versus endocrine monotherapy among postmenopausal women with HR+/HER2- metastatic breast cancer: a retrospective chart review in community oncology practices in the US.

    PubMed

    Xie, Jipan; Hao, Yanni; Li, Nanxin; Lin, Peggy L; Ohashi, Erika; Koo, Valerie; Signorovitch, James E; Wu, Eric Q; Yardley, Denise A

    2015-06-01

    Everolimus-based therapy and endocrine monotherapy are used among postmenopausal women with hormone receptor-positive human epidermal growth factor receptor-2 negative (HR+/HER2-) metastatic breast cancer (mBC) whose disease progressed or recurred on a non-steroidal aromatase inhibitor (NSAI). However, limited evidence exists regarding the real-world comparative effectiveness of these agents. This retrospective chart review examined postmenopausal HR+/HER2- mBC patients in community-based oncology practices who received everolimus-based therapy or endocrine monotherapy (index therapy) as any line of therapy for mBC between 1 July 2012 and 15 April 2013 after NSAI failure. Time on treatment (TOT), progression-free survival (PFS), and time to chemotherapy (TTC) from index therapy initiation were compared using Kaplan-Meier analyses and Cox proportional hazards models adjusting for baseline characteristics. A total of 243 and 270 patients received everolimus-based therapy or endocrine monotherapy in a quota-based sample. Patients treated with everolimus-based therapy had a higher proportion of visceral metastases, high tumor burden, and use of prior chemotherapies for mBC. After adjusting for baseline characteristics, everolimus-based therapy was associated with significantly longer TOT (HR = 0.67, 95% CI: 0.51-0.87) and PFS (HR = 0.75, 95% CI: 0.57-0.98) than endocrine monotherapy. No significant difference was found between everolimus-based therapy and endocrine monotherapy in TTC (HR = 0.81, 95% CI: 0.52-1.27). Results stratified by line of therapy were generally consistent with the overall results. Limitations include recall and information bias with potentially absent or erroneous chart data, unobserved factors due to non-randomization, inability to measure outcome assessments paired with measuring outcomes prior to exposures, and potential patient selection bias associated with chart review. Among a nationwide sample of postmenopausal HR+/HER2- mBC patients treated in community oncology settings, treatment with everolimus-based therapy was associated with significantly longer TOT and PFS compared to endocrine monotherapy.

  17. How does obesity affect the endocrine system? A narrative review.

    PubMed

    Poddar, M; Chetty, Y; Chetty, V T

    2017-06-01

    Obesity is a chronic, relapsing medical condition that results from an imbalance of energy expenditure and consumption. It is a leading cause of preventable illness, disability and premature death. The causes of obesity are multifactorial and include behavioural, socioeconomic, genetic, environmental and psychosocial factors. Rarely are endocrine diseases, e.g., hypothyroidism or Cushing's syndrome, the cause of obesity. What is less understood is how obesity affects the endocrine system. In this review, we will discuss the impact of obesity on multiple endocrine systems, including the hypothalamic-pituitary axis, changes in vitamin D homeostasis, gender steroids and thyroid hormones. We will also examine the renin angiotensin aldosterone system and insulin pathophysiology associated with obesity. We will provide a general overview of the biochemical changes that can be seen in patients with obesity, review possible aetiologies of these changes and briefly consider current guidelines on their management. This review will not discuss endocrine causes of obesity. © 2017 World Obesity Federation.

  18. Endocrine disrupting effects of butylated hydroxyanisole (BHA - E320)

    PubMed Central

    POP, ANCA; KISS, BELA; LOGHIN, FELICIA

    2013-01-01

    Butylated hydroxyanisole (BHA) is extensively used as antioxidant in foods, food packaging, cosmetics and pharmaceuticals. In the past years, it raised concerns regarding its possible endocrine disrupting effect. The existing in vitro studies indicate that BHA presents a weak estrogenic effect and also anti-androgenic properties while an in vivo study found it to have antiestrogenic properties. There is no sufficient data available at the moment to draw a conclusion regarding the safety of BHA when referring to its endocrine disrupting effect. Since a fraction of the population might be exposed to doses superior to the acceptable daily intake (ADI), it is important to gather more in vitro and in vivo data concerning the potential effects that BHA might have alone, but also in mixtures with natural hormones or other endocrine disrupting compounds. PMID:26527908

  19. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    USGS Publications Warehouse

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, Howard E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  20. Recent Advances on Endocrine Disrupting Effects of UV Filters.

    PubMed

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-08-03

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  1. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior

    PubMed Central

    Garland, Theodore; Zhao, Meng; Saltzman, Wendy

    2016-01-01

    Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often “used” as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which—corticosterone, leptin, and adiponectin—differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels. PMID:27252193

  2. STUDIES OF PRESCHOOL CHILDREN'S EXPOSURES TO PESTICIDES

    EPA Science Inventory

    Young children, especially those of the preschool ages, are hypothesized to have greater exposures than do older children or adults to persistent organic pesticides and other persistent organic pollutants, including some compounds that may have endocrine-disrupting effects or d...

  3. Endocrine disorders and diabetes in Japan.

    PubMed

    Seino, Y; Imura, H

    1994-10-01

    The frequency of glucose intolerance including diabetes and IGT in endocrine diseases was compared between Japan and foreign countries. It was revealed that the frequency of diabetes in endocrine diseases is generally higher in Japan than in foreign countries. In addition, plasma insulin response to glucose was exaggerated in Cushing's syndrome with glucose intolerance, but was impaired in acromegaly and pheochromocytoma with glucose intolerance.

  4. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models.

    PubMed

    Wolf, Jeffrey C; Wheeler, James R

    2018-04-01

    Although frequently examined as a target organ for non-endocrine toxicity, histopathological evaluation of the liver is becoming a routine component of endocrine disruption studies that utilize various fish species as test subjects. However, the interpretation of microscopic liver findings can be challenging, especially when attempting to distinguish adverse changes associated with endocrine disrupting substances from those caused by systemic or direct hepatic toxicity. The purpose of this project was to conduct a critical assessment of the available peer-reviewed and grey literature concerning the histopathologic effects of reproductive endocrine active substances (EAS) and non-endocrine acting substances in the livers of fish models, and to determine if liver histopathology can be used to reliably distinguish endocrine from non-endocrine etiologies. The results of this review suggest that few compound-specific histopathologic liver effects have been identified, among which are estrogen agonist-induced increases in hepatocyte basophilia and proteinaceous intravascular fluid in adult male teleosts, and potentially, decreased hepatocyte basophilia in female fish exposed to substances that possess androgenic, anti-estrogenic, or aromatase inhibitory activity. This review also used published standardized methodology to assess the credibility of the histopathology data in each of the 117 articles that reported liver effects of treatment, and consequently it was determined that in only 37% of those papers were the data considered either highly credible or credible. The outcome of this work highlights the value of histopathologic liver evaluation as an investigative tool for EAS studies, and provides information that may have implications for EAS hazard assessment. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses.

    PubMed

    Balaguer, Patrick; Delfosse, Vanessa; Grimaldi, Marina; Bourguet, William

    Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs. Copyright © 2017. Published by Elsevier Masson SAS.

  6. EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity

    EPA Science Inventory

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many ...

  7. Update on the Mammalian Tier 1 Endocrine Disruptor Screening Protocols

    EPA Science Inventory

    The endocrine system provides a number of target sites that may be susceptible to disruption by environmental agents. In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system (http://w...

  8. ENDOCRINE DISRUPTORS FROM COMBUSTION AND VEHICULAR EMISSIONS: IDENTIFICATION AND SOURCE NOMINATION

    EPA Science Inventory

    During the last decade, concerns have been raised regarding the possible harmful effects of exposure to certain chemicals that are capable of modulating or disrupting the function of the endocrine system. These chemicals, which are referred to as endocrine disrupting chemicals (E...

  9. Effects of Alcohol on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2013-01-01

    Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889

  10. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro.

    PubMed

    Rosenmai, A K; Taxvig, C; Svingen, T; Trier, X; van Vugt-Lussenburg, B M A; Pedersen, M; Lesné, L; Jégou, B; Vinggaard, A M

    2016-07-01

    Migration of chemicals from packaging materials to foods may lead to human exposure. Polyfluoroalkyl substances (PFAS) can be used in technical mixtures (TMs) for use in food packaging of paper and board, and PFAS have been detected in human serum and umbilical cord blood. The specific structures of the PFAS in TMs are often unknown, but polyfluorinated alkyl phosphate esters (PAPs) have been characterized in TMs, food packaging, and in food. PAPs can be metabolized into fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Some PFAS have endocrine activities, highlighting the need to investigate these effects. Herein, we studied the endocrine activity of less characterized PFAS, including short-chain PFCAs and FTOHs, PAPs, and TMs of unknown chemical composition. Long-chain PFCAs were also included. We applied seven assays covering effects on estrogen, glucocorticoid, androgen, and peroxisome proliferator-activated receptor (PPAR) activity, as well as steroidogenesis in vitro and ex vivo. In general, PAPs, FTOHs, TMs, and long-chain PFCAs showed estrogenic activity through receptor activation and/or increasing 17β-estradiol levels. Furthermore, short- and long-chain PFCAs activated PPARα and PPARγ. Collectively, this means that (i) PAPs, FTOHs, and PFCAs exhibit endocrine activity through distinct and sometimes different mechanisms, (ii) two out of three tested TMs exhibited estrogenic activity, and (iii) short-chain FTOHs showed estrogenic activity and short-chain PFCAs generally activate both PPARα and PPARγ with similar potency and efficacy as long-chain PFCAs. In conclusion, several new and divergent toxicological targets were identified for different groups of PFAS. © 2016 American Society of Andrology and European Academy of Andrology.

  11. Severe hypertriglyceridaemia in horses and ponies with endocrine disorders.

    PubMed

    Dunkel, B; Wilford, S A; Parkinson, N J; Ward, C; Smith, P; Grahame, L; Brazil, T; Schott, H C

    2014-01-01

    Severe hypertriglyceridaemia in horses and ponies with endocrine disorders has been reported anecdotally but has not been documented in the literature. To describe historical and clinicopathological findings as well as progression and outcome in horses and ponies with severe hypertriglyceridaemia (serum triglyceride concentration >5.65 mmol/l) secondary to an endocrine disorder that were otherwise apparently healthy. Cases from 6 participating institutions were identified and case details extracted from the medical records. Case details of 3 horses and 4 ponies were available. Presenting complaints included weight loss despite good appetite in 4 animals, while in 3 hypertriglyceridaemia was identified incidentally. All animals were bright and alert and showed a normal or increased appetite. Serum triglyceride concentrations ranged from 10.5 to 60.3 mmol/l. Other abnormalities included hyperglycaemia in 6 animals, suspected insulin resistance and mild to severe increases in hepatic enzyme activities. In 2 animals, moderate hepatic lipidosis was confirmed histologically. Three horses and 3 ponies were diagnosed with pituitary pars intermedia dysfunction based on clinical signs and basal adrenocorticotropic hormone (ACTH) concentrations or dexamethasone suppression test results. In 5 of these, type 2 diabetes mellitus was also confirmed, while one pony suffered from type 2 diabetes mellitus without concurrent pituitary pars intermedia dysfunction. Laboratory abnormalities improved in 4 animals with treatment (pergolide and/or insulin), in one horse specific treatment was not attempted, and in 2 ponies treatment was impaired by the owner or only partly effective. In one of the latter cases, biochemical abnormalities persisted for 7 years without apparent ill effects. Horses and ponies may develop severe hypertriglyceridaemia secondary to endocrine disorders that are associated with insulin resistance. Hypertriglyceridaemia can resolve with treatment of the endocrinopathy. Although biochemical evidence of hepatic compromise was present, clinical abnormalities were not noted in these animals. © 2013 EVJ Ltd.

  12. Endocrine and metabolic disorders associated with human immune deficiency virus infection.

    PubMed

    Unachukwu, C N; Uchenna, D I; Young, E E

    2009-01-01

    Many reports have described endocrine and metabolic disorders in the human immunodeficiency virus (HIV) infection. This article reviewed various reports in the literature in order to increase the awareness and thus the need for early intervention when necessary. Data were obtained from MEDLINE, Google search and otherjournals on 'HIV, Endocrinopathies/Metabolic Disorders' from 1985 till 2007. Studies related to HIV associated endocrinopathies and metabolic disorders in the last two decades were reviewed. Information on epidemiology, pathogenesis, diagnosis and treatment of the target organ endocrinopathies and metabolic disorders in HIV/AIDS were extracted from relevant literature. Endocrine and metabolic disturbances occur in the course of HIV infection. Pathogenesis includes direct infection of endocrine glands by HIV or opportunistic organisms, infiltration by neoplasms and side effects of drugs. Adrenal insufficiency is the commonest HIV endocrinopathy with cytomegalovirus adrenalitis occurring in 40-88% of cases. Thyroid dysfunction may occur as euthyroid sick syndrome or sub-clinical hypothyroidism. Hypogonadotrophic dysfunction accounts for 75% of HIV-associated hypogonadism, with prolonged amenorrhoea being three times more likely in the women. Pancreatic dysfunction may result in hypoglycaemia or diabetes mellitus (DM). Highly active antiretroviral therapy (HAART) especially protease inhibitors has been noted to result in insulin resistance and lipodystrophy. Virtually every endocrine organ is involved in the course of HIV infection. Detailed endocrinological and metabolic evaluation and appropriate treatment is necessary in the optimal management of patients with HIV infection in our environment.

  13. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss.

    PubMed

    Hiscox, Stephen; Barrett-Lee, Peter; Borley, Annabel C; Nicholson, Robert I

    2010-08-01

    Aromatase inhibitors have largely replaced tamoxifen as the first-line treatment for postmenopausal women with metastatic, hormone receptor-positive (HR+) breast cancer. However, many patients develop clinical resistance with prolonged treatment, and oestrogen deprivation following aromatase inhibition can result in loss of bone mineral density. Furthermore, most patients with metastatic breast cancer develop bone metastases, and the resulting adverse skeletal-related events are a significant cause of patient morbidity. Src, a non-receptor tyrosine kinase, is a component of signalling pathways that regulate breast cancer cell proliferation, invasion and metastasis as well as osteoclast-mediated bone turnover. Preclinical evidence also suggests a role for Src in acquired endocrine resistance. As such, Src inhibition represents a logical strategy for the treatment of metastatic breast cancer. In vitro, combination therapy with Src inhibitors and endocrine agents, including aromatase inhibitors, has been shown to inhibit the proliferation and metastasis of both endocrine-responsive and endocrine-resistant breast cancer cell lines more effectively than either of the therapy alone. Src inhibition has also been shown to suppress osteoclast formation and activity. Combination therapy with aromatase inhibitors and Src inhibitors therefore represents a novel approach through which the development of both acquired resistance and bone pathology could be delayed. Data from clinical trials utilising such combinations will reveal if this strategy has the potential to improve patient outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans—especially during development—may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions. PMID:26544531

  15. Molecular Mechanisms of Action of BPA.

    PubMed

    Acconcia, Filippo; Pallottini, Valentina; Marino, Maria

    2015-01-01

    Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system.

  16. Selected endocrine disrupting compounds (vinclozolin, flutamide, ketoconazole and dicofol): effects on survival, occurrence of males, growth, molting and reproduction of Daphnia magna.

    PubMed

    Haeba, Maher H; Hilscherová, Klára; Mazurová, Edita; Bláha, Ludek

    2008-05-01

    Pollution-induced endocrine disruption in vertebrates and invertebrates is a worldwide environmental problem, but relatively little is known about effects of endocrine disrupting compounds (EDCs) in planktonic crustaceans (including Daphnia magna). Aims of the present study were to investigate acute 48 h toxicity and sub-chronic (4-6 days) and chronic (21 days) effects of selected EDCs in D. magna. We have investigated both traditional endpoints as well as other parameters such as sex determination, maturation, molting or embryogenesis in order to evaluate the sensitivity and possible use of these endpoints in ecological risk assessment. We have studied effects of four model EDCs (vinclozolin, flutamide, ketoconazole and dicofol) on D. magna using (i) an acute 48 h immobilization assay, (ii) a sub-chronic, 4-6 day assay evaluating development and the sex ratio of neonates, and (iii) a chronic, 21 day assay studying number of neonates, sex of neonates, molting frequency, day of maturation and the growth of maternal organisms. Acute EC50 values in the 48 h immobilization test were as follows (mg/L): dicofol 0.2, ketoconazole 1.5, flutamide 2.7, vinclozolin >3. Short-term, 4-6 day assays with sublethal concentrations showed that the sex ratio in Daphnia was modulated by vinclozolin (decreased number of neonate males at 1 mg/L) and dicofol (increase in males at 0.1 mg/L). Flutamide (up to 1 mg/L) had no effect on the sex of neonates, but inhibited embryonic development at certain stages during chronic assay, resulting in abortions. Ketoconazole had no significant effects on the studied processes up to 1 mg/L. Sex ratio modulations by some chemicals (vinclozolin and dicofol) corresponded to the known action of these compounds in vertebrates (i.e. anti-androgenicity and anti-oestrogenicity, respectively). Our study revealed that some chemicals known to affect steroid-regulated processes in vertebrates can also affect sublethal endpoints (e.g. embryonic sex determination and/or reproduction) in invertebrates such as D. magna. A series of model vertebrate endocrine disrupters affected various sub-chronic and chronic parameters in D. magna including several endpoints that have not been previously studied in detail (such as sex determination in neonates, embryogenesis, molting and maturation). Evaluations of traditional reproduction parameters (obtained from the 21 day chronic assay). as well as the results from a rapid, 4-6 day, sub-chronic assay provide complementary information on non-lethal effects of suspected organic endocrine disrupters. It seems that there are analogies between vertebrates and invertebrates in toxicity mechanisms and in vivo effects of endocrine disruptors. However, general physiological status of organisms may also indirectly affect endpoints that are traditionally considered 'hormone regulated' (especially at higher effective concentrations as observed in this study) and these factors should be carefully considered. Further research of D. magna physiology and comparative studies with various EDCs will help to understand mechanisms of action as well as ecological risks of EDCs in the environment.

  17. CURRENT ISSUES REGARDING ENDOCRINE DISRUPTING CHEMICALS AND ANTIBIOTIC RESISTANCE

    EPA Science Inventory

    Recently public concern has increased regarding industrial and environmental substances that may have adverse hormonal effects in human and wildlife populations. This concern has also been expanded to include antibiotic-resistant bacteria and the presence of various antibiotics a...

  18. Human infertility: are endocrine disruptors to blame?

    PubMed Central

    Marques-Pinto, André; Carvalho, Davide

    2013-01-01

    Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility. PMID:23985363

  19. Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA.

    PubMed

    Jabbi, M; Korf, J; Kema, I P; Hartman, C; van der Pompe, G; Minderaa, R B; Ormel, J; den Boer, J A

    2007-05-01

    Highly prevalent stress-related disorders such as major depression (MD) are characterised by a dysregulation of the neuroendocrine system. Although heritability for these disorders is high, the role of genes in the underlying pathophysiology is poorly understood. Here, we show that polymorphic variations in genes coding for serotonin transporter (5-HTT), catechol-O-methyl transferase (COMT) and monoamine oxidase A (MAOA) as well as sex differences influence the regulation of hypothalamic-pituitary-adrenal (HPA)-axis response to acute psychological and endocrine challenges. In our sample, the effects of COMT on the release of adrenocorticotrophin hormone (ACTH) depend on the presence of the low-expression MAOA variant in the same individual. By including individuals varying in their degree of susceptibility to MD, we showed evidence of interactions between 5-HTT and MD susceptibility in baseline cortisol, and between MAOA and MD susceptibility in baseline ACTH measures, indicating a role for these genotypes in stable-state endocrine regulation. Collectively, these results indicate that the simultaneous investigation of multiple monoaminergic genes in interaction with gender have to be measured to understand the endocrine regulation of stress. These findings point towards a genetic susceptibility to stress-related disorders.

  20. Endocrinological side-effects of immune checkpoint inhibitors.

    PubMed

    Torino, Francesco; Corsello, Salvatore M; Salvatori, Roberto

    2016-07-01

    Three mAbs targeting immune checkpoint proteins are available for the treatment of patients with melanoma, lung, and kidney cancer, and their use will likely expand in the future to additional tumor types. We here update the literature on the incidence and pathophysiology of endocrine toxicities induced by these agents, and discuss management guidance. Immune checkpoint inhibition may trigger autoimmune syndromes involving different organs, including several endocrine glands (pituitary, thyroid, adrenals, and endocrine pancreas). Hypophysitis is more frequently associated with ipilimumab, whereas the incidence of thyroid dysfunction is higher with nivolumab/pembrolizumab. Primary adrenal insufficiency can rarely occur with either treatment. Autoimmune diabetes is very rare. As hypophysitis and adrenalitis may be life-threatening, endocrinological evaluation is essential particularly in patients developing fatigue and other symptoms consistent with adrenal insufficiency. Corticosteroids should be promptly used when hypophysitis-induced adrenal insufficiency or adrenalitis are diagnosed, but not in thyroiditis or diabetes. No impact of corticosteroids on the efficacy/activity of immune checkpoint-inhibiting drugs is reported. Hormonal deficiencies are often permanent. In absence of predicting factors, accurate information to patients provided by the oncology care team is essential for early diagnosis and to limit the consequences of checkpoint inhibition-related endocrine toxicity.

  1. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  2. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius.

    PubMed

    Planelló, R; Martínez-Guitarte, J L; Morcillo, G

    2008-05-01

    Bisphenol A (BPA) is an endocrine disruptor that can mimic the action of estrogens by interacting with hormone receptors and is, therefore, potentially able to influence reproductive functions in vertebrates. Although information about the interaction with the endocrine systems in invertebrates is limited, it has also been shown its effect on reproductive and developmental parameters in these organisms. As little is known about its mechanism of action in aquatic invertebrates, we have examined the effects of BPA on the expression of some selected genes, including housekeeping, stress-induced and hormone-related genes in Chironomus riparius larvae, a widely used organism in aquatic ecotoxicology. The levels of different gene transcripts were measured by Northern blot or by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Exposure to BPA (3 mgl(-1), 12-24h) did not affect the levels of rRNA or those of mRNAs for both L11 or L13 ribosomal proteins, selected as examples of housekeeping genes involved in ribosome biogenesis. Nevertheless, BPA treatment induced the expression of the HSP70 gene. Interestingly, it was found that BPA significantly increases the mRNA level of the ecdysone receptor (EcR). These results show for the first time that exposure to endocrine disrupting chemicals, such as BPA, can selectively affect the expression of the ecdysone receptor gene suggesting a direct interaction with the insect endocrine system. Furthermore, this finding suggests a common way of BPA action, shared by vertebrates and invertebrates, through interaction with steroid hormone receptors. Our study adds a new element, the EcR, which may be a useful tool for the screening of environmental xenoestrogens in insects.

  3. Recent Advances on Endocrine Disrupting Effects of UV Filters

    PubMed Central

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-01-01

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194

  4. Application of an integrated strategy for monitoring of contaminants, including endocrine active chemicals, in Great Lakes Areas of Concern

    EPA Science Inventory

    Chemical monitoring strategies are most effective for those chemicals whose hazards are well understood and for which sensitive and cost effective analytical methods are available. Unfortunately, such chemicals represent a minor fraction of those that may currently occur in the e...

  5. Computational Model of the Hypothalamic-pituitary-gonadal Axis to Predict Biochemical Adaptive Response to Endocrine Disrupting Fungicide Prochloraz

    EPA Science Inventory

    There is increasing evidence that exposure to endocrine disrupting chemicals can induce adverse effects on reproduction and development in both humans and wildlife. Recent studies report adaptive changes within exposed organisms in response to endocrine disrupting chemicals, and ...

  6. 77 FR 65682 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Under the Endocrine Disruptor Screening Program (EDSP) (Renewal) AGENCY: Environmental Protection Agency....regulations.gov . Title: Tier 1 Screening of Certain Chemicals Under the Endocrine Disruptor Screening Program... of a two-tiered approach to screen chemicals for potential endocrine disrupting effects. The purpose...

  7. 78 FR 35903 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; ICR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ...; Tier 1 Screening of Certain Chemicals Under the Endocrine Disruptor Screening Program AGENCY... Chemicals; Tier 1 Screening of Certain Chemicals Under the Endocrine Disruptor Screening Program (EDSP... effects. The EDSP consists of a two-tiered approach to screen chemicals for potential endocrine disrupting...

  8. Using in Vitro High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals

    EPA Science Inventory

    Over the past 20 years, an increased focus on detecting environmental chemicals posing a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. EPA Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP, whic...

  9. Current limitations and a path forward to improve testing for the environmental assessment of endocrine active substances-presentation

    EPA Science Inventory

    To assess the hazards and risks of possible endocrine active chemicals (EACs), there is a need for robust, validated test methods that detect perturbations of endocrine pathways and provide reliable information for evaluating potential adverse effects on apical endpoints. One iss...

  10. Endocannabinoids and the Endocrine System in Health and Disease.

    PubMed

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  11. Impact of late radiation effects on cancer survivor children: an integrative review

    PubMed Central

    Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia

    2016-01-01

    ABSTRACT We aimed to identify the late effects of radiation exposure in pediatric cancer survivors. An integrated literature review was performed in the databases MEDLINE and LILACS and SciELO. Included were articles in Portuguese and English, published over the past 10 years, using the following keywords: “neoplasias/neoplasms” AND “radioterapia/radiotherapy” AND “radiação/radiation”. After analysis, 14 articles - published in nine well-known journals - met the inclusion criteria. The publications were divided into two categories: “Late endocrine effects” and “Late non-endocrine effects”. Considering the increased survival rates in children who had cancer, the impact of late effects of exposure to radiation during radiological examinations for diagnosis and treatment was analyzed. Childhood cancer survivors were exposed to several late effects and should be early and regularly followed up, even when exposed to low radiation doses. PMID:26313432

  12. A hierarchical testing strategy for micropollutants in drinking water regarding their potential endocrine-disrupting effects-towards health-related indicator values.

    PubMed

    Kuckelkorn, Jochen; Redelstein, Regine; Heide, Timon; Kunze, Jennifer; Maletz, Sibylle; Waldmann, Petra; Grummt, Tamara; Seiler, Thomas-Benjamin; Hollert, Henner

    2018-02-01

    In Germany, micropollutants that (may) occur in drinking water are assessed by means of the health-related indicator value (HRIV concept), developed by the German Federal Environment Agency. This concept offers five threshold values (≤ 0.01 to ≤ 3 μg l -1 ) depending on availability and completeness of data regarding genotoxicity, neurotoxicity, and germ cell-damaging potential. However, the HRIV concept is yet lacking integration of endocrine disruptors as one of the most prominent toxicological concerns in water bodies, including drinking water. Thresholds and proposed bioassays hence urgently need to be defined. Since endocrine disruption of ubiquitary chemicals as pharmaceuticals, industrial by-products, or pesticides is a big issue in current ecotoxicology, the aim of this study was to explore endocrine effects, i.e., estrogenic and androgenic effects, as an important, additional toxicological mode of action for the HRIV concept using a hierarchical set of well-known but improved bioassays. Results indicate that all of the 13 tested substances, industrial chemicals and combustion products (5), pharmaceuticals and medical agents (4), and pesticides and metabolites (4), have no affinity to the estrogen and androgen receptor in human U2OS cells without metabolic activation, even when dosed at their water solubility limit, while in contrast some of these substances showed estrogenic effects in the RYES assay, as predicted in pre-test QSAR analysis. Using a specifically developed S9-mix with the U2OS cells, those micropollutants, i.e., Benzo[a]pyrene, 2,4-Dichlorophenol, 3,3-Dichlorbenzidin, 3,4-Dichloranilin, and diclofenac, they show estrogenic effects at the same concentration range as for the yeast cells. Three of the drinking water-relevant chemicals, i.e., atrazine, tributyltin oxide, and diclofenac, caused effects on hormone production in the H295R assay, which can be correlated with changes in the expression of steroidogenic genes. One chemical, 17α-Ethinylestradiol, caused an estrogenic or anti-androgenic effect in the reproduction test with Potamopyrgus antipodarum. Considering these results, a proposal for a test strategy for micropollutants in drinking water regarding potential endocrine effects (hormonal effects on reproduction and sexual development) will be presented to enhance the existing HRIV concept.

  13. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  14. Effects of Anorexia Nervosa on the Endocrine System.

    PubMed

    Baskaran, Charumathi; Misra, Madhusmita; Klibanski, Anne

    2017-03-01

    Anorexia nervosa (AN) is characterized by severe undernutrition associated with alterations in multiple endocrine axes, which are primarily adaptive to the state of caloric deprivation. Hormonal changes include growth hormone (GH) resistance with low insulin like growth factor-1 (IGF-1) levels, hypothalamic hypogonadism, relative hypercortisolemia and changes in appetite regulating hormones, including leptin, ghrelin, and peptide YY. These alterations contribute to abnormalities in bone metabolism leading to low bone mass, impaired bone microarchitecture, and increased risk for fracture, and may also negatively impact cognition, emotions and mood. The best strategy to improve all biologic outcomes is weight and menstrual recovery. Physiological estrogen replacement improves bone accrual rates and measures of trait anxiety in adolescents with AN. Other therapies including testosterone and IGF-1 replacement, and use of DHEA with oral estrogen-progesterone combination pills, bisphosphonates and teriparatide have also been studied to improve bone outcomes. Copyright© of YS Medical Media ltd.

  15. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    PubMed

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2017-01-01

    The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dynamic Nature of Alterations in the Endocrine System of Fathead Minnows Exposed to Prochloraz

    EPA Science Inventory

    The vertebrate hypothalamic-pituitary-gonadal (HPG) axis is controlled through various feedback mechanisms, ideally maintaining dynamic homeostasis in the face of changing environmental conditions, including exposure to chemical stressors. These studies assessed the effects of t...

  18. ESTROGEN INDUCED VITELLOGENIN MRNA AND PROTEIN IN SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS)

    EPA Science Inventory

    Many environmentally persistent xenobiotic chemicals appear to disrupt normal endocrine function by acting as ligands for endogenous steroid receptors, including the estrogen receptor. Xenobiotics that bind to the estrogen receptor may elicit several effects, one of which is acti...

  19. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes?

    PubMed

    Carnevali, Oliana; Santangeli, Stefania; Forner-Piquer, Isabel; Basili, Danilo; Maradonna, Francesca

    2018-06-11

    Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.

  20. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept.

    PubMed

    Altieri, Barbara; Muscogiuri, Giovanna; Barrea, Luigi; Mathieu, Chantal; Vallone, Carla V; Mascitelli, Luca; Bizzaro, Giorgia; Altieri, Vincenzo M; Tirabassi, Giacomo; Balercia, Giancarlo; Savastano, Silvia; Bizzaro, Nicola; Ronchi, Cristina L; Colao, Annamaria; Pontecorvi, Alfredo; Della Casa, Silvia

    2017-09-01

    In the last few years, more attention has been given to the "non-calcemic" effect of vitamin D. Several observational studies and meta-analyses demonstrated an association between circulating levels of vitamin D and outcome of many common diseases, including endocrine diseases, chronic diseases, cancer progression, and autoimmune diseases. In particular, cells of the immune system (B cells, T cells, and antigen presenting cells), due to the expression of 1α-hydroxylase (CYP27B1), are able to synthesize the active metabolite of vitamin D, which shows immunomodulatory properties. Moreover, the expression of the vitamin D receptor (VDR) in these cells suggests a local action of vitamin D in the immune response. These findings are supported by the correlation between the polymorphisms of the VDR or the CYP27B1 gene and the pathogenesis of several autoimmune diseases. Currently, the optimal plasma 25-hydroxyvitamin D concentration that is necessary to prevent or treat autoimmune diseases is still under debate. However, experimental studies in humans have suggested beneficial effects of vitamin D supplementation in reducing the severity of disease activity. In this review, we summarize the evidence regarding the role of vitamin D in the pathogenesis of autoimmune endocrine diseases, including type 1 diabetes mellitus, Addison's disease, Hashimoto's thyroiditis, Graves' disease and autoimmune polyendocrine syndromes. Furthermore, we discuss the supplementation with vitamin D to prevent or treat autoimmune diseases.

  1. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  2. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  3. Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters.

    PubMed

    Isling, Louise Krag; Boberg, Julie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Axelstad, Marta; Christiansen, Sofie; Vinggaard, Anne Marie; Taxvig, Camilla; Kortenkamp, Andreas; Hass, Ulla

    2014-01-01

    This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.

  4. Endocrine-Disrupting Compounds in Aquatic Ecosystems.

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are a ubiquitous issue of concern in our aquatic systems. Commonly detected EDCs include natural and synthetic hormones, surfactants, plasticizers, disinfectants, herbicides and metals. The potency of these chemicals varies substantially, as ...

  5. Suppression of Androgen Receptor Transactivation by Akt Kinase

    DTIC Science & Technology

    2005-01-01

    with the potential to be particularly effective. A therapy Endocrine Societcs 84th Annual Meeting, San Francisco, June 19-22,2002, that suppresses the...PI3K/Akt pathway combined with classic p. 526 (abstr.), Endocrine Society Press, Bethesda, MD ablation therapy could reach the maximal effect in 10...10):2409-2423 Printed in U.S.A. Copyright © 2004 by The Endocrine Society do!: 10.1210/me.2004-0117 Regulation of Androgen Receptor Signaling by PTEN

  6. Effect of Endocrine Disruptor Pesticides: A Review

    PubMed Central

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  7. Endocrine therapy toxicity: management options.

    PubMed

    Henry, N Lynn

    2014-01-01

    Treatment with adjuvant endocrine therapy, including tamoxifen and the aromatase inhibitors, has resulted in notable improvements in disease-free and overall survival for patients with hormone receptor-positive breast cancer. Despite their proven benefit, however, adherence to and persistence with the medications is poor in part because of bothersome side effects that can negatively affect quality of life. Retrospective analyses have identified possible predictors of development of toxicity. Reports have also suggested that development of toxicity may be a biomarker of better response to therapy. In addition, there has been considerable research investment into the management of these side effects, which may lead to improved adherence and persistence with therapy. However, although notable advances have been made, much more remains to be done to provide patients with truly personalized therapy for hormone receptor-positive breast cancer.

  8. The US EPA's Endocrine Disruptor Screening Program: In VItro and In Vivo Mammalian Tier 1 Screening Assays

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system, the Food Quality Protection Act mandated that the U.S. EPA develop and implement an endocrine disruptor screening program (EDSP...

  9. Current limitations and a path forward to improve testing for the environmental assessment of endocrine active substances

    EPA Science Inventory

    To assess the hazards and risks of possible endocrine active chemicals (EACs) there is a need for robust, validated test methods that detect perturbation of endocrine pathways of concern and provide insights reliable information as to assess to potential adverse effects on apical...

  10. [Histological effects of short term endocrine therapy on prostatic cancer].

    PubMed

    Irisawa, C; Yoshimura, Y; Yokota, T; Yamaguchi, O; Kondou, Y; Hamasaki, T; Yamad, Y; Kurosu, S; Chiba, R

    1996-07-01

    The objective of this study is to investigate the pathological changes which occurred in prostatic cancer shortly after the commencement of endocrine therapy. Fourty-three patients underwent radical prostatectomy immediately after the short term endocrine therapy (treatment period was within one month) and the histological pictures of operative specimens were compared to those obtained from the pretreatment biopsy specimens. Degenerative changes of cancer cells, such as nuclear and cytoplasmic vacuole, collapse of the cytoplasm and the appearance of naked hyperchromatic nucleus were noticed after the short term endocrine therapy. Especially in the cases which were histologically evaluated to be poorly differentiated in the biopsy specimens, not only degenerative changes but also destruction of cancer nests caused by cell death were observed. The histological effects affected by short term endocrine treatment had no relation to the prognosis, but in the cases of stage D2, the pathological grade judged by post-therapeutic specimens were found to be useful for the prediction of prognosis. Endocrine therapy induces remarkable pathological changes in prostatic cancer within a very short time after beginning treatment.

  11. Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health

    PubMed Central

    Campbell, Sonya; Eley, Sarah E. A.; McKechanie, Andrew G.; Stanfield, Andrew C.

    2016-01-01

    Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive–compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions. PMID:27869718

  12. Effect of endocrine disruptors on male reproduction in humans: why the evidence is still lacking?

    PubMed

    Bliatka, D; Lymperi, S; Mastorakos, G; Goulis, D G

    2017-05-01

    The so-called "endocrine disruption hypothesis" suggests that exposures to endocrine disruption (EDs) during fetal, neonatal and adult life may interfere with the development of reproductive organs and alter semen quality and reproductive hormone production. Even though animal studies provide substantial evidence of adverse effects of EDs on male reproductive system, epidemiological studies in humans arrive at conflicting results. The aim of the present study was to systematically review the literature to locate methodological characteristics of the studies that struggle the formation of an association between EDs and human male reproduction. Such characteristics include: (i) definition of the exposed and the non-exposed population, (ii) age, (iii) insufficient control for confounders, (iv) ED assay and threshold, (v) time parameters of ED exposure, and (vi) study outcomes. Additional issues are: (i) the late effect of an early exposure, (ii) the multiple exposure effect, and (iii) the fact the same ED may exhibit different modes of action. Unfortunately, the nature of the field precludes the conduction of randomized-controlled trials, which could result to etiological associations between EDs and human male reproduction. Consequently, there is a great need to conduct well-designed studies of case-control or cohort type to evaluate EDs effects on human male reproductive health, and apply possible measures that could limit dangerous exposures. © 2017 American Society of Andrology and European Academy of Andrology.

  13. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms.

    PubMed

    Wang, Jiaying; Wang, Jingpeng; Liu, Jinsong; Li, Jianzhi; Zhou, Lihong; Zhang, Huanxin; Sun, Jianteng; Zhuang, Shulin

    2018-05-09

    The phenolic compounds have posed public concern for potential threats to human health and ecosystem. Tert-butylphenols (TBPs), as one group of emerging contaminants, showed potential endocrine disrupting effects and aquatic toxicities. In the present study, we detected concentrations of 2,4-DTBP ranging from <0.001 to 0.057 μg/L (detection limit: 0.001 μg/L) in drinking water source from the Qiantang River in East China in April 2016. The endocrine disrupting effects of 2-TBP, 2,4-DTBP and 2,6-DTBP toward human estrogen receptor α (ERα), androgen receptor (AR) and thyroid hormone receptor β (TRβ) were evaluated using human recombinant two-hybrid yeast bioassay. Their aquatic toxicities were investigated with indicator organisms including Photobacterium phosphoreum, Vibrio fischeri and freshwater green alga Chlamydomonas reinhardtii. 2-TBP and 2,4-DTBP exhibited moderate antagonistic effects toward human ERα and AR in a concentration-dependent manner. 2-TBP significantly inhibited the light emission of P. phosphoreum. 2-TBP, 2,4-DTBP and 2,6-DTBP significantly inhibited the growth of C. reinhardtii and reduced the chlorophyll content. Our results suggest the potential adverse effects of TBPs on human health and aquatic organisms. The data will facilitate further risk assessment of TBPs and related contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The physiological basis of complementary and alternative medicines for polycystic ovary syndrome.

    PubMed

    Raja-Khan, Nazia; Stener-Victorin, Elisabet; Wu, XiaoKe; Legro, Richard S

    2011-07-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder that is characterized by chronic hyperandrogenic anovulation leading to symptoms of hirsutism, acne, irregular menses, and infertility. Multiple metabolic and cardiovascular risk factors are associated with PCOS, including insulin resistance, obesity, type 2 diabetes, hypertension, inflammation, and subclinical atherosclerosis. However, current treatments for PCOS are only moderately effective at controlling symptoms and preventing complications. This article describes how the physiological effects of major complementary and alternative medicine (CAM) treatments could reduce the severity of PCOS and its complications. Acupuncture reduces hyperandrogenism and improves menstrual frequency in PCOS. Acupuncture's clinical effects are mediated via activation of somatic afferent nerves innervating the skin and muscle, which, via modulation of the activity in the somatic and autonomic nervous system, may modulate endocrine and metabolic functions in PCOS. Chinese herbal medicines and dietary supplements may also exert beneficial physiological effects in PCOS, but there is minimal evidence that these CAM treatments are safe and effective. Mindfulness has not been investigated in PCOS, but it has been shown to reduce psychological distress and exert positive effects on the central and autonomic nervous systems, hypothalamic-pituitary-adrenal axis, and immune system, leading to reductions in blood pressure, glucose, and inflammation. In conclusion, CAM treatments may have beneficial endocrine, cardiometabolic, and reproductive effects in PCOS. However, most studies of CAM treatments for PCOS are small, nonrandomized, or uncontrolled. Future well-designed studies are needed to further evaluate the safety, effectiveness, and mechanisms of CAM treatments for PCOS.

  15. Do endocrine disruptors cause hypospadias?

    PubMed Central

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  16. Multiple endocrine neoplasia syndrome type 1: institution, management, and data analysis of a nationwide multicenter patient database.

    PubMed

    Giusti, Francesca; Cianferotti, Luisella; Boaretto, Francesca; Cetani, Filomena; Cioppi, Federica; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Fossi, Caterina; Giudici, Francesco; Gronchi, Giorgio; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Marini, Francesca; Masi, Laura; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Sciortino, Giovanna; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2017-11-01

    The aim of this study was to integrate European epidemiological data on patients with multiple endocrine neoplasia type 1 by creating an Italian registry of this syndrome, including clinical and genetic characteristics and therapeutic management. Clinical, familial and genetic data of patients with multiple endocrine neoplasia type 1, diagnosed, treated, and followed-up for a mean time of 11.3 years, in 14 Italian referral endocrinological centers, were collected, over a 3-year course (2011-2013), to build a national electronic database. The Italian multiple endocrine neoplasia type 1 database includes 475 patients (271 women and 204 men), of whom 383 patients (80.6%) were classified as familial cases (from 136 different pedigrees), and 92 (19.4%) patients were sporadic cases. A MEN1 mutation was identified in 92.6% of familial cases and in 48.9% of sporadic cases. Four hundred thirty-six patients were symptomatic, presenting primary hyperparathyroidism, gastroenteropancreatic neuroendocrine tumors and pituitary tumors in 93, 53, and 41% of cases, respectively. Thirty-nine subjects, belonging to affected pedigrees positive for a MEN1 mutation, were asymptomatic at clinical and biochemical screening. Age at diagnosis of multiple endocrine neoplasia type 1 probands was similar for both familial and simplex cases (mean age 47.2 ± 15.3 years). In familial cases, diagnosis of multiple endocrine neoplasia type 1 in relatives of affected probands was made more than 10 years in advance (mean age at diagnosis 36.5 ± 17.6 years). The analysis of Italian registry of multiple endocrine neoplasia type 1 patients revealed that clinical features of Italian multiple endocrine neoplasia type 1 patients are similar to those of other western countries, and confirmed that the genetic test allowed multiple endocrine neoplasia type 1 diagnosis 10 years earlier than biochemical or clinical diagnosis.

  17. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health. PMID:25110461

  18. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    PubMed

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.

  19. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  20. Toxins in everyday life.

    PubMed

    Chey, Howard; Buchanan, Susan

    2008-12-01

    This article reviews the sources of exposure and health effects of common toxicants encountered by patients in primary care practice. The recognition and management of exposure to indoor and outdoor pollutants, heavy metals, pesticides, electromagnetic fields, and endocrine-disrupting chemicals are listed. A sample environmental history form is included.

  1. The impact of opioids on the endocrine system.

    PubMed

    Katz, Nathaniel; Mazer, Norman A

    2009-02-01

    Opioids have been used for medicinal and analgesic purposes for centuries. However, their negative effects on the endocrine system, which have been known for some times, are barely discussed in modern medicine. Therefore, we conducted a systematic review of the impact of opioids on the endocrine system. A review of the English language literature on preclinical and clinical studies of any type on the influence of opioids on the endocrine system was conducted. Preliminary recommendations for monitoring and managing these problems were provided. Long-term opioid therapy for either addiction or chronic pain often induces hypogonadism owing to central suppression of hypothalamic secretion of gonadotropin-releasing hormone. Symptoms of opioid-induced hypogonadism include loss of libido, infertility, fatigue, depression, anxiety, loss of muscle strength and mass, osteoporosis, and compression fractures in both men and women; impotence in men; and menstrual irregularities and galactorrhea in women. In view of the increased use of opioids for chronic pain, it has become increasingly important to monitor patients taking opioids and manage endocrine complications. Therefore, patients on opioid therapy should be routinely screened for such symptoms and for laboratory abnormalities in sex hormones. Opioid-induced hypogonadism seems to be a common complication of therapeutic or illicit opioid use. Patients on long-term opioid therapy should be prospectively monitored, and in cases of opioid-induced hypogonadism, we recommend nonopioid pain management, opioid rotation, or sex hormone supplementation after careful consideration of the risks and benefits.

  2. A Technical Approach to Expedited Processing of NTPR Radiation Dose Assessments

    DTIC Science & Technology

    2011-10-01

    Pharynx ET Region+ Surrogate Oral Cavity and Pharynx (140-149) None PNLGL Pineal Gland Brain Surrogate Other Endocrine Glands (194) PITTGL PITTGL...including brain); endocrine glands other than thyroid; other and ill-defined sites; lymphoma and multiple myeloma Risk depends on age at exposure...endocrine glands 14 45 Cancers of other and ill-defined sites 16 50 Lymphoma and multiple myeloma 22 61 Leukemia, excluding CLL 1.9 (5 years) 41

  3. The effects of fractional microablative CO2 laser therapy on sexual function in postmenopausal women and women with a history of breast cancer treated with endocrine therapy.

    PubMed

    Gittens, Paul; Mullen, Gregory

    2018-06-08

    To examine the outcomes of sexual function in postmenopausal women and women with a history of breast cancer treated with endocrine therapy who were experiencing the symptoms of GSM for which they were treated with fractional microablative CO 2 laser. From July 2015 to October 2016, a retrospective chart review of women who underwent fractional microablative CO 2 laser therapy (MonaLisa Touch, DEKA) for GSM was conducted. Several validated questionnaires were used to assess changes in symptoms and sexual function including the Female Sexual Function Index (FSFI), the Wong-Baker Faces Scale (WBFS), and the Female Sexual Distress Scale-Revised (FSDSR). Comparisons of mean symptom scores were described at baseline and six weeks after each treatment. There was a statistically significant improvement in every domain of FSFI, WBFS, and FSDS-R when comparing baseline symptom scores to after treatment three symptom scores for all patients. The secondary outcome was to evaluate the differences, if any, in outcomes of sexual function between postmenopausal women and women with a history of breast cancer treated with endocrine therapy. Both groups had statistically significant improvements in many domains studied. Fractional microablative CO 2 laser therapy (MonaLisa Touch, DEKA) is an effective modality in treating the symptoms of GSM in postmenopausal women and women with a history of breast cancer treated with endocrine therapy.

  4. [Effects of magnesium valproate on endocrine system and reproductive functions of female epileptics].

    PubMed

    Xiang, Li; Ding, Jun-Qing; Huang, Xi-Shun

    2011-08-09

    To explore the effects of valproate (VPA) on endocrine system in adolescent and reproductive female patients with epilepsy. A total of 30 adolescent and reproductive female patients with a diagnosis of epilepsy at our hospital during July 2009 to March 2010 were recruited. All cases with magnesium VPA alone were included. The levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol (E2), progesterone (P) and testosterone (T) were detected respectively at pre-therapy and 3, 6 and 12 months post-therapy. And the changes of menstruation and ovaries were recorded. The serum concentration of PRL was lower at 3 and 6 months post-therapy than that at pre-therapy. There was significant difference (P = 0.010 and 0.014). The serum concentration of E2 significantly decreased after a 3-month therapy of valproate (P < 0.05). While comparing the parameter's level between the initial test and at a 3, 6 and 12-month follow-up, the level of P significantly decreased in the later groups than that of the former one while the level of T showed a marked increase. The levels of FSH and LH were not significantly different at pre- and post-therapy. And 6 (20%) of them presented with menstrual dysfunctions and 3 (10%) polycystic ovary. The valproate therapy can not only cause the changes of endocrine system and hormonal levels, but also induce such endocrine dysfunction syndromes as menstrual suspension and polycystic ovary. It eventually causes polycystic ovary syndrome.

  5. Environmental endocrine disruptors: Effects on the human male reproductive system.

    PubMed

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  6. Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer.

    PubMed

    Ribas, Ricardo; Pancholi, Sunil; Rani, Aradhana; Schuster, Eugene; Guest, Stephanie K; Nikitorowicz-Buniak, Joanna; Simigdala, Nikiana; Thornhill, Allan; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dowsett, Mitch; Johnston, Stephen R; Martin, Lesley-Ann

    2018-06-08

    Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER + ) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. A panel of ER + BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1 wt or ESR1 Y537S , modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.

  7. Environmental epigenomics: Current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC's) on human health.

    PubMed

    Tapia-Orozco, Natalia; Santiago-Toledo, Gerardo; Barrón, Valeria; Espinosa-García, Ana María; García-García, José Antonio; García-Arrazola, Roeb

    2017-04-01

    Environmental Epigenomics is a developing field to study the epigenetic effect on human health from exposure to environmental factors. Endocrine disrupting chemicals have been detected primarily in pharmaceutical drugs, personal care products, food additives, and food containers. Exposure to endocrine-disrupting chemicals (EDCs) has been associated with a high incidence and prevalence of many endocrine-related disorders in humans. Nevertheless, further evidence is needed to establish a correlation between exposure to EDC and human disorders. Conventional detection of EDCs is based on chemical structure and concentration sample analysis. However, substantial evidence has emerged, suggesting that cell exposure to EDCs leads to epigenetic changes, independently of its chemical structure with non-monotonic low-dose responses. Consequently, a paradigm shift in toxicology assessment of EDCs is proposed based on a comprehensive review of analytical techniques used to evaluate the epigenetic effects. Fundamental insights reported elsewhere are compared in order to establish DNA methylation analysis as a viable method for assessing endocrine disruptors beyond the conventional study approach of chemical structure and concentration analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Long-term effects of treatment on endocrine function in children with brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffner, P.K.; Cohen, M.E.; Anderson, S.W.

    1983-11-01

    Fourteen children with brain tumors received endocrine evaluations at least one year following completion of cranial irradiation. Treatment consisted of operation (13 patients), craniospinal irradiation (6), whole brain irradiation (5), posterior fossa irradiation (3), and chemotherapy (10). Endocrine evaluation included bone age roentgenography and measurement of growth hormone (using sequential arginine and insulin stimulation), thyroxine, thyroid-stimulating hormone, plasma cortisol, testosterone, prolactin, and urinary follicle-stimulating hormone and luteinizing hormone. Ten of 12 children (83%) had abnormal responses to both tests of growth hormone stimulation. All growth hormone-deficient patients treated prior to puberty and tested at least 2 years following completion ofmore » cranial irradiation had decelerated linear growth. Results of thyroid function tests were abnormal in 4 patients: 2 patients had evidence of primary hypothyroidism, and 2 showed secondary or tertiary hypothyroidism. Two patients had inadequate cortisol responses to insulin hypoglycemia. Urinary follicle-stimulating hormone and luteinizing hormone, serum prolactin, and serum testosterone levels were appropriate for age in all patients.« less

  9. [Perspectives on endocrine disruption].

    PubMed

    Olea, N; Fernández, M F; Araque, P; Olea-Serrano, F

    2002-01-01

    Two decades ago, reports of alterations in the reproductive function of some wild animal species and clear evidence of human and animal exposure to chemical substances with hormonal activity agonist and antagonist generated what is known now as the hypothesis of endocrine disruption. This is an emerging environmental health problem that has challenged some of the paradigms on which the control and regulation of the use of chemical compounds is based. The need to include in routine toxicology tests new research objectives that specifically refer to the development and growth of species and to the homeostasis and functionality of hormonal systems, has served to complicate both the evaluation of new compounds and the re-evaluation of existing ones. The repercussions on regulation and international trade have not taken long to be felt. On both sides of the Atlantic, screening systems for endocrine disrupters have been designed and established, and research programmes have been launched to characterise and quantify adverse effects on human and animal health and to develop preventive measures.

  10. Advancing Research on Endocrine Disrupting Chemicals in Breast Cancer: Expert Panel Recommendations

    PubMed Central

    Teitelbaum, Susan L.; Belpoggi, Fiorella; Reinlib, Les

    2015-01-01

    Breast cancer incidence continues to increase in the US and Europe, a reflection of the growing influence of environment factors that interact with personal genetics. The US Environmental Protection Agency estimates that over 85,000 endocrine disrupting chemicals are among the common daily exposures that could affect the risk of disease. The daunting tasks of identifying, characterizing, and elucidating the mechanisms of endocrine disrupting chemicals in breast cancer need to be addressed to produce a comprehensive model that will facilitate preventive strategies and public policy. An expert panel met to describe and bring attention to needs linking common environmental exposures, critical windows of exposure, and optimal times of assessment in investigating breast cancer risk. The group included investigators with extensive experience in the use of rodent models and in leading population studies and produced a set of recommendations for effective approaches to gaining insights into the environmental origins of breast cancer across the lifespan. PMID:25549947

  11. Modifications to the Current EPA Endocrine Disruptor Screening Program's Tier 1 Female Pubertal Protocol: A Study on the Effects of the Chlorotriazine Simazine

    EPA Science Inventory

    Currently the US EPA is implementing a screening program for environmental endocrine disruptors. One of the in vivo assays in the Tier 1 Screen of the Endocrine Disruptors Screening Program (EDSP) is a female pubertal assay. In this study we examined the chlorotriazine simazine, ...

  12. The international spinal cord injury endocrine and metabolic function basic data set.

    PubMed

    Bauman, W A; Biering-Sørensen, F; Krassioukov, A

    2011-10-01

    To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population. International. The International SCI Endocrine and Metabolic Function Data Set was developed by a working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies, and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Endocrine and Metabolic Function Data Set contains questions on the endocrine and metabolic conditions diagnosed before and after spinal cord lesion. If available, information collected before injury is to be obtained only once, whereas information after injury may be collected at any time. These data include information on diabetes mellitus, lipid disorders, osteoporosis, thyroid disease, adrenal disease, gonadal disease and pituitary disease. The question of gonadal status includes stage of sexual development and that for females also includes menopausal status. Data will be collected for body mass index and for the fasting serum lipid profile. The complete instructions for data collection and the data sheet itself are freely available on the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  13. Variable directionality of gene expression changes across generations does not constitute negative evidence of epigenetic inheritance.

    PubMed

    Sharma, Abhay

    2015-01-01

    Transgenerational epigenetic inheritance in mammals has been controversial due to inherent difficulties in its experimental demonstration. A recent report has, however, opened a new front in the ongoing debate by claiming that endocrine disrupting chemicals, contrary to previous findings, do not cause effects across generations. This claim is based on the observation that gene expression changes induced by these chemicals in the exposed and unexposed generations are mainly in the opposite direction. This analysis shows that the pattern of gene expression reported in the two generations is not expected by chance and is suggestive of transmission across generations. A meta-analysis of diverse data sets related to endocrine disruptor-induced transgenerational gene expression alterations, including the data provided in the said report, further suggests that effects of endocrine disrupting chemicals persist in unexposed generations. Based on the prior evidence of phenotypic variability and gene expression alterations in opposite direction between generations, it is argued here that calling evidence of mismatched directionality in gene expression in experiments testing potential of environmental agents in inducing epigenetic inheritance of phenotypic traits as negative is untenable. This is expected to settle the newly raised doubts over epigenetic inheritance in mammals.

  14. Similar causes of various reproductive disorders in early life.

    PubMed

    Svechnikov, Konstantin; Stukenborg, Jan-Bernd; Savchuck, Iuliia; Söder, Olle

    2014-01-01

    During the past few decades, scientific evidence has been accumulated concerning the possible adverse effects of the exposure to environmental chemicals on the well-being of wildlife and human populations. One large and growing group of such compounds of anthropogenic or natural origin is referred to as endocrine-disrupting chemicals (EDCs), due to their deleterious action on the endocrine system. This concern was first focused on the control of reproductive function particularly in males, but has later been expanded to include all possible endocrine functions. The present review describes the underlying physiology behind the cascade of developmental events that occur during sexual differentiation of males and the specific role of androgen in the masculinization process and proper organogenesis of the external male genitalia. The impact of the genetic background, environmental exposures and lifestyle factors in the etiology of hypospadias, cryptorchidism and testicular cancer are reviewed and the possible role of EDCs in the development of these reproductive disorders is discussed critically. Finally, the possible direct and programming effects of exposures in utero to widely use therapeutic compounds, environmental estrogens and other chemicals on the incidence of reproductive abnormalities and poor semen quality in humans are also highlighted.

  15. The pros and cons of phytoestrogens

    PubMed Central

    Patisaul, Heather B.; Jefferson, Wendy

    2011-01-01

    Phytoestrogens are plant derived compounds found in a wide variety of foods, most notably soy. A litany of health benefits including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms, are frequently attributed to phytoestrogens but many are also considered endocrine disruptors, indicating that they have the potential to cause adverse health effects as well. Consequently, the question of whether or not phytoestrogens are beneficial or harmful to human health remains unresolved. The answer is likely complex and may depend on age, health status, and even the presence or absence of specific gut microflora. Clarity on this issue is needed because global consumption is rapidly increasing. Phytoestrogens are present in numerous dietary supplements and widely marketed as a natural alternative to estrogen replacement therapy. Soy infant formula now constitutes up to a third of the US market, and soy protein is now added to many processed foods. As weak estrogen agonists/antagonists with molecular and cellular properties similar to synthetic endocrine disruptors such as Bisphenol A (BPA), the phytoestrogens provide a useful model to comprehensively investigate the biological impact of endocrine disruptors in general. This review weighs the evidence for and against the purported health benefits and adverse effects of phytoestrogens. PMID:20347861

  16. Endocrine Disruptor Screening Program Tier 1 Assessments

    EPA Pesticide Factsheets

    EPA has completed weight-of-evidence (WoE) assessments under the Endocrine Distruptor Screening Program (EDSP) for 52 pesticides included in the final list of chemicals for Tier 1 screening. See weight of evidence reports and data evaluation records.

  17. Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: A potential role for Liquid Biopsies?

    PubMed

    Reinhardt, Florian; Franken, André; Fehm, Tanja; Neubauer, Hans

    2017-11-01

    The majority of breast cancers are hormone receptor positive due to the expression of the estrogen and/or progesterone receptors. Endocrine therapy is a major treatment option for all disease stages of hormone receptor-positive breast cancer and improves overall survival. However, endocrine therapy is limited by de novo and acquired resistance. Several factors have been proposed for endocrine therapy failures, which include molecular alterations in the estrogen receptor pathway, altered expression of cell-cycle regulators, autophagy, and epithelial-to-mesenchymal transition as a consequence of tumor progression and selection pressure. It is essential to reveal and monitor intra- and intertumoral alterations in breast cancer to allow optimal therapy outcome. Endocrine therapy navigation by molecular profiling of tissue biopsies is the current gold standard but limited in many reasons. "Liquid biopsies" such as circulating-tumor cells and circulating-tumor DNA offer hope to fill that gap in allowing non-invasive serial assessment of biomarkers predicting success of endocrine therapy regimen. In this context, this review will provide an overview on inter- and intratumoral heterogeneity of endocrine resistance mechanisms and discuss the potential role of "liquid biopsies" as navigators to personalize treatment methods and prevent endocrine treatment resistance in breast cancer.

  18. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    PubMed

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  19. SOLAR/VISIBLE LIGHT-ACTIVATED TIO2 PHOTOCATALYST FOR THE DEGRADATION OF CONTAMINANTS OF EMERGING CONCERN IN WATER

    EPA Science Inventory

    Many kinds of water contaminants, including pesticides, pharmaceuticals and personal care products (PPCPs), and naturally occurring toxins (e.g., cyanotoxins) have been found in the environment [1-3]. Due to their adverse effects (toxicity, endocrine disruption, growth problems, ...

  20. BIRTH DEFECTS RISK ASSOCIATED WITH MATERNAL SPORT FISH CONSUMPTION: POTENTIAL EFFECT MODIFICATION BY SEX OF OFFSPRING

    EPA Science Inventory

    Contaminated sport fish consumption may result in exposure to various reproductive and developmental toxicants, including pesticides and other suspected endocrine disruptors. We investigated the relation between maternal sport fish meals and risk of major birth defects among infa...

  1. ADVERSE EFFECTS OF ANTIANDROGENIC PESTICIDE AND TOXIC SUBSTANCES ON REPRODUCTIVE DEVELOPMENT IN THE MALE

    EPA Science Inventory

    Anthropogenic endocrine disrupting chemicals (EDCs) or chemical mixtures alter androgen-response tissues via a variety of mechanisms including mimicking or blocking the action of the natural ligand to the androgen receptor (AR), inhibiting steroid hormone synthesis or by acting a...

  2. The effect of dietary carbohydrates in women with polycystic ovary syndrome: a systematic review.

    PubMed

    Frary, Johanna M C; Bjerre, Kamilla P; Glintborg, Dorte; Ravn, Penille

    2016-03-01

    Weight loss improves ovulation, testosterone levels and insulin resistance in women with polycystic ovarian syndrome (PCOS), but the optimal diet composition is disputed. A diet low in carbohydrates (LCD) may be superior to a standard diet in terms of improving fertility, endocrine/metabolic parameters, weight loss and satiety in women with PCOS. The aim of the present study was to review the literature on the effects of LCD in PCOS, and to summarize the findings into evidence-based guidelines. A literature review based on publications in PubMed and Cochrane was carried out. The outcomes during LCD were compared to other types of diet interventions and exercise. Studies including insulin-sensitizing agents, such as metformin, were excluded. The outcomes were fertility, endocrine/metabolic parameters, weight loss and satiety. The review resulted in fifteen articles. Fertility parameters, endocrine hormones, metabolic outcomes and satiety hormones were not further improved during LCD compared to a standard diet. LCD had a 1-5% significant additional effect on weight loss compared to a standard diet. Energy restriction and weight loss in PCOS improve ovulation rates, conception, hyperandrogenemia, glucose- and insulin levels, insulin resistance and satiety hormones, whereas diet composition is of less importance. A LCD has an additional effect to caloric restriction in terms of weight loss. Conclusions are summarized as evidence-based recommendations.

  3. Scientific and Regulatory Policy Committee (SRPC) Points to Consider*: Histopathology Evaluation of the Pubertal Development and Thyroid Function Assay (OPPTS 890.1450, OPPTS 890.1500) in Rats to Screen for Endocrine Disruptors

    PubMed Central

    Keane, Kevin A.; Parker, George A.; Regan, Karen S.; Picut, Catherine; Dixon, Darlene; Creasy, Dianne; Giri, Dipak; Hukkanen, Renee R.

    2015-01-01

    The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a multitiered approach to determine the potential for environmental chemicals to alter the endocrine system. The Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female and Male Rats (OPPTS 890.1450, 890.1500) are 2 of the 9 EDSP tier 1 test Guidelines, which assess upstream mechanistic pathways along with downstream morphological end points including histological evaluation of the kidneys, thyroid, and select male/female reproductive tissues (ovaries, uterus, testes, and epididymides). These assays are part of a battery of in vivo and in vitro screens used for initial detection of test article endocrine activity. In this Points to Consider article, we describe tissue processing, evaluation, and nomenclature to aid in standardization of assay results across laboratories. Pubertal assay end points addressed include organ weights, estrous cyclicity, clinical pathology, hormonal assays, and histological evaluation. Potential treatment-related findings that may indicate endocrine disruption are reviewed. Additional tissues that may be useful in assessment of endocrine disruption (vagina, mammary glands, and liver) are discussed. This Points to Consider article is intended to provide information for evaluating peripubertal tissues within the context of individual assay end points, the overall pubertal assay, and tier I assays of the EDSP program. PMID:25948506

  4. Endocrine disrupting chemicals in Minnesota lakes - Water-quality and hydrological data from 2008 and 2010

    USGS Publications Warehouse

    Barber, Larry B.; Writer, Jeffrey H.; Keefe, Steffanie K.; Brown, Greg K.; Ferrey, Mark L.; Jahns, Nathan D.; Kiesling, Richard L.; Lundy, James R.; Poganski, Beth H.; Rosenberry, Donald O.; Taylor, Howard E.; Woodruff, Olivia P.; Schoenfuss, Heiko L.

    2012-01-01

    Understanding the sources, fate, and effects of endocrine disrupting chemicals in aquatic ecosystems is important for water-resource management. This study was conducted during 2008 and 2010 to establish a framework for assessing endocrine disrupting chemicals, and involved a statewide survey of their occurrence in 14 Minnesota lakes and a targeted study of different microhabitats on a single lake. The lakes ranged in size from about 0.1 to 100 square kilometers, varied in trophic status from oligotrophic to eutrophic, and spanned a range of land-uses from wetlands and forest to agricultural and urban use. Water and sediment samples were collected from the near-shore littoral environment and analyzed for endocrine disrupting chemicals, including trace elements, acidic organic compounds, neutral organic compounds, and steroidal hormones. In addition, polar organic compound integrative samplers were deployed for 21 days and analyzed for the same organic compounds. One lake was selected for a detailed microhabitat study of multiple near-shore environments. This report compiles the results from the field measurements and laboratory chemical analysis of water, sediment, and polar organic compound integrative sampler samples collected during 2008 and 2010. Most of the organic compounds measured were not detected in any of the water samples, although a few compounds were detected in several of the lakes.

  5. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-02

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. Copyright © 2014. Published by Elsevier Ireland Ltd.

  6. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer

    PubMed Central

    Nyquist, Michael D.; Li, Yingming; Hwang, Tae Hyun; Manlove, Luke S.; Vessella, Robert L.; Silverstein, Kevin A. T.; Voytas, Daniel F.; Dehm, Scott M.

    2013-01-01

    Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC. PMID:24101480

  7. Comprehensive Profiling of the Androgen Receptor in Liquid Biopsies from Castration-resistant Prostate Cancer Reveals Novel Intra-AR Structural Variation and Splice Variant Expression Patterns.

    PubMed

    De Laere, Bram; van Dam, Pieter-Jan; Whitington, Tom; Mayrhofer, Markus; Diaz, Emanuela Henao; Van den Eynden, Gert; Vandebroek, Jean; Del-Favero, Jurgen; Van Laere, Steven; Dirix, Luc; Grönberg, Henrik; Lindberg, Johan

    2017-08-01

    Expression of the androgen receptor splice variant 7 (AR-V7) is associated with poor response to second-line endocrine therapy in castration-resistant prostate cancer (CRPC). However, a large fraction of nonresponding patients are AR-V7-negative. To investigate if a comprehensive liquid biopsy-based AR profile may improve patient stratification in the context of second-line endocrine therapy. Peripheral blood was collected from patients with CRPC (n=30) before initiation of a new line of systemic therapy. We performed profiling of circulating tumour DNA via low-pass whole-genome sequencing and targeted sequencing of the entire AR gene, including introns. Targeted RNA sequencing was performed on enriched circulating tumour cell fractions to assess the expression levels of seven AR splice variants (ARVs). Somatic AR variations, including copy-number alterations, structural variations, and point mutations, were combined with ARV expression patterns and correlated to clinicopathologic parameters. Collectively, any AR perturbation, including ARV, was detected in 25/30 patients. Surprisingly, intra-AR structural variation was present in 15/30 patients, of whom 14 expressed ARVs. The majority of ARV-positive patients expressed multiple ARVs, with AR-V3 the most abundantly expressed. The presence of any ARV was associated with progression-free survival after second-line endocrine treatment (hazard ratio 4.53, 95% confidence interval 1.424-14.41; p=0.0105). Six out of 17 poor responders were AR-V7-negative, but four carried other AR perturbations. Comprehensive AR profiling, which is feasible using liquid biopsies, is necessary to increase our understanding of the mechanisms underpinning resistance to endocrine treatment. Alterations in the androgen receptor are associated with endocrine treatment outcomes. This study demonstrates that it is possible to identify different types of alterations via simple blood draws. Follow-up studies are needed to determine the effect of such alterations on hormonal therapy. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. Pesticides as endocrine-disrupting chemicals

    EPA Science Inventory

    Pesticides are designed to be bioactive against certain targets but can cause toxicity to nontarget species by a variety of other modes of action including disturbance of endocrine function. As such, pesticides have been found to bind and alter the function of hormone receptors, ...

  9. 76 FR 4113 - Independent Scientific Peer Review Panel Meeting on an In Vitro

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... Vitro Estrogen Receptor Transcriptional Activation Test Method for Endocrine Disruptor Chemical... Vitro Estrogen Receptor Transcriptional Activation Test Method for Endocrine Disruptor Chemical... the information included in the BRD supports ICCVAM's draft test method recommendations. NICEATM...

  10. EFFECT OF ESTROGENIC (O,P'-DDT; OCTOPHENOL AND ANTI-ANDROGENIC (P'P'-DDE) CHEMICALS ON INDICATORS OF ENDOCRINE STATUS IN JUVENILE MALE SUMMER FLOUNDER (PARALICHTHYS DENTATUS)

    EPA Science Inventory

    Laboratory experiments were conducted with male summer flounder to assess the value of selected measures of endocrine status in fish as indicators of exposure to endocrine-disrupting contaminants. Efficts of 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane
    (o,p'-D...

  11. Tumour suppressor menin is essential for development of the pancreatic endocrine cells.

    PubMed

    Fontanière, Sandra; Duvillié, Bertrand; Scharfmann, Raphaël; Carreira, Christine; Wang, Zhao-Qi; Zhang, Chang-Xian

    2008-11-01

    Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene predispose patients to MEN1 that affects mainly endocrine tissues, suggesting important physiological functions of the gene in adult endocrine cells. Homozygous disruption of Men1 in mice causes embryonic lethality, whereas the eventual involvement of the gene in embryonic development of the endocrine cells remains unknown. Here, we show that homozygous Men1 knockout mice demonstrate a reduced number of glucagon-positive cells in the E12.5 pancreatic bud associated with apoptosis, whereas the exocrine pancreas development in these mice is not affected. Our data suggest that menin is involved in the survival of the early pancreatic endocrine cells during the first developmental transition. Furthermore, chimerism assay revealed that menin has an autonomous and specific effect on the development of islet cells. In addition, using pancreatic bud culture mimicking the differentiation of alpha- and beta-cells during the second transition, we show that loss of menin leads to the failure of endocrine cell development, altered pancreatic structure and a markedly decreased number of cells expressing neurogenin 3, indicating that menin is also required at this stage of the endocrine pancreas development. Taken together, our results suggest that menin plays an indispensable role in the development of the pancreatic endocrine cells.

  12. Biomarker Benchmarks: Reproductive and Endocrine Biomarkers in Largemouth Bass and Common Carp from United States Waters

    USGS Publications Warehouse

    Goodbred, Steven L.; Smith, Stephen B.; Greene, Patricia S.; Rauschenberger, Richard H.; Bartish, Timothy M.

    2007-01-01

    The U.S. Geological Survey (USGS) has developed a national database and report on endocrine and reproductive condition in two species of fish collected in U.S. streams and rivers. This information provides scientists with a national basis for comparing results of endocrine measurements in fish from individual sites throughout the country, so that scientists can better ascertain normal levels of biomarkers. The database includes information on several measures of reproductive and endocrine condition for common carp and largemouth bass. Data summaries are provided by reproductive season and geographic region. A national-scale reconnaissance investigation was initiated in 1994 by the USGS that utilized a suite of biological assays (biomarkers) as indicators of reproductive health, and potentially, endocrine disruption in two widely distributed species of teleost (bony) fish, largemouth bass (Micropterus salmoides) and common carp (Cyrinus carpio). The suite of assays included plasma sex-steroid hormones, stage of gonadal development, and plasma vitellogenin, an egg protein that indicates exposure to estrogenic compounds when found in male fish. More than 2,200 common carp and 650 largemouth bass were collected at 119 rivers and streams (fig. 1).

  13. Cosmetics as endocrine disruptors: are they a health risk?

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Hens, Luc; Sasco, Annie J

    2015-12-01

    Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title "cosmetics", including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to "corporate social responsibility".

  14. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats

    PubMed Central

    Zhang, Zhaobin; Shi, Jiachen; Jiao, Zhihao; Shao, Bing

    2016-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that is frequently used in pharmaceuticals and personal care products. Reports have shown that TCS is a potential endocrine disruptor; however, the potential effects of TCS on placental endocrine function are unclear. The aim of this study was to investigate the endocrine disrupting effects of TCS on the placenta in pregnant rats. Pregnant rats from gestational day (GD) 6 to GD 20 were treated with 0, 30, 100, 300 and 600 mg/kg/d TCS followed by analysis of various biochemical parameters. Of the seven tissues examined, the greatest bioaccumulation of TCS was observed in the placenta. Reduction of gravid uterine weight and the occurrence of abortion were observed in the 600 mg/kg/d TCS-exposed group. Moreover, hormone detection demonstrated that the serum levels of progesterone (P), estradiol (E2), testosterone (T), human chorionic gonadotropin (hCG) and prolactin (PRL) were decreased in groups exposed to higher doses of TCS. Real-time quantitative reverse transcriptase-polymerase chain reaction (Q-RT-PCR) analysis revealed a significant increase in mRNA levels for placental steroid metabolism enzymes, including UDP-glucuronosyltransferase 1A1 (UGT1A1), estrogen sulfotransferase 1E1 (SULT1E1), steroid 5α-reductase 1 (SRD5A1) and steroid 5α-reductase 2 (SRD5A2). Furthermore, the transcriptional expression levels of progesterone receptor (PR), estrogen receptor (ERα) and androgen receptor (AR) were up-regulated. Taken together, these data demonstrated that the placenta was a target tissue of TCS and that TCS induced inhibition of circulating steroid hormone production might be related to the altered expression of hormone metabolism enzyme genes in the placenta. This hormone disruption might subsequently affect fetal development and growth. PMID:27149376

  15. Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease.

    PubMed

    Anway, Matthew D; Skinner, Michael K

    2008-04-01

    The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1-F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease.

  16. Transgenerational Effects of the Endocrine Disruptor Vinclozolin on the Prostate Transcriptome and Adult Onset Disease

    PubMed Central

    Anway, Matthew D.; Skinner, Michael K.

    2018-01-01

    PURPOSE The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. METHODS Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. RESULTS Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1–F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). CONCLUSIONS The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease. PMID:18220299

  17. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior.

    PubMed

    Garland, Theodore; Zhao, Meng; Saltzman, Wendy

    2016-08-01

    Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Hormonally active agents in the environment: a state-of-the-art review.

    PubMed

    Anwer, Faizan; Chaurasia, Savita; Khan, Abid Ali

    2016-12-01

    After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.

  19. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    PubMed

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland.

  20. INDIVIDUAL EFFECTS OF ESTROGENS ON A MARINE FISH, CUNNER (TAUTOGOLABRUS ADSPERSUS), EXTRAPOLATED TO POPULATION LEVEL

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) in the environment may alter the population dynamics of wildlife by affecting reproductive output. This study describes a matrix modeling approach to link laboratory studies on endocrine disruption with potential ecological effects. The exper...

  1. AROMATASE ACTIVITY IN THE OVARY OF MOSQUITOFISH GAMBUSIA HOLBROOKI, COLLECTED FROM THE FENHOLLOWAY AND ECONFINA RIVERS, FLORIDA (

    EPA Science Inventory

    Scientists are increasingly aware of the adverse effects of environmental contaminants, including their ability to alter the normal development and reproduction of wildlife species by modifying the endocrine system. Female mosquitofish living downstream of a paper mill plant loca...

  2. An interlaboratory study measuring sex steroids with RIAs and/or ELISAs: Are we comparing apples to oranges?

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs) are exogenous substances released into the environment that can lead to adverse reproductive effects in fish by a number of mechanisms including altering circulating levels of estradiol (E2), testosterone (T) and 11-ketotestosterone (11KT). ...

  3. Interpreting in vivo Effects of Thyroid Synthesis Inhibitors through the Lens of in vitro and ex vivo Assays

    EPA Science Inventory

    The US EPA has been charged to evaluate chemicals for their ability to disrupt endocrine pathways including estrogen, androgen, and thyroid hormone. Amphibian metamorphosis, which is regulated by thyroid hormone, is an ideal model system for investigating disruption of the thyroi...

  4. WASTEWATER TREATMENT AND ITS MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Research has shown that wastewater treatment (WWT) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WWT can include centralized wastewater treatment plants (WWTPs) or on-site WWT technologies. EDCs found in WWT effluents (aqueous and biosol...

  5. Hormonal causes of recurrent pregnancy loss (RPL).

    PubMed

    Pluchino, Nicola; Drakopoulos, Panagiotis; Wenger, Jean Marie; Petignat, Patrick; Streuli, Isabelle; Genazzani, Andrea Riccardo

    2014-01-01

    Endocrine disorders play a major role in approximately 8% to 12% of recurrent pregnancy loss (RPL). Indeed, the local hormonal milieu is crucial in both embryo attachment and early pregnancy. Endocrine abnormalities, including thyroid disorders, luteal phase defects, polycystic ovary syndrome, hyperprolactinaemia and diabetes have to be evaluated in any case of RPL. Moreover, elevated androgen levels and some endocrinological aspects of endometriosis are also factors contributing to RPL. In the present article, we review the significance of endocrine disease on RPL.

  6. A short history of pediatric endocrinology in North America.

    PubMed

    Fisher, Delbert A

    2004-04-01

    Pediatric endocrinology evolved as a subspecialty from the era of biochemical and metabolic clinical investigation led by John Howland, Edwards Park, and James Gamble at Johns Hopkins; Allan Butler at Boston University and Harvard University; Daniel Darrow at Yale University; and Irving McQuarrie at the University of Rochester and the University of Minnesota during the early 20th century. The father of the new subspecialty was Lawson Wilkins, a private pediatric practitioner in Baltimore, Maryland, who was invited by Dr. Edwards Park to establish an endocrine clinic at the Harriet Lane Home at Johns Hopkins in 1935. Dr. Wilkins managed his practice and the clinic until 1946, when, at the age of 52, he accepted a full-time position at the University. Dr. Nathan Talbot was invited to develop a pediatric endocrine clinic at Massachusetts General Hospital by Allan Butler in 1942. These units and their associated subspecialty training programs during the 1950s and 1960s provided the large majority of the second-generation pediatric endocrinologists who went on to establish endocrine subspecialty programs in university medical centers in North America as well as Europe and South America. Diabetes as a clinical pediatric discipline evolved in parallel from the early clinics of Elliott Joslin and Priscilla White in Boston, M.C. Hardin and Robert Jackson at the University of Iowa, George Guest at the University of Cincinnati Children's Hospital, and Alex Hartman at the St. Louis Children's Hospital. The Lawson Wilkins Pediatric Endocrine Society was founded in 1971, and the Council on Diabetes and Youth was established within the American Diabetes Association in 1980. Medical and economic factors led to increasing integration of pediatric diabetes and general endocrine care and training, and diabetes care now is a major activity within the subspecialty of pediatric endocrinology. The growth of pediatric endocrinology in North America has paralleled the growth of academic medicine during the past half-century. In 2002, there were 72 training programs in North America: 65 in the United States and seven in Canada. The endocrinology sub-board of the American Board of Pediatrics was established in 1978 to certify training and competence in endocrinology, including diabetes. By 2002, the board had certified 927 pediatric endocrinologists. Pediatric endocrine subspecialists during the past half-century have contributed major advances in our understanding of the ontogeny of endocrine systems and the diagnosis and treatment of fetal-perinatal endocrine disorders; newborn screening for endocrine and metabolic disorders; the physiology and therapies for disorders of sexual differentiation and pubertal maturation; the development of anthropometric standards for childhood growth and development; the characterization and physiology of hormone systems, including receptors and hormone actions; the molecular genetics of a number of congenital endocrine disorders and heritable endocrine diseases; development of pediatric endocrine diagnostics and reference standards; the pathophysiology and management of autoimmune endocrine disease; and development of a growing armamentarium of therapeutic agents for treatment of endocrine and metabolic diseases.

  7. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    PubMed

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  8. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses.

    PubMed

    Leusch, Frederic D L; Khan, Stuart J; Gagnon, M Monique; Quayle, Pam; Trinh, Trang; Coleman, Heather; Rawson, Christopher; Chapman, Heather F; Blair, Palenque; Nice, Helen; Reitsema, Tarren

    2014-03-01

    We investigated water quality at an advanced water reclamation plant and three conventional wastewater treatment plants using an "ecotoxicity toolbox" consisting of three complementary analyses (chemical analysis, in vitro bioanalysis and in situ biological monitoring), with a focus on endocrine disruption. The in vitro bioassays were chosen to provide an appropriately wide coverage of biological effects relevant to managed aquifer recharge and environmental discharge of treated wastewater, and included bioassays for bacterial toxicity (Microtox), genotoxicity (umuC), photosynthesis inhibition (Max-I-PAM) and endocrine effects (E-SCREEN and AR-CALUX). Chemical analysis of hormones and pesticides using LCMSMS was performed in parallel to correlate standard analytical methods with the in vitro assessment. For two plants with surface water discharge into open drains, further field work was carried out to examine in situ effects using mosquitofish (Gambusia holbrooki) as a bioindicator species for possible endocrine effects. The results show considerable cytotoxicity, phytotoxicity, estrogenicity and androgenicity in raw sewage, all of which were significantly reduced by conventional wastewater treatment. No biological response was detected to RO water, suggesting that reverse osmosis is a significant barrier to biologically active compounds. Chemical analysis and in situ monitoring revealed trends consistent with the in vitro results: chemical analysis confirmed the removal trends observed by the bioanalytical tools, and in situ sampling did not reveal any evidence of endocrine disruption specifically due to discharge of treated wastewater (although other sources may be present). Biomarkers of exposure (in vitro) and effect (in vivo or in situ) are complementary and together provide information with a high level of ecological relevance. This study illustrates the utility of combining multiple lines of evidence in the assessment of water quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Defeminization in Daphnia magna: A screening test for endocrine-disruptors in the environment?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerritsen, A.A.M.; Hoeven, N. van der

    1995-12-31

    Long term consequences associated with exposure to endocrine disrupting chemicals in the environment have been found in mammals, birds, fish, turtles and gastropods. Despite their important role, however, hardly any attention has been paid to the long term effects of such chemicals on crustaceans. Experiments originally carried out to quantify the ability of Daphnia magna to recover from short term exposure to para-tert-pentylphenol, revealed the endocrine disrupting properties of the test compound. During one of the experiments animals were divided into six (8 hour) age groups between 0 and 48 hours and exposed to 6 mg of para-tert-pentylphenol 1{sup {minus}1}more » for a period of 8 hours. Within the age groups of 16 to 24 and of 24 to 32 hours old 51 and 70% of the females respectively lag-fed behind in growth and showed reduced fertility. In addition to this, about 37 and 16% of these females showed malformations suggesting defeminization. The males showed no delay in growth and had no malformations. Furthermore, in terms of survival the males were shown to be less sensitive towards the test compound than the females. The type of effects in females and the sharp distinction between the effects on males and females are indicative for the estrogenicity of para-tert-pentylphenol. The estrogenic effects of a number alkylphenols, including para-tert-pentylphenol, were demonstrated in rats and confirmed in tests with the human breast cell MCF7. To the best of knowledge estrogenicity has not been recorded before for any chemical for any crustacean. The observation of estrogenic effects in D. magna opens up the way to a standardized test for screening chemicals with potentially endocrine disrupting properties. Such a test may be a valuable tool in environmental risk assessment and conservation of environmental and human health.« less

  10. Multiple endocrine diseases in cats: 15 cases (1997-2008).

    PubMed

    Blois, Shauna L; Dickie, Erica L; Kruth, Stephen A; Allen, Dana G

    2010-08-01

    The objective of this retrospective study was to characterize a population of cats from a tertiary care center diagnosed with multiple endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Medical records of 15 cats diagnosed with more than one endocrine disorder were reviewed. The majority of cats were domestic shorthairs, and the mean age at the time of diagnosis of the first disorder was 10.3 years. The most common combination of disorders was diabetes mellitus and hyperthyroidism. Two cats had concurrent diabetes mellitus and hyperadrenocorticism, one cat had concurrent central diabetes insipidus and diabetes mellitus. A mean of 25.7 months elapsed between diagnoses of the first and second endocrine disorder, but this was variable. This study suggests the occurrence of multiple endocrine disorders is uncommon in cats. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  11. [Hormone therapies in pregnancy].

    PubMed

    Tommaselli, G A; Pellicano, M; Guida, M; Palomba, S; Savarese, F; Nola, B; Ferrara, C; Lapadula, C; Nappi, C

    2002-04-01

    Maternal endocrine disorders can have detrimental effects on the fetus and the pregnancy can affect the course of a pre-exisiting endocrinopathy or induce the onset of one of these disorders. Therapies for endocrine disorders are not always safe to administer during pregnancy. Before administering any therapy to the mother, the effects on the fetus, the degree of placental trespassing as well as the potential damaging effects must be assessed. An accurate evaluation of the risks/benefits of any drug to be used on the mother is needed, assessing above all a potential theratogenic effect. In this review, the incidence of the main endocrine disorders, their evolution during pregnancy, their effects on mothers and fetuses and new acquisition on the treatment during pregnancy are discussed.

  12. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  13. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences.

    PubMed

    Windsor, Fredric M; Ormerod, Steve J; Tyler, Charles R

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub-lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual-based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co-operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field-based assessments at population-, community- and food-web levels. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  14. Endocrine considerations in the red-cell-mass and plasma volume changes of the Skylab 2 and 3 crews

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Driscoll, T.

    1975-01-01

    The effect of unknown endocrine changes on blood volume of crewmembers was investigated. The results are presented in tabular form. The fact that some of the changes were in the wrong direction suggests that changes in endocrine function were not the primary cause of the decreases in the plasma volume and red cell mass.

  15. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS WORKSHOP NEWMEDIA CD

    EPA Science Inventory

    This product is a CD-ROM version of the workshop, Effective Risk Management of Endocrine Disrupting Chemicals, held in January 2002, in Cincinnati, Ohio. The goal of this workshop was to introduce the science and engineering behind managing the potential risk of suspected endocri...

  16. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations.

    PubMed

    Matthiessen, Peter; Wheeler, James R; Weltje, Lennart

    2018-03-01

    This review critically examines the data on claimed endocrine-mediated adverse effects of chemicals on wildlife populations. It focuses on the effects of current-use chemicals, and compares their apparent scale and severity with those of legacy chemicals which have been withdrawn from sale or use, although they may still be present in the environment. The review concludes that the effects on wildlife of many legacy chemicals with endocrine activity are generally greater than those caused by current-use chemicals, with the exception of ethinylestradiol and other estrogens found in sewage effluents, which are causing widespread effects on fish populations. It is considered that current chemical testing regimes and risk assessment procedures, at least those to which pesticides and biocides are subjected, are in part responsible for this improvement. This is noteworthy as most ecotoxicological testing for regulatory purposes is currently focused on characterizing apical adverse effect endpoints rather than identifying the mechanism(s) responsible for any observed effects. Furthermore, a suite of internationally standardized ecotoxicity tests sensitive for potential endocrine-mediated effects is now in place, or under development, which should ensure further characterization of substances with these properties so that they can be adequately regulated.

  17. Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise?

    PubMed

    Tamura, Yoshiaki; Watanabe, Keiichi; Kantani, Tomomi; Hayashi, Junichi; Ishida, Nobuhiko; Kaneki, Masao

    2011-01-01

    The beneficial effects of endurance exercise include insulin-sensitization and reduction of fat mass. Limited knowledge is available about the mechanisms by which endurance exercise exerts the salutary effects. Myokines, cytokines secreted by skeletal muscle, have been recognized as a potential mediator. Recently, a role of skeletal muscle-derived interleukin-15 (IL-15) in improvement of fat-lean body mass composition and insulin sensitivity has been proposed. Yet, previous studies have reported that endurance training does not increase production or secretion of IL-15 in skeletal muscle. Here, we show that in opposition to previous findings, 30-min treadmill running at 70% of age-predicted maximum heart rate resulted in a significant increase in circulating IL-15 level in untrained healthy young men. These findings suggest that IL-15 might play a role in the systemic anti-obesogenic and insulin-sensitizing effects of endurance exercise, not only as a paracrine and autocrine but also as an endocrine factor.

  18. Simultaneous effects of endocrine disruptor bisphenol A and flavonoid fisetin on progesterone production by granulosa cells.

    PubMed

    Bujnakova Mlynarcikova, Alzbeta; Scsukova, Sona

    2018-04-01

    In the present study, we aimed to examine effects of different concentrations of the endocrine disruptor Bisphenol A (BPA; 1 nM, 1 μM, 100 μM) and the flavonoid fisetin (1, 10, 25, 50 μM), individually and in combinations, on steroidogenic function of porcine ovarian granulosa cells (GCs) represented by progesterone production. We confirmed that BPA inhibited progesterone production by GCs at the highest concentration. Fisetin reduced gonadotropin-stimulated progesterone synthesis dose-dependently, and in this manner, fisetin impaired progesterone production when added to BPA-treated GCs. The mechanisms of the inhibitory effects of the combinations included a significant down-regulation of the key steroidogenesis-related genes (STAR, CYP11A1, HSD3B). Our findings suggest for the first time that fisetin might interfere with ovarian steroidogenesis, and might not have beneficial but rather aggravating effects in terms of modulating progesterone synthesis altered by high concentrations of BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Use and Effectiveness of Adjuvant Endocrine Therapy for Hormone Receptor-Positive Breast Cancer in Men.

    PubMed

    Venigalla, Sriram; Carmona, Ruben; Guttmann, David M; Jain, Varsha; Freedman, Gary M; Clark, Amy S; Shabason, Jacob E

    2018-05-24

    Although adjuvant endocrine therapy confers a survival benefit among females with hormone receptor (HR)-positive breast cancer, the effectiveness of this treatment among males with HR-positive breast cancer has not been rigorously investigated. To investigate trends, patterns of use, and effectiveness of adjuvant endocrine therapy among men with HR-positive breast cancer. This retrospective cohort study identified patients in the National Cancer Database with breast cancer who had received treatment from 2004 through 2014. Inclusion criteria for the primary study cohort were males at least 18 years old with nonmetastatic HR-positive invasive breast cancer who underwent surgery with or without adjuvant endocrine therapy. A cohort of female patients was also identified using the same inclusion criteria for comparative analyses by sex. Data analysis was conducted from October 1, 2017, to December 15, 2017. Receipt of adjuvant endocrine therapy. Patterns of adjuvant endocrine therapy use were assessed using multivariable logistic regression analyses. Association between adjuvant endocrine therapy use and overall survival was assessed using propensity score-weighted multivariable Cox regression models. The primary study cohort comprised 10 173 men with HR-positive breast cancer (mean [interquartile range] age, 66 [57-75] years). The comparative cohort comprised 961 676 women with HR-positive breast cancer (mean [interquartile range] age, 62 [52-72] years). The median follow-up for the male cohort was 49.6 months (range, 0.1-142.5 months). Men presented more frequently than women with HR-positive disease (94.0% vs 84.3%, P < .001). However, eligible men were less likely than women to receive adjuvant endocrine therapy (67.3% vs 79.0%; OR, 0.61; 95% CI, 0.58-0.63; P < .001). Treatment at academic facilities (odds ratio, 1.13; 95% CI, 1.02-1.25; P = .02) and receipt of adjuvant radiotherapy (odds ratio, 2.83; 95% CI, 2.55-3.15; P < .001) or chemotherapy (odds ratio, 1.20; 95% CI, 1.07-1.34; P < .001) were statistically significantly associated with adjuvant endocrine therapy use in men. A propensity score-weighted analysis indicated that relative to no use, adjuvant endocrine therapy use in men was associated with improved overall survival (hazard ratio, 0.70; 95% CI, 0.63-0.77; P < .001). There is a sex disparate underuse of adjuvant endocrine therapy among men with HR-positive breast cancer despite the use of this treatment being associated with improved overall survival. Further research and interventions may be warranted to bridge gaps in care in this population.

  20. Evaluating endocrine endpoints relative to reproductive success in Japanese quail exposed to estrogenic chemicals [poster

    USGS Publications Warehouse

    Henry, P.F.P.; Russek-Cohen, E.; Casey, C.S.; Abdelnabi, M.A.; Ottinger, M.A.

    2000-01-01

    The standard US EPA guidelines for avian reproductive testing may not be sufficiently sensitive to detect effects of sublethal and chronic exposure to endocrine disrupting toxins. There is a need to evaluate endocrine endpoints as potential markers for contaminant effects, and to determine their effectiveness and sensitivity when applied to wildlife. To this end, a three generational test was conducted using the Japanese quail (Coturnix japonica) and a proven estrogenic PCB. Birds were exposed during embryonic development via maternal deposition and/or direct egg injection at day 4. Standard measures of reproductive success and productivity used in toxicological studies, as well as multiple measures of physiological and behavioral responses used in endocrine studies were collected. Long term effects on growth and apparent development were similar between treated and control offspring. Fertility of treated eggs decreased from 75%+ 4.4 (x + se) for P1, to 59% + 12.5 for F1 and 54% + 14.2 for F2. All paired control birds mated to produce viable eggs, whereas 27 % of the F1 and 41 % of the F2 treated pairs failed to produce at least 1 viable egg. Although some decreases in productivity can be related to direct toxic exposure, the response from one generation to the next was not linear with treatment, indicating a potential effect from behavioral or other endocrine alterations.

  1. Statistical analysis of Skylab 3. [endocrine/metabolic studies of astronauts

    NASA Technical Reports Server (NTRS)

    Johnston, D. A.

    1974-01-01

    The results of endocrine/metabolic studies of astronauts on Skylab 3 are reported. One-way analysis of variance, contrasts, two-way unbalanced analysis of variance, and analysis of periodic changes in flight are included. Results for blood tests, and urine tests are presented.

  2. MANAGING ENDOCRINE DISRUPTING CHEMICALS USING EXISTING AND INNOVATIVE WASTEWATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Research has shown that wastewater (WW) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WW treatment (WWT) may include centralized wastewater treatment plants (WWTPs) or smaller on-site WWT technologies. EDCs found in WWT effluents (aqueou...

  3. Endocrine Disorders in Childhood: A Selective Survey of Intellectual and Educational Sequelae.

    ERIC Educational Resources Information Center

    Sandberg, David E.; Barrick, Christopher

    1995-01-01

    Examines intellectual and educational sequelae of selected endocrine systems and the psychosocial impact of their medical conditions. Many conditions are named including: Growth Hormone Deficiency, Turner Syndrome, Precocious Puberty, Klinefelters Syndrome, Congenital Hypothyroidism, and Insulin-Dependent Diabetes Mellitus. Gives psychoeducational…

  4. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer.

    PubMed

    Abdel-Hafiz, Hany A

    2017-07-06

    Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.

  5. Endocrine mediated phenotypic plasticity: condition-dependent effects of juvenile hormone on dominance and fertility of wasp queens.

    PubMed

    Tibbetts, Elizabeth A; Izzo, Amanda S

    2009-11-01

    There has been increasing interest in the mechanisms that mediate behavioral and physiological plasticity across individuals with similar genotypes. Some of the most dramatic plasticity is found within and between social insect castes. For example, Polistes wasp queens can nest alone, dominate a group of cooperative queens, or act as worker-like subordinates who rarely reproduce. Previous work suggests that condition-dependent endocrine responses may play a role in plasticity between castes in the hymenoptera. Here, we test whether condition-dependent endocrine responses influence plasticity within castes in the wasp Polistes dominulus. We experimentally manipulate juvenile hormone (JH) titers in nest-founding queens and assess whether JH mediates variation in behavior and physiology. JH generally increased dominance and fertility of queens, but JH's effects were not uniform across individuals. JH had a stronger effect on the dominance and fertility of large individuals and individuals with facial patterns advertising high quality than on the dominance and fertility of small individuals and those advertising low quality. These results demonstrate that JH has condition-dependent effects. As such, they clarify how JH can mediate different behaviors in well nourished queens and poorly nourished workers. Many Polistes queens nest cooperatively with other queens, so condition-dependent hormonal responses provide a mechanism for queens to adaptively allocate energy based on their probability of successfully becoming the dominant queen. Research on the endocrine basis of plasticity often focuses on variation in endocrine titers alone. However, differential endocrine responses are likely to be a widespread mechanism mediating behavioral and physiological plasticity.

  6. A case report of mixed acinar-endocrine carcinoma of the pancreas treated with S-1 chemotherapy: Does it work or induce endocrine differentiation?

    PubMed

    Yokode, Masataka; Itai, Ryosuke; Yamashita, Yukimasa; Zen, Yoh

    2017-11-01

    Acinar cell carcinomas (ACCs) and mixed acinar-endocrine carcinomas (MAECs) of the pancreas are rare, accounting for only 1% of pancreatic tumors. Although both typically present at an advanced stage, chemotherapeutic regimes have not yet been standardized. A 65-year-old man presented with a large mass in the pancreatic tail with multiple liver metastases. He was initially treated with gemcitabine for suspected ductal carcinoma of the pancreas, but no response was observed. S-1, administered as second-line chemotherapy, showed an approximately 38% reduction in the size of the primary tumor and metastatic deposits with therapeutic effects being maintained for 12 months. When the tumor progressed again, he underwent a percutaneous liver biopsy, which led to the diagnosis of MAEC. Combination therapy with cisplatin and etoposide targeting the endocrine component was administered, and this was based on the endocrine component potentially being less sensitive to S-1 than the ACC element. However, therapy was stopped due to the development of neutropenia, and the patient is currently receiving best supportive care. Given the previous studies suggested that S-1 is more effective for ACCs than gemcitabine, MAECs may also respond to S-1 chemotherapy, similar to ACCs. Another potential interpretation is that S-1 was effective when the condition was ACC, and eventually showed decreased effectiveness when the condition shifted to MAEC. Future studies are needed to conclude whether S-1 chemotherapy truly works against MAECs or induces endocrine differentiation in ACCs as a part of the drug-resistance process.

  7. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study.

    PubMed

    Paul Friedman, Katie; Papineni, Sabitha; Marty, M Sue; Yi, Kun Don; Goetz, Amber K; Rasoulpour, Reza J; Kwiatkowski, Pat; Wolf, Douglas C; Blacker, Ann M; Peffer, Richard C

    2016-10-01

    The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.

  8. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study

    PubMed Central

    Paul Friedman, Katie; Papineni, Sabitha; Marty, M. Sue; Yi, Kun Don; Goetz, Amber K.; Rasoulpour, Reza J.; Kwiatkowski, Pat; Wolf, Douglas C.; Blacker, Ann M.; Peffer, Richard C.

    2016-01-01

    Abstract The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3–5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products’ registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information. PMID:27347635

  9. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders

    PubMed Central

    Le Magueresse-Battistoni, Brigitte; Labaronne, Emmanuel; Vidal, Hubert; Naville, Danielle

    2017-01-01

    Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules. PMID:28588754

  10. Developmental alterations and endocrine-disruptive responses in farmed Nile crocodiles (Crocodylus niloticus) exposed to contaminants from the Crocodile River, South Africa.

    PubMed

    Arukwe, Augustine; Myburgh, Jan; Langberg, Håkon A; Adeogun, Aina O; Braa, Idunn Godal; Moeder, Monika; Schlenk, Daniel; Crago, Jordan Paul; Regoli, Francesco; Botha, Christo

    2016-04-01

    In the present study, the developmental (including fertility) and endocrine-disruptive effects in relation to chemical burden in male and female Nile crocodiles (Crocodylus niloticus), from a commercial crocodile farm in the Brits district, South Africa, exposed to various anthropogenic aquatic contaminants from the natural environment was investigated. Hepatic transcript levels for vitellogenin (Vtg), zona pellucida (ZP) and ERα (also in gonads) were analyzed using real-time PCR. Plasma estradiol-17β (E2), testosterone (T) and 11-ketotestosterone (11-KT) were analyzed using enzyme immunoassay. Gonadal aromatase and hepatic testosterone metabolism (6β-hydroxylase (6β-OHase)) were analyzed using biochemical methods. Overall, there is high and abnormal number (%) of infertile and banded eggs during the studied reproductive seasons, showing up to 57 and 34% of infertile eggs in the 2009/2010 and 2013/2014 seasons, respectively. In addition, the percentage of banded eggs ranged between 10 and 19% during the period of 2009-2014 seasons. While hepatic ERα, Vtg, ZP mRNA and testosterone 6β-OHase, were equally expressed in female and male crocodiles, gonadal ERα mRNA and aromatase activity were significantly higher in females compared to male crocodiles. On the other hand, plasma T and 11-KT levels were significantly higher in males, compared to female crocodiles. Principal component analysis (PCA) produced significant grouping that revealed correlative relationships between reproductive/endocrine-disruptive variables and liver contaminant burden, that further relates to measured contaminants in the natural environment. The overall results suggest that these captive pre-slaughter farm crocodiles exhibited responses to anthropogenic aquatic contaminants with potentially relevant consequences on key reproductive and endocrine pathways and these responses may be established as relevant species endocrine disruptor biomarkers of exposure and effects in this threatened species. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Endocrinology and physiology of pseudocyesis

    PubMed Central

    2013-01-01

    This literature review on pseudocyesis or false pregnancy aims to find epidemiological, psychiatric/psychologic, gynecological and endocrine traits associated with this condition in order to propose neuroendocrine/endocrine mechanisms leading to the emergence of pseudocyetic traits. Ten women from 5 selected studies were analyzed after applying stringent criteria to discriminate between cases of true pseudocyesis (pseudocyesis vera) versus delusional, simulated or erroneous pseudocyesis. The analysis of the reviewed studies evidenced that pseudocyesis shares many endocrine traits with both polycystic ovarian syndrome and major depressive disorder, although the endocrine traits are more akin to polycystic ovarian syndrome than to major depressive disorder. Data support the notion that pseudocyetic women may have increased sympathetic nervous system activity, dysfunction of central nervous system catecholaminergic pathways and decreased steroid feedback inhibition of gonadotropin-releasing hormone. Although other neuroendocrine/endocrine pathways may be involved, the neuroendocrine/endocrine mechanisms proposed in this review may lead to the development of pseudocyetic traits including hypomenorrhea or amenorrhea, galactorrhea, diurnal and/or nocturnal hyperprolactinemia, abdominal distension and apparent fetal movements and labor pains at the expected date of delivery. PMID:23672289

  12. Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells.

    PubMed

    Kondo, Yasushi; Toyoda, Taro; Ito, Ryo; Funato, Michinori; Hosokawa, Yoshiya; Matsui, Satoshi; Sudo, Tomomi; Nakamura, Masahiro; Okada, Chihiro; Zhuang, Xiaotong; Watanabe, Akira; Ohta, Akira; Inagaki, Nobuya; Osafune, Kenji

    2017-08-01

    Pancreatic beta-like cells generated from human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells (hESCs) offer an appealing donor tissue source. However, differentiation protocols that mainly use growth factors are costly. Therefore, in this study, we aimed to establish efficient differentiation protocols to change hiPSCs/hESCs to insulin (INS) + cells using novel small-molecule inducers. We screened small molecules that increased the induction rate of INS + cells from hESC-derived pancreatic and duodenal homeobox 1 (PDX1) + pancreatic progenitor cells. The differentiation protocol to generate INS + cells from hiPSCs/hESCs was optimised using hit compounds, and INS + cells induced with the compounds were characterised for their in vitro and in vivo functions. The inducing activity of the hit compounds was also examined using mouse embryonic pancreatic tissues in an explant culture system. Finally, RNA sequencing analyses were performed on the INS + cells to elucidate the mechanisms of action by which the hit compounds induced pancreatic endocrine differentiation. One hit compound, sodium cromoglicate (SCG), was identified out of approximately 1250 small molecules screened. When SCG was combined with a previously described protocol, the induction rate of INS + cells increased from a mean ± SD of 5.9 ± 1.5% (n = 3) to 16.5 ± 2.1% (n = 3). SCG induced neurogenin 3-positive cells at a mean ± SD of 32.6 ± 4.6% (n = 3) compared with 14.2 ± 3.6% (n = 3) for control treatment without SCG, resulting in an increased generation of endocrine cells including insulin-producing cells. Similar induction by SCG was confirmed using mouse embryonic pancreatic explants. We also confirmed that the mechanisms of action by which SCG induced pancreatic endocrine differentiation included the inhibition of bone morphogenetic protein 4 signalling. SCG improves the generation of pancreatic endocrine cells from multiple hiPSC/hESC lines and mouse embryonic pancreatic explants by facilitating the differentiation of endocrine precursors. This discovery will contribute to elucidating the mechanisms of pancreatic endocrine development and facilitate cost-effective generation of INS + cells from hiPSCs/hESCs. The RNA sequencing data generated during the current study are available in the Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo ) with series accession number GSE89973.

  13. In vitro endocrine disruption and TCDD-like effects of three novel brominated flame retardants: TBPH, TBB, & TBCO.

    PubMed

    Saunders, David M V; Higley, Eric B; Hecker, Markus; Mankidy, Rishikesh; Giesy, John P

    2013-11-25

    The novel brominated flame retardants (NBFRs), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), Bis(2-ethylhexyl)-2,3,4,5-tetrabromophtalate (TBPH), and 1,2,5,6-tetrabromocyclooctane (TBCO) are components of flame retardant mixtures including Firemaster 550 and Saytex BC-48. Despite the detection of these NBFRs in environmental and biotic matrices, studies regarding their toxicological effects are poorly represented in the literature. The present study examined endocrine disruption by these three NBFRs using the yeast YES/YAS reporter assay and the mammalian H295R steroidogenesis assay. Activation of the aryl hydrocarbon receptor (AhR) was also assessed using the H4IIE reporter assay. The NBFRs produced no TCDD-like effects in the H4IIE assay or agonistic effects in the YES/YAS assays. TBB produced a maximal antiestrogenic effect of 62% at 0.5mgL(-1) in the YES assay while TBPH and TBCO produced maximal antiandrogenic effects of 74% and 59% at 300mgL(-1) and 1500mgL(-1), respectively, in the YAS assay. Significant effects were also observed in the H295R assay. At 0.05mgL(-1), 15mgL(-1), and 15mgL(-1) TBB, TBPH, and TBCO exposures, respectively resulted in a 2.8-fold, 5.4-fold, and 3.3-fold increase in concentrations of E2. This is one of the first studies to demonstrate the in vitro endocrine disrupting potentials of TBB, TBPH, and TBCO. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Health Disparities in Endocrine Disorders: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement

    PubMed Central

    Brown, Arleen; Cauley, Jane A.; Chin, Marshall H.; Gary-Webb, Tiffany L.; Kim, Catherine; Sosa, Julie Ann; Sumner, Anne E.; Anton, Blair

    2012-01-01

    Objective: The aim was to provide a scholarly review of the published literature on biological, clinical, and nonclinical contributors to race/ethnic and sex disparities in endocrine disorders and to identify current gaps in knowledge as a focus for future research needs. Participants in Development of Scientific Statement: The Endocrine Society's Scientific Statement Task Force (SSTF) selected the leader of the statement development group (S.H.G.). She selected an eight-member writing group with expertise in endocrinology and health disparities, which was approved by the Society. All discussions regarding the scientific statement content occurred via teleconference or written correspondence. No funding was provided to any expert or peer reviewer, and all participants volunteered their time to prepare this Scientific Statement. Evidence: The primary sources of data on global disease prevalence are from the World Health Organization. A comprehensive literature search of PubMed identified U.S. population-based studies. Search strategies combining Medical Subject Headings terms and keyword terms and phrases defined two concepts: 1) racial, ethnic, and sex differences including specific populations; and 2) the specific endocrine disorder or condition. The search identified systematic reviews, meta-analyses, large cohort and population-based studies, and original studies focusing on the prevalence and determinants of disparities in endocrine disorders. Consensus Process: The writing group focused on population differences in the highly prevalent endocrine diseases of type 2 diabetes mellitus and related conditions (prediabetes and diabetic complications), gestational diabetes, metabolic syndrome with a focus on obesity and dyslipidemia, thyroid disorders, osteoporosis, and vitamin D deficiency. Authors reviewed and synthesized evidence in their areas of expertise. The final statement incorporated responses to several levels of review: 1) comments of the SSTF and the Advocacy and Public Outreach Core Committee; and 2) suggestions offered by the Council and members of The Endocrine Society. Conclusions: Several themes emerged in the statement, including a need for basic science, population-based, translational and health services studies to explore underlying mechanisms contributing to endocrine health disparities. Compared to non-Hispanic whites, non-Hispanic blacks have worse outcomes and higher mortality from certain disorders despite having a lower (e.g. macrovascular complications of diabetes mellitus and osteoporotic fractures) or similar (e.g. thyroid cancer) incidence of these disorders. Obesity is an important contributor to diabetes risk in minority populations and to sex disparities in thyroid cancer, suggesting that population interventions targeting weight loss may favorably impact a number of endocrine disorders. There are important implications regarding the definition of obesity in different race/ethnic groups, including potential underestimation of disease risk in Asian-Americans and overestimation in non-Hispanic black women. Ethnic-specific cut-points for central obesity should be determined so that clinicians can adequately assess metabolic risk. There is little evidence that genetic differences contribute significantly to race/ethnic disparities in the endocrine disorders examined. Multilevel interventions have reduced disparities in diabetes care, and these successes can be modeled to design similar interventions for other endocrine diseases. PMID:22730516

  15. Approaches for predicting effects of unintended environmental exposure to an endocrine active pharmaceutical, tamoxifen

    EPA Science Inventory

    Tamoxifen is an endocrine-active pharmaceutical (EAP) that is used world-wide. Because tamoxifen is a ubiquitous pharmaceutical and interacts with estrogen receptors, a case study was conducted with this compound to (1) determine effects on reproductive endpoints in a nontarget s...

  16. TRANSGENERATIONAL (IN UTERO/LACTATIONAL) EXPOSURE PROTOCOL TO INVESTIGATE THE EFFECTS OF ENDOCRINE DISRUPTING COMPOUNDS (EDCS) IN RATS

    EPA Science Inventory

    This protocol is designed to evaluate the effects of Endocrine Disrupting Compounds (EDCs) through fetal (transplacental) and/or neonatal (via the dam's milk) exposure during the critical periods of reproductive organogenesis in the rat. Continued direct exposure to the F1 pups...

  17. EFFECTS OF ENDOCRINE DISRUPTING CHEMICALS (EDCS) ON FETAL TESTES HORMONE PRODUCTION

    EPA Science Inventory

    Effects of Endocrine Disrupting Chemicals (EDCs) on Fetal Testes Hormone Production
    CS Lambright, VS Wilson, JR Furr, CJ Wolf, N Noriega, LE Gray, Jr
    US EPA, ORD/NHEERL/RTD, RTP, NC 27711

    Exposure to EDCs during critical periods of fetal sexual development can have...

  18. DEVELOPMENT OF A TEST SYSTEM TO EVALUATE ENDOCRINE EFFECTS IN BIRDS

    EPA Science Inventory

    An overview of the process and status of the development of one and two generation Japanese quail reproduction studies for regulatory use will be presented from the perspective of members of the subgroup of the OECD Expert Group on Assessment of Endocrine Disrupting Effects in Bi...

  19. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals.

    PubMed

    Vandenberg, Laura N; Ågerstrand, Marlene; Beronius, Anna; Beausoleil, Claire; Bergman, Åke; Bero, Lisa A; Bornehag, Carl-Gustaf; Boyer, C Scott; Cooper, Glinda S; Cotgreave, Ian; Gee, David; Grandjean, Philippe; Guyton, Kathryn Z; Hass, Ulla; Heindel, Jerrold J; Jobling, Susan; Kidd, Karen A; Kortenkamp, Andreas; Macleod, Malcolm R; Martin, Olwenn V; Norinder, Ulf; Scheringer, Martin; Thayer, Kristina A; Toppari, Jorma; Whaley, Paul; Woodruff, Tracey J; Rudén, Christina

    2016-07-14

    The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams of evidence (epidemiology, wildlife, laboratory animal, in vitro, and in silico data) that are relevant in assessing EDCs. We have developed a framework for the systematic review and integrated assessment (SYRINA) of EDC studies. The framework was designed for use with the International Program on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect and the endocrine disrupting activity. Building from existing methodologies for evaluating and synthesizing evidence, the SYRINA framework includes seven steps: 1) Formulate the problem; 2) Develop the review protocol; 3) Identify relevant evidence; 4) Evaluate evidence from individual studies; 5) Summarize and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs. When using the SYRINA framework, the overall objective is to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures. This framework allows for the evaluation and synthesis of evidence from multiple evidence streams. Finally, a decision regarding regulatory action is not only dependent on the strength of evidence, but also the consequences of action/inaction, e.g. limited or weak evidence may be sufficient to justify action if consequences are serious or irreversible.

  20. Test driving ToxCast: endocrine profiling for1858 chemicals included in phase II

    EPA Science Inventory

    Introduction: Identifying chemicals to test for potential endocrine disruption beyond those already implicated in the peer-reviewed literature is a challenge. This review is intended to help by summarizing findings from the Environmental Protection Agency’s (EPA) ToxCast™ high th...

  1. A MATHEMATICAL MODEL FOR THE KINETICS OF THE MALE REPRODUCTIVE ENDOCRINE SYSTEM

    EPA Science Inventory

    In this presentation a model for the hormonal regulation of the reproductive endocrine system in the adult male rat will be discussed. The model includes a description of the kinetics of the androgenic hormones testosterone and dihydrotestosterone, as well as the receptor-mediate...

  2. Evaluation of reproductive endocrine status in hornyhead turbot sampled from Southern California's urbanized coastal environments.

    PubMed

    Reyes, Jesus A; Vidal-Dorsch, Doris E; Schlenk, Daniel; Bay, Steven M; Armstrong, Jeffrey L; Gully, Joseph R; Cash, Curtis; Baker, Michael; Stebbins, Timothy D; Hardiman, Gary; Kelley, Kevin M

    2012-12-01

    As part of a regionwide collaboration to determine the occurrence of contaminants and biological effects in coastal ecosystems offshore of urban southern California, the present study characterized the reproductive endocrinology of an indigenous flatfish, the hornyhead turbot (Pleuronichthys verticalis), and compared groups sampled from different study sites representing varying degrees of pollution to screen for potential endocrine disruptive effects. Turbot were sampled from locations near the coastal discharge sites of four large municipal wastewater treatment plants (WWTPs) located between Los Angeles and San Diego, California, USA, and were compared with fish sampled from three far-field reference locations in the region. Despite environmental presence of both legacy contaminants and contaminants of emerging concern and evidence for fish exposure to several classes of contaminants, both males and females generally exhibited coordinated seasonal reproductive cycles at all study sites. Patterns observed included peaks in sex steroids (17β-estradiol, testosterone, 11-ketotestosterone) in the spring and low levels in the fall, changes corresponding to similarly timed gonadal changes and plasma vitellogenin concentrations in females. Comparisons between fish captured at the different study sites demonstrated some regional differences in plasma levels of estrogens and androgens, indicative of location-associated effects on the endocrine system. The observed differences, however, could not be linked to the ocean discharge locations of four of the largest WWTPs in the world. Copyright © 2012 SETAC.

  3. Assessment of Protocol Designed to Detect Endocine Disrupting Effects of Flutamide in Xenopus Tropicalis

    DTIC Science & Technology

    2006-01-01

    Environmental Protection Agency (USEPA) Endocrine Disruptor Screening and Testing Program. The frogs were exposed to the model anti- androgenic...the study were to develop a protocol that could be used for a standard U.S. EPA testing procedure in the Endocrine Disruptor Screening and Testing...compounds. As a consequence of this requirement, the USEPA established an Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC

  4. Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model

    NASA Astrophysics Data System (ADS)

    Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.

    2014-12-01

    In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.

  5. Assessing Endocrine Disrupting Chemicals In Landfills, Solid Waste Sites and Wastewater

    EPA Pesticide Factsheets

    EPA researchers are assessing waste water effluents to measure their effects on ecosystems and aquatic animals while also developing innovative solutions to reduce concentrations of potential endocrine disrupting chemicals.

  6. Dynamics of subcellular compartmentalization of steroid receptors in living cells as a strategic screening method to determine the biological impact of suspected endocrine disruptors.

    PubMed

    Tyagi, Rakesh Kumar

    2003-04-01

    Although a number of screening methods being used for identifying potential endocrine disruptors have generated a wealth of information, a search for alternative combination of methods is still needed to overcome experimental artefacts. There are no generally accepted or validated screening methods for monitoring and studying impact of environmental endocrine disruptors. Also, no single assay can accurately predict all the deleterious effects of endocrine disruptors. For this reason various environmental protection agencies, mainly European and US, have urged that a battery of tests in current use need to be designed to assess their adequacy in detecting the effects of endocrine disruptors. Some details about endocrine disruptors and screening programs can be found at http://www.epa.gov/scipoly/oscpendo/whatis.htm. Several studies in recent years have used fusion proteins between steroid receptors (estrogen, androgen, progesterone, etc.) and green fluorescent protein (GFP) that can serve as an alternative potent screening method to study intracellular dynamics of receptors in living cells. An approach employing nucleocytoplasmic trafficking of steroid receptors as a parameter in response to potential xenobiotic chemicals in living cells may prove to be promising in terms of being direct, fast, reliable, simple and inexpensive. Copyright 2003 Elsevier Science Ltd.

  7. The risk of immune-related endocrine disorders associated with anti-PD-1 inhibitors therapy for solid tumors: A systematic review and meta-analysis.

    PubMed

    Su, Qiang; Zhang, Xiao-Chen; Wang, Di-Ya; Zhang, Huai-Rong; Zhu, Cheng; Hou, Yan-Li; Liu, Jun-Li; Gao, Zu-Hua

    2018-06-01

    We performed a systematic review and meta-analysis to evaluate the risk of immune-related endocrine disorders associated with PD-1 inhibitors therapy for solid tumors. An Embase and PubMed search through December 6, 2017, using the following keywords was performed: immune-related endocrine disorders, and PD-1 inhibitors, etc. The data were analyzed using R 3.4.3 (R Project) and the metafor package. Patients treated with chemotherapy alone were used as control for the purpose of comparison. A total of 12 clinical trials including 5577 patients were found eligible for the meta-analysis. Compared with chemotherapy, the risk ratios of all-grade endocrine disorders are 13.89, (95% CI: 5.35-36.05, p < 0.001) for nivolumab therapy, and 9.85, (95% CI: 5.65-17.17, p < 0.001) for pembrolizumab therapy. The risk of all-grade hypothyroidism and hyperthyroidism incidence was increased for nivolumab therapy (hypothyroidism: RR 10.07, 95% CI: 3.37-30.11, p < 0.001; hyperthyroidism: RR 4.29, 95% CI: 1.13-16.30, p = 0.034) and for pembrolizumab therapy (hypothyroidism: RR 7.73, 95% CI: 3.86-15.49, p < 0.001; hyperthyroidism: RR 5.09, 95% CI: 2.36-10.97, p < 0.001). There was a significant increase in the risk of grade 1-5 endocrine disorders incidence for ipilimumab-nivolumab combination therapy (versus ipilimumab, RR 3.20, 95% CI: 2.08-4.91, p < 0.001; versus nivolumab, RR 2.54, 95% CI: 1.70-3.80, p < 0.001). Both nivolumab and pembrolizumab therapy could result in a higher risk of all-grade immune-related endocrine disorders than chemotherapy. Nivolumab and ipilimumab combination therapy could result in an even higher risk of all-grade immune-related endocrine disorders than ipilimumab or nivolumab alone. Awareness of these side effects could guide clinicians to better manage the patients treated with anti-PD-1 inhibitors therapy for solid tumors. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. [Association between single-person households and ambulatory treatment of endocrine and metabolic disease in Japan: analysis of the Comprehensive Survey of Living Conditions].

    PubMed

    Tsukinoki, Rumi; Murakami, Yoshitaka

    2014-01-01

    We examined the association between single-person households and ambulatory treatment of endocrine and metabolic disease in Japan. We used random sample data from the Comprehensive Survey of Living Conditions in 2003. The study included 11,928 participants aged ≥20 years, excluding inpatients and nursing home residents. Household status was categorized in terms of two groups: single-person household or multi-person household. Three age categories were used: 20-49, 50-64, and ≥65 years. Endocrine and metabolic disease was defined as the prevalence of diabetes, obesity, hyperlipidemia, and thyroid diseases. Men and women were analyzed separately. Logistic regression models were used to estimate the odds ratios (ORs) after adjusting for employment status, marital status, disability in activities of daily living, and smoking. The association between age, household, and ambulatory care for endocrine and metabolic disease was examined by a likelihood ratio test. There were 443 male and 529 female outpatients with endocrine and metabolic disease. In male outpatients from single-person households, the ORs for endocrine and metabolic disease were higher than for multi-person households across all age groups [single-person household, 1.62 (95% confidence interval: 1.03-2.56)]. The ORs for outpatients with endocrine and metabolic disease increased with age, and for those aged ≥65 years, these ORs increased gradually. There were no significant associations between age, households, and ambulatory care for endocrine and metabolic disease in men (for the interaction P=0.986). Furthermore, there was no significant association between single-person households and ambulatory care for endocrine and metabolic disease in women. The data from the national survey suggest that single-person households are a risk factor for endocrine and metabolic disease in Japanese men. Our findings indicate the need for management of endocrine and metabolic disease across all age groups.

  9. Comparative trial of endocrine versus cytotoxic treatment in advanced breast cancer.

    PubMed Central

    Priestman, T; Baum, M; Jones, V; Forbes, J

    1977-01-01

    Ninety-two women with advanced breast cancer were allocated at random to receive either cytotoxic or endocrine treatment. Out of 45 women included in the cytotoxic treatment group, 22 (49%) achieved complete or partial remission of their disease, whereas of the 47 included in the endocrine treatment group, only 10 (21%) achieved such remission. Significantly longer survival times in the cytotoxic treatment group were most apparent among premenopausal women, 75% of such patients responding to cytotoxic drugs (median survival 46 weeks) compared with only 11% benefiting from ovarian ablation (median survival 12 weeks). In postmenopausal women with predominantly soft-tissue disease, however, additive hormonal treatment with tamoxifen produced remission rates and survival times equivalent to those produced by cytotoxic drugs. PMID:324570

  10. Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GC-MS.

    PubMed

    Azzouz, Abdelmonaim; Rascón, Andrés J; Ballesteros, Evaristo

    2016-06-01

    Humans are exposed to hazardous substances including endocrine-disrupting chemicals (EDCs). These compounds have been associated with some diseases such as cancer and ascribed adverse effects on life-essential organs. The method, which allows the determination of both free and conjugated forms of EDCs, involves the liquid-liquid extraction from the sample with ethyl acetate, followed by its preconcentration and clean-up by SPE in a continuous system for the subsequent determination by GC-MS. The proposed method affords very low LODs and RSD. This allowed its successful application to the determination of EDCs in human urine, blood and breast milk. The most frequently founded were methylparaben, ethylparaben, bisphenol A and triclosan.

  11. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    PubMed

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  12. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting.

    PubMed

    Street, Maria Elisabeth; Angelini, Sabrina; Bernasconi, Sergio; Burgio, Ernesto; Cassio, Alessandra; Catellani, Cecilia; Cirillo, Francesca; Deodati, Annalisa; Fabbrizi, Enrica; Fanos, Vassilios; Gargano, Giancarlo; Grossi, Enzo; Iughetti, Lorenzo; Lazzeroni, Pietro; Mantovani, Alberto; Migliore, Lucia; Palanza, Paola; Panzica, Giancarlo; Papini, Anna Maria; Parmigiani, Stefano; Predieri, Barbara; Sartori, Chiara; Tridenti, Gabriele; Amarri, Sergio

    2018-06-02

    Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.

  14. Relationship of land uses with occurrence of contaminants of emerging concern in streams of southeastern Minnesota

    USDA-ARS?s Scientific Manuscript database

    Endocrine disrupting compounds (EDC), pharmaceuticals, and other contaminants of emerging concern (CEC) have been detected in surface waters, including compounds suspected or known to cause adverse human or ecological effects. Goals of the project are to (1) characterize CEC profiles and land uses a...

  15. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    PubMed

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of Melatonin on the Immune System of Fish: A Review

    PubMed Central

    Esteban, M. Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José

    2013-01-01

    Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates. PMID:23579958

  17. Influence of melatonin on the immune system of fish: a review.

    PubMed

    Esteban, M Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José

    2013-04-11

    Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.

  18. Microbial endocrinology: the interplay between the microbiota and the endocrine system.

    PubMed

    Neuman, Hadar; Debelius, Justine W; Knight, Rob; Koren, Omry

    2015-07-01

    The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The endocrine system and sarcopenia: potential therapeutic benefits.

    PubMed

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  20. 78 FR 57859 - Draft Guidance for Industry on Endocrine Disruption Potential of Drugs: Nonclinical Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... include the sex hormones (e.g., estrogen and androgen), the hypothalamic-pituitary-adrenal axis, the thyroid hormone, and the hormones involved in the feedback regulation of those components (e.g., gonadotropin releasing hormone and corticotropin). Changes in endocrine function can result in...

  1. DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS

    EPA Science Inventory

    A great deal of uncertainty exists regarding the extent to which humans and wildlife are exposed to chemical stressors in aquatic resources. Scientific literature is replete with studies of xenobiotics in surface waters, including a recent national USGS survey of endocrine disrup...

  2. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development

    PubMed Central

    2012-01-01

    Backgrounds Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Methods Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. Results At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. Conclusions In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors. PMID:22546201

  3. Canine toys and training devices as sources of exposure to phthalates and bisphenol A: quantitation of chemicals in leachate and in vitro screening for endocrine activity.

    PubMed

    Wooten, Kimberly J; Smith, Philip N

    2013-11-01

    Chewing and mouthing behaviors exhibited by pet dogs are likely to lead to oral exposures to a variety of environmental chemicals. Products intended for chewing and mouthing uses include toys and training devices that are often made of plastics. The goal of the current study was to determine if a subset of phthalates and bisphenol A (BPA), endocrine disrupting chemicals commonly found in plastics, leach out of dog toys and training devices (bumpers) into synthetic canine saliva. In vitro assays were used to screen leachates for endocrine activity. Bumper leachates were dominated by di-2-ethylhexyl phthalate (DEHP) and BPA, with concentrations reaching low μg mL(-1) following short immersions in synthetic saliva. Simulated chewing of bumpers during immersion in synthetic saliva increased concentrations of phthalates and BPA as compared to new bumpers, while outdoor storage had variable effects on concentrations (increased DEHP; decreased BPA). Toys leached substantially lower concentrations of phthalates and BPA, with the exception of one toy which leached considerable amounts of diethyl phthalate. In vitro assays indicated anti-androgenic activity of bumper leachates, and estrogenic activity of both bumper and toy leachates. These results confirm that toys and training devices are potential sources of exposure to endocrine disrupting chemicals in pet dogs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chronic exposure to low doses bisphenol A interferes with pair-bonding and exploration in female Mongolian gerbils.

    PubMed

    Razzoli, M; Valsecchi, P; Palanza, P

    2005-04-15

    Estrogenic endocrine disruptors, synthetic or naturally occurring substances found in the environment, can interfere with the vertebrate endocrine system and, mimicking estrogens, interact with the neuroendocrine substrates of behavior. Since species vary in their sensitivity to steroids, it is of great interest to widen the range of species included in the researches on neurobehavioral effects of estrogenic endocrine disruptors. We examined socio-sexual and exploratory behavior of Mongolian gerbil females (Meriones unguiculatus), a monogamous rodent, in response to chronic exposure to the estrogenic endocrine disruptor bisphenol A. Paired females were daily administered with one of the following treatments: bisphenol A (2 or 20 microg/kg body weight/day); 17alpha-ethynil estradiol (0.04 microg/kg body weight/day 17alphaE); oil (vehicle). Females were treated for 3 weeks after pairing. Starting on day of pairing, social interactions within pairs were daily recorded. Three weeks after pairing, females were individually tested in a free exploratory paradigm. Bisphenol A and 17alphaE affected male-female social interactions by increasing social investigation. Bisphenol A reduced several exploratory parameters, indicating a decreased exploratory propensity of females. These results highlight the sensitivity of adult female gerbils to bisphenol A during the hormonally sensitive period of pair formation, also considering that the bisphenol A doses tested are well below the suggested human tolerable daily intake.

  5. Twenty-five years after "Wingspread"- Environmental endocrine disruptors (EDCs) and human health.

    PubMed

    Gray, Leon Earl

    2017-04-01

    The aim of this paper is to provide the reader with a view of the Endocrine Disruptor Chemical (EDC) research field and its relevance to human health. My perspective is from working on the effects of EDCs that act via the androgen (A) or estrogen (E) signaling pathways in a regulatory agency for the last four decades with the objective of producing data that risk assessors could use to reduce the uncertainty in risk assessment. In vitro and in vivo data from our studies has contributed to regulatory agencies decision-making since the 1990s (https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-113201_7-Apr-98_238.pdf). From the start, we were evaluating the utility of in vitro and short-term in vivo effects to predict the adverse effects in developing animals [1; 2]. This approach has expanded greatly to include what is now known as Adverse Outcome Pathways (AOP) and networks (AOPn) [3; 4]. The AOP framework for the effects of chemicals that disrupt androgen signaling during sexual differentiation of the fetal male rat provides biological context for extrapolating mechanistic information from in vitro and in vivo assays in rodents to other species including humans. Such an approach has biological validity because the E and A pathways are highly conserved in vertebrates, including humans and laboratory animals.

  6. Long-term follow-up of endocrine function among young children with newly diagnosed malignant central nervous system tumors treated with irradiation-avoiding regimens.

    PubMed

    Cochrane, Anne M; Cheung, Clement; Rangan, Kasey; Freyer, David; Nahata, Leena; Dhall, Girish; Finlay, Jonathan L

    2017-11-01

    The adverse effects of irradiation on endocrine function among patients with pediatric brain tumor are well documented. Intensive induction chemotherapy followed by marrow-ablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) without central nervous system (CNS) irradiation has demonstrated efficacy in a proportion of very young children with some malignant CNS tumors. This study assessed the long-term endocrine function of young children following chemotherapy-only treatment regimens. A retrospective chart review was performed on 99 patients under 6 years of age with malignant brain tumors newly diagnosed between May 1991 and October 2010 treated with irradiation-avoiding strategies. Thirty patients survived post-AuHCR without cranial irradiation for a mean of 8.1 years (range 3.0-22.25 years). The patient cohort included 18 males and 12 females (mean age at AuHCR of 2.5 years, range 0.8-5.1 years). All 30 surviving patients had documented normal age-related thyroid function, insulin-like growth factor binding protein 3 (IGF-BP3), prolactin, testosterone, and estradiol levels. Insulin-like growth factor 1 age-related levels were abnormal in one child with normal height. Ninety-seven percent of patients had normal cortisol levels, while follicle-stimulating hormone and LH levels among females were normal in 83% and 92%, respectively, and in 100% of males. Growth charts demonstrated age-associated growth within 2 standard deviations of the mean in 67% of patients. Of 10 patients (33%) with short stature, 6 had proportional diminutions in both height and weight. These findings demonstrate that the use of relatively brief, intensive chemotherapy regimens including marrow-ablative chemotherapy with AuHCR results in fewer endocrine sequelae than treatment schemes utilizing CNS irradiation. © 2017 Wiley Periodicals, Inc.

  7. Next-generation sequencing for endocrine cancers: Recent advances and challenges.

    PubMed

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek

    2017-05-01

    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.

  8. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  9. An Assessment of the Effects of the Endocrine Disrupting Chemical 17ß-Trenbolone on Japanese Medaka Fish in a Multigenerational Exposure

    EPA Science Inventory

    Presently the research emphasis for endocrine disrupting chemicals has been on the development of short-term screening assays. However, assessing effect concentrations of the most sensitive developmental stages impacted in longer-term and multi-generation tests remains to be det...

  10. Effects of a Short-term Exposure to the Fungicide Prochloraz on Endocrine Function and Gene Expression in Female Fathead Minnows (Pimephales promelas)

    EPA Science Inventory

    Prochloraz is a fungicide known to cause endocrine disruption through effects on the hypothalamic-pituitary-gonadal (HPG) axis. To determine the short-term impacts of prochloraz on gene expression and steroid production, adult female fathead minnows (Pimephales promelas) were exp...

  11. ENDOCRINE MODULATING EFFECTS OF LAGOON WATER FROM CONFINED ANIMAL FEED OPERATIONS ON AMPHIBIANS

    EPA Science Inventory


    Endocrine Modulating Effects of Lagoon Water from Confined Animal Feed Operations on Amphibians. Weber, L.P.*1, Dumont, J.N.1, Selcer, K.W.2, Hutchins, S.R.3, and Janz, D.M.1 1Oklahoma State University, Stillwater, OK, 2Duquesne University, Pittsburgh, PA, 3U.S. Environmenta...

  12. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    PubMed

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  13. Endocrine and Metabolic Aspects of Tuberculosis

    PubMed Central

    Vinnard, Christopher; Blumberg, Emily A.

    2017-01-01

    Endocrine and metabolic derangements are infrequent in patients with tuberculosis, but they are important when they occur. The basis for these abnormalities is complex. While Mycobacterium tuberculosis has been described to infect virtually every endocrine gland, the incidence of gland involvement is low, especially in the era of effective antituberculosis therapy. Furthermore, endocrine and metabolic abnormalities do not always reflect direct infection of the gland but may result from physiological response or as a consequence of therapy. Metabolic disease may also predispose patients to the development of active tuberculosis, particularly in the case of diabetes mellitus. While hormonal therapy may be necessary in some instances, frequently these endocrine complications do not require specific interventions other than antituberculous therapy itself. With the exception of diabetes mellitus, which will be covered elsewhere, this chapter reviews the endocrinologic and metabolic issues related to tuberculosis. PMID:28233510

  14. [Diabetes and prediabetes in endocrine disorders].

    PubMed

    Krysiak, Robert; Rudzki, Henryk; Okopień, Bogusław

    2012-01-01

    Complex hormonal regulation of carbohydrate metabolism causes that presence of many endocrine disorders may disturb glucose homeostasis. Impaired fasting glucose, impaired glucose tolerance and frank diabetes are observed in patients with both common and rare endocrine disorders, particularly in patients with polycystic ovary syndrome, hyperthyroidism, Cushing's syndrome, pheochromocytoma, primary aldosteronism, acromegaly, growth hormone deficiency and endocrine tumors of the digestive system. Because most of these disorders may be effectively treated and the treatment often results in a restoration of normal insulin secretion and receptor action as well as glucose absorption, production and metabolism, it is important to differentiate these disorders from other more common types of diabetes. This article reviews the etiology, clinical manifestation, diagnosis and management of endocrine disorders leading to diabetes and prediabetic states with special emphasis on the pathogenesis and clinical consequences of these disorders.

  15. The US federal framework for research on endocrine disrupters and an analysis of research programs supported during fiscal year 1996

    USGS Publications Warehouse

    Reiter, L.W.; DeRosa, C.; Kavlock, R.J.; Lucier, G.; Mac, M.J.; Melillo, J.; Melnick, R.L.; Sinks, T.; Walton, B.T.

    1998-01-01

    The potential health and ecological effects of endocrine disrupting chemicals has become a high visibility environmental issue. The 1990s have witnessed a growing concern, both on the part of the scientific community and the public, that environmental chemicals may be causing widespread effects in humans and in a variety of fish and wildlife species. This growing concern led the Committee on the Environment and Natural Resources (CENR) of the National Science and Technology Council to identify the endocrine disrupter issue as a major research initiative in early 1995 and subsequently establish an ad hoc Working Group on Endocrine Disrupters. The objectives of the working group are to 1) develop a planning framework for federal research related to human and ecological health effects of endocrine disrupting chemicals; 2) conduct an inventory of ongoing federal research programs; and 3) identify research gaps and develop a coordinated interagency plan to address priority research needs. This communication summarizes the activities of the federal government in defining a common framework for planning an endocrine disrupter research program and in assessing the status of the current effort. After developing the research framework and compiling an inventory of active research projects supported by the federal government in fiscal year 1996, the CENR working group evaluated the current federal effort by comparing the ongoing activities with the research needs identified in the framework. The analysis showed that the federal government supports considerable research on human health effects, ecological effects, and exposure assessment, with a predominance of activity occurring under human health effects. The analysis also indicates that studies on reproductive development and carcinogenesis are more prevalent than studies on neurotoxicity and immunotoxicity, that mammals (mostly laboratory animals) are the main species under study, and that chlorinated dibenzodioxins and polychlorinated biphenyls are the most commonly studied chemical classes. Comparison of the inventory with the research needs should allow identification of underrepresented research areas in need of attention.

  16. A model for a career in a specialty of general surgery: One surgeon's opinion.

    PubMed

    Ko, Bona; McHenry, Christopher R

    2018-01-01

    The integration of general and endocrine surgery was studied as a potential career model for fellowship trained general surgeons. Case logs collected from 1991-2016 and academic milestones were examined for a single general surgeon with a focused interest in endocrine surgery. Operations were categorized using CPT codes and the 2017 ACGME "Major Case Categories" and there frequencies were determined. 10,324 operations were performed on 8209 patients. 412.9 ± 84.9 operations were performed yearly including 279.3 ± 42.7 general and 133.7 ± 65.5 endocrine operations. A high-volume endocrine surgery practice and a rank of tenured professor were achieved by years 11 and 13, respectively. At year 25, the frequency of endocrine operations exceeded general surgery operations. Maintaining a foundation in broad-based general surgery with a specialty focus is a sustainable career model. Residents and fellows can use the model to help plan their careers with realistic expectations. Copyright © 2017. Published by Elsevier Inc.

  17. Endocrine causes of nonalcoholic fatty liver disease

    PubMed Central

    Marino, Laura; Jornayvaz, François R

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed. PMID:26494962

  18. Controversial endocrine interventions for the aged.

    PubMed

    Leow, M K S; Loh, K C

    2006-07-01

    Specific endocrine changes occur with the ageing process. The last decade has witnessed significant progress in the basic and clinical science of ageing, thereby rejuvenating the interest in anti-ageing medicine, especially that of hormone replacement, by medical professionals and the lay public. However, endocrine manipulation as a therapeutic strategy for ageing is still evolving as continuing research attempts to answer the many questions of what it can achieve at the risk of incurring unknown long-term adverse effects. The current day doctor is confronted with a host of options, and will benefit from a synopsis of the latest evidence before making the most appropriate decision for aged patients seeking hormonal replacement therapy as a means to counter the effects of ageing. This review aims to give a rapid overview of the endocrine profile of geriatric population and the studies on the more controversial hormonal replacement therapies for the aged.

  19. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    PubMed

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  20. Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential.

    PubMed

    Linning, Katrina D; Tai, Mei-Hui; Madhukar, Burra V; Chang, C C; Reed, Donald N; Ferber, Sarah; Trosko, James E; Olson, L Karl

    2004-10-01

    The limited availability of transplantable human islets has stimulated the development of methods needed to isolate adult pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation. The objective of this study was to determine whether modulation of intracellular redox state with N-acetyl-L-cysteine (NAC) would allow for the propagation of pancreatic stem/progenitor cells from adult human pancreatic tissue. Cells were propagated from human pancreatic tissue using a serum-free, low-calcium medium supplemented with NAC and tested for their ability to differentiate when cultured under different growth conditions. Human pancreatic cell (HPC) cultures coexpressed alpha-amylase, albumin, vimentin, and nestin. The HPC cultures, however, did not express other genes associated with differentiated pancreatic exocrine, duct, or endocrine cells. A number of transcription factors involved in endocrine cell development including Beta 2, Islet-1, Nkx6.1, Pax4, and Pax6 were expressed at variable levels in HPC cultures. In contrast, pancreatic duodenal homeobox factor 1 (Pdx-1) expression was extremely low and at times undetectable. Overexpression of Pdx-1 in HPC cultures stimulated somatostatin, glucagon, and carbonic anhydrase expression but had no effect on insulin gene expression. HPC cultures could form 3-dimensional islet-like cell aggregates, and this was associated with expression of somatostatin and glucagon but not insulin. Cultivation of HPCs in a differentiation medium supplemented with nicotinamide, exendin-4, and/or LY294002, an inhibitor of phosphatidylinositol-3 kinase, stimulated expression of insulin mRNA and protein. These data support the use of intracellular redox modulation for the enrichment of pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation.

  1. β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development

    PubMed Central

    Abdellatif, Ahmed M.; Oishi, Hisashi; Itagaki, Takahiro; Jung, Yunshin; Shawki, Hossam H.; Okita, Yukari; Hasegawa, Yoshikazu; Suzuki, Hiroyuki; El-Morsy, Salah E.; El-Sayed, Mesbah A.; Shoaib, Mahmoud B.; Sugiyama, Fumihiro; Takahashi, Satoru

    2016-01-01

    The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas. PMID:26901059

  2. A Two-Tiered-Testing Decision Tree for Assays in the USEPA-EDSP Screening Battery: Using 15 years of experience to improve screening and testing for endocrine active chemicals.@@

    EPA Science Inventory

    In 1996 the Food Quality Protection and Safe Drinking Water Acts instructed the USEPA to determine “…whether the pesticide chemical may have an effect in humans that is similar to an effect produced by a naturally occurring estrogen or other endocrine effects;"*...

  3. A Two-Tiered-Testing Decision Tree for Assays in the USEPA-EDSP Screening Battery: Using 15 years of experience to improve screening and testing for endocrine active chemicals.

    EPA Science Inventory

    In 1996 the Food Quality Protection and Safe Drinking Water Acts instructed the USEPA to determine “…whether the pesticide chemical may have an effect in humans that is similar to an effect produced by a naturally occurring estrogen or other endocrine effects;"*...

  4. NASH in Nondiabetic Endocrine Disorders.

    PubMed

    Wang, Timothy; Yang, Wei; Karakas, Sidika; Sarkar, Souvik

    2018-06-06

    Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease, including hepatic steatosis, inflammation, and fibrosis. NAFLD carries the risk of progression to cirrhosis with its associated complications and hepatocellular carcinoma. It is now the most common liver disease in the Western world and its prevalence is increasing. While the association between NAFLD and type 2 diabetes has been well documented, there is significantly less understanding of the pathophysiology and progression of NAFLD in patients with other endocrine disorders affecting metabolism in various ways. Some of the more common endocrine disorders such as polycystic ovarian syndrome, growth hormone deficiency, hypothyroidism, and hypogonadism are known in clinical practice to be associated with NAFLD. Medications that alter the endocrine system such as tamoxifen and adrenal steroids have also been attributed to significant NAFLD. The key to management of NAFLD at this time are dietary changes and exercise to achieve weight loss. Unfortunately, a large proportion of the patients with these endocrine disorders are unable to achieve either. This review aims to examine and summarize the current published literature that have evaluated the association between NAFLD and the above endocrine disorders and potential therapeutic interventions in each case.

  5. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    PubMed

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. How UV Light Touches the Brain and Endocrine System Through Skin, and Why.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Plonka, Przemyslaw M; Szaflarski, Jerzy P; Paus, Ralf

    2018-05-01

    The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.

  7. Medication effects on sleep and breathing.

    PubMed

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration. Published by Elsevier Inc.

  8. Autonomic and Neuroendocrine Responses to a Psychosocial Stressor in Adults with Autistic Spectrum

    ERIC Educational Resources Information Center

    Jansen, Lucres M. C.; Gispen-de Wied, Christine C.; Wiegant, Victor M.; Westenberg, Herman G. M.; Lahuis, Bertine E.; van Engeland, Herman

    2006-01-01

    Objective of the study was to replicate in adults our previous findings of decreased heart rate and normal endocrine responses to stress in autistic children and to elucidate the discrepancy between autonomic and endocrine stress responses by including epinephrine, norepinephrine, oxytocin and vasopressin measurements. Ten autistic spectrum…

  9. Endocrine system: part 2.

    PubMed

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-03

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  10. Systemic Effects of Non-Endocrine Tumours

    PubMed Central

    Sullivan, James D.; Rona, George

    1964-01-01

    Tumours of non-endocrine origin may exert deleterious effects by elaborating active principles which disturb body regulation. Systemic manifestations are fairly common with neoplasms of the lung, kidney, gastro-intestinal tract and thymus. The secretion of these tumours may have a known chemical structure (serotonin), may present hormone-like action (parathormone, antidiuretic hormone, insulinoid), or have well-defined biological properties (erythropoietin, gastrin-like principle). Tumours may stimulate endocrine glands by an unknown mechanism, producing disorders such as Cushing's syndrome, hypercalcemia, gynecomastia and hypoglycemia. Thymomas may be associated with autoimmune diseases. Tumours may extensively utilize or excrete some metabolite (glucose) or electrolyte (Na or K). Awareness of the systemic effects of various neoplasms may lead to an early diagnosis and proper treatment of these manifestations. PMID:14204555

  11. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification

    PubMed Central

    Xu, Cheng-Ran; Li, Lin-Chen; Donahue, Greg; Ying, Lei; Zhang, Yu-Wei; Gadue, Paul; Zaret, Kenneth S

    2014-01-01

    Endoderm cells undergo sequential fate choices to generate insulin-secreting beta cells. Ezh2 of the PRC2 complex, which generates H3K27me3, modulates the transition from endoderm to pancreas progenitors, but the role of Ezh2 and H3K27me3 in the next transition to endocrine progenitors is unknown. We isolated endoderm cells, pancreas progenitors, and endocrine progenitors from different staged mouse embryos and analyzed H3K27me3 genome-wide. Unlike the decline in H3K27me3 domains reported during embryonic stem cell differentiation in vitro, we find that H3K27me3 domains increase in number during endocrine progenitor development in vivo. Genes that lose the H3K27me3 mark typically encode transcriptional regulators, including those for pro-endocrine fates, whereas genes that acquire the mark typically are involved in cell biology and morphogenesis. Deletion of Ezh2 at the pancreas progenitor stage enhanced the production of endocrine progenitors and beta cells. Inhibition of EZH2 in embryonic pancreas explants and in human embryonic stem cell cultures increased endocrine progenitors in vitro. Our studies reveal distinct dynamics in H3K27me3 targets in vivo and a means to modulate beta cell development from stem cells. PMID:25107471

  12. Endocrine-Active Pharmaceuticals: An Environmental Concern?

    EPA Science Inventory

    Recently, there has been growing interest in pharmaceuticals that are specifically designed to have endocrine activity, such as the estrogens used in birth control pills, exerting unintended effects on fish and other aquatic organisms. These pharmaceuticals may not be persistent...

  13. MATHEMATICAL MODEL OF METABOLIC PATHWAYS OF STEROIDOGENESIS TO PREDICT MOLECULAR RESPONSE FOR ENDOCRINE DISRUPTING CHEMICALS.

    EPA Science Inventory

    There is increasing evidence that exposure to endocrine disrupting chemicals (EDCs) in the environment can induce adverse effects on reproduction and development in both humans and wildlife, mediated through hormonal disturbances.

  14. REMOVAL OF ENDOCRINE DISRUPTOR CHEMICALS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    A group of chemicals, known as endocrine disruptor chemicals (EDCs) have been identified as having the potential to cause adverse health effects in humans and wildlife. Among this group DDT, PCBs, endosulfan, methoxychlor, diethylphthalate, diethylhexylphthalate, and bisphenol A ...

  15. Metabolic effects of p,p'-DDE on Atlantic salmon hepatocytes.

    PubMed

    Olsvik, Pål A; Søfteland, Liv

    2018-04-01

    Decades after being banned in many countries, DDT and its metabolites are still considered major environmental hazards. The p,p'-DDE isomer, the DDT metabolite found in highest concentration in aquaculture feeds, is an endocrine disruptor with demonstrated ability to induce epigenetic effects. This study aimed at examining the impact of p,p'-DDE on Atlantic salmon. Primary hepatocytes were exposed to four concentrations of p,p'-DDE (0.1, 1, 10, 100 μm) for 48 hours, and endpoints included cytotoxicity, global DNA methylation, targeted transcription and metabolomics profiling (100 μm). p,p'-DDE was moderately cytotoxic at 100 μm. No impact was seen on global DNA methylation. Vtg1 and esr1 transcription, markers of endocrine disruption, was most strongly induced at 10 μm p,p'-DDE, while ar showed strongest response at 100 μm. Metabolomics profiling showed that p,p'-DDE at 100 μm most strongly affected carbohydrate metabolism, primary bile acid metabolism, leucine, isoleucine and valine metabolism, diacylglycerol and sphingolipid metabolism. Observed changes in lipid levels suggest that p,p'-DDE interferes with phospholipid membrane biosynthesis. Elevation of bile acid levels in p,p'-DDE-exposed hepatocytes indicates upregulation of synthesis of bile acids after cytochrome P450 activation. Pathway analysis showed that the superpathway of methionine degradation was the most significantly affected pathway by p,p'-DDE exposure, while endocrine system disorder topped the diseases and disorder ranking. In conclusion, this work predicts an endocrine response to p,p'-DDE exposure, and demonstrates how this legacy pesticide might interfere with mechanisms linked to DNA methylation in Atlantic salmon hepatocytes. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development.

    PubMed

    Nixon, R; Cerqueira, V; Kyriakou, A; Lucas-Herald, A; McNeilly, J; McMillan, M; Purvis, A I; Tobias, E S; McGowan, R; Ahmed, S F

    2017-10-01

    What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. This study was a retrospective review of investigations performed on 122 boys. All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1-11). Details of phenotype, endocrine and genetic investigations were obtained from case records. An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1-10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5-11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5-11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1-9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD. RN was supported by the James Paterson Bursary and the Glasgow Children's Hospital Charity Summer Scholarship. SFA, RM and EST are supported by a Scottish Executive Health Department grant 74250/1 for the Scottish Genomes Partnership. EST is also supported by MRC/EPSRC Molecular Pathology Node and Wellcome Trust ISSF funding. There are no conflicts of interest. None. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  17. Parabens and their effects on the endocrine system.

    PubMed

    Nowak, Karolina; Ratajczak-Wrona, Wioletta; Górska, Maria; Jabłońska, Ewa

    2018-03-27

    Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Epigenetics meets endocrinology

    PubMed Central

    Zhang, Xiang; Ho, Shuk-Mei

    2014-01-01

    Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125

  19. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Styne, Dennis M; Arslanian, Silva A; Connor, Ellen L; Farooqi, Ismaa Sadaf; Murad, M Hassan; Silverstein, Janet H; Yanovski, Jack A

    2017-03-01

    The European Society of Endocrinology and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the assessment, treatment, and prevention of pediatric obesity. The participants include an Endocrine Society-appointed Task Force of 6 experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The Task Force commissioned 2 systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and co-sponsoring organizations reviewed and commented on preliminary drafts of this guideline. Pediatric obesity remains an ongoing serious international health concern affecting ∼17% of US children and adolescents, threatening their adult health and longevity. Pediatric obesity has its basis in genetic susceptibilities influenced by a permissive environment starting in utero and extending through childhood and adolescence. Endocrine etiologies for obesity are rare and usually are accompanied by attenuated growth patterns. Pediatric comorbidities are common and long-term health complications often result; screening for comorbidities of obesity should be applied in a hierarchal, logical manner for early identification before more serious complications result. Genetic screening for rare syndromes is indicated only in the presence of specific historical or physical features. The psychological toll of pediatric obesity on the individual and family necessitates screening for mental health issues and counseling as indicated. The prevention of pediatric obesity by promoting healthful diet, activity, and environment should be a primary goal, as achieving effective, long-lasting results with lifestyle modification once obesity occurs is difficult. Although some behavioral and pharmacotherapy studies report modest success, additional research into accessible and effective methods for preventing and treating pediatric obesity is needed. The use of weight loss medications during childhood and adolescence should be restricted to clinical trials. Increasing evidence demonstrates the effectiveness of bariatric surgery in the most seriously affected mature teenagers who have failed lifestyle modification, but the use of surgery requires experienced teams with resources for long-term follow-up. Adolescents undergoing lifestyle therapy, medication regimens, or bariatric surgery for obesity will need cohesive planning to help them effectively transition to adult care, with continued necessary monitoring, support, and intervention. Transition programs for obesity are an uncharted area requiring further research for efficacy. Despite a significant increase in research on pediatric obesity since the initial publication of these guidelines 8 years ago, further study is needed of the genetic and biological factors that increase the risk of weight gain and influence the response to therapeutic interventions. Also needed are more studies to better understand the genetic and biological factors that cause an obese individual to manifest one comorbidity vs another or to be free of comorbidities. Furthermore, continued investigation into the most effective methods of preventing and treating obesity and into methods for changing environmental and economic factors that will lead to worldwide cultural changes in diet and activity should be priorities. Particular attention to determining ways to effect systemic changes in food environments and total daily mobility, as well as methods for sustaining healthy body mass index changes, is of importance. Copyright © 2017 by the Endocrine Society

  20. Fluid/electrolyte and endocrine changes in space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, Carolyn Leach

    1989-01-01

    The primary effects of space flight that influence the endocrine system and fluid and electrolyte regulation are the reduction of hydrostatic gradients, reduction in use and gravitational loading of bone and muscle, and stress. Each of these sets into motion a series of responses that culminates in alteration of some homeostatic set points for the environment of space. Set point alterations are believed to include decreases in venous pressure; red blood cell mass; total body water; plasma volume; and serum sodium, chloride, potassium, and osmolality. Serum calcium and phosphate increase. Hormones such as erythropoietin, atrial natriuretic peptide, aldosterone, cortisol, antidiuretic hormone, and growth hormone are involved in the dynamic processes that bring about the new set points. The inappropriateness of microgravity set points for 1-G conditions contributes to astronaut postflight responses.

  1. The eye as a window to rare endocrine disorders

    PubMed Central

    Chopra, Rupali; Chander, Ashish; Jacob, Jubbin J.

    2012-01-01

    The human eye, as an organ, can offer critical clues to the diagnosis of various systemic illnesses. Ocular changes are common in various endocrine disorders such as diabetes mellitus and Graves’ disease. However there exist a large number of lesser known endocrine disorders where ocular involvement is significant. Awareness of these associations is the first step in the diagnosis and management of these complex patients. The rare syndromes involving the pituitary hypothalamic axis with significant ocular involvement include Septo-optic dysplasia, Kallman's syndrome, and Empty Sella syndrome all affecting the optic nerve at the optic chiasa. The syndromes involving the thyroid and parathyroid glands that have ocular manifestations and are rare include Mc Cune Albright syndrome wherein optic nerve decompression may occur due to fibrous dysplasia, primary hyperparathyroidism that may present as red eye due to scleritis and Ascher syndrome wherein ptosis occurs. Allgrove's syndrome, Cushing's disease, and Addison's disease are the rare endocrine syndromes discussed involving the adrenals and eye. Ocular involvement is also seen in gonadal syndromes such as Bardet Biedl, Turner's, Rothmund's, and Klinefelter's syndrome. This review also highlights the ocular manifestation of miscellaneous syndromes such as Werner's, Cockayne's, Wolfram's, Kearns Sayre's, and Autoimmune polyendocrine syndrome. The knowledge of these relatively uncommon endocrine disorders and their ocular manifestations will help an endocrinologist reach a diagnosis and will alert an ophthalmologist to seek specialty consultation of an endocrinologist when encountered with such cases. PMID:22629495

  2. Bone remodeling and regulating biomarkers in women at the time of breast cancer diagnosis.

    PubMed

    Yao, Song; Zhang, Yali; Tang, Li; Roh, Janise M; Laurent, Cecile A; Hong, Chi-Chen; Hahn, Theresa; Lo, Joan C; Ambrosone, Christine B; Kushi, Lawrence H; Kwan, Marilyn L

    2017-02-01

    The majority of breast cancer patients receive endocrine therapy, including aromatase inhibitors known to cause increased bone resorption. Bone-related biomarkers at the time of breast cancer diagnosis may predict future risk of osteoporosis and fracture after endocrine therapy. In a large population of 2,401 female breast cancer patients who later underwent endocrine therapy, we measured two bone remodeling biomarkers, TRAP5b and BAP, and two bone regulating biomarkers, RANKL and OPG, in serum samples collected at the time of breast cancer diagnosis. We analyzed these biomarkers and their ratios with patients' demographic, lifestyle, clinical tumor characteristics, as well as bone health history. The presence of bone metastases, prior bisphosphonate (BP) treatment, and blood collection after chemotherapy had a significant impact on biomarker levels. After excluding these cases and controlling for blood collection time, several factors, including age, race/ethnicity, body mass index, physical activity, alcohol consumption, smoking, and hormonal replacement therapy, were significantly associated with bone biomarkers, while vitamin D or calcium supplements and tumor characteristics were not. When prior BP users were included in, recent history of osteoporosis and fracture was also associated. Our findings support further investigation of these biomarkers with bone health outcomes after endocrine therapy initiation in women with breast cancer.

  3. Endocrine Aspects of Environmental “Obesogen” Pollutants

    PubMed Central

    Nappi, Francesca; Barrea, Luigi; Di Somma, Carolina; Savanelli, Maria Cristina; Muscogiuri, Giovanna; Orio, Francesco; Savastano, Silvia

    2016-01-01

    Growing evidence suggests the causal link between the endocrine-disrupting chemicals (EDCs) and the global obesity epidemics, in the context in the so-called “obesogenic environment”. Dietary intake of contaminated foods and water, especially in association with unhealthy eating pattern, and inhalation of airborne pollutants represent the major sources of human exposure to EDCs. This is of particular concern in view of the potential impact of obesity on chronic non-transmissible diseases, such as type 2 diabetes, cardiovascular disease, and hormone-sensitive cancers. The key concept is the identification of adipose tissue not only as a preferential site of storage of EDCs, but also as an endocrine organ and, as such, susceptible to endocrine disruption. The timing of exposure to EDCs is critical to the outcome of that exposure, with early lifetime exposures (e.g., fetal or early postnatal) particularly detrimental because of their permanent effects on obesity later in life. Despite that the mechanisms operating in EDCs effects might vary enormously, this minireview is aimed to provide a general overview on the possible association between the pandemics of obesity and EDCs, briefly describing the endocrine mechanisms linking EDCs exposure and latent onset of obesity. PMID:27483295

  4. ISSUES IN ENDOCRINE DISRUPTION: COMPARING CRITICAL PERIODS OF HORMONE SENSITIVITY

    EPA Science Inventory

    Japanese medaka (Oryzias latipes) have been developed as a model species to compare the effects of endocrine active chemicals at critical life-stage periods of hormonal sensitivity, specifically as reproductively active adults, during the developmental period of differentiation, ...

  5. Two Virus Based Endocrine Disruptor Assays Effective Across Vertebrate Classes.

    EPA Science Inventory

    The presence of hormone mimics, or endocrine disrupting compounds (EDC’s), in the environment are increasing. Sources range from agricultural run–off, pharmaceuticals in waste water, to industrial operations. Current levels of contamination are sufficient to alter sexual develo...

  6. Adjuvant endocrine therapy after breast cancer: a qualitative study of factors associated with adherence

    PubMed Central

    Boulton, Mary; Fenlon, Debbie; Hulbert-Williams, Nick J; Walter, Fiona M; Donnelly, Peter; Lavery, Bernadette A; Morgan, Adrienne; Morris, Carolyn; Watson, Eila K

    2018-01-01

    Introduction Despite evidence of the efficacy of adjuvant endocrine therapy (AET) in reducing the risk of recurrence and mortality after treatment for primary breast cancer, adherence to AET is suboptimal. This study aimed to explore factors that influence adherence and nonadherence to AET following breast cancer to inform the development of supportive interventions. Methods Interviews were conducted with 32 women who had been prescribed AET, 2–4 years following their diagnosis of breast cancer. Both adherers (n=19) and nonadherers (n=13) were recruited. The analysis was conducted using the Framework approach. Results Factors associated with adherence were as follows: managing side effects including information and advice on side effects and taking control of side effects, supportive relationships, and personal influences. Factors associated with nonadherence were as follows: burden of side effects, feeling unsupported, concerns about long-term AET use, regaining normality, including valuing the quality of life over length of life, and risk perception. Conclusion Provision of timely information to prepare women for the potential side effects of AET and education on medication management strategies are needed, including provision of timely and accurate information on the efficacy of AET in reducing breast cancer recurrence and on potential side effects and ways to manage these should they arise. Trust in the doctor–patient relationship and clear patient pathways for bothersome side effects and concerns with AET are important. Training and education on AET for GPs should be considered alongside novel care pathways such as primary care nurse cancer care review and community pharmacist follow-up. PMID:29497284

  7. Health Effects in Fish of Long-Term Exposure to Effluents from Wastewater Treatment Works

    PubMed Central

    Liney, Katherine E.; Hagger, Josephine A.; Tyler, Charles R.; Depledge, Michael H.; Galloway, Tamara S.; Jobling, Susan

    2006-01-01

    Concern has been raised in recent years that exposure to wastewater treatment effluents containing estrogenic chemicals can disrupt the endocrine functioning of riverine fish and cause permanent alterations in the structure and function of the reproductive system. Reproductive disorders may not necessarily arise as a result of estrogenic effects alone, and there is a need for a better understanding of the relative importance of endocrine disruption in relation to other forms of toxicity. Here, the integrated health effects of long-term effluent exposure are reported (reproductive, endocrine, immune, genotoxic, nephrotoxic). Early life-stage roach, Rutilus rutilus, were exposed for 300 days to treated wastewater effluent at concentrations of 0, 15.2, 34.8, and 78.7% (with dechlorinated tap water as diluent). Concentrations of treated effluents that induced feminization of male roach, measured as vitellogenin induction and histological alteration to gonads, also caused statistically significant alterations in kidney development (tubule diameter), modulated immune function (differential cell count, total number of thrombocytes), and caused genotoxic damage (micronucleus induction and single-strand breaks in gill and blood cells). Genotoxic and immunotoxic effects occurred at concentrations of wastewater effluent lower than those required to induce recognizable changes in the structure and function of the reproductive endocrine system. These findings emphasize the need for multiple biological end points in tests that assess the potential health effects of wastewater effluents. They also suggest that for some effluents, genotoxic and immune end points may be more sensitive than estrogenic (endocrine-mediated) end points as indicators of exposure in fish. PMID:16818251

  8. Possible relationship between endocrine disrupting chemicals and hormone dependent gynecologic cancers.

    PubMed

    Dogan, Selen; Simsek, Tayup

    2016-07-01

    The effects of the natural and synthetic estrogens have been studied for a long time but the data regarding estrogen related chemicals (endocrine disrupting chemicals, EDCs) and their effects on reproductive system are scarce. EDCs are hormone like agents that are readily present in the environment, which may alter the endocrine system of humans and animals. Approximately 800 chemicals are known or suspected to have the potential to function as EDC. Potential role of EDCs on reproductive disease has gained attention in medical literature in recent years. We hypothesize that exposure to low doses of EDCs in a chronic manner could cause hormone dependent genital cancers including ovarian and endometrial cancer. Long term exposure to low concentrations of EDCs may exert potentiation effect with each other and even with endogenous estrogens and could inhibit enzymes responsible for estrogen metabolism. Exposure time to these EDCs is essential as we have seen from Diethylstilbestrol experience. Dose-response curves of EDCs are also unpredictable. Hence mode of action of EDCs are more complex than previously thought. In the light of these controversies lower doses of EDCs in long term exposure is not harmless. Possibility of this relationship and this hypothesis merit further investigation especially through in vivo studies that could better show the realistic environmental exposure. With the confirmation of our hypothesis, possible EDCs could be identified and eliminated from general use as a public health measure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chronic Exposure of Marine Medaka (Oryzias melastigma) to 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis.

    PubMed

    Chen, Lianguo; Zhang, Weipeng; Ye, Rui; Hu, Chenyan; Wang, Qiangwei; Seemann, Frauke; Au, Doris W T; Zhou, Bingsheng; Giesy, John P; Qian, Pei-Yuan

    2016-04-19

    In this study, marine medaka (Oryzias melastigma) were chronically exposed for 28 days to environmentally realistic concentrations of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) (0, 0.76, 2.45, and 9.86 μg/L), the active ingredient in commercial antifouling agent SeaNine 211. Alterations of the hypothalamus-pituitary-gonadal-liver (HPGL) axis were investigated across diverse levels of biological organization to reveal the underlying mechanisms of its endocrine disruptive effects. Gene transcription analysis showed that DCOIT had positive regulatory effects mainly in male HPGL axis with lesser extent in females. The stimulated steroidogenic activities resulted in increased concentrations of steroid hormones, including estradiol (E2), testosterone (T), and 11-KT-testosterone (11-KT), in the plasma of both sexes, leading to an imbalance in hormone homeostasis and increased E2/T ratio. The relatively estrogenic intracellular environment in both sexes induced the hepatic synthesis and increased the liver and plasma content of vitellogenin (VTG) or choriogenin. Furthermore, parental exposure to DCOIT transgenerationally impaired the viability of offspring, as supported by a decrease in hatching and swimming activity. Overall, the present results elucidated the estrogenic mechanisms along HPGL axis for the endocrine disruptive effects of DCOIT. The reproductive impairments of DCOIT at environmentally realistic concentrations highlights the need for more comprehensive investigations of its potential ecological risks.

  10. Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions.

    PubMed

    Black, David R; Heynick, Louis N

    2003-01-01

    Effects of radiofrequency electromagnetic fields (RFEMF) on the pituitary adrenocortical (ACTH), growth (GH), and thyroid (TSH) hormones have been extensively studied, and there is coherent research on reproductive hormones (FSH and LH). Those effects which have been identified are clearly caused by heating. The exposure thresholds for these effects in living mammals, including primates, have been established. There is limited evidence that indicates no interaction between RFEMF and the pineal gland or an effect on prolactin from the pituitary gland. Studies of RFEMF exposed blood cells have shown that changes or damage do not occur unless the cells are heated. White cells (leukocytes) are much more sensitive than red cells (erythrocytes) but white cell effects remain consistent with normal physiological responses to systemic temperature fluctuation. Lifetime studies of RFEMF exposed animals show no cumulative adverse effects in their endocrine, hematological, or immune systems. Cardiovascular tissue is not directly affected adversely in the absence of significant RFEMF heating or electric currents. The regulation of blood pressure is not influenced by ultra high frequency (UHF) RFEMF at levels commonly encountered in the use of mobile communication devices. Copyright 2003 Wiley-Liss, Inc.

  11. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop.

    PubMed Central

    Kavlock, R J; Daston, G P; DeRosa, C; Fenner-Crisp, P; Gray, L E; Kaattari, S; Lucier, G; Luster, M; Mac, M J; Maczka, C; Miller, R; Moore, J; Rolland, R; Scott, G; Sheehan, D M; Sinks, T; Tilson, H A

    1996-01-01

    The hypothesis has been put forward that humans and wildlife species adverse suffered adverse health effects after exposure to endocrine-disrupting chemicals. Reported adverse effects include declines in populations, increases in cancers, and reduced reproductive function. The U.S. Environmental Protection Agency sponsored a workshop in April 1995 to bring together interested parties in an effort to identify research gaps related to this hypothesis and to establish priorities for future research activities. Approximately 90 invited participants were organized into work groups developed around the principal reported health effects-carcinogenesis, reproductive toxicity, neurotoxicity, and immunotoxicity-as well as along the risk assessment paradigm-hazard identification, dose-response assessment, exposure assessment, and risk characterization. Attention focused on both ecological and human health effects. In general, group felt that the hypothesis warranted a concerted research effort to evaluate its validity and that research should focus primarily on effects on development of reproductive capability, on improved exposure assessment, and on the effects of mixtures. This report summarizes the discussions of the work groups and details the recommendations for additional research. PMID:8880000

  12. Screening of ovarian steroidogenic pathway in Ciona intestinalis and its modulation after tributyltin exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cangialosi, Maria Vittoria; Puccia, Egidio; Mazzola, Antonio

    2010-05-15

    In this study, we have identified several ovarian steroids in Ciona with high similarity to vertebrate steroids and showed that cholesterol, corticosterone, dehydroepiandrosterone, estrone, estradiol-17beta, testosterone, pregnenolone, progesterone, have identical molecular spectra with vertebrate steroids. In addition, we have studied the effects of an endocrine disruptor (tributyltin: TBT) on these sex hormones and their precursors, ovarian morphology, and gene expression of some key enzymes in steroidogenic pathway in the ovary of Ciona. Ovarian specimens were cultured in vitro using different concentrations of TBT (10{sup -5}, 10{sup -4} and 10{sup -3} M). Ethanol was used as solvent control. Gene expression analysismore » was performed for adrenodoxin (ADREN) and adrenodoxin reductase (ADOX) (mediators of acute steroidogenesis) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). These transcripts were detected and measured by quantitative (real-time) polymerase chain reaction (qPCR). Sex steroids and their precursors were identified and quantified by a gas chromatography-mass spectroscopy (GC-MS) method. Exposure of Ciona ovaries to TBT produced modulations (either increased or decreased) of sterols and sex steroid levels, whereas no significant differences in ADREN, ADOX or 17beta-HSD mRNA expression patterns were observed. Histological analysis shows that TBT produced several modifications on Ciona ovarian morphology that includes irregular outline of nuclear membrane, less compacted cytoplasm, in addition to test and granulosa cells that were detached from the oocyte membrane. Given that the ascidians represent very simple experimental models for the study of endocrine disruption by environmental contaminants, our findings provide excellent models for multiple identification and quantification of sex steroid and their precursors in biological samples exposed to endocrine-disrupting chemicals and for direct extrapolation of such effects across taxonomic groups and phyla. In addition, these results suggest that Cionaintestinalis may be a suitable species for molecular ecotoxicological studies and biomarker model for endocrine-disrupting effects in marine invertebrates.« less

  13. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds.

    PubMed

    Nieto, Margarita; Hevia, Pedro; Garcia, Enrique; Klein, Dagmar; Alvarez-Cubela, Silvia; Bravo-Egana, Valia; Rosero, Samuel; Damaris Molano, R; Vargas, Nancy; Ricordi, Camillo; Pileggi, Antonello; Diez, Juan; Domínguez-Bendala, Juan; Pastori, Ricardo L

    2012-01-01

    MicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells. Here we determined the expression profile of miR-7 in the mouse-developing pancreas by RT-PCR and in situ hybridization. MiR-7 expression was low between embryonic days e10.5 and e11.5, then began to increase at e13.5 through e14.5, and eventually decreased by e18. In situ hybridization and immunostaining analysis showed that miR-7 colocalizes with endocrine marker Isl1, suggesting that miR-7 is expressed preferentially in endocrine cells. Whole-mount in situ hybridization shows miR-7 highly expressed in the embryonic neural tube. To investigate the role of miR-7 in development of the mouse endocrine pancreas, antisense miR-7 morpholinos (MO) were delivered to the embryo at an early developmental stage (e10.5 days) via intrauterine fetal heart injection. Inhibition of miR-7 during early embryonic life results in an overall downregulation of insulin production, decreased β-cell numbers, and glucose intolerance in the postnatal period. This phenomenon is specific for miR-7 and possibly due to a systemic effect on pancreatic development. On the other hand, the in vitro inhibition of miR-7 in explanted pancreatic buds leads to β-cell death and generation of β-cells expressing less insulin than those in MO control. Therefore, in addition to the potential indirect effects on pancreatic differentiation derived from its systemic downregulation, the knockdown of miR-7 appears to have a β-cell-specific effect as well. These findings suggest that modulation of miR-7 expression could be utilized in the development of stem cell therapies to cure diabetes.

  14. The effects of PCBs and dioxins on child health.

    PubMed

    Lundqvist, Christofer; Zuurbier, Moniek; Leijs, Marike; Johansson, Carolina; Ceccatelli, Sandra; Saunders, Margaret; Schoeters, Greet; ten Tusscher, Gavin; Koppe, Janna G

    2006-10-01

    BACKGROUND/EXPOSURE: Dioxins and PCBs are highly persistent and highly toxic environmental pollutants which at present are derived mainly from waste incineration and food contamination. They are widespread in nature and pollute human food, including breast milk so that basically all children in Europe are exposed to measurable levels. RESULTS/TOXICITY IN CHILDREN: The toxicity of dioxins and PCBs are well described both from animal studies and from a number of human epidemiological studies including several large cohort studies. Especially developmental exposure has been shown to affect endocrine and cognitive systems negatively. Measurable outcomes include reduced IQ and changed behaviour. Foetotoxic effects with reduced birth weight and increased congenital anomalies such as cleft lip have also been described. Exposure to PCBs and dioxins must be considered also in the context of multiple exposure to several toxins simultaneously or sequentially. CONCLUSION/SUGGESTED ACTION: Some measures aimed at reducing exposure to dioxins have been partly successful in that the dioxin content of breast milk is going down. However, further steps to reduce exposure must be taken. We suggest legislative measures for reducing the re-entry of especially PCBs from waste into the environment. Individual pre-conception counselling is recommended in order to reduce developmental exposure and its consequences. Biomonitoring of the substances themselves in breast milk and foods is recommended as well as monitoring possible endocrine effects.

  15. AN APPROACH TO THE DEVELOPMENT OF MODELS TO QUANTITATIVELY ASSESS THE EFFECTS OF EXPOSURE TO ENVIRONMENTALLY RELEVANT LEVELS OF ENDOCRINE DISRUPTORS

    EPA Science Inventory

    An approach to the development of quantitative models to assess the effects of exposure to environmentally relevant levels of endocrine disruptors on homeostasis in adults.

    Ben-Jonathan N, Cooper RL, Foster P, Hughes CL, Hoyer PB, Klotz D, Kohn M, Lamb DJ, Stancel GM.
    <...

  16. Inverse Effects on Growth and Development Rates by Means of Endocrine Disruptors in African Clawed Frog Tadpoles ("Xenopus Laevis")

    ERIC Educational Resources Information Center

    Hackney, Zachary Carl

    2007-01-01

    Previous work on fish, frogs, and salamanders, showed the ability for estrogen (EE2) and anthropogenic endocrine disruptors to skew sex ratios and cause hermaphrodism. This study addressed the effects of estrogens on growth and development rates of African clawed frog tadpoles ("Xenopus laevis") during their gender determination stages. The…

  17. Workshop on perinatal exposure to dioxin-like compounds. I. Summary.

    PubMed Central

    Lindström, G; Hooper, K; Petreas, M; Stephens, R; Gilman, A

    1995-01-01

    An international workshop reviewed 20 ongoing or recently completed studies of the effects of perinatal exposures to dioxins, dibenzofurans, and PCBs on the reproductive, endocrine, neurodevelopmental, and immune systems. Many of the observed effects are consistent with these compounds acting as "environmental hormones" or endocrine disrupters. This report summarizes the conclusions and future directions described at the workshop. PMID:7614935

  18. COMBINED ENDOCRINE EFFECTS OF IN UTERO EXPOSURE TO THE ANTIANDROGENS BUTYLBENZYL PHTHALATE (BBP) AND LINURON (LIN) ON FETAL TESTOSTERONE (T) SYNTHESIS AND REPRODUCTIVE TRACT DEVELOPMENT

    EPA Science Inventory

    COMBINED ENDOCRINE EFFECTS OF IN UTERO EXPOSURE TO THE ANTIANDROGENS BUTYLBENZYL PHTHALATE (BBP) AND LINURON (Lin) ON FETAL TESTOSTERONE (T) SYNTHESIS AND REPRODUCTIVE TRACT DEVELOPMENT
    Parks LG , Hotchkiss AK, Ostby J, Lambright C and Gray LE, Jr.

    Lin and BBP are toxic...

  19. Adverse outcome pathways (AOPs) to enhance EDC ...

    EPA Pesticide Factsheets

    Screening and testing for endocrine active chemicals was mandated under 1996 amendments to the Safe Drinking Water Act and Food Quality Protection Act. Efficiencies can be gained in the endocrine disruptor screening program by using available biological and toxicological knowledge to facilitate greater use of high throughput screening data and other data sources to inform endocrine disruptor assessments. Likewise, existing knowledge, when properly organized, can help aid interpretation of test results. The adverse outcome pathway (AOP) framework, which organizes information concerning measureable changes that link initial biological interactions with a chemical to adverse effects that are meaningful to risk assessment and management, can aid this process. This presentation outlines the ways in which the AOP framework has already been employed to support EDSP and how it may further enhance endocrine disruptor assessments in the future. Screening and testing for endocrine active chemicals was mandated under 1996 amendments to the Safe Drinking Water Act and Food Quality Protection Act. Efficiencies can be gained in the endocrine disruptor screening program by using available biological and toxicological knowledge to facilitate greater use of high throughput screening data and other data sources to inform endocrine disruptor assessments. Likewise, existing knowledge, when properly organized, can help aid interpretation of test results. The adverse outcome pathway

  20. Palbociclib Combined with Fulvestrant in Premenopausal Women with Advanced Breast Cancer and Prior Progression on Endocrine Therapy: PALOMA-3 Results.

    PubMed

    Loibl, Sibylle; Turner, Nicholas C; Ro, Jungsil; Cristofanilli, Massimo; Iwata, Hiroji; Im, Seock-Ah; Masuda, Norikazu; Loi, Sherene; André, Fabrice; Harbeck, Nadia; Verma, Sunil; Folkerd, Elizabeth; Puyana Theall, Kathy; Hoffman, Justin; Zhang, Ke; Bartlett, Cynthia Huang; Dowsett, Mitchell

    2017-09-01

    The efficacy and safety of palbociclib, a cyclin-dependent kinase 4/6 inhibitor, combined with fulvestrant and goserelin was assessed in premenopausal women with advanced breast cancer (ABC) who had progressed on prior endocrine therapy (ET). One hundred eight premenopausal endocrine-refractory women ≥18 years with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) ABC were among 521 women randomized 2:1 (347:174) to fulvestrant (500 mg) ± goserelin with either palbociclib (125 mg/day orally, 3 weeks on, 1 week off) or placebo. This analysis assessed whether the overall tolerable safety profile and significant progression-free survival (PFS) improvement extended to premenopausal women. Potential drug-drug interactions (DDIs) and ovarian suppression with goserelin were assessed via plasma pharmacokinetics and biochemical analyses, respectively. (ClinicalTrials.gov identifier: NCT01942135) RESULTS: Median PFS for premenopausal women in the palbociclib ( n  = 72) versus placebo arm ( n  = 36) was 9.5 versus 5.6 months, respectively (hazard ratio, 0.50, 95% confidence interval: 0.29-0.87), and consistent with the significant PFS improvement in the same arms for postmenopausal women. Any-grade and grade ≤3 neutropenia, leukopenia, and infections were among the most frequent adverse events reported in the palbociclib arm with concurrent goserelin administration. Hormone concentrations were similar between treatment arms and confirmed sustained ovarian suppression. Clinically relevant DDIs were not observed. Palbociclib combined with fulvestrant and goserelin was an effective and well-tolerated treatment for premenopausal women with prior endocrine-resistant HR+/HER2- ABC. Inclusion of both premenopausal and postmenopausal women in pivotal combination ET trials facilitates access to novel drugs for young women and should be considered as a new standard for clinical trial design. PALOMA-3, the first registrational study to include premenopausal women in a trial investigating a CDK4/6 inhibitor combined with endocrine therapy, has the largest premenopausal cohort reported in an endocrine-resistant setting. In pretreated premenopausal women with hormone receptor-positive advanced breast cancer, palbociclib plus fulvestrant and goserelin (luteinizing hormone-releasing hormone [LHRH] agonist) treatment almost doubled median progression-free survival (PFS) and significantly increased the objective response rate versus endocrine monotherapy, achieving results comparable to those reported for chemotherapy without apparently interfering with LHRH agonist-induced ovarian suppression. The significant PFS gain and tolerable safety profile strongly support use of this regimen in premenopausal women with endocrine-resistant disease who could possibly delay chemotherapy. © AlphaMed Press 2017.

  1. Adherence to adjuvant endocrine therapy: is it a factor for ethnic differences in breast cancer outcomes in New Zealand?

    PubMed

    Seneviratne, Sanjeewa; Campbell, Ian; Scott, Nina; Kuper-Hommel, Marion; Kim, Boa; Pillai, Avinesh; Lawrenson, Ross

    2015-02-01

    Despite the benefits of adjuvant endocrine therapy for hormone receptor positive breast cancer, many women are non-adherent or discontinue endocrine treatment early. We studied differences in adherence to adjuvant endocrine therapy by ethnicity in a cohort of New Zealand women with breast cancer and its impact on breast cancer outcomes. We analysed data on women (n = 1149) with newly diagnosed hormone receptor positive, non-metastatic, invasive breast cancer who were treated with adjuvant endocrine therapy in the Waikato during 2005-2011. Linked data from the Waikato Breast Cancer Registry and National Pharmaceutical Database were examined to identify differences by ethnicity in adherence to adjuvant endocrine therapy and the effect of sub-optimal adherence on cancer recurrence and mortality. Overall, a high level of adherence of ≥80% was observed among 70.4% of women, which declined from 76.8% to 59.3% from the first to fifth year of treatment. Māori women were significantly more likely to be sub-optimally adherent (<80%) compared with European women (crude rate 37% vs. 28%, p = 0.005, adjusted OR = 1.51, 95% CI 1.04-2.17). Sub-optimal adherence was associated with a significantly higher risk of breast cancer mortality (HR = 1.77, 95% CI 1.05-2.99) and recurrence (HR = 2.14, 95% CI 1.46-3.14). Sub-optimal adherence to adjuvant endocrine therapy was a likely contributor for breast cancer mortality inequity between Māori and European women, and highlights the need for future research to identify effective ways to increase adherence in Māori women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. EVALUATION OF METHOXYCHLOR AS AN ENDOCRINE DISRUPTOR IN FATHEAD MINNOWS (PIMEPHALES PROMELAS)

    EPA Science Inventory

    Recent concerns over the possible effects of endocrine-disrupting chemicals (EDCs) on humans and wildlife has resulted in considerable interest in environmental contaminants that adversely affect aspects of sexual reproduction and early development. The U.S. Environmental Protect...

  3. SIGNIFICANCE OF EXPERIMENTAL STUDIES FOR ASSESSING ADVERSE EFFECTS OF ENDOCRINE-DISRUPTING CHEMICALS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing an endocrine disruptor screening and testing program to detect chemicals that alter hypothalamic-pituitary-gonadal (HPG) function, estrogen, androgen, and thyroid (EAT) hormone synthesis or metabolism and induce andr...

  4. ENDOCRINE DISRUPTING CONTAMINANTS AND ALLIGATOR EMBRYOS: A LESSON FROM WILDLIFE?

    EPA Science Inventory

    Many xenobiotic compounds introduced into the environment by human activity adversely affect wildlife. A number of these contaminants have been hypothesized to induce non lethal, multigenerational effects by acting as endocrine disrupting agents. One case is that of the alligator...

  5. SMALL FISH MODELS FOR IDENTIFYING AND ASSESSING THE EFFECTS OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs), in particular those which affect the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates, have become a focus of regulatory screening and testing throughout the world. Small fish species, principally the fathead minnow (Pimephales prom...

  6. The proposed tier 2 medaka extended one generation reproduction test (MEOGRT)

    EPA Science Inventory

    The Food Quality Protection Act of 1996 requires EPA to develop and implement a program using valid tests for determining the potential endocrine effects from pesticides. The EPA established advisory group, the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC)...

  7. The Effects of Endocrine Disruptors on Steroidogenesis Gene Expression Dynamics in Fathead Minnow

    EPA Science Inventory

    Steroid hormones play key roles in regulating reproduction and development and fish and other vertebrates. This presentation reports results from two in vitro experiments aimed characterizing the dynamics of transcriptional and metabolomic responses to endocrine disrupting chemi...

  8. Effects of Tribulus terrestris on endocrine sensitive organs in male and female Wistar rats.

    PubMed

    Martino-Andrade, Anderson J; Morais, Rosana N; Spercoski, Katherinne M; Rossi, Stefani C; Vechi, Marina F; Golin, Munisa; Lombardi, Natália F; Greca, Cláudio S; Dalsenter, Paulo R

    2010-01-08

    Investigate the possible effects of Tribulus terrestris (TT) on endocrine sensitive organs in intact and castrated male rats as well as in a post-menopausal rat model using ovariectomized females. Three different dose levels of TT (11, 42 and 110 mg/kg/day) were administered to castrated males for 7 days and to intact males and castrated females for 28 days. In addition to TT treatment, all experiments also included a group of rats treated with dehydroepiandrosterone (DHEA). In experiments using castrated males and females we also used testosterone and 17 alpha-ethynylestradiol, respectively, as positive controls for androgenicity and estrogenicity. Neither DHEA nor TT was able to stimulate androgen sensitive tissues like the prostate and seminal vesicle in both intact and castrated male rats. In addition, administration of TT to intact male rats for 28 days did not change serum testosterone levels as well as did not produce any quantitative change in the fecal excretion of androgenic metabolites. However, a slight increase in the number of homogenization-resistant spermatids was observed in rats treated with 11 mg/kg/day of TT extract. In ovariectomized females, TT did not produce any stimulatory effects in uterine and vaginal epithelia. Tribulus terrestris was not able to stimulate endocrine sensitive tissues such as the prostate, seminal vesicle, uterus and vagina in Wistar rats, indicating lack of androgenic and estrogenic activity in vivo. We also showed a positive effect of TT administration on rat sperm production, associated with unchanged levels of circulating androgens. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Conservation endocrinology

    USGS Publications Warehouse

    McCormick, Stephen; Romero, L. Michael

    2017-01-01

    Endocrinologists can make significant contributions to conservation biology by helping to understand the mechanisms by which organisms cope with changing environments. Field endocrine techniques have advanced rapidly in recent years and can provide substantial information on the growth, stress, and reproductive status of individual animals, thereby providing insight into current and future responses of populations to changes in the environment. Environmental stressors and reproductive status can be detected nonlethally by measuring a number of endocrine-related endpoints, including steroids in plasma, living and nonliving tissue, urine, and feces. Information on the environmental or endocrine requirements of individual species for normal growth, development, and reproduction will provide critical information for species and ecosystem conservation. For many taxa, basic information on endocrinology is lacking, and advances in conservation endocrinology will require approaches that are both “basic” and “applied” and include integration of laboratory and field approaches.

  10. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection.

    PubMed

    Vilela, Caren Leite Spindola; Bassin, João Paulo; Peixoto, Raquel Silva

    2018-04-01

    Hormone active agents constitute a dangerous class of pollutants. Among them, those agents that mimic the action of estrogens on target cells and are part of the group of endocrine-disruptor compounds (EDCs) are termed estrogenic EDCs, the main focus of this review. Exposure to these compounds causes a number of negative effects, including breast cancer, infertility and animal hermaphroditism. However, especially in underdeveloped countries, limited efforts have been made to warn people about this serious issue, explain the methods of minimizing exposure, and develop feasible and efficient mitigation strategies at different levels and in various environments. For instance, the use of bioremediation processes capable of transforming EDCs into environmentally friendly compounds has been little explored. A wide diversity of estrogen-degrading microorganisms could be used to develop such technologies, which include bioremediation processes for EDCs that could be implemented in biological filters for the post-treatment of wastewater effluent. This review describes problems associated with EDCs, primarily estrogenic EDCs, including exposure as well as the present status of understanding and the effects of natural and synthetic hormones and estrogenic EDCs on living organisms. We also describe potential biotechnological strategies for EDC biodegradation, and suggest novel treatment approaches for minimizing the persistence of EDCs in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Endocrine disrupting chemicals research program of the U.S. Environmental Protection Agency: summary of a peer-review report

    USGS Publications Warehouse

    Harding, Anna K.; Daston, George P.; Boyd, Glen R.; Lucier, George W.; Safe, Stephen H.; Stewart, Juarine; Tillitt, Donald E.; Van Der Kraak, Glen

    2006-01-01

    At the request of the U.S. Environmental Protection Agency (EPA) Office of Research and Development, a subcommittee of the Board of Scientific Counselors Executive Committee conducted an independent and open peer review of the Endocrine Disrupting Chemicals Research Program (EDC Research Program) of the U.S. EPA. The subcommittee was charged with reviewing the design, relevance, progress, scientific leadership, and resources of the program. The subcommittee found that the long-term goals and science questions in the EDC Program are appropriate and represent an understandable and solid framework for setting research priorities, representing a combination of problem-driven and core research. Long-term goal (LTG) 1, dealing with the underlying science surrounding endocrine disruptors, provides a solid scientific foundation for conducting risk assessments and making risk management decisions. LTG 2, dealing with defining the extent of the impact of endocrine-disrupting chemicals (EDCs), has shown greater progress on ecologic effects of EDCs compared with that on human health effects. LTG 3, which involves support of the Endocrine Disruptor Screening and Testing Program of the U.S. EPA, has two mammalian tests already through a validation program and soon available for use. Despite good progress, we recommend that the U.S. EPA a) strengthen their expertise in wildlife toxicology, b) expedite validation of the Endocrine Disruptors Screening and Testing Advisory Committee tests, c) continue dependable funding for the EDC Research Program, d) take a leadership role in the application of “omics” technologies to address many of the science questions critical for evaluating environmental and human health effects of EDCs, and e) continue to sponsor multidisciplinary intramural research and interagency collaborations.

  12. The Japanese Quail as an avian model for testing endocrine disrupting chemicals: endocrine and behavioral end points

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Thompson, N.; Wu, J.; Henry, K.; Humphries, E.; Henry, P.F.P.

    2000-01-01

    Birds have extremely varied reproductive strategies. As such, the impact of endocrine disrupting chemicals (EDCs) can greatly differ across avian species. Precocial species, such as Japanese quail appear to be most sensitive to EDC effects during embryonic development, particularly sexual differentiation. A great deal is known about the ontogeny of Japanese quail (Coturnix japonica) relative to endocrine, neuro-endocrine, and behavioral components of reproduction. Therefore, this species provides an excellent model for understanding effects of EDCs on reproductive biology with exposure at specific stages of the life cycle. The purpose of these experiments was to conduct a 1- or 2- generation experiment with positive or negative control chemicals and to determine changes in selected end points. Japanese quail embryos were exposed to estradiol benzoate (EB; positive control) in a 2-generation design or to fadrozole (FAD; negative control) in a 1-generation design. Embryonic EB treatment resulted in significant reductions (p< 0.5) in hen day production (90.2 vs 54.1; control vs EB, resp.) and fertility (85.3 vs 33.4%, control vs EB, resp.). Males showed sharply reduced courtship and mating behaviors as well as increased lag time (26 vs 148 sec; control vs EB) in behavioral tests. Fadrozole exposure resulted in reduced hatchability of fertile eggs, particularly at higher doses. There were no significant effects on courtship and mating behavior of males although males showed an increased lag time in their responses, nally, a behavioral test for studying motor and fear responses in young chicks was used; chicks exposed to an estrogenic pesticide (methoxychlor) showed some deficits. In summary, the use of appropriate and reliable end points that are responsive to endocrine disruption are critical for assessment of EDCs. Supported in part by EPA grant R826134.

  13. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management.

    PubMed

    Sznol, Mario; Postow, Michael A; Davies, Marianne J; Pavlick, Anna C; Plimack, Elizabeth R; Shaheen, Montaser; Veloski, Colleen; Robert, Caroline

    2017-07-01

    Agents that modulate immune checkpoint proteins, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death receptor-1 (PD-1), have become a mainstay in cancer treatment. The clinical benefit afforded by immune checkpoint inhibitors can be accompanied by immune-related adverse events (irAE) that affect the skin, gastrointestinal tract, liver, and endocrine system. The types of irAEs associated with immune checkpoint inhibitors are generally consistent across tumor types. Immune-related endocrine events can affect the pituitary, thyroid, and adrenal glands, as well as other downstream target organs. These events are unique when compared with other irAEs because the manifestations are often irreversible. Immune-related endocrine events are typically grade 1/2 in severity and often present with non-specific symptoms, making them difficult to diagnose. The mechanisms underlying immune-related target organ damage in select individuals remain mostly undefined. Management includes close patient monitoring, appropriate laboratory testing for endocrine function, replacement of hormones, and consultation with an endocrinologist when appropriate. An awareness of the symptoms and management of immune-related endocrine events may aid in the safe and appropriate use of immune checkpoint inhibitors in clinical practice. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Optimal treatment strategies in postmenopausal women with hormone-receptor-positive and HER2-negative metastatic breast cancer.

    PubMed

    Gligorov, Joseph; Lotz, Jean-Pierre

    2008-12-01

    Metastatic breast cancer (MBC) is unfortunately still considered incurable; treatment aims to prolong progression-free and overall survival, relieve disease symptoms, and maintain quality of life. Treatment can include endocrine therapy, radiotherapy, chemotherapy, bisphosphonates, and/or targeted therapy; which is used depends on the characteristics of the disease [e.g., hormone receptor status, disease site(s), and response to previous treatment] and the patient (age, comorbidity, and personal preferences). For most patients with hormone-receptor-positive tumors, the first choice of treatment is further endocrine therapy, but endocrine resistance is a common problem in advanced disease. Several novel anticancer agents have been developed with the aim of overcoming endocrine resistance, many of which target intracellular signaling pathways implicated in disease progression or resistance. Among these, inhibitors of growth factor receptor tyrosine kinases and of mammalian target of rapamycin have shown the most promise in clinical trials. Chemotherapy is the cornerstone of MBC treatment in most women. Important considerations when choosing chemotherapy include the choice of agents, and whether to use single-agent or combination therapy. Anthracyclines are one of the most active cytotoxic agents currently used for the treatment of breast cancer, and for many women, further anthracycline therapy at progression or relapse would be the preferred option. However, lifetime exposure to anthracyclines is limited by cumulative cardiotoxicity, which often prevents rechallenge in later lines of therapy. Newer anthracycline formulations have been developed with lower cardiotoxicity than the conventional anthracycline doxorubicin, but these agents still impair cardiac function, and have maximum recommended lifetime doses. Recently, the concomitant use of cardioprotective agents, such as dexrazoxane, has emerged as an effective approach to reducing the cardiotoxic effects of anthracyclines, thus permitting retreatment. Bisphosphonates, which are not associated with the acute toxicities of cytotoxic chemotherapy drugs, are the established standard of care for patients with metastatic bone disease, and have greatly improved outcomes over the last decade. The search is ongoing for novel agents that will, hopefully, bring a cure closer to reality.

  15. Mixed acinar-endocrine carcinoma of the pancreas: new clinical and pathological features in a contemporary series.

    PubMed

    Yu, Run; Jih, Lily; Zhai, Jing; Nissen, Nicholas N; Colquhoun, Steven; Wolin, Edward; Dhall, Deepti

    2013-04-01

    The objective of this study was to characterize the novel clinical and pathological features of mixed acinar-endocrine carcinoma of the pancreas. This was a retrospective review of medical records and surgical pathology specimens of patients with a diagnosis of mixed acinar-endocrine carcinoma of the pancreas at Cedars-Sinai Medical Center between 2005 and 2011. Additional immunohistochemistry was performed on the specimens of some patients. Five patients were identified. The median age at presentation was 74 years (range, 59-89 years), and all patients were male. The presenting symptoms were all related to tumor mass effects. The median size of the tumor was 10 cm (range, 3.9-16 cm). Preoperative clinical diagnosis aided by fine-needle aspiration biopsy was incorrect in all 5 cases. Most tumors (3/5) exhibited predominantly endocrine differentiation without hormonal production. Only 10% to 30% of cells were truly amphicrine, whereas most were differentiated into either endocrine or acinar phenotype. The clinical behavior ranged from moderate to aggressive with postoperative survival from 2.5 months to more than 3 years. Four patients received neoadjuvant or adjuvant chemotherapy with variable responses. Mixed acinar-endocrine carcinoma of the pancreas appears to be not uncommon in men, may harbor predominantly endocrine component, is often misdiagnosed by cytology, and exhibits variable clinical behavior. Mixed acinar-endocrine carcinoma of the pancreas should be considered in older patients with sizable pancreatic mass and may warrant aggressive surgical resection and chemotherapy.

  16. Interactions between antiepileptic drugs and hormones.

    PubMed

    Svalheim, Sigrid; Sveberg, Line; Mochol, Monika; Taubøll, Erik

    2015-05-01

    Antiepileptic drugs (AEDs) are known to have endocrine side effects in both men and women. These can affect fertility, sexuality, thyroid function, and bone health, all functions of major importance for well-being and quality of life. The liver enzyme inducing antiepileptic drugs (EIAEDs), like phenobarbital, phenytoin, and carbamazepine, and also valproate (VPA), a non-EIAED, are most likely to cause such side effects. AED treatment can alter the levels of different sex hormones. EIAEDs increase sex hormone binding globulin (SHBG) concentrations in both men and women. Over time, this elevation can lead to lower levels of bioactive testosterone and estradiol, which may cause menstrual disturbances, sexual problems, and eventually reduced fertility. VPA can cause weight gain in both men and women. In women, VPA can also lead to androgenization with increased serum testosterone concentrations, menstrual disturbances, and polycystic ovaries. Lamotrigine has not been shown to result in endocrine side effects. The newer AEDs have not yet been thoroughly studied, but case reports indicate that some of these drugs could also be suspected to cause such effects if endocrine changes commence after treatment initiation. It is important to be aware of possible endocrine side effects of AEDs as they can have a major impact on quality of life, and are, at least partly, reversible after AED discontinuation. Copyright © 2015. Published by Elsevier Ltd.

  17. Rhythms in the endocrine system of fish: a review.

    PubMed

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  18. Causes of short stature in Pakistani children found at an Endocrine Center

    PubMed Central

    Jawa, Ali; Riaz, Syed Hunain; Khan Assir, Muhammad Zaman; Afreen, Bahjat; Riaz, Amna; Akram, Javed

    2016-01-01

    Background and Objective: Short stature is defined as height below 3rd centile. Causes of short stature can range from familial, endocrine disorders, chronic diseases to chromosomal disorders. Most common cause in literature being idiopathic short stature. Early detection and management of remedial disorders like malnutrition and vitamin D deficiency, Endocrine disorders like growth hormone deficiency & hypothyroidism can lead to attainment of expected height. Pakistani data shows idiopathic short stature as the most common cause of short stature. Our study aimed at detecting causes of short stature in children/adolescents at an Endocrine referral center. Methods: A retrospective study was conducted at WILCARE Center for Diabetes, Endocrinology & Metabolism, Lahore on 70 well-nourished children/adolescents. The patients had been evaluated clinically, biochemically and radiologically as needed. Biochemical testing included hormonal testing as well to detect endocrine causes. Data was entered and analyzed in SPSS 20.0. Results: Leading cause of short stature in our population was Growth Hormone (GH) deficiency seen in 48 out of 70 (69%) patients. Second most common endocrine abnormality seen in these patients was Vitamin D deficiency [44 out of 70 patients (63%)]. Primary hypothyroidism; pan-hypopituitarism & adrenal insufficiency were other endocrine causes. The weight for age was below 3rd percentile in 57 (81%) patients, with no association with other major causes. Conclusion: Growth hormone and Vitamin D deficiency constitute one of the major causes of short stature among well-nourished children with short stature in Pakistan. PMID:28083018

  19. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    PubMed

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  20. RESPONSE OF JAPANESE MEDAKA TO 17B-ESTRADIOL: A TIME COURSE OF ENDOCRINE-MEDIATED EFFECTS

    EPA Science Inventory

    Estrogenic compounds have been measured in the aquatic environment in concentrations subsequently found to affect reproduction and development in fish. Further investigations have described several endocrine-mediated events that indicate exposure of organisms to estrogens and/or ...

  1. Effects of Two Endocrine-active Pharmaceuticals, Tamoxifen and Anastrozole, on Reproduction in a Marine Fish, Tautogolabrus adspersus

    EPA Science Inventory

    Endocrine-active pharmaceuticals entering the aquatic environment through sewage effluent may have unintended, adverse impacts on the reproduction of aquatic organisms, which in turn may affect the sustainability of exposed populations. Laboratory experiments were conducted with ...

  2. ENDOCRINE DISRUPTING CHEMICAL RISK MANAGEMENT RESEARCH IN THE US EPA'S OFFICE OF RESEARCH AND DEVELOPMENT

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are receiving increasing media and scientific attention. Concerns about these chemicals stem from the possibility of serious human and wildlife effects and environmental persistence. The US EPA Office of Research and Development's National ...

  3. BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...

  4. Diagnostic Assessment of the Ecological Risk of EDCs in Complex Mixtures

    EPA Science Inventory

    Although it is important to be able to forecast the potential endocrine toxicity of chemical mixtures that could enter aquatic environments, in many instances there is a need to determine possible effects of endocrine-active chemicals already present in complex environmental mixt...

  5. Uncertainties in biological responses that influence hazard or risk approaches to the regulation of endocrine active substances

    EPA Science Inventory

    Endocrine Disrupting Chemicals (EDCs) may have delayed or transgenerational effects and display non-monotonic dose response relationships (NMDRs) that require careful consideration when determining environmental hazards. The case studies evaluated for the SETAC Pellston Workshop&...

  6. Endocrine Disruptor Screening Program: Tier I Screening Battery

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system,' the Food Quality Protection Act and subsequent amendments to the Safe Drinking Water Act and Federal Food, Drug and Cosmetic A...

  7. PROTEOMICS IN ECOTOXICOLOGY: PROTEIN EXPRESSION PROFILING TO SCREEN CHEMICALS FOR ENDOCRINE ACTIVITY

    EPA Science Inventory

    Abstract for poster.

    Current endocrine testing methods are animal intensive and lack the throughput necessary to screen large numbers of environmental chemicals for adverse effects. In this study, Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry...

  8. Acromegaly: an endocrine society clinical practice guideline.

    PubMed

    Katznelson, Laurence; Laws, Edward R; Melmed, Shlomo; Molitch, Mark E; Murad, Mohammad Hassan; Utz, Andrea; Wass, John A H

    2014-11-01

    The aim was to formulate clinical practice guidelines for acromegaly. The Task Force included a chair selected by the Endocrine Society Clinical Guidelines Subcommittee (CGS), five experts in the field, and a methodologist. The authors received no corporate funding or remuneration. This guideline is cosponsored by the European Society of Endocrinology. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe both the strength of recommendations and the quality of evidence. The Task Force reviewed primary evidence and commissioned two additional systematic reviews. One group meeting, several conference calls, and e-mail communications enabled consensus. Committees and members of the Endocrine Society and the European Society of Endocrinology reviewed drafts of the guidelines. Using an evidence-based approach, this acromegaly guideline addresses important clinical issues regarding the evaluation and management of acromegaly, including the appropriate biochemical assessment, a therapeutic algorithm, including use of medical monotherapy or combination therapy, and management during pregnancy.

  9. Nervous system regulation of the cancer genome

    PubMed Central

    Cole, Steven W.

    2012-01-01

    Genomics-based analyses have provided deep insight into the basic biology of cancer and are now clarifying the molecular pathways by which psychological and social factors can regulate tumor cell gene expression and genome evolution. This review summarizes basic and clinical research on neural and endocrine regulation of the cancer genome and its interactions with the surrounding tumor microenvironment, including the specific types of genes subject to neural and endocrine regulation, the signal transduction pathways that mediate such effects, and therapeutic approaches that might be deployed to mitigate their impact. Beta-adrenergic signaling from the sympathetic nervous system has been found to up-regulated a diverse array of genes that contribute to tumor progression and metastasis, whereas glucocorticoid-regulated genes can inhibit DNA repair and promote cancer cell survival and resistance to chemotherapy. Relationships between socio-environmental risk factors, neural and endocrine signaling to the tumor microenvironment, and transcriptional responses by cancer cells and surrounding stromal cells are providing new mechanistic insights into the social epidemiology of cancer, new therapeutic approaches for protecting the health of cancer patients, and new molecular biomarkers for assessing the impact of behavioral and pharmacologic interventions. PMID:23207104

  10. Expert consensus of general surgery residents' proficiency with common endocrine operations.

    PubMed

    Phitayakorn, Roy; Kelz, Rachel R; Petrusa, Emil; Sippel, Rebecca S; Sturgeon, Cord; Patel, Kepal N; Perrier, Nancy D

    2017-01-01

    Proficiency with common endocrine operations is expected of graduating, general surgery residents. However, no expert consensus guidelines exist about these expectations. Members of the American Association of Endocrine Surgeons were surveyed about their opinions on resident proficiency with common endocrine operations. Overall response rate was 38%. A total of 92% of the respondents operate with residents. On average, they believed that the steps of a total thyroidectomy for benign disease and a well-localized parathyroidectomy could be performed by a postgraduate year 4 surgery resident. Specific steps that they thought might require more training included decisions to divide the strap muscles or leaving a drain. Approximately 66% of respondents thought that a postgraduate year 5 surgery resident could independently perform a total thyroidectomy for benign disease, but only 45% felt similarly for malignant thyroid disease; 79% thought that a postgraduate year 5 surgery resident could independently perform a parathyroidectomy. Respondents' years of experience correlated with their opinions about resident autonomy for total thyroidectomy (benign r = 0.38, P < .001; malignant r = 0.29, P = .001) but not parathyroidectomy. On multivariate analysis, sex and years of experience of the respondents were independently associated with opinions on autonomy but only for total thyroidectomy for benign disease (P = .001). Annual endocrine volume of the respondents did not correlate with beliefs in autonomy. There was general agreement among responding members of the AAES about resident proficiency and autonomy with common endocrine operations. As postgraduate year 5 residents may not be proficient in advanced endocrine operations, opportunities exist to improve training prior to the transition to independent practice for graduates that anticipate performing endocrine operations routinely. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Prader-Willi syndrome: From genetics to behaviour, with special focus on appetite treatments.

    PubMed

    Griggs, Joanne L; Sinnayah, Puspha; Mathai, Michael L

    2015-12-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder resulting from a deletion in the expression of the paternally derived alleles in the region of 15q11-q13. PWS has a prevalence rate of 1:10,000-1:30,000 and is characterized by marked endocrine abnormalities including growth hormone deficiency and raised ghrelin levels. The hyperphagic phenotype in PWS is established over a number of phases and is exacerbated by impaired satiety, low energy expenditure and intellectual difficulties including obsessive-compulsive disorder and/or autistic behaviours. Clinical management in PWS typically includes familial/carer restriction and close supervision of food intake. If the supervision of food is left unmanaged, morbid obesity eventuates, central to the risk of cardiorespiratory disorder. None of the current appetite management/intervention strategies for PWS include pharmacological treatment, though recent research shows some promise. We review the established aberrant genetics and the endocrine and neuronal attributes which may determine disturbed regulatory processes in PWS. Focusing on clinical trials for appetite behaviours in PWS, we define the effectiveness of pharmacological treatments with a view to initiating and focusing research towards possible targets for modulating appetite in PWS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Use of Gene Expression, Biochemical and Metabolite Profiles to Enhance Exposure and Effects Assessment of the Model Androgen 17β-trenbolone in Fish

    EPA Science Inventory

    The impact of exposure by water to a model androgen, 17β-trenbolone (TRB), was assessed in fathead minnows using an integrated molecular approach. This included classical measures of endocrine exposure such as impacts on testosterone (T), 17β-estradiol (E2), and vitellogenin (VTG...

  13. Using fetal endocrine and genomic signatures to predict the relative potency of phthalate esters and their effects on postnatal development of the male rat reproductive tract

    EPA Science Inventory

    The first part of this presentation will address concerns expressed by some scientist that the screening and testing protocols for endocrine disrupting chemicals (EDCs) are 1) unable to adequately detect the low dose effects of EDCs, 2) they are unable to define the shape of the ...

  14. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development

    PubMed Central

    Nixon, R.; Cerqueira, V.; Kyriakou, A.; Lucas-Herald, A.; McNeilly, J.; McMillan, M.; Purvis, A.I.; Tobias, E.S.; McGowan, R.

    2017-01-01

    Abstract STUDY QUESTION What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? SUMMARY ANSWER An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. WHAT IS KNOWN ALREADY Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. STUDY, DESIGN, SIZE, DURATION This study was a retrospective review of investigations performed on 122 boys. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1–11). Details of phenotype, endocrine and genetic investigations were obtained from case records. MAIN RESULTS AND THE ROLE OF CHANCE An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1–10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5–11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5–11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1–9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. LIMITATIONS, REASONS FOR CAUTION A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. WIDER IMPLICATIONS OF THE FINDINGS The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD. STUDY FUNDING/COMPETING INTEREST(S) RN was supported by the James Paterson Bursary and the Glasgow Children's Hospital Charity Summer Scholarship. SFA, RM and EST are supported by a Scottish Executive Health Department grant 74250/1 for the Scottish Genomes Partnership. EST is also supported by MRC/EPSRC Molecular Pathology Node and Wellcome Trust ISSF funding. There are no conflicts of interest. TRIAL REGISTRATION NUMBER None. PMID:28938747

  15. Environmental toxicology and risk assessment: Standardization of biomarkers for endocrine disruption and environmental assessment: Eighth volume. Special technical publication 1364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshel, D.S.; Black, M.C.; Harrass, M.C.

    1999-07-01

    This conference was held April 20--22, 1998 in Atlanta, Georgia. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biological markers in toxicology and risk assessment, including endocrine disrupter screening assays. Attention is focused on the following: aquatic toxicology; behavioral toxicology; biochemical indicators; developmental indicators; endocrine indicators; biodegradation and fate of chemicals; quality assurance and quality control within laboratory and field studies; risk assessment and communication, and harmonization of standards development. Individual papers have been processed separately for inclusion in the appropriate data bases.

  16. Effect of in utero exposure to endocrine disruptors on fetal steroidogenesis governed by the pituitary-gonad axis: a study in rats using different ways of administration.

    PubMed

    Kariyazono, Yudai; Taura, Junki; Hattori, Yukiko; Ishii, Yuji; Narimatsu, Shizuo; Fujimura, Masatake; Takeda, Tomoki; Yamada, Hideyuki

    2015-12-01

    The effects of endocrine disruptors on testicular steroidogenesis in fetal rats were investigated in a study involving in utero exposure. In the major part of this study, pregnant rats at gestational day (GD)15 were given a single oral administration of the test substance, and then the expression of the following mRNAs in GD20 fetuses was determined: testicular steroidogenic acute-regulatory protein (StAR), a cholesterol transporter mediating the rate-limiting step of steroidogenesis, a ß-subunit of pituitary luteinizing hormone (LH), and a regulator of gonadal steroidogenesis. Among the substances tested, only di(2-ethylhexyl)phthalate (DEHP) reduced the expression of fetal testicular StAR. The others listed below exhibited little effect on fetal StAR: 2,2',4,4'-tetrabromodiphenylether, tributyltin chloride, atrazine, permethrin, cadmium chloride (Cd), lead acetate (Pb) and methylmercury (CH3HgOH). None of them, including DEHP, lacked the ability to reduce the expression of pituitary LHß mRNA. The present study also examined the potential of metals as modifiers of fetal steroidogenesis by giving them to pregnant dams in drinking water during GD1 and GD20. Under these conditions, Cd and Pb at a low concentration (0.01 ppm) significantly attenuated the fetal testicular expression of StAR mRNA without a concomitant reduction in LHß. No such effect was detected with CH3HgOH even at 1 ppm. These results suggest that: 1) DEHP, Cd and Pb attenuate the fetal production of sex steroids by directly acting on the testis, and 2) chronic treatment during the entire gestational period is more useful than a single administration for determining the hazardous effect of a suspected endocrine disruptor on fetal steroidogenesis.

  17. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta.

    PubMed

    Morales, Mónica; Martínez-Paz, Pedro; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2018-05-15

    Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region.

    PubMed

    Esteban, S; Moreno-Merino, L; Matellanes, R; Catalá, M; Gorga, M; Petrovic, M; López de Alda, M; Barceló, D; Silva, A; Durán, J J; López-Martínez, J; Valcárcel, Y

    2016-05-01

    The increasing human presence in Antarctica and the waste it generates is causing an impact on the environment at local and border scale. The main sources of anthropic pollution have a mainly local effect, and include the burning of fossil fuels, waste incineration, accidental spillage and wastewater effluents, even when treated. The aim of this work is to determine the presence and origin of 30 substances of anthropogenic origin considered to be, or suspected of being, endocrine disruptors in the continental waters of the Antarctic Peninsula region. We also studied a group of toxic metals, metalloids and other elements with possible endocrine activity. Ten water samples were analyzed from a wide range of sources, including streams, ponds, glacier drain, and an urban wastewater discharge into the sea. Surprisingly, the concentrations detected are generally similar to those found in other studies on continental waters in other parts of the world. The highest concentrations of micropollutants found correspond to the group of organophosphate flame retardants (19.60-9209ngL(-1)) and alkylphenols (1.14-7225ngL(-1)); and among toxic elements the presence of aluminum (a possible hormonal modifier) (1.7-127µgL(-1)) is significant. The concentrations detected are very low and insufficient to cause acute or subacute toxicity in aquatic organisms. However, little is known as yet of the potential sublethal and chronic effects of this type of pollutants and their capacity for bioaccumulation. These results point to the need for an ongoing system of environmental monitoring of these substances in Antarctic continental waters, and the advisability of regulating at least the most environmentally hazardous of these in the Antarctic legislation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. 20170308 - Higher Throughput Toxicokinetics to Allow ...

    EPA Pesticide Factsheets

    As part of "Ongoing EDSP Directions & Activities" I will present CSS research on high throughput toxicokinetics, including in vitro data and models to allow rapid determination of the real world doses that may cause endocrine disruption. This is a presentation as part of the U.S. Environmental Protection Agency – Japan Ministry of the Environment 12th Bilateral Meeting on Endocrine Disruption Test Methods Development.

  20. A Comparison of Pathology Found in Three Marine Fish Treated with Endocrine Disrupting Compounds

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs), such as the estrogen estradiol (E2) have been reported to affect fish reproduction. This study histopathologically compared and evaluated the effect of EDCs in three species of treated fish. Juvenile male summer flounder (Paralichthys dentat...

  1. USE OF POPULATION STUDIES TO IDENTIFY ASSOCIATIONS BETWEEN ADVERSE HEALTH EFFECTS AND ENVIRONMENTAL EXPOSURES TO ENDOCRINE DISRUPTING HERBICIDES

    EPA Science Inventory

    Not only animal studies, but also population (ecologic) studies can contribute to the identification of endocrine disrupting chemicals. Population studies are fundamental in identifying public health hazards, and provide hypotheses for more targeted studies. Chlorophenoxy herb...

  2. THE EFFECTS OF ENDOCRINE DISRUPTING COMPOUNDS ON GULF PIPEFISH

    EPA Science Inventory

    Pipefish exposed to endocrine disruptors, such as EE2, are expected to have lower reproductive success, resulting in a decrease in recruitment in exposed populations. Egg viability also is expected to be lowest in the paired mating of an exposed male and female, compared to...

  3. Biochar as potential adsorptive media for estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Endocrine disrupting chemicals are an emerging problem in water pollution due to their toxic effects on humans and wildlife. Estrogenic compounds are a subset of endocrine disrupting chemicals that are particularly dangerous since they are very potent and can affect fish at concentrations as low as ...

  4. Endocrine active agents: implications of adverse and non-adverse changes.

    PubMed

    Foster, Paul M D; McIntyre, Barry S

    2002-01-01

    The US Environmental Protection Agency (EPA) is currently in the process of developing screening and testing methodologies for the assessment of agents that may possess endocrine-like activity--the so-called endocrine disruptors. Moreover, the EPA has signaled its intention of placing information arising from such studies on the worldwide web. This has created significant interest in how such information may be used in risk assessment and by policymakers and the public in the potential regulation or deselection of specific chemical agents. The construction of lists of endocrine disruptors, although fulfilling the requirements of some parties, is really of little use when the nature of the response, the dose level employed, and the lifestage of the test species used are not given. Thus, we have already seen positive in vitro information available on the interaction with a receptor being used as a key indicator when the results of large, high quality in vivo studies showing no adverse changes have been ignored. Clearly a number of in vitro systems are available to ascertain chemical interaction with specific (mainly steroid) hormone receptors including a number of reporter gene assays. These assays only provide indicators of potential problems and should not be, in isolation, indicators of toxicity. Likewise, short-term in vivo screens such as the uterotrophic and Hershberger studies are frequently conducted in castrated animals and thus indicate the potential for a pharmacological response in vivo rather than an adverse effect. A number of new end points have been added to standard rodent testing protocols in the belief of providing more sensitivity to detect endocrine related changes. These include the measurement of anogenital distance (AGD), developmental landmarks [vaginal opening (VO), preputial separation (PPS)], and in some studies the counting of nipples and areolae on males. AGD, VO, and PPS are all affected by the size of the pup in which they are measured and should always be compared using bodyweight as a covariate. The historical control database for such changes is gradually growing, albeit that if pups are not individually identified it becomes problematic to associate any change with a specific malformation or to assess whether a delay or advance in, for example, developmental landmarks is biologically significant. Agents that significantly reduce AGD in males (it is an androgen-dependent variable) frequently have other more adverse changes associated with this end point (eg, reproductive tract malformations), but a 2 to 3% change in AGD although measurable is unlikely to be biologically of importance and in isolation would not necessarily be considered adverse. Retention of thoracic nipples in male rat pups is also an indicator of impaired androgen status. Recent studies have also shown that this retention for some endocrine active chemicals is permanent. Thus, the presence of a permanent structural change that is rarely found in adult control animals could be considered a malformation and therefore a developmental adverse effect on which risk assessment decisions could be made. The advent of multigeneration reproduction studies as the definitive studies for the assessment of the dose-response relationships and risk assessment for endocrine disruptors has shown that current testing protocols may be inadequate to reliably detect the adverse effects of concern as only 1 adult/sex/litter is examined. A number of the effects on reproductive development although, due to an in utero exposure, will not be manifest until after puberty or at adulthood. The use of only a limited number of animals to examine such changes, particularly for weaker acting materials indicates that some agents may have been examined in well-conducted, modern protocols but have insufficient power to detect low incidence phenomena (eg, a 5% incidence of malformations).

  5. Epidural anaesthesia and analgesia - effects on surgical stress responses and implications for postoperative nutrition.

    PubMed

    Holte, K; Kehlet, H

    2002-06-01

    Surgical injury leads to an endocrine-metabolic and inflammatory response with protein catabolism, increased cardiovascular demands, impaired pulmonary function and paralytic ileus, the most important release mechanisms being afferent neural stimuli and inflammatory mediators. Epidural local anaesthetic blockade of afferent stimuli reduces endocrine metabolic responses, and improve postoperative catabolism. Furthermore, dynamic pain relief is achieved with improved pulmonary function and a pronounced reduction of postoperative ileus, thereby providing optimal conditions for improved mobilization and oral nutrition, and preservation of body composition and muscle function. Studies integrating continuous epidural local anaesthetics with enforced early nutrition and mobilization uniformly suggest an improved recovery, decreased hospital stay and convalescence. Epidural local anaesthetics should be included in a multi-modal rehabilitation programme after major surgical procedures in order to facilitate oral nutrition, improve recovery and reduce morbidity.

  6. Evaluating Endocrine Disruption Activity of Deposits on Firefighting Gear Using a Sensitive and High Throughput Screening Method.

    PubMed

    Stevenson, Max; Alexander, Barbara; Baxter, C Stuart; Leung, Yuet-Kin

    2015-12-01

    Adverse health outcomes related to exposure to endocrine disrupting chemicals, including increased incidences of coronary heart disease, prostate and testicular cancers, and congenital disabilities, have been reported in firefighters or their offspring. We, therefore, measured the estrogenic and antiestrogenic activity of extracts of used firefighter gear to assess exposure to these agents. Extracts and known chemical contaminants were examined for estrogenicity and antiestrogenicity in yeast cells expressing the estrogen receptor. Most extracts of used gear and phthalate diesters detectable on this gear displayed strong antiestrogenic effects. Notably, new glove and hood extracts showed significant estrogenic activity. Overall, our data suggest that firefighters are exposed to both estrogenic and antiestrogenic agents, possibly phthalates that may lead to health risks observed in this occupation as a result of perturbation of hormone homeostasis.

  7. The effect of a dedicated endocrine surgery program on general surgery training: a single institutional experience.

    PubMed

    Wiseman, James E; Ituarte, Philip H G; Ro, Kevin; Pasternak, Jesse D; Quach, Chi A; Tillou, Areti K; Hines, O Joe; Hiatt, Jonathan R; Yeh, Michael W

    2012-06-01

    The endocrine surgery program was established at the University of California, Los Angeles, in 2006 to enhance the educational experience of surgical residents in this area. The impact of this program on subjective and objective measures of resident education was prospectively tracked. Resident case logs, American Board of Surgery In-Training Examination scores, self-assessment surveys, and annual rotation evaluations from July 2005 to June 2009 were reviewed. The mean number of endocrine cases reported by graduates doubled during the study period (from 18 to 36, P < .001). Self-assessment scores increased for thyroid (from 4.53 to 5.76, P = .04) and parathyroid (from 4.46 to 5.90, P = .03) disorders. The mean rating for the endocrine rotation (from 3.23 to 3.95, P = .005) improved, with specific increases in the quantity (from 3.05 to 3.74, P = .02) and quality (from 3.25 to 3.95, P = .002) of operative experience. Since 2006, trainees have coauthored 17 peer-reviewed reports and 3 textbook chapters on endocrine topics. The establishment of a dedicated endocrine surgery program has a measurable impact on resident education within this core content area. Copyright © 2012. Published by Elsevier Inc.

  8. Pearson syndrome: unique endocrine manifestations including neonatal diabetes and adrenal insufficiency.

    PubMed

    Williams, T B; Daniels, M; Puthenveetil, G; Chang, R; Wang, R Y; Abdenur, J E

    2012-05-01

    Pearson syndrome is a very rare metabolic disorder that is usually present in infancy with transfusion dependent macrocytic anemia and multiorgan involvement including exocrine pancreas, liver and renal tubular defects. The disease is secondary to a mitochondrial DNA deletion that is variable in size and location. Endocrine abnormalities can develop, but are usually not part of the initial presentation. We report two patients who presented with unusual endocrine manifestations, neonatal diabetes and adrenal insufficiency, who were both later diagnosed with Pearson syndrome. Medical records were reviewed. Confirmatory testing included: mitochondrial DNA deletion testing and sequencing of the breakpoints, muscle biopsy, and bone marrow studies. Case 1 presented with hyperglycemia requiring insulin at birth. She had several episodes of ketoacidosis triggered by stress and labile blood glucose control. Workup for genetic causes of neonatal diabetes was negative. She had transfusion dependent anemia and died at 24 months due to multisystem organ failure. Case 2 presented with adrenal insufficiency and anemia during inturcurrent illness, requiring steroid replacement since 37 months of age. He is currently 4 years old and has mild anemia. Mitochondrial DNA studies confirmed a 4.9 kb deletion in patient 1 and a 5.1 kb deletion in patient 2. The patients reported highlight the importance of considering mitochondrial DNA disorders in patients with early onset endocrine dysfunction, and expand the knowledge about this rare mitochondrial disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Endocrine and metabolic emergencies in children: hypocalcemia, hypoglycemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis

    PubMed Central

    2015-01-01

    It is important to fast diagnosis and management of the pediatric patients of the endocrine metabolic emergencies because the signs and symptoms of these disorders are nonspecific. Delayed diagnosis and treatment may lead to serious consequences of the pediatric patients, for example, cerebral dysfunction leading to coma or death of the patients with hypoglycemia, hypocalcemia, adrenal insufficiency, or diabetic ketoacidosis. The index of suspicion of the endocrine metabolic emergencies should be preceded prior to the starting nonspecific treatment. Importantly, proper diagnosis depends on the collection of blood and urine specimen before nonspecific therapy (intravenous hydration, electrolytes, glucose or calcium injection). At the same time, the taking of precise history and searching for pathognomonic physical findings should be performed. This review was described for fast diagnosis and proper management of hypoglycemic emergencies, hypocalcemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis. PMID:26817004

  10. Fighting Nemo: Effect of 17α-ethinylestradiol (EE2) on aggressive behavior and social hierarchy of the false clown anemonefish Amphiprion ocellaris.

    PubMed

    Chen, Te-Hao; Hsieh, Chun-Yu

    2017-11-30

    Aggressive behavior is crucial for maintaining social hierarchy in anemonefish. Endocrine disrupting chemicals such as EE2 may affect fish social hierarchy via disrupting their aggression. In this study, we aimed to characterize the effects of 17α-ethinylestradiol (EE2) on aggressive behavior and social hierarchy in the false clown anemonefish (Amphiprion ocellaris). In the laboratory experiment, juvenile anemonefish were randomly distributed to separated tanks to form small colonies of three individuals and were fed with EE2-dosed diet (100ng/g food) or a control diet for 90d. Through the experiment, each tank was videotaped and behavioral indicators of social status, including aggressive behavior, submissive response, and shelter utilization, were quantitatively analyzed from the videos. The EE2 exposure caused a higher frequency of intra-colonial aggressive interactions and a less stable social hierarchy. Our findings demonstrate the importance of examining the effects of endocrine disrupting chemicals on the social behavior of coral reef fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism.

    PubMed

    Kristensen, David Møbjerg; Desdoits-Lethimonier, Christèle; Mackey, Abigail L; Dalgaard, Marlene Danner; De Masi, Federico; Munkbøl, Cecilie Hurup; Styrishave, Bjarne; Antignac, Jean-Philippe; Le Bizec, Bruno; Platel, Christian; Hay-Schmidt, Anders; Jensen, Tina Kold; Lesné, Laurianne; Mazaud-Guittot, Séverine; Kristiansen, Karsten; Brunak, Søren; Kjaer, Michael; Juul, Anders; Jégou, Bernard

    2018-01-23

    Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism. Copyright © 2018 the Author(s). Published by PNAS.

  12. Environmental concentration of nonylphenol alters the development of urogenital and visceral organs in avian model.

    PubMed

    Roig, Benoit; Cadiere, Axelle; Bressieux, Stephanie; Biau, Sandrine; Faure, Sandrine; de Santa Barbara, Pascal

    2014-01-01

    Nonylphenol (NP) is an endocrine disruptor with harmful effects including feminization and carcinogenesis on various organisms. This substance is a degradation product of nonylphenol ethoxylates (NPEO) that is used in several industrial and agricultural processes. In this paper, we examined the assessment of NP exposure on chick embryo development, using a concentration consistent with the environmental concentrations of NP. With this aim, NP (between 0.1 and 50 μg/egg) was injected into the yolk of egg through a small needle hole in the shell. We report the effect of NP on chick reproductive system development although the effect we observed is lower than those observed by exposition to other endocrine disruptors. However, histological analysis highlighted a decrease of intraluminal seminiferous surface area in 64.12% of case (P=0.0086) and an heterogeneous organization of the renal tubules when 10 μg/egg were injected. Moreover, an impairment of liver development with an abnormal bile spillage was observed when higher concentration of NP was injected (50 μg/egg). © 2013.

  13. [Therapeutic use of somatostatin analogues in endocrinology].

    PubMed

    Faglia, G; Arosio, M

    1992-11-01

    The recent availability of the long-acting somatostatin analogue, octreotide, has allowed its therapeutical use in a wide variety of human diseases, including some digestive, neoplastic and autoimmune disorders. This review focuses on the treatment of some endocrine disorders with octreotide. Evidence is accumulating that octreotide treatment is effective in improving the cure rate of pituitary surgery in acromegaly by shrinking the tumour size, and in lowering GH and IGF-I levels in the vaste majority of patients. Octreotide is also effective in ameliorating TSH-induced hyperthyroidism in patients with TSH-secreting adenomas. Moreover, octreotide has proved useful in the management of endocrine tumours of the gastroenteropancreatic tract (vipomas, glucagonomas, gastrinomas, insulinomas, and carcinoids) by reducing hormone levels and in some instances the size of the primary and/or metastatic lesions. Besides the above well-established indications there are some other potential indications (non-secreting pituitary tumours, medullary thyroid carcinoma, ectopic Cushing's syndrome, diabete mellitus, Graves' ophthalmopathy, tall children and polycystic ovary syndrome) that still await further investigation. Side-effects of octreotide, particularly the formation of gallstones, should be carefully monitored.

  14. Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test.

    PubMed

    Muth-Köhne, Elke; Westphal-Settele, Kathi; Brückner, Jasmin; Konradi, Sabine; Schiller, Viktoria; Schäfers, Christoph; Teigeler, Matthias; Fenske, Martina

    2016-07-01

    The Fish Sexual Development Test (FSDT) is a non-reproductive test to assess adverse effects of endocrine disrupting chemicals. With the present study it was intended to evaluate whether gene expression endpoints would serve as predictive markers of endocrine disruption in a FSDT. For proof-of-concept, a FSDT according to the OECD TG 234 was conducted with the non-steroidal aromatase inhibitor fadrozole (test concentrations: 10μg/L, 32μg/L, 100μg/L) using zebrafish (Danio rerio). Gene expression analyses using quantitative RT-PCR were included at 48h, 96h, 28days and 63days post fertilization (hpf, dpf). The selection of genes aimed at finding molecular endpoints which could be directly linked to the adverse apical effects of aromatase inhibition. The most prominent effects of fadrozole exposure on the sexual development of zebrafish were a complete sex ratio shift towards males and an acceleration of gonad maturation already at low fadrozole concentrations (10μg/L). Due to the specific inhibition of the aromatase enzyme (Cyp19) by fadrozole and thus, the conversion of C19-androgens to C18-estrogens, the steroid hormone balance controlling the sex ratio of zebrafish was altered. The resulting key event is the regulation of directly estrogen-responsive genes. Subsequently, gene expression of vitellogenin 1 (vtg1) and of the aromatase cyp19a1b isoform (cyp19a1b), were down-regulated upon fadrozole treatment compared to controls. For example, mRNA levels of vtg1 were down-regulated compared to the controls as early as 48 hpf and 96 hpf. Further regulated genes cumulated in pathways suggested to be controlled by endocrine mechanisms, like the steroid and terpenoid synthesis pathway (e.g. mevalonate (diphospho) decarboxylase (mvd), lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase; lss), methylsterol monooxygenase 1 (sc4mol)) and in lipid transport/metabolic processes (steroidogenic acute regulatory protein (star), apolipoprotein Eb (apoEb)). Taken together, this study demonstrated that the existing Adverse Outcome Pathway (AOP) for aromatase inhibition in fish can be translated to the life-stage of sexual differentiation. We were further able to identify MoA-specific marker gene expression which can be instrumental in defining new measurable key events (KE) of existing or new AOPs related to endocrine disruption. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Overview of the response of anoestrous ewes to the ram effect.

    PubMed

    Ungerfeld, R; Forsberg, M; Rubianes, E

    2004-01-01

    The present review summarises knowledge of the reproductive response of anoestrous ewes to the introduction of rams - in other words, the ram effect. The ovarian and endocrine response, the factors that determine whether ewes will respond or not (associated with both the stimulus and the receptivity of the ewes) and some aspects of practical management are discussed. Information on the use of the ram effect to stimulate post-partum, prepubertal and cyclic ewes is also given. New insights are provided on ovarian response patterns, including recently collected information on luteal responses. The existence of delayed ovulation (5-7 days after the introduction of the rams) followed by luteal phases of normal or short length, luteal cysts and luteinised follicles is reported after scanning the ovaries with ultrasound. Endocrine parameters for depth of anoestrus, such as LH pulsatility and FSH concentrations, and how the concentrations of these hormones should be considered are discussed. Particular attention is paid to the observation of spontaneous, higher LH pulsatility and higher FSH concentrations in anoestrous ewes that respond to rams with luteal phases than in those that fail to respond. The use of progestogen priming and single progestogen administration and the possible advantages for synchronisation of oestrus are also discussed. Other factors that should be considered before the ram effect is applied, such as the strength of the stimulus and some practical considerations, are also included.

  16. [Laboratory diagnosis of lipid imbalance].

    PubMed

    Siemianowicz, K

    1996-01-01

    Accurate diagnosis of hyperlipidaemia is necessary for the effective treatment. Measurements in serum or plasma obtained after an overnight fast of over 16 hours should include total cholesterol, triglycerides and HDL-cholesterol concentrations; LDL-cholesterol can be calculated using the Friedelwald's formula. Lipoprotein electrophoresis is used to define different phenotypes of hyperlipoproteinaemia according to the Fredrickson's classification. More sophisticated tests include apolipoprotein analysis, determination of Lp(a) concentration, activities of enzymes involved in lipid metabolism and genetic studies. Secondary causes of hyperlipidaemia, including liver, kidney, endocrine disorders should be excluded using the laboratory methods.

  17. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALMUS-PITUARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disrupter Screening and Testing Program Advisory Committee (EDSTAC), the US EPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCS) on the hypothalamus-pituatary-thyroid (HPT) axis in Xenopus l...

  18. Regulating effect of epithalone on gastric endocrine cells in pinealectomized rats.

    PubMed

    Khavinson, V K; Popuchiev, V V; Kvetnoii, I M; Yuzhakov, V V; Kotlova, L N

    2000-12-01

    Endocrine cells in the stomach of pinealectomized rats after injection of epithalone (pineal gland peptide) were studied by immunohistochemical tests, morphometry, and image analysis microscopic images. A functional relationship was found between the pineal gland and stomach, which is regulated by peptides produced by the pineal gland.

  19. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALAMUS-PITUITARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disruptor Screening and Testing Program Advisory Committee (EDSTAC), the USEPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCs) on the hypothalamus-pituitary-thyroid (HPT) axis in Xenopus la...

  20. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALAMUS-PITUATARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disruptor Screening and Testing Program Advisory Committee (EDSTAC), the USEPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCs) on the hypothalamus-pituitary-thyroid (HPT) axis in Xenopus la...

  1. Measurement of Steroids in Rats after Exposure to an Endocrine Disruptor: Mass Spectrometry and Radioimmunoassay Demonstrate Similar Results

    EPA Science Inventory

    Commercially available radioimmunoassays (RIAs) are frequently used in toxicological studies to evaluate effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there are limited data comparing steroid concentrations in rats as measured by RIAs to t...

  2. PROJECTING POPULATION-LEVEL RESPONSES OF MYSIDS EXPOSED TO AN ENDOCRINE DISRUPTING CHEMICAL

    EPA Science Inventory

    Raimondo, Sandy and Charles L. McKenney, Jr. Submitted. Projecting Population-Level Responses of Mysids Exposed to an Endocrine-Disrupting Chemical. Integr. Comp. Biol. 23 p. (ERL,GB 1203).

    To fully understand the implications of a chemical's effect on the conservation of...

  3. Sex Differentiation as a Target of Endocrine Disrupting Compounds in Early Life Stage Fathead Minnows (Pimephales promelas)

    EPA Science Inventory

    The occurrence of endocrine disrupting chemicals (EDCs) in concentrated animal feed operation (CAFO) waste, and the potential effects of these chemicals on aquatic ecosystems have been of recent concern. There is evidence that exposure to EDCs during enhanced windows of sensitiv...

  4. Developing analytical approaches to explore the connectionbetween endocrine-active pharmaceuticals in waterto effects in fish

    EPA Science Inventory

    The emphasis of this research project was to develop, and optimize, a solid-phase extraction (SPE) method and high performance liquid chromatography-electrospray ionization- mass spectrometry (LC-MS/MS) method, such that a linkage between the detection of endocrine active pharma...

  5. Endocrine disrupting effects of domestic wastewater on reproduction, sexual behavior, and gene expression in the brackish medaka Oryzias melastigma.

    PubMed

    Chen, Te-Hao; Chou, Shi-Ming; Tang, Cheng-Hao; Chen, Chia-Yang; Meng, Pei-Jie; Ko, Fung-Chi; Cheng, Jing-O

    2016-05-01

    The objective of this study was to investigate the endocrine disrupting effects of domestic wastewater on fish using the brackish medaka Oryzias melastigma as the animal model. Estuarine water samples were collected from Sihchong Creek and Baoli Creek estuaries, Taiwan, in March of 2012 to assess the whole effluent toxicity (WET) of domestic wastewater produced by the local residents and tourists. Chemical analysis detected various pharmaceuticals and personal care products (PPCPs) in the field water samples. Some of these PPCPs are endocrine disrupting chemicals. In the laboratory-based bioassay, breeding pairs were exposed to the water samples (Sihchong, Baoli, and control) for 21 days. Cumulative number of eggs spawned was significantly higher in the Sihchong group. While fish swimming activity was not affected, sexual behavior of the male fish was significantly induced in both Sihchong and Baoli groups. Male and female gonad histology was not affected. Expression level of biomarker genes CYP1A1, HSP70, and VTG was significantly induced in the Sihchong group. This study indicates that the mixture of contaminants contained in the estuarine water may cause endocrine disrupting effects in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Psychosocial influences on HIV-1 disease progression: neural, endocrine, and virologic mechanisms.

    PubMed

    Cole, Steve W

    2008-06-01

    This review surveys empirical research pertinent to the hypothesis that activity of the hypothalamus-pituitary-adrenal (HPA) axis and/or the sympathetic nervous system (SNS) might mediate biobehavioral influences on HIV-1 pathogenesis and disease progression. Data are considered based on causal effects of neuroeffector molecules on HIV-1 replication, prospective relationships between neural/endocrine parameters and HIV-relevant biological or clinical markers, and correlational data consistent with in vivo neural/endocrine mediation in human or animal studies. Results show that HPA and SNS effector molecules can enhance HIV-1 replication in cellular models via effects on viral infectivity, viral gene expression, and the innate immune response to infection. Animal models and human clinical studies both provide evidence consistent with SNS regulation of viral replication, but data on HPA mediation are less clear. Regulation of leukocyte biology by neuroeffector molecules provides a plausible biological mechanism by which psychosocial factors might influence HIV-1 pathogenesis, even in the era of effective antiretroviral therapy. As such, neural and endocrine parameters might provide useful biomarkers for gauging the promise of behavioral interventions and suggest novel adjunctive strategies for controlling HIV-1 disease progression.

  7. High-fat diets exaggerate endocrine and metabolic phenotypes in a rat model of DHEA-induced PCOS.

    PubMed

    Zhang, Haolin; Yi, Ming; Zhang, Yan; Jin, Hongyan; Zhang, Wenxin; Yang, Jingjing; Yan, Liying; Li, Rong; Zhao, Yue; Qiao, Jie

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder with unclear etiology and unsatisfactory management. Effects of diets on the phenotype of PCOS were not fully understood. In the present study, we applied 45 and 60% high-fat diets (HFDs) on a rat model of PCOS induced by postnatal DHEA injection. We found that both DHEA and DHEA+HFDs rats exhibited reproductive abnormalities, including hyperandrogenism, irregular cycles and polycystic ovaries. The addition of HFDs, especially 60% HFDs, exaggerated morphological changes of ovaries and a number of metabolic changes, including increased body weight and body fat content, impaired glucose tolerance and increased serum insulin levels. Results from qPCR showed that DHEA-induced increased expression of hypothalamic androgen receptor and LH receptor were reversed by the addition of 60% HFDs. In contrast, the ovarian expression of LH receptor and insulin receptor mRNA was upregulated only with the addition of 60% HFDs. These findings indicated that DHEA and DHEA+HFDs might influence PCOS phenotypes through distinct mechanisms: DHEA affects the normal function of hypothalamus-pituitary-ovarian axis through LH, whereas the addition of HFDs exaggerated endocrine and metabolic dysfunction through ovarian responses to insulin-related mechanisms. We concluded that the addition of HFDs yielded distinct phenotypes of DHEA-induced PCOS and could be used for studies on both reproductive and metabolic features of the syndrome. © 2016 Society for Reproduction and Fertility.

  8. Abnormal gastrointestinal endocrine cells in patients with diabetes type 1: relationship to gastric emptying and myoelectrical activity.

    PubMed

    El-Salhy, M; Sitohy, B

    2001-11-01

    Gastrointestinal symptoms in patients with diabetes are believed to be caused by gastrointestinal dysmotility and secretion/absorption disturbances, and the gut endocrine cells play an important part in regulating these two functions. Studies on animal models of human diabetes type I revealed abnormality in these cells, but it is unknown whether abnormality also occurs in patients with diabetes. Eleven patients with long duration of diabetes type I and organ complications, as well as gastrointestinal symptoms, were studied. Endocrine cells in different segments of the gastrointestinal tract were detected by immunocytochemistry and quantified by computerized image analysis. Gastric emptying was measured by scintigraphy and gastric myoelectric activity was determined by electrogastrography. An abnormal density of gastrointestinal endocrine cells was found in patients with diabetes. This abnormality occurred in all segments of the upper and lower gastrointestinal tract investigated, and included most of the endocrine cell types. The patients showed delayed gastric emptying, which correlated closely with the acute glucose level, but did not correlate with HbA1c. Gastric emptying also correlated closely with the density of duodenal serotonin and secretin cells. The patients exhibited bradygastrias and tachygastrias. These dysrhythmias, however, did not differ significantly from controls. The endocrine cells are the anatomical units responsible for the production of gut hormones, and the change in their density would reflect a change in the capacity of producing these hormones. The abnormality in density of the gastrointestinal endocrine cells may contribute to the development of gastrointestinal dysmotility and the symptoms encountered in patients with diabetes.

  9. Identification of endocrine disrupting chemicals acting on human aromatase.

    PubMed

    Baravalle, Roberta; Ciaramella, Alberto; Baj, Francesca; Di Nardo, Giovanna; Gilardi, Gianfranco

    2018-01-01

    Human aromatase is the cytochrome P450 catalysing the conversion of androgens into estrogens playing a key role in the endocrine system. Due to this role, it is likely to be a target of the so-called endocrine disrupting chemicals, a series of compounds able to interfere with the hormone system with toxic effects. If on one side the toxicity of some compounds such as bisphenol A is well known, on the other side the toxic concentrations of such compounds as well as the effect of the many other molecules that are in contact with us in everyday life still need a deep investigation. The availability of biological assays able to detect the interaction of chemicals with key molecular targets of the endocrine system represents a possible solution to identify potential endocrine disrupting chemicals. Here the so-called alkali assay previously developed in our laboratory is applied to test the effect of different compounds on the activity of human aromatase. The assay is based on the detection of the alkali product that forms upon strong alkali treatment of the NADP + released upon enzyme turnover. Here it is applied on human aromatase and validated using anastrozole and sildenafil as known aromatase inhibitors. Out of the small library of compounds tested, resveratrol and ketoconazole resulted to inhibit aromatase activity, while bisphenol A and nicotine were found to exert an inhibitory effect at relatively high concentrations (100μM), and other molecules such as lindane and four plasticizers did not show any significant effect. These data are confirmed by quantification of the product estrone in the same reaction mixtures through ELISA. Overall, the results show that the alkali assay is suitable to screen for molecules that interfere with aromatase activity. As a consequence it can also be applied to other molecular targets of EDCs that use NAD(P)H for catalysis in a high throughput format for the fast screening of many different compounds as endocrine disrupting chemicals. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Effects of Chromium Supplementation on Endocrine Profiles, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Jamilian, Mehri; Bahmani, Fereshteh; Siavashani, Mehrnush Amiri; Mazloomi, Maryam; Asemi, Zatollah; Esmaillzadeh, Ahmad

    2016-07-01

    Limited data are available indicating the effects of chromium administration on endocrine profiles, biomarkers of inflammation, and oxidative stress among women with polycystic ovary syndrome (PCOS). This study was done to assess the effects of chromium administration on endocrine profiles, biomarkers of inflammation, and oxidative stress in women with PCOS. Participants of this randomized, double-blind, placebo-controlled trial consisted of 60 patients with PCOS who received either 200 μg chromium supplements (n = 30) or placebo daily (n = 30) for 8 weeks. Endocrine profiles, inflammatory factors, and biomarkers of oxidative stress were assessed at study baseline and at the end of intervention. After 8 weeks of intervention, pregnancy rate in chromium group was higher than that in the placebo group: 16.7 % (5/30) vs. 3.3 % (1/30), P = 0.08. In addition, prevalence of acne (20.0 vs. 3.3 %, P = 0.04) decreased following the administration of chromium supplements compared with the placebo. Taking chromium led to a significant reduction in hirsutism (-1.8 ± 2.5 vs. -0.2 ± 0.8, P = 0.002), serum high-sensitivity C-reactive protein (hs-CRP) (-717.0 ± 1496.1 vs. +227.1 ± 1669.6 ng/mL, P = 0.02), plasma malondialdehyde (MDA) (-0.1 ± 0.7 vs. +1.1 ± 1.5 μmol/L, P < 0.001), and a significant increase in plasma total antioxidant capacity (TAC) concentrations (+250.7 ± 265.2 vs. +13.0 ± 201.6 mmol/L, P < 0.001). We failed to find any significant effect of chromium administration on endocrine profiles and nitric oxide (NO) and glutathione (GSH) levels. Overall, taking chromium for 8 weeks among women with PCOS had beneficial effects on acne, hirsutism, hs-CRP, TAC, and MDA levels, but it did not affect endocrine profiles, NO, and GSH. IRCT201506105623N44 ( www.irct.ir ).

  11. A Two-Tiered-Testing Decision Tree for Assays in the USEPA-EDSP Screening Battery: Using 15 years of experience to improve screening and testing for endocrine active chemicals

    EPA Science Inventory

    Outline of the presentationEDCs – from 1991 to 1996 – Wingspread and Our Stolen Future 1996 – FQPA and SDWA mandates endocrine screening 1996-1998 – EDSTAC (the assays, debates over modes of action included) The final battery – EAT in vivo and in vit...

  12. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  13. Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster B(II) cell in vitro assay.

    PubMed

    Dinan, L; Bourne, P; Whiting, P; Dhadialla, T S; Hutchinson, T H

    2001-09-01

    The B(II) bioassay was developed as a rapid and reliable tool for detecting potential insect growth regulators acting as ecdysteroid receptor (ant)agonists. Based on an ecdysteroid-responsive cell line from Drosophila melanogaster, this microplate assay is ideally suited to the evaluation of environmental contaminants as potential endocrine disrupters. Data are presented for about 80 potential environmental contaminants, including industrial chemicals, pesticides, pharmaceuticals, phytoestrogens, and vertebrate steroids, and are compared with data for known (ant)agonists. Apart from androst-4-ene-3,17-dione (a weak antagonist), vertebrate steroids were inactive at concentrations up to 10(-3) M. The vast majority of xenobiotics also showed no (ant)agonist activity. Among the industrial chemicals, antagonistic activity was observed for bisphenol A median effective concentration (EC50) of 1.0 x 10(-4) M and diethylphthalate (EC50 of 2.0 x 10(-3) M). Some organochlorine compounds also showed weak antagonistic activity, including o,p'-dichlorodiphenyldichloroethylene (DDE), p,p'-DDE, dieldrin, and lindane (EC50 of 3.0 x 10(-5) M). For lindane, bisphenol A, and diethylphthalate, activity is not associated with impurities in the samples and, for lindane and bisphenol A at least, the compounds are able to compete with ecdysteroids for the ligand binding site on the receptor complex, albeit at concentrations very much higher than those found in the environment. The only pharmaceutical showing any detectable antagonist activity was 17alpha-ethynylestradiol. In the context of recent publications on potential endocrine disruption in marine and freshwater arthropods, these findings suggest that, for some compounds (e.g., diethylstilbestrol), ecdysteroid receptor-mediated responses are unlikely to be involved in producing chronic effects. The B(II) assay has a potentially valuable role to play in distinguishing between endocrine-mediated, which normally occur at submicromolar concentrations, and pharmacological effects in insects and crustaceans.

  14. Dioxin pollution disrupts reproduction in male Japanese field mice.

    PubMed

    Ishiniwa, Hiroko; Sakai, Mizuki; Tohma, Shimon; Matsuki, Hidenori; Takahashi, Yukio; Kajiwara, Hideo; Sekijima, Tsuneo

    2013-11-01

    Dioxins cause various adverse effects in animals including teratogenesis, induction of drug metabolizing enzymes, tumor promotion, and endocrine disruption. Above all, endocrine disruption is known to disturb reproduction in adult animals and may, also seriously impact their offspring. However, most previous studies have quantified the species-specific accumulation of dioxins, whereas few studies have addressed the physiological impacts of dioxins on wildlife, such as reduced reproductive function. Here we clarify an effect of endocrine disruption caused by dioxins on the Japanese field mouse, Apodemus speciosus. Japanese field mice collected from various sites polluted with dioxins accumulated high concentrations of dioxins in their livers. Some dioxin congeners, especially, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 3,3',4,4',5-pentachloro biphenyl, 1,2,3,4,6,7,8-heptachlorodibenzofuran, and octachlorodibenzo-p-dioxin, which showed high biota-soil accumulation factors, contributed to concentration of dioxins in mouse livers with an increase of accumulation of total dioxins. As for physiological effects on the Japanese field mouse, high levels of cytochrome P450 1A1 (CYP1A1) mRNA, a drug metabolizing enzyme induced by dioxins, were found in the livers of mice captured at polluted sites. Furthermore, at such sites polluted with dioxins, increased CYP1A1 expression coincided with reduced numbers of active spermatozoa in mice. Thus, disruption in gametogenesis observed in these mice suggests that dioxins not only negatively impact reproduction among Japanese field mice, but might also act as a kind of selection pressure in a chemically polluted environment.

  15. The Impact of Chocolate Goat's and Cow's Milk on Postresistance Exercise Endocrine Responses and Isometric Mid-Thigh Pull Performance.

    PubMed

    Bellar, David; LeBlanc, Nina R; Murphy, Kellie; Moody, Kaitlyn M; Buquet, Gina

    2016-01-01

    The present investigation examined the effects of chocolate cow's and goat's milk on endocrine responses and isometric mid-thigh pull performance post back squat exercise. Twelve college-aged males volunteered to participate and reported to the lab on four occasions. The first visit included anthropometric measurement, one-repetition back squat (1RM), and familiarization with the isometric mid-thigh pull assessment (IMTP). During the subsequent three visits, five sets of eight repetitions of the back squat exercise at 80% of 1RM were performed. For these trials, the participants performed an IMTP and gave a saliva sample prior to, immediately after, 1 hr and 2 hr post exercise. After exercise, a treatment of low-fat chocolate goat's milk (355 ml, 225 kcal), low-fat chocolate cow's milk (355 ml, 225 kcal), or control (water 355 ml, 0 kcal) was given in a counterbalanced order. Saliva samples were analyzed for testosterone, cortisol, and dehydroepiandrosterone (DHEA). Cortisol and DHEA hormone were unaffected by exercise; however, testosterone values did increase significantly post exercise. For IMTP, there was a significant main effect for time (F = 8.41, p = .007) but no treatment or interactions effects. N changes were noted post supplementation for cortisol or DHEA, but testosterone was found to be significantly reduced in both diary treatments compared to control (F = 4.27, p = .022). Based upon these data, it appears that a single treatment of chocolate goat's or cow's milk results in similar endocrine alterations but both fail to enhance postexercise isometric strength following resistance exercise.

  16. Metabolic and endocrine profiles and reproductive parameters in dairy cows under grazing conditions: effect of polymorphisms in somatotropic axis genes

    PubMed Central

    2011-01-01

    Background The present study hypothesized that GH-AluI and IGF-I-SnabI polymorphisms do change the metabolic/endocrine profiles in Holstein cows during the transition period, which in turn are associated with productive and reproductive parameters. Methods Holstein cows (Farm 1, primiparous cows, n = 110, and Farm 2, multiparous cows, n = 76) under grazing conditions were selected and GH and IGF-I genotypes were determined. Blood samples for metabolic/endocrine determinations were taken during the transition period and early lactation in both farms. Data was analyzed by farm using a repeated measures analyses including GH and IGF-I genotypes, days and interactions as fixed effects, sire and cow as random effects and calving date as covariate. Results and Discussion Frequencies of GH and IGF-I alleles were L:0.84, V:0.16 and A:0.60, B:0.40, respectively. The GH genotype was not associated with productive or reproductive variables, but interaction with days affected FCM yield in multiparous (farm 2) cows (LL yielded more than LV cows) in early lactation. The GH genotype affected NEFA and IGF-I concentrations in farm 1 (LV had higher NEFA and lower IGF-I than LL cows) suggesting a better energy status of LL cows. There was no effect of IGF-I genotype on productive variables, but a trend was found for FCM in farm 2 (AB cows yielded more than AA cows). IGF-I genotype affected calving first service interval in farm 1, and the interaction with days tended to affect FCM yield (AB cows had a shorter interval and yielded more FCM than BB cows). IGF-I genotype affected BHB, NEFA, and insulin concentrations in farm 1: primiparous BB cows had lower NEFA and BHB and higher insulin concentrations. In farm 2, there was no effect of IGF-I genotype, but there was an interaction with days on IGF-I concentration, suggesting a greater uncoupling somatropic axis in AB and BB than AA cows, being in accordance with greater FCM yield in AB cows. Conclusion The GH and IGF-I genotypes had no substantial effect on productive parameters, although IGF-I genotype affected calving-first service interval in primiparous cows. Besides, these genotypes may modify the endocrine/metabolic profiles of the transition dairy cow under grazing conditions. PMID:21635772

  17. The adverse health effects of oil spills: a review of the literature and a framework for medically evaluating exposed individuals.

    PubMed

    Levy, Barry S; Nassetta, William J

    2011-01-01

    In April 2010, an explosion on an oil rig in the Gulf of Mexico killed 11 workers, injured 17 workers, and spilled an estimated 185 million gallons of crude oil into the Gulf. Adverse effects on the health of cleanup workers, fishermen, and others as well as on the ecosystem are being studied. This paper reviews published studies of the adverse health effects due to previous oil spills. Acute effects have included: respiratory, eye, and skin symptoms; headache; nausea; dizziness; and tiredness or fatigue. Chronic effects have included: psychological disorders, respiratory disorders, genotoxic effects, and endocrine abnormalities. We also present a systematic approach to evaluating individuals exposed to oil spills.

  18. Comparison of the effects of ovarian cauterization and gonadotropin-releasing hormone agonist and oral contraceptive therapy combination on endocrine changes in women with polycystic ovary disease.

    PubMed

    Taskin, O; Yalcinoglu, A I; Kafkasli, A; Burak, F; Ozekici, U

    1996-06-01

    To study the effects of laparoscopic ovarian cauterization and combination of long-acting GnRH agonist (GnRH-a) and oral contraceptive (OC) therapy on endocrine changes in women with clomiphene citrate (CC)- resistant polycystic ovary disease (PCOD). Prospective, randomized. University-based infertility clinic. Seventeen women with CC-resistant PCOD were included randomly in the study to either laparoscopic ovarian cautery or GnRH-a and OC therapy for 3 months. Serum concentrations of LH, FSH, androstenedione (A), T, and sex hormone-binding globulin (SHBG) were determined before each therapeutic approach and during the follicular phase of first menstrual cycle after the cessation of each treatment. The mean serum concentrations and the clinical profiles were similar in both groups. Both groups showed significant changes in LH, FSH, A, T, and SHBG compared with pretreatment levels. There were no significant differences in the final concentrations of LH, FSH, and A between the two study groups after each treatment, whereas T and SHBG levels were significantly different in the goserelin and OC group. The decrease in LH and increase in SHBG serum concentrations were greater in the goserelin and OC-treated women [-59% and + 5.9% versus - 70% and + 13.5%, respectively]. Although the SHBG concentration increased in both groups, the serum SHBG concentration of the goserelin and OC group was significantly higher than the other group. Both therapeutic modalities revealed similar effects on the endocrine profiles in women with CC-resistant PCOD. Considering the invasiveness, cost, and potential complications of laparoscopic ovarian cauterization, noninvasive medical treatment with GnRH-a and OC combination may be more effective in restoring the optimal follicular environment in women with PCOD.

  19. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters.

    PubMed

    Catanese, Mary C; Vandenberg, Laura N

    2017-03-01

    Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications. Copyright © 2017 by the Endocrine Society.

  20. Elucidating the Links Between Endocrine Disruptors and Neurodevelopment

    PubMed Central

    Blawas, Ashley M.; Gray, Kimberly; Heindel, Jerrold J.; Lawler, Cindy P.

    2015-01-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes. PMID:25714811

  1. Reconnaissance of 17 beta-estradiol, 11-ketotestosterone, vitellogenin, and gonad histopathology in common carp of United States streams; potential for contaminant-induced endocrine disruption

    USGS Publications Warehouse

    Goodbred, Steven L.; Gilliom, Robert J.; Gross, Timothy S.; Denslow, Nancy P.; Bryant, Wade B.; Schoeb, Trenton R.

    1997-01-01

    A reconnaissance of sex steroid hormones and other biomarkers in common carp was used to assess whether endocrine disruption may be occurring in fish in United States streams, to evaluate relations between endocrine disruption and contaminant levels, and to determine requirements for further studies. 17?-estradiol, 11-ketotestosterone, vitellogenin, and gonadal histopathology were measured in adult carp (usually 10--15 for each sex) at 25 sites (647 fish), representing a wide range of environmental settings typical of major regions of the nation. Fish were collected during August--December 1994, a period of gonadal maturation after spawning. Contaminants evaluated were organochlorine pesticides and polychlorinated biphenyls in tissue; phthalates, phenols, and polycyclic aromatic hydrocarbons in bed sediment; and dissolved pesticides in water. Mean site concentrations of steroid hormones spanned two orders of magnitude for both sexes. No significant regional differences in steroid hormones were detected for males, but females from the Northern and Southern Midcontinent were significantly different from other regions of the country in one or both hormones. Within all regions there were significant differences between sites in one or both hormones for both sexes. Most correlation coefficients between biomarkers and contaminants were negative. Contaminants that had significant (a=0.05) correlations with biomarkers were organochlorine pesticides, phenols, and dissolved pesticides. The strongest pattern common to both males and females was a negative correlation between the hormone ratio (E2/11-KT) and dissolved pesticides. The significant site-to-site differences in biomarkers, and the presence of significant correlations between biomarkers and contaminants, are evidence that fish in some streams may be experiencing endocrine disruption. Improved information is needed to evaluate whether endocrine disruption is actually occurring and if there are reproductive effects on individual or populations of carp or other species. Future studies should shift to more intensive study of fewer sites, including reference and contaminated sites, in order to address these additional questions.

  2. Influence of semi-quantitative oestrogen receptor expression on adjuvant endocrine therapy efficacy in ductal and lobular breast cancer - a TEAM study analysis.

    PubMed

    van de Water, Willemien; Fontein, Duveken B Y; van Nes, Johanna G H; Bartlett, John M S; Hille, Elysée T M; Putter, Hein; Robson, Tammy; Liefers, Gerrit-Jan; Roumen, Rudi M H; Seynaeve, Caroline; Dirix, Luc Y; Paridaens, Robert; Kranenbarg, Elma Meershoek-Klein; Nortier, Johan W R; van de Velde, Cornelis J H

    2013-01-01

    Multiple studies suggest better efficacy of chemotherapy in invasive ductal breast carcinomas (IDC) than invasive lobular breast carcinomas (ILC). However, data on efficacy of adjuvant endocrine therapy regimens and histological subtypes are sparse. This study assessed endocrine therapy efficacy in IDC and ILC. The influence of semi-quantitative oestrogen receptor (ER) expression by Allred score was also investigated. Dutch and Belgian patients enrolled in the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial were randomized to exemestane (25mg daily) alone or following tamoxifen (20mg daily) for 5 years. Inclusion was restricted to IDC and ILC patients. Histological subtype was assessed locally; ER expression was centrally reviewed according to Allred score (ER-poor (<7; n=235); ER-rich (7; n=1789)). Primary end-point was relapse-free survival (RFS), which was the time from randomization to disease relapse. Overall, 2140 (82%) IDC and 463 (18%) ILC patients were included. RFS was similar for both endocrine treatment regimens in IDC (hazard ratio (HR) for exemestane was 0.83 (95%confidence interval (CI) 0.67-1.03)), and ILC (HR 0.69 (95%CI 0.45-1.06)). Irrespective of histological subtype, patients with ER-rich Allred scores allocated to exemestane alone had an improved RFS (multivariable HR 0.71 (95%CI 0.56-0.89)). In contrast, patients with ER-poor Allred scores allocated to exemestane had a worse RFS (multivariable HR 2.33 (95%CI 1.32-4.11)). Significant effect modification by ER-Allred score was confirmed (multivariable p=0.003). Efficacy of endocrine therapy regimens was similar for IDC and ILC. However, ER-rich patients showed superior efficacy to upfront exemestane, while ER-poor patients had better outcomes with sequential therapy, irrespective of histological subtype, emphasising the relevance of quantification of ER expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Endocrine control of epigenetic mechanisms in male reproduction.

    PubMed

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  4. Progenitor cell domains in the developing and adult pancreas

    PubMed Central

    Kopp, Janel L; Dubois, Claire L; Hao, Ergeng; Thorel, Fabrizio; Herrera, Pedro L

    2011-01-01

    Unlike organs with defined stem cell compartments, such as the intestine, the pancreas has limited capacity to regenerate. The question of whether the adult pancreas harbors facultative stem/progenitor cells has been a prime subject of debate. Cumulative evidence from recent genetic lineage tracing studies, in which specific cell populations were marked and traced in adult mice, suggests that endocrine and acinar cells are no longer generated from progenitors in the adult pancreas. These studies further indicate that adult pancreatic ductal cells are not a source for endocrine cells following pancreatic injury, as previously suggested. Our own studies have shown that adult ductal cells reinitiate expression of some endocrine progenitor markers, including Ngn3, after injury by partial duct ligation (PDL), but that these cells do not undergo endocrine cell differentiation. Here, we present additional evidence that endocrine cells do not arise from ducts following β-cell ablation by streptozotocin or by a diphtheria toxin-expressing transgene or when β-cell ablation is combined with PDL. In this review, we discuss findings from recent lineage tracing studies of embryonic and adult pancreatic ductal cells. Based upon the combined evidence from these studies, we propose that multipotency is associated with a specific transcriptional signature. PMID:21558806

  5. The endocrine manifestations of anorexia nervosa: mechanisms and management.

    PubMed

    Schorr, Melanie; Miller, Karen K

    2017-03-01

    Anorexia nervosa is a psychiatric disorder characterized by altered body image, persistent food restriction and low body weight, and is associated with global endocrine dysregulation in both adolescent girls and women. Dysfunction of the hypothalamic-pituitary axis includes hypogonadotropic hypogonadism with relative oestrogen and androgen deficiency, growth hormone resistance, hypercortisolaemia, non-thyroidal illness syndrome, hyponatraemia and hypooxytocinaemia. Serum levels of leptin, an anorexigenic adipokine, are suppressed and levels of ghrelin, an orexigenic gut peptide, are elevated in women with anorexia nervosa; however, levels of peptide YY, an anorexigenic gut peptide, are paradoxically elevated. Although most, but not all, of these endocrine disturbances are adaptive to the low energy state of chronic starvation and reverse with treatment of the eating disorder, many contribute to impaired skeletal integrity, as well as neuropsychiatric comorbidities, in individuals with anorexia nervosa. Although 5-15% of patients with anorexia nervosa are men, only limited data exist regarding the endocrine impact of the disease in adolescent boys and men. Further research is needed to understand the endocrine determinants of bone loss and neuropsychiatric comorbidities in anorexia nervosa in both women and men, as well as to formulate optimal treatment strategies.

  6. Review: the role of neural crest cells in the endocrine system.

    PubMed

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  7. [Comparative study of main components of ginseng on immune function of rats].

    PubMed

    Jia, Zhi-Ying; Xie, Xie; Wang, Xiao-Yan; Jia, Wei

    2014-09-01

    Ginseng and its effective components are famous for their influence to enhance human immunity, regulate endocrine and antioxidant action. However, the different effects of different components are not clear. In this study, Wistar rats were used to study the effects of main components of ginseng, including total ginsenoside, panaxadiol saponins, panaxtrol saponin and ginseng polysaccharide. The results showed that the effects of panaxadiol saponins and ginseng polysaccharide on improving animal immune organ weight, plasma interleukin 2 (IL-2), interleukin 6 (IL-6), plasma gamma-interferon (IFN-γ), tumor necrosis factor alpha (TNF-α) were better than that of the other groups. Total ginsenoside and panaxtrol saponin can effectively increase the concentration of spleen NK cells (NKC) while panaxadiol saponins and ginseng polysaccharide can significantly increase the concentrations of rat plasma adrenocorticotrophic hormone (ACTH), corticosterone (CORT) and thyroid stimulating hormone (TSH). As for the effect of increasing organization nitric oxide (NO) and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA), total ginsenoside is better than that of other groups. In brief, different components in ginseng possess different effects on enhancing immunity, regulating endocrine and resisting oxidation. Panaxadiol saponins and ginseng polysaccharide are better in enhancing immune, and total ginsenoside shows advantages in resisting oxidation and stress.

  8. Role of Epidermal Growth Factor Receptors and Their Ligands in Normal Mammary Epithelial and Breast Cancer Cells

    DTIC Science & Technology

    1997-07-01

    have an estrogen receptor and progesterone receptor negative phenotype, high proliferation rates, poor response to endocrine therapy, and reduced...mitogenic effects of estrogen, progesterone and prolactin in breast cancer cell lines (3), and part of the growth promoting effects of an activated ras...of the cases (51,52), and an inverse relationship with estrogen and progesterone receptors; in such tumors, a poor response to endocrine therapy

  9. Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)

    USGS Publications Warehouse

    Sughrue, K.M.; Brittingham, M.C.; French, J.B.

    2008-01-01

    Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.

  10. A Comparison of RIA and LC-MS/MS Methods to Quantify Steroids in Rat Serum and Urine Following Exposure to an Endocrine Disrupting Chemical

    EPA Science Inventory

    Commercially available radio immunoassays (RIM) are frequently used in toxicological studies to evaluate effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there are limited data comparing steroid concentrations in rats as measured by RIM to th...

  11. Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis: Incorporating Protein Synthesis in Improving Predictability of Responses to Endocrine Active Chemicals

    EPA Science Inventory

    There is international concern about chemicals that alter endocrine system function in humans and/or wildlife and subsequently cause adverse effects. We previously developed a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minno...

  12. HIGH INFORMATION CONTENT TOXICITY SCREENING USING MOUSE AND HUMAN STEM CELL MODELS OF ENDOCRINE DEVELOPMENT AND FUNCTION

    EPA Science Inventory

    The project will result in the rapid assessment of chemicals for adverse effects on the development of gametes, adipocytes, and islet B-cells; and on the adipocyte and B-cell endocrine signaling function in human and murine embryonic stem cells. Based on the data, hierarchical...

  13. Evaluation of Endocrine Effects in Birds: A Case for a Targeted, Life-stage and Endpoint Specific Approach

    EPA Science Inventory

    The EFSA "Scientific Opinion on the Science Behind the Guidance" document on risk assessment for birds and mammals has a chapter on risk assessment of substances with endocrine-disrupting properties in birds. It discusses that targeted partial life-cycle or critical life-stage te...

  14. Multi-Criteria Decision Analysis of Test Endpoints for Detecting the Effects of Endocrine Active Substances in Fish Full Life Cycle Tests

    EPA Science Inventory

    Fish full life cycle (FFLC) tests are increasingly required in the ecotoxicological assessment of endocrine active substances. However, FFLC tests have not been internationally standardized or validated, and it is currently unclear how such tests should best be designed to provid...

  15. Cross-species extrapolation of toxicity information using the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    EPA Science Inventory

    In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two ...

  16. EFFECT OF THE ANTI-ANDROGENIC ENDOCRINE DISRUPTOR VINCLOZOLIN ON EMBRYONIC TESTIS CORD FORMATION AND POSTNATAL TESTIS DEVELOPMENT AND FUNCTION. (R827405)

    EPA Science Inventory

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is...

  17. Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals.

    PubMed

    Maryšková, Milena; Ardao, Inés; García-González, Carlos A; Martinová, Lenka; Rotková, Jana; Ševců, Alena

    2016-07-01

    In recent years, there has been an increase in efforts to improve wastewater treatment as the concentration of dangerous pollutants, such as endocrine disrupting chemicals, in wastewater increases. These compounds, which mimic the effect of hormones, have a negative impact on human health and are not easily removed from water. One way to effectively eliminate these pollutants is to use enzymatically activated materials. In this study, we report on the use of laccase from the white rot fungus Trametes versicolor immobilized onto polyamide 6/chitosan (PA6/CHIT) nanofibers modified using two different spacers (bovine serum albumin and hexamethylenediamine). We then tested the ability of the PA6/CHIT-laccase biocatalysts to eliminate a mixture containing 50μM of two endocrine disrupting chemicals: bisphenol A and 17α-ethinylestradiol. The PA6/CHIT nanofiber matrix used in this study not only proved to be a suitable carrier for immobilized and modified laccase but was also efficient in the removal of a mixture of endocrine disrupting chemicals in three treatment cycles. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Phytochemicals for taming agitated immune-endocrine-neural axis.

    PubMed

    Patel, Seema

    2017-07-01

    Homeostasis of immune-endocrine-neural axis is paramount for human health. If this axis gets agitated due to age, genetic variations, environmental exposures or lifestyle assaults, a cascade of adverse reactions occurs in human body. Cytokines, hormones and neurotransmitters, the effector molecules of this axis behave erratically, leading to a gamut of neural, endocrine, autoimmune, and metabolic diseases. Current panel of drugs can tackle some of them but not in a sustainable, benign way as a myriad of side effects, causal of them have been documented. In this context, phytochemicals, the secondary metabolites of plants seem beneficial. These bioactive constituents encompassing polyphenols, alkaloids, flavonoids, terpenoids, tannins, lignans, stilbenoids (resveratrol), saponins, polysaccharides, glycosides, and lectins etc. have been proven to exert antioxidant, anti-inflammatory, hypolipidemic, hypotensive, antidiabetic, anticancer, immunomodulatory, anti-allergic, analgesic, hepatoprotective, neuroprotective, dermatoprotective, and antimicrobial properties, among a litany of other biological effects. This review presents a holistic perspective of common afflictions resultant of immune-endocrine-neural axis disruption, and the phytochemicals capable of restoring their normalcy and mitigating the ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Information analysis of immune and endocrine organs. Morphological changes in the course of infection.

    PubMed

    Avtandilov, G G; Barsukov, V S

    1992-11-01

    Morphological and morphometric studies were conducted into lymphoid and endocrine organs of 259 human adults and infants with pyoinflammatory diseases (PID) and of 300 experimental mice. Informative and correlation analyses of the data thus recorded provided evidence to the effect that in the course of an infection process adaptation and compensation responses were characterized by intensified exchange of information within the immune-endocrine system (IES). Septic courses of PID were found to be accompanied by impairment of inter-organ correlations, increase in information entropy and progressive structural disorganization of the IES.

  20. An epistemological inquiry into the endocrine disruptor thesis.

    PubMed

    Krimsky, S

    2001-12-01

    For about a decade the term endocrine disruptor has become synonymous with a new research initiative that has been investigating the effects of hormonally active xenobiotics on biological systems. The scientific thesis behind the new research initiative is discussed and it is argued that there is a need for more emphasis on theory development and conceptual clarification that will give coherence to a field experiencing a rapid growth of empirical studies. Reflections on scientific methodology in this field will also help clarify whether endocrine disruptors symbolize a new etiology of chemically induced disease or represent variations of traditional chemical toxicology.

  1. [Apitherapy in the combined treatment of patients with pulmonary tuberculosis taking into account the hypophyseal-adrenal system indices].

    PubMed

    Masterov, G D

    1995-01-01

    Apitherapy (Venom of bees and apiculture products) was included into combined treatment of 93 in-patients with pulmonary tuberculosis. Apitherapy had a beneficial effect on the organism of tuberculosis patients, manifested by enhancement of the treatment effectiveness and normalization of indices of endocrine system. It is recommended that the instruction on apitoxinotherapy be amended, in particular, by substantially supplementing the paragraph with indications and contraindications for giving it in active tuberculosis.

  2. To Cull or Not To Cull? Considerations for Studies of Endocrine-Disrupting Chemicals.

    PubMed

    Suvorov, Alexander; Vandenberg, Laura N

    2016-07-01

    The power of animal models is derived from the ability to control experimental variables so that observed effects may be unequivocally attributed to the factor that was changed. One variable that is difficult to control in animal experiments is the number and composition of offspring in a litter. To account for this variability, artificial equalization of the number of offspring in a litter (culling) is often used. The rationale for culling, however, has always been controversial. The Developmental Origins of Health and Disease concept provides a new context to evaluate the pros and cons of culling in laboratory animal studies, especially in the context of endocrine-disrupting chemicals. Emerging evidence indicates that culling, especially of large litters, can drastically change the feeding status of a pup, which can result in compensatory growth with long-term consequences for the animal, including increased risk of cardio-metabolic diseases. Similarly, culling of litters to intentionally bias sex ratios can alter the animal's behavior and physiology, with effects observed on a wide range of outcomes. Thus, in an attempt to control for variability in developmental rates, culling introduces an uncontrolled or confounding variable, which itself may affect a broad spectrum of health-related consequences. Variabilities in culling protocols could be responsible for differences in responses to endocrine-disrupting chemicals reported across studies. Because litter sex composition and size are vectors that can influence both prenatal and postnatal growth, they are essential considerations for the interpretation of results from laboratory animal studies.

  3. Endocrine therapy for breast cancer prevention in high-risk women: clinical and economic considerations.

    PubMed

    Groom, Amy G; Younis, Tallal

    2016-01-01

    The global burden of breast cancer highlights the need for primary prevention strategies that demonstrate both favorable clinical benefit/risk profile and good value for money. Endocrine therapy with selective estrogen-receptor modulators (SERMs) or aromatase inhibitors (AIs) has been associated with a favorable clinical benefit/risk profile in the prevention of breast cancer in women at high risk of developing the disease. The available endocrine therapy strategies differ in terms of their relative reductions of breast cancer risk, potential side effects, and upfront drug acquisition costs, among others. This review highlights the clinical trials of SERMs and AIs for the primary prevention of breast cancer, and the cost-effectiveness /cost-utility studies that have examined their "value for money" in various health care jurisdictions.

  4. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Hembree, Wylie C; Cohen-Kettenis, Peggy T; Gooren, Louis; Hannema, Sabine E; Meyer, Walter J; Murad, M Hassan; Rosenthal, Stephen M; Safer, Joshua D; Tangpricha, Vin; T'Sjoen, Guy G

    2017-11-01

    To update the "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline," published by the Endocrine Society in 2009. The participants include an Endocrine Society-appointed task force of nine experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. Group meetings, conference calls, and e-mail communications enabled consensus. Endocrine Society committees, members and cosponsoring organizations reviewed and commented on preliminary drafts of the guidelines. Gender affirmation is multidisciplinary treatment in which endocrinologists play an important role. Gender-dysphoric/gender-incongruent persons seek and/or are referred to endocrinologists to develop the physical characteristics of the affirmed gender. They require a safe and effective hormone regimen that will (1) suppress endogenous sex hormone secretion determined by the person's genetic/gonadal sex and (2) maintain sex hormone levels within the normal range for the person's affirmed gender. Hormone treatment is not recommended for prepubertal gender-dysphoric/gender-incongruent persons. Those clinicians who recommend gender-affirming endocrine treatments-appropriately trained diagnosing clinicians (required), a mental health provider for adolescents (required) and mental health professional for adults (recommended)-should be knowledgeable about the diagnostic criteria and criteria for gender-affirming treatment, have sufficient training and experience in assessing psychopathology, and be willing to participate in the ongoing care throughout the endocrine transition. We recommend treating gender-dysphoric/gender-incongruent adolescents who have entered puberty at Tanner Stage G2/B2 by suppression with gonadotropin-releasing hormone agonists. Clinicians may add gender-affirming hormones after a multidisciplinary team has confirmed the persistence of gender dysphoria/gender incongruence and sufficient mental capacity to give informed consent to this partially irreversible treatment. Most adolescents have this capacity by age 16 years old. We recognize that there may be compelling reasons to initiate sex hormone treatment prior to age 16 years, although there is minimal published experience treating prior to 13.5 to 14 years of age. For the care of peripubertal youths and older adolescents, we recommend that an expert multidisciplinary team comprised of medical professionals and mental health professionals manage this treatment. The treating physician must confirm the criteria for treatment used by the referring mental health practitioner and collaborate with them in decisions about gender-affirming surgery in older adolescents. For adult gender-dysphoric/gender-incongruent persons, the treating clinicians (collectively) should have expertise in transgender-specific diagnostic criteria, mental health, primary care, hormone treatment, and surgery, as needed by the patient. We suggest maintaining physiologic levels of gender-appropriate hormones and monitoring for known risks and complications. When high doses of sex steroids are required to suppress endogenous sex steroids and/or in advanced age, clinicians may consider surgically removing natal gonads along with reducing sex steroid treatment. Clinicians should monitor both transgender males (female to male) and transgender females (male to female) for reproductive organ cancer risk when surgical removal is incomplete. Additionally, clinicians should persistently monitor adverse effects of sex steroids. For gender-affirming surgeries in adults, the treating physician must collaborate with and confirm the criteria for treatment used by the referring physician. Clinicians should avoid harming individuals (via hormone treatment) who have conditions other than gender dysphoria/gender incongruence and who may not benefit from the physical changes associated with this treatment. Copyright © 2017 Endocrine Society

  5. Development of a Multidisciplinary, Multicampus Subspecialty Practice in Endocrine Cancers

    PubMed Central

    Bible, Keith C.; Smallridge, Robert C.; Morris, John C.; Molina, Julian R.; Suman, Vera J.; Copland, John A.; Rubin, Joseph; Menefee, Michael E.; Sideras, Kostandinos; Maples, William J.; McIver, Bryan; Fatourechi, Vahab; Hay, Ian; Foote, Robert L.; Garces, Yolanda I.; Kasperbauer, Jan L.; Thompson, Geoffrey B.; Grant, Clive S.; Richards, Melanie L.; Sebo, Thomas; Lloyd, Ricardo; Eberhardt, Norman L.; Reddi, Honey V.; Casler, John D.; Karlin, Nina J.; Westphal, Sydney A.; Richardson, Ronald L.; Buckner, Jan C.; Erlichman, Charles

    2012-01-01

    Purpose: Relative to more abundant neoplasms, endocrine cancers have been historically neglected, yet their incidence is increasing. We therefore sought to build interest in endocrine cancers, improve physician experience, and develop innovative approaches to treating patients with these neoplasms. Methods: Between 2005 and 2010, we developed a multidisciplinary Endocrine Malignancies Disease Oriented Group involving all three Mayo Clinic campuses (Rochester, MN; Jacksonville, FL; and Scottsdale, AZ). In response to higher demand at the Rochester campus, we sought to develop a Subspecialty Tumor Group and an Endocrine Malignancies Tumor Clinic within the Division of Medical Oncology. Results: The intended groups were successfully formed. We experienced difficulty in integration of the Mayo Scottsdale campus resulting from local uncertainty as to whether patient volumes would be sufficient to sustain the effort at that campus and difficulty in developing enthusiasm among clinicians otherwise engaged in a busy clinical practice. But these obstacles were ultimately overcome. In addition, with respect to the newly formed medical oncology subspecialty endocrine malignancies group, appointment volumes quadrupled within the first year and increased seven times within two years. The number of active therapeutic endocrine malignancies clinical trials also increased from one in 2005 to five in 2009, with all three Mayo campuses participating. Conclusion: The development of subspecialty tumor groups for uncommon malignancies represents an effective approach to building experience, increasing patient volumes and referrals, and fostering development of increased therapeutic options and clinical trials for patients afflicted with otherwise historically neglected cancers. PMID:22942830

  6. Characterizing the Growth Kinetics in Estrogen Responsive ...

    EPA Pesticide Factsheets

    There is a need to develop high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals for endocrine disrupting potential. The estrogen signaling pathway is a known xenobiotic target that has been implicated in a variety of adverse health effects including reproductive deficits and cancer promotion. Using real-time measurements of growth kinetics by electrode impedance, the estrogen-responsive human ductal carcinoma cell line, T47D, was treated with 2000 chemicals of environmental relevance. Cells were treated in concentration response and measurements of cellular impedance were recorded every hour for six days. Exponential impedance, signifying increased proliferation, was observed by prototypical estrogen receptor agonists (17β-estradiol, genestein, bisphenol-A, nonylphenol, 4-tert-octylphenol). Several compounds, including bisphenol-A and genestein, induced cell proliferation at comparable levels to 17β-estradiol, although at much higher concentrations. Progestins, and mineralocortocoids (progesterone, dihydrotestosterone, aldosterone) invoked a biphasic impedance signature. In conclusion, the real-time nature of this assay allows for rapid detection of differential growth characteristics shows potential, in combination with other ToxCast HTS assays, to detect environmental chemicals with potential endocrine activity. [This abstract does not necessarily reflect Agency policy]. Several compounds, including bisphenol-A and

  7. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?

    PubMed Central

    Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S.

    2015-01-01

    Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations. PMID:26026600

  8. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition

    PubMed Central

    Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.

    2015-01-01

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331

  10. Long term effects of extended adjuvant endocrine therapy on quality of life in breast cancer patients.

    PubMed

    Kool, M; Fontein, D B Y; Meershoek-Klein Kranenbarg, E; Nortier, J W R; Rutgers, E J T; Marang-van de Mheen, P J; van de Velde, C J H

    2015-06-01

    The standard treatment for hormone-receptor positive, postmenopausal early breast cancer patients is 5 years of adjuvant endocrine therapy. Previous studies demonstrate that prolonging adjuvant endocrine therapy may improve disease-free survival. However, endocrine therapy is known for its adverse events, which may negatively affect Quality of Life (QoL). The aim of this study is to assess the impact of extended adjuvant endocrine therapy on long-term QoL outcomes. 471 patients selected from the IDEAL trial were invited to complete a questionnaire 1-1.5 years after starting with extended therapy. The questionnaire consisted of the EORTC QLQ-C30 and QLQ-BR23 questionnaires. Mean QoL outcomes were compared with EORTC reference values for stage I and II breast cancer patients and the general population. Furthermore, QoL outcomes were compared between different treatment regimens. A difference of eight points was considered clinically relevant. IDEAL patients receiving extended adjuvant endocrine therapy have significantly and clinically relevant better global QoL compared with reference values for stage I and II breast cancer patients (79.6 versus 64.6; p < 0.01) and the general population (79.6 versus 71.2; p < 0.01). Similar results were found for emotional function, pain, appetite loss, diarrhea and financial problems. Between treatment regimens prior to extended adjuvant endocrine therapy, differences were only found on specific QoL domains (e.g. arm symptoms). Breast cancer patients on extended adjuvant endocrine therapy have significantly and clinically relevant better global QoL compared with other stage I-II breast cancer patients and the general population, 6-8.5 years after diagnosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Space flight research relevant to health, physical education, and recreation: With particular reference to Skylab's life science experiments

    NASA Technical Reports Server (NTRS)

    Vanhuss, W. D.; Heusner, W. W.

    1979-01-01

    Data collected in the Skylab program relating to physiological stresses is presented. Included are routine blood measures used in clinical medicine as research type endocrine analyses to investigate the metabolic/endocrine responses to weightlessness. The daily routine of physical exercise, coupled with appropriate dietary intake, sleep, work, and recreation periods were considered essential in maintaining the crew's health and well being.

  12. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015. Published by Elsevier B.V.

  13. A randomized trial of adjuvant endocrine therapy, chemotherapy, and chemoendocrine therapy for operable breast cancer stratified by estrogen receptors.

    PubMed

    Nomura, Y; Tashiro, H; Hisamatsu, K; Shinozuka, K

    1988-06-01

    Based on estrogen receptor (ER) status and menopausal status, operable breast cancer (International Union Against Cancer [UICC] Stage I, II, and III) patients were randomized for adjuvant endocrine therapy, chemotherapy, and chemoendocrine therapy, and the effects on the disease-free survival (DFS) and overall survival (OS) were compared. Adjuvant endocrine therapy was composed of tamoxifen (TAM) 20 mg/day orally for 2 years in postmenopausal patients. In premenopausal patients, oophorectomy (OVEX) was done before TAM administration. In the chemotherapy arm, the patients were given 0.06 mg/kg of body weight of mitomycin C (MMC) intravenously (IV) and then an oral administration of cyclophosphamide (CPA) 100 mg/body orally in an administration of a 3-month period and a 3-month intermission. This 6-month schedule was repeated four times in 2 years. As the chemoendocrine therapy arm, TAM with MMC + CPA chemotherapy was added. The patients were randomized according to ER and menopausal status. Estrogen receptor-positive (ER+) cancer patients were randomized to three arms: TAM +/- OVEX, MMC + CPA, or MMC + CPA + TAM. For estrogen receptor-negative (ER-) patients, there were two arms: MMC + CPA, or MMC + TAM. The study started in September 1978, and 692 patients entered until the end of 1984 were evaluated. The median follow-up was about 46 months. Totally, a 9.8% rate (68/692) of recurrence was noted, a 7.5% rate (52/692) of mortality. There were no significant differences in DFS or OS among the treatment arms in ER+ or ER- patients. There was significant differences in adverse effects such as bone marrow suppression, gastrointestinal disturbances, cystitis, hair loss between endocrine therapy and chemotherapy or chemoendocrine therapy groups. In this preliminary study, it was concluded that because of less adverse effects of endocrine therapy, it seems rational to select the operable breast cancer patients by the presence or absence of ER, namely, endocrine therapy for ER+ and chemotherapy for ER- cancer patients.

  14. Endocrine system on chip for a diabetes treatment model.

    PubMed

    Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu

    2017-02-21

    The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.

  15. Bone remodeling and regulating biomarkers in women at the time of breast cancer diagnosis

    PubMed Central

    Yao, Song; Zhang, Yali; Tang, Li; Roh, Janise M.; Laurent, Cecile A.; Hong, Chi-Chen; Hahn, Theresa; Lo, Joan C.; Ambrosone, Christine B.; Kushi, Lawrence H.; Kwan, Marilyn L.

    2016-01-01

    The majority of breast cancer patients receive endocrine therapy, including aromatase inhibitors known to cause increased bone resorption. Bone-related biomarkers at the time of breast cancer diagnosis may predict future risk of osteoporosis and fracture after endocrine therapy. In a large population of 2,401 female breast cancer patients who later underwent endocrine therapy, we measured two bone remodeling biomarkers, TRAP5b and BAP, and two bone regulating biomarkers, RANKL and OPG, in serum samples collected at the time of breast cancer diagnosis. We analyzed these biomarkers and their ratios with patients’ demographic, lifestyle, clinical tumor characteristics, as well as bone health history. The presence of bone metastases, prior bisphosphonate (BP) treatment and blood collection after chemotherapy had a significant impact on biomarker levels. After excluding these cases and controlling for blood collection time, age, race/ethnicity, body mass index, physical activity, alcohol consumption, smoking, and hormonal replacement therapy were significantly associated with bone biomarkers, while vitamin D or calcium supplements and tumor characteristics did not. When prior BP users were included in, recent history of osteoporosis and fracture was also associated. These findings support further investigation of these biomarkers with bone health outcomes after endocrine therapy initiation in women with breast cancer. PMID:27915435

  16. Application of endocrine disruptor screening program fish short-term reproduction assay: Reproduction and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus) exposed to Bermuda pond sediment.

    PubMed

    Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Bacon, Jamie P

    2015-06-01

    A modified tier 1 Endocrine Disruptor Screening Program (EDSP) 21-d fish short-term reproduction assay (FSTRA) was used to evaluate the effects of sediment exposure from freshwater and brackish ponds in Bermuda on reproductive fecundity and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus). Reproductively active male and female fish were exposed to control sediment and sediment from 2 freshwater ponds (fathead minnow) and 2 marine ponds (killifish) contaminated with polyaromatic hydrocarbons and metals via flow-through exposure for 21 d. Reproductive fecundity was monitored daily. At termination, the status of the reproductive endocrine system was assessed by the gonadosomatic index, gonadal histology, plasma steroids (estrogen [E2], testosterone [T], and 11-ketotestosterone [11-KT]), steroidogenic enzymes (aromatase and combined 3β/17β -hydroxysteroid dehydrogenase [3β/17β-HSD]), and plasma vitellogenin (VTG). Decreased reproductive fecundity, lower male body weight, and altered endocrinological measures of reproductive status were observed in both species. Higher plasma T levels in female minnows and 11-KT levels in both male and female minnows and female killifish exposed to freshwater and brackish sediments, respectively. Decreased female E2 and VTG levels and gonadal cytochrome P19 (aromatase) activity were also found in sediment exposed females from both species. No effect on female 3β/17β-HSD activity was found in either species. The FSTRA provided a robust model capable of modification to evaluate reproductive effects of sediment exposure in fish. © 2015 SETAC.

  17. Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice.

    PubMed

    Regnier, Shane M; Kirkley, Andrew G; Ye, Honggang; El-Hashani, Essam; Zhang, Xiaojie; Neel, Brian A; Kamau, Wakanene; Thomas, Celeste C; Williams, Ayanna K; Hayes, Emily T; Massad, Nicole L; Johnson, Daniel N; Huang, Lei; Zhang, Chunling; Sargis, Robert M

    2015-03-01

    Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome.

  18. Endocrine disrupting chemicals and growth of children.

    PubMed

    Botton, Jérémie; Kadawathagedara, Manik; de Lauzon-Guillain, Blandine

    2017-06-01

    According to the "environmental obesogen hypothesis", early-life (including in utero) exposure to endocrine disrupting chemicals (EDCs) may disturb the mechanisms involved in adipogenesis or energy storage, and thus may increase the susceptibility to overweight and obesity. Animal models have shown that exposure to several of these chemicals could induce adipogenesis and mechanisms have been described. Epidemiological studies are crucial to know whether this effect could also be observed in humans. We aimed at summarizing the literature in epidemiology on the relationship between EDCs exposure and child's growth. Overall, epidemiological studies suggest that pre- and/or early postnatal exposure to some EDCs may increase the risk of overweight or obesity during childhood. In that review, we present some limitations of these studies, mainly in exposure assessment, that currently prevent to conclude about causality. Recent advances in epidemiology should bring further knowledge. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Endocrine Consequences of Anorexia Nervosa

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Summary Anorexia nervosa (AN) is prevalent in adolescents and young adults, and endocrine changes include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1), relative hypercortisolemia, decreases in leptin, insulin, amylin and incretins, and increases in ghrelin, PYY and adiponectin. These changes in turn have deleterious effects on bone, and may affect neurocognition, anxiety, depression and eating disorder psychopathology. Low bone density is particularly concerning; clinical fractures occur and changes in both bone microarchitecture and strength estimates have been reported. Recovery causes improvement of many, but not all, hormonal changes, and deficits in bone accrual may persist despite recovery. Physiologic, primarily transdermal, estrogen replacement increases bone density in adolescents, although catch-up is incomplete. In adults, oral estrogen co-administered with rhIGF-1 in one study, and bisphosphonates in another increased bone density, though not to normal. More studies are necessary to determine the optimal therapeutic approach in AN. PMID:24731664

  20. Management of female infertility from hormonal causes.

    PubMed

    Luciano, Antony A; Lanzone, Antonio; Goverde, Angelique J

    2013-12-01

    Hormonal causes of female infertility involve ovulatory dysfunctions that may result from dysfunction of the hypothalamic-pituitary-ovarian axis, peripheral endocrine glands, nonendocrine organs, or metabolic disorders. It is important to think of anovulation not as a diagnosis but as a symptom of a metabolic or endocrine disorder that requires a thorough diagnostic evaluation to identify the specific cause and to implement effective therapies that assure the best possible pregnancy outcome and avoid long-term adverse health consequences. In most instances, the medical history points to the underlying dysfunction, which can usually be confirmed with laboratory or imaging tests. For more challenging cases, more extensive evaluations may be needed, including perturbation studies. Nevertheless, the management of anovulatory infertility is gratifying because its causes are often manifest and the treatment usually results in resumption of ovulatory cycles, restoration of fertility, and healthy offspring through natural conception without requiring expensive and intrusive assisted reproductive technologies. © 2013.

Top