Science.gov

Sample records for efferent callosal connections

  1. Visual interhemispheric communication and callosal connections of the occipital lobes.

    PubMed

    Berlucchi, Giovanni

    2014-07-01

    Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital.

  2. Axon guidance mechanisms for establishment of callosal connections.

    PubMed

    Nishikimi, Mitsuaki; Oishi, Koji; Nakajima, Kazunori

    2013-01-01

    Numerous studies have investigated the formation of interhemispheric connections which are involved in high-ordered functions of the cerebral cortex in eutherian animals, including humans. The development of callosal axons, which transfer and integrate information between the right/left hemispheres and represent the most prominent commissural system, must be strictly regulated. From the beginning of their growth, until reaching their targets in the contralateral cortex, the callosal axons are guided mainly by two environmental cues: (1) the midline structures and (2) neighboring? axons. Recent studies have shown the importance of axona guidance by such cues and the underlying molecular mechanisms. In this paper, we review these guidance mechanisms during the development of the callosal neurons. Midline populations express and secrete guidance molecules, and "pioneer" axons as well as interactions between the medial and lateral axons are also involved in the axon pathfinding of the callosal neurons. Finally, we describe callosal dysgenesis in humans and mice, that results from a disruption of these navigational mechanisms.

  3. Interhemispheric Connections between the Primary Visual Cortical Areas via the Anterior Commissure in Human Callosal Agenesis.

    PubMed

    van Meer, Nathalie; Houtman, Anne C; Van Schuerbeek, Peter; Vanderhasselt, Tim; Milleret, Chantal; Ten Tusscher, Marcel P

    2016-01-01

    Aim: In humans, images in the median plane of the head either fall on both nasal hemi-retinas or on both temporal hemi-retinas. Interhemispheric connections allow cortical cells to have receptive fields on opposite sides. The major interhemispheric connection, the corpus callosum, is implicated in central stereopsis and disparity detection in front of the fixation plane. Yet individuals with agenesis of the corpus callosum may show normal stereopsis and disparity vergence. We set out to study a possible interhemispheric connection between primary visual cortical areas via the anterior commissure to explain this inconsistency because of the major role of these cortical areas in elaborating 3D visual perception. Methods: MRI, DTI and tractography of the brain of a 53-year old man with complete callosal agenesis and normal binocular single vision was undertaken. Tractography seed points were placed in both the right and the left V1 and V2. Nine individuals with both an intact corpus callosum and normal binocularity served as controls. Results: Interhemispheric tracts through the anterior commissure linking both V1 and V2 visual cortical areas bilaterally were indeed shown in the subject with callosal agenesis. All other individuals showed interhemispheric visual connections through the corpus callosum only. Conclusion: Callosal agenesis may result in anomalous interhemispheric connections of the primary visual areas via the anterior commissure. It is proposed here that these connections form as alternative to the normal callosal pathway and may participate in binocularity.

  4. Interhemispheric Connections between the Primary Visual Cortical Areas via the Anterior Commissure in Human Callosal Agenesis

    PubMed Central

    van Meer, Nathalie; Houtman, Anne C.; Van Schuerbeek, Peter; Vanderhasselt, Tim; Milleret, Chantal; ten Tusscher, Marcel P.

    2016-01-01

    Aim: In humans, images in the median plane of the head either fall on both nasal hemi-retinas or on both temporal hemi-retinas. Interhemispheric connections allow cortical cells to have receptive fields on opposite sides. The major interhemispheric connection, the corpus callosum, is implicated in central stereopsis and disparity detection in front of the fixation plane. Yet individuals with agenesis of the corpus callosum may show normal stereopsis and disparity vergence. We set out to study a possible interhemispheric connection between primary visual cortical areas via the anterior commissure to explain this inconsistency because of the major role of these cortical areas in elaborating 3D visual perception. Methods: MRI, DTI and tractography of the brain of a 53-year old man with complete callosal agenesis and normal binocular single vision was undertaken. Tractography seed points were placed in both the right and the left V1 and V2. Nine individuals with both an intact corpus callosum and normal binocularity served as controls. Results: Interhemispheric tracts through the anterior commissure linking both V1 and V2 visual cortical areas bilaterally were indeed shown in the subject with callosal agenesis. All other individuals showed interhemispheric visual connections through the corpus callosum only. Conclusion: Callosal agenesis may result in anomalous interhemispheric connections of the primary visual areas via the anterior commissure. It is proposed here that these connections form as alternative to the normal callosal pathway and may participate in binocularity. PMID:28082873

  5. Visual callosal connections: role in visual processing in health and disease.

    PubMed

    Bocci, Tommaso; Pietrasanta, Marta; Cerri, Chiara; Restani, Laura; Caleo, Matteo; Sartucci, Ferdinando

    2014-01-01

    Visual cortical areas in the two sides of the brain are interconnected by interhemispheric fibers passing through the splenium of the corpus callosum. In this review, we summarize data concerning the anatomical features of visual callosal connections, their roles in basic visual processing, and how their alterations contribute to visual deficits in different human neuropathologies. Splenial fibers represent a population of excitatory axons with varying diameters, which interconnect cortical columns with similar functional properties (i.e., same orientation selectivity) in the two hemispheres. Their branches activate simultaneously distinct iso-oriented columns in the contralateral hemisphere, thus mediating forms of stimulus-dependent interhemispheric synchronization. Callosal branches also make synapses onto GABAergic cells, resulting in an inhibitory modulation of visual processing that involves both iso-oriented and cross-oriented cortical networks. Interhemispheric inhibition appears to predominate at short latencies following callosal activation, whereas excitation becomes more robust with increasing delays. These callosal effects are dynamically adapted to the incoming visual activity, so that stimuli providing only weak afferent input are facilitated by callosal pathways, whereas strong visual input via the retinogeniculate pathway tends to be offset by transcallosal inhibition. We also review data highlighting the contribution of callosal input activity to maturation of visual function during early 'critical periods' in brain development and describe how interhemispheric transfer of visual information is rerouted in cases of callosal agenesis or following splenial damage. Finally, we provide an overview of alterations in splenium anatomy or function that may be at the basis of visual defects in several pathologic conditions.

  6. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage

    PubMed Central

    Restani, Laura; Caleo, Matteo

    2016-01-01

    Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital

  7. Interhemispheric effective and functional cortical connectivity signatures of spina bifida are consistent with callosal anomaly.

    PubMed

    Malekpour, Sheida; Li, Zhimin; Cheung, Bing Leung Patrick; Castillo, Eduardo M; Papanicolaou, Andrew C; Kramer, Larry A; Fletcher, Jack M; Van Veen, Barry D

    2012-01-01

    The impact of the posterior callosal anomalies associated with spina bifida on interhemispheric cortical connectivity is studied using a method for estimating cortical multivariable autoregressive models from scalp magnetoencephalography data. Interhemispheric effective and functional connectivity, measured using conditional Granger causality and coherence, respectively, is determined for the anterior and posterior cortical regions in a population of five spina bifida and five control subjects during a resting eyes-closed state. The estimated connectivity is shown to be consistent over the randomly selected subsets of the data for each subject. The posterior interhemispheric effective and functional connectivity and cortical power are significantly lower in the spina bifida group, a result that is consistent with posterior callosal anomalies. The anterior interhemispheric effective and functional connectivity are elevated in the spina bifida group, a result that may reflect compensatory mechanisms. In contrast, the intrahemispheric effective connectivity is comparable in the two groups. The differences between the spina bifida and control groups are most significant in the θ and α bands.

  8. Efferent connections of the rostral portion of medial agranular cortex in rats.

    PubMed

    Reep, R L; Corwin, J V; Hashimoto, A; Watson, R T

    1987-08-01

    This study of the rostral part of medial agranular cortex (AGm) was undertaken with two principal aims in mind. First, to delineate the efferent connections of AGm and compare these with the pattern of afferents defined by us in a previous study. Second, to provide a firmer basis for anatomical and functional comparisons with cortical regions in monkeys. Autoradiographic, horseradish peroxidase, and fiber degeneration techniques were used. Rostral AGm has a variety of corticocortical connections--with lateral agranular motor cortex (AGl); visual, auditory, and somatic sensory regions; and limbic/paralimbic areas including orbital, insular, perirhinal, entorhinal, retrosplenial and presubicular fields. The projections to orbital, perirhinal and entorhinal cortices are bilateral. Thalamic projections of rostral AGm are concentrated in the ventral lateral, central lateral, paracentral, mediodorsal and ventromedial nuclei. Moderate terminal fields are consistently seen in the reticular, anteromedial, central medial, gelatinosus, parafascicular, and posterior nuclei. More caudal projections reach the central gray, superior colliculus and pontine gray. The efferents of the adjacent AGl were also examined. Although many of these overlapped those of rostral AGm, there were no efferents to visual or auditory cortex and limbic/paralimbic projections were reduced. Thalamic projections were more focused in the ventral lateral and posterior nuclei and there were no terminal fields in the central gray or superior colliculus. Based on its afferent and efferent connections, role in contralateral neglect, and the results of microstimulation studies, rostral AGm can be viewed as a multimodal association area with strong ties to the motor system. On these structural and functional grounds, rostral AGm bears certain striking resemblances to the frontal eye field, supplementary motor, and arcuate premotor areas of monkey cortex.

  9. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the ''vomeronasal amygdala''

    SciTech Connect

    Kevetter, G.A.; Winans, S.S.

    1981-03-20

    The medial (M) an posteromedial cortical (C3) amygdaloid nuclei and the nucleus of the accessory olfactory tract (NAOT) are designated the ''vomeronasal amygdala'' because they are the only components of the amygdala to receive a direct projection from the accessory olfactory bulb (AOB). The efferents of M and C3 were traced after injections of /sup 3/H-proline into the amygdala in male golden hamsters. Frozen sections of the brains were processed for autoradiography. The efferents of the ''vomeronasal amygdala'' are largely to areas which are primary and secondary terminal areas along the vomeronasal pathway, although the efferents from C3 and M terminate in different layers in these areas than do the projections from the vomeronasal nerve or the AOB. Specifically, C3 projects ipsilaterally to the internal granule cell layer of the AOB, the cellular layer of NAOT, and layer Ib of M. Additional fibers from C3 terminate in a retrocommissural component of the bed nucleus of the strain terminalis (BNST) bilaterally, and in the cellular layers of the contralateral C3. The medial nucleus projects to the cellular layer of the ipsilateral NAOT, layer Ib of C3, and bilaterally to the medial component of BNST. Projections from M to non-vomeronasal areas terminate in the medial preoptic area-anterior hypothalamic junction, ventromedial nucleus of the hypothalamus, ventral premammillary nucleus and possibly in the ventral subiculum. These results demonstrate reciprocal connections between primary and secondary vomeronasal areas between the secondary areas themselves. They suggest that M, but not C3, projects to areas outside this vomeronasal network. The medial amygdaloid nucleus is therefore an important link between the vomeronasal organ and areas of the brain not receiving direct vomeronasal input.

  10. Evolutionary Plasticity of Habenular Asymmetry with a Conserved Efferent Connectivity Pattern

    PubMed Central

    Guerrero, Néstor; Meynard, Margarita M.; Palma, Karina; Concha, Miguel L.

    2012-01-01

    The vertebrate habenulae (Hb) is an evolutionary conserved dorsal diencephalic nuclear complex that relays information from limbic and striatal forebrain regions to the ventral midbrain. One key feature of this bilateral nucleus is the presence of left-right differences in size, cytoarchitecture, connectivity, neurochemistry and/or gene expression. In teleosts, habenular asymmetry has been associated with preferential innervation of left-right habenular efferents into dorso-ventral domains of the midbrain interpeduncular nucleus (IPN). However, the degree of conservation of this trait and its relation to the structural asymmetries of the Hb are currently unknown. To address these questions, we performed the first systematic comparative analysis of structural and connectional asymmetries of the Hb in teleosts. We found striking inter-species variability in the overall shape and cytoarchitecture of the Hb, and in the frequency, strength and to a lesser degree, laterality of habenular volume at the population level. Directional asymmetry of the Hb was either to the left in D. rerio, E. bicolor, O. latipes, P. reticulata, B. splendens, or to the right in F. gardneri females. In contrast, asymmetry was absent in P. scalare and F. gardneri males at the population level, although in these species the Hb displayed volumetric asymmetries at the individual level. Inter-species variability was more pronounced across orders than within a single order, and coexisted with an overall conserved laterotopic representation of left-right habenular efferents into dorso-ventral domains of the IPN. These results suggest that the circuit design involving the Hb of teleosts promotes structural flexibility depending on developmental, cognitive and/or behavioural pressures, without affecting the main midbrain connectivity output, thus unveiling a key conserved role of this connectivity trait in the function of the circuit. We propose that ontogenic plasticity in habenular morphogenesis

  11. Efferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes.

    PubMed

    Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi

    2005-05-01

    The olfactostriatum is a portion of the basal ganglia of snakes that receives substantial vomeronasal afferents through projections from the nucleus sphericus. In a preceding article, the olfactostriatum of garter snakes (Thamnophis sirtalis) was characterized on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and pattern of afferent connections [Martinez-Marcos, A., Ubeda-Banon, I., Lanuza, E., Halpern, M., 2005. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes. J. Chem. Neuroanat. 29, 49-69]. In the present study, its efferent connections have been investigated. The olfactostriatum projects to the main and accessory olfactory bulbs, lateral cortex, septal complex, ventral pallidum, external, ventral anterior and dorsolateral amygdalae, bed nucleus of the stria terminalis, preoptic area, lateral posterior hypothalamic nucleus, ventral tegmental area, substantia nigra and raphe nuclei. Tracer injections in the nucleus accumbens proper, a structure closely associated with the olfactostriatum, result in a similar pattern of efferent connections with the exception of those reaching the main and accessory olfactory bulbs, lateral cortex, external, ventral anterior and dorsolateral amygdalae and bed nucleus of the stria terminalis. These data, therefore, help to characterize the olfactostriatum, an apparently specialized area of the nucleus accumbens. Double labeling experiments after tracer injections in the nucleus sphericus and the lateral posterior hypothalamic nucleus demonstrate a pathway between these two structures through the olfactostriatum. Injections in the olfactostriatum and in the medial amygdala show parallel projections to the lateral posterior hypothalamic nucleus. Since this hypothalamic nucleus has been previously described as projecting to the hypoglossal nucleus, both, the medial amygdala and the

  12. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    PubMed

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  13. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice

    PubMed Central

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  14. Afferent and efferent connections of the nucleus rotundus demonstrated by WGA-HRP in the chick.

    PubMed

    Hu, M; Naito, J; Chen, Y; Ohmori, Y; Fukuta, K

    2003-12-01

    Organization of the fibre connections in the chick nucleus rotundus (Rt) was investigated by an axonal tracing method using wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). After an injection of WGA-HRP into the Rt, labelled neurones were observed in the striatum griseum centrale (SGC) in both sides of the tectum (TO) and in the ipsilateral nucleus subpretectalis/nucleus interstito-pretecto-subpretectalis (SP/IPS). Labelled fibres and terminals were also found in the ipsilateral ectostriatum (Ect). These fibre connections were topographically organized rostrocaudally. In the TO-Rt projection, the rostral and the dorsocaudal parts of the Rt received afferents from the superficial part of the SGC, the middle part of the Rt received afferents from the intermediate part of the SGC, and the ventrocaudal part of the Rt received mainly fibres from the deep part of the SGC. These topographic projections were accompanied by a considerable number of diffuse projections to the thalamic regions surrounding the Rt. In addition, the rostral and middle caudal parts of the Rt received afferents from the lateral and medial parts of the SP/IPS, respectively, and respective parts of the Rt sent efferents to the lateral and medial parts of the Ect.

  15. Deafferentation-induced plasticity of visual callosal connections: predicting critical periods and analyzing cortical abnormalities using diffusion tensor imaging.

    PubMed

    Olavarria, Jaime F; Bock, Andrew S; Leigland, Lindsey A; Kroenke, Christopher D

    2012-01-01

    Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI) measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  16. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the ''olfactory amygdala''

    SciTech Connect

    Kevetter, G.A.; Winans, S.S.

    1981-03-20

    The anterior cortical (C1) and posterolateral cortical (C2) nuclei of the amygdala are designated the ''olfactory amygdala'' because they each receive direct projections from the main olfactory bulb. The efferents of these nuclei were traced after stereotaxic placement of 1-5 muCi tritiated proline in the corticomedial amygdala of the male golden hamsters. Following survival times of 12, 24, or 48 hours, 20 micron frozen sections of the brains were processed for light microscopic autoradiography. Efferents from C2 terminate in layers II and III of the olfactory tubercle and in layer Ib of pars ventralis and pars medialis of the anterior olfactory nucleus. Fibers from this nucleus also project to layers I and II of the infralimbic cortex and to the molecular layer of the agranular insular cortex. More posteriorly, fibers from C2 terminate in layer I of the dorsolateral entorhinal cortex, and in the endopiriform nucleus. From C1, efferent fibers travel in the stria terminalis and terminate in the precommissural bed nucleus of the stria terminalis and in the mediobasal hypothalamus. Efferents from C1 also innervate the molecular layer of C2, the amygdalo-hippocampal area, and the adjacent piriform cortex. Neurons in both C1 and C2 project to the molecular layer of the medial amygdaloid nucleus and the posteromedial cortical nucleus of the amygdala, the plexiform layer of the ventral subiculum, and the molecular layer of the lateral entorhinal cortex.

  17. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees.

    PubMed

    Simões, Elington L; Bramati, Ivanei; Rodrigues, Erika; Franzoi, Ana; Moll, Jorge; Lent, Roberto; Tovar-Moll, Fernanda

    2012-02-29

    Previous studies have indicated that amputation or deafferentation of a limb induces functional changes in sensory (S1) and motor (M1) cortices, related to phantom limb pain. However, the extent of cortical reorganization after lower limb amputation in patients with nonpainful phantom phenomena remains uncertain. In this study, we combined functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI) to investigate the existence and extent of cortical and callosal plasticity in these subjects. Nine "painless" patients with lower limb amputation and nine control subjects (sex- and age-matched) underwent a 3-T MRI protocol, including fMRI with somatosensory stimulation. In amputees, we observed an expansion of activation maps of the stump in S1 and M1 of the deafferented hemisphere, spreading to neighboring regions that represent the trunk and upper limbs. We also observed that tactile stimulation of the intact foot in amputees induced a greater activation of ipsilateral S1, when compared with controls. These results demonstrate a functional remapping of S1 in lower limb amputees. However, in contrast to previous studies, these neuroplastic changes do not appear to be dependent on phantom pain but do also occur in those who reported only the presence of phantom sensation without pain. In addition, our findings indicate that amputation of a limb also induces changes in the cortical representation of the intact limb. Finally, DTI analysis showed structural changes in the corpus callosum of amputees, compatible with the hypothesis that phantom sensations may depend on inhibitory release in the sensorimotor cortex.

  18. Connectivity and the corpus callosum in autism spectrum conditions: insights from comparison of autism and callosal agenesis.

    PubMed

    Booth, Rhonda; Wallace, Gregory L; Happé, Francesca

    2011-01-01

    Neural models of autism spectrum disorders (ASDs) have moved, in recent years, from a lesion model to a focus on abnormal connectivity. In this chapter, we review this work and summarize findings from our recent research comparing autism and agenesis of the corpus callosum (AgCC). We discuss our findings in the context of the "fractionable triad" account and highlight three main points. First, the social aspects of autism can be found in isolation, not accompanied by the nonsocial features of this disorder, supporting a view of autism as a "compound," rather than "monolithic," condition. Second, many young people with callosal agenesis show theory of mind- and emotion-processing deficits akin to those seen in autism. Diagnostic overshadowing may mean these people do not receive interventions that have proven beneficial in ASD. Last, study of AgCC shows that it is possible, in some cases, to develop good social cognitive skills in the absence of the corpus callosum, presenting a challenge to future connectivity models of autism.

  19. Afferent and efferent connections of the diencephalic prepacemaker nucleus in the weakly electric fish, Eigenmannia virescens: interactions between the electromotor system and the neuroendocrine axis.

    PubMed

    Wong, C J

    1997-06-23

    The afferent and efferent connections of the gymnotiform central posterior nucleus of the dorsal thalamus and prepacemaker nucleus (CP/PPn) were examined by retrograde and anterograde transport of the small molecular weight tracer, Neurobiotin. The CP/PPn was identified by physiological assay and received a local iontophoretic injection of Neurobiotin. Retrogradely labeled somata were observed in the ventral telencephalon, hypothalamus, and the pretectal nucleus electrosensorius. Anterogradely labeled fibers were traced from the CP/PPn to the ventral telencephalon, the hypothalamus, the neuropil immediately adjacent to the most rostral subdivision of the nucleus electrosensorius, the optic tectum, and the pacemaker nucleus. Retrograde transport of tracer following injections into the ventral telencephalon, preoptic area, lateral hypothalamus, tectum, and pacemaker nucleus confirmed these efferent targets. A rostromedial subarea of the CP/PPn can be identified that projects to basal forebrain regions and to a lateral region of the CP/PPn that contains afferents to the pacemaker. Many of the targets, which are connected with the CP/PPn, have been linked to reproductive behavior or neuroendocrine control in other fishes. A comparative analysis reveals that the efferent pathways of the CP/PPn appear similar and may be homologous to efferent pathways of some components of the auditory thalamus among tetrapods.

  20. Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion.

    PubMed

    Font, C; Lanuza, E; Martinez-Marcos, A; Hoogland, P V; Martinez-Garcia, F

    1998-11-30

    The projections of the septum of the lizard Podarcis hispanica (Lacertidae) were studied by combining retrograde and anterograde neuroanatomical tracing. The results confirm the classification of septal nuclei into three main divisions. The nuclei composing the central septal division (anterior, lateral, medial, dorsolateral, and ventrolateral nuclei) displayed differential projections to the basal telencephalon, preoptic and anterior hypothalamus, lateral hypothalamic area, dorsal hypothalamus, mammillary complex, dorsomedial anterior thalamus, ventral tegmental area, interpeduncular nucleus, raphe nucleus, torus semicircularis pars laminaris, reptilian A8 nucleus/substantia nigra and central gray. For instance, only the medial septal nucleus projected substantially to the thalamus whereas the anterior septum was the only nucleus projecting to the caudal midbrain including the central gray. The anterior and lateral septal nuclei also differ in the way in which their projection to the preoptic hypothalamus terminated. The midline septal division is composed of the dorsal septal nucleus, nucleus septalis impar and nucleus of the posterior pallial commissure. The latter two nuclei projected to the lateral habenula and, at least the nucleus of the posterior pallial commissure, to the mammillary complex. The dorsal septal nucleus projected to the preoptic and periventricular hypothalamus and the anterior thalamus, but its central part seemed to project to the caudal midbrain (up to the midbrain central gray). Finally, the ventromedial septal division (ventromedial septal nucleus) showed a massive projection to the anterior and the lateral tuberomammillary hypothalamus. Data on the connections of the septum of P. hispanica and Gecko gekko are discussed from a comparative point of view and used for better understanding of the functional anatomy of the tetrapodian septum.

  1. Afferent and efferent connections of the nucleus sphericus in the snake Thamnophis sirtalis: convergence of olfactory and vomeronasal information in the lateral cortex and the amygdala.

    PubMed

    Lanuza, E; Halpern, M

    1997-09-08

    This paper is an account of the afferent and efferent projections of the nucleus sphericus (NS), which is the major secondary vomeronasal structure in the brain of the snake Thamnophis sirtalis. There are four major efferent pathways from the NS: 1) a bilateral projection that courses, surrounding the accessory olfactory tract, and innervates several amygdaloid nuclei (nucleus of the accessory olfactory tract, dorsolateral amygdala, external amygdala, and ventral anterior amygdala), the rostral parts of the dorsal and lateral cortices, and the accessory olfactory bulb; 2) a bilateral projection that courses through the medial forebrain bundle and innervates the olfactostriatum (rostral and ventral striatum); 3) a commissural projection that courses through the anterior commissure and innervates mainly the contralateral NS; and 4) a meager bilateral projection to the lateral hypothalamus. On the other hand, important afferent projections to the NS arise solely in the accessory olfactory bulb, the nucleus of the accessory olfactory tract, and the contralateral NS. This pattern of connections has three important implications: first, the lateral cortex probably integrates olfactory and vomeronasal information. Second, because the NS projection to the hypothalamus is meager and does not reach the ventromedial hypothalamic nucleus, vomeronasal information from the NS is not relayed directly to that nucleus, as previously reported. Finally, a structure located in the rostral and ventral telencephalon, the olfactostriatum, stands as the major tertiary vomeronasal center in the snake brain. These three conclusions change to an important extent our previous picture of how vomeronasal information is processed in the brain of reptiles.

  2. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression.

    PubMed

    Pérez-Fernández, Juan; Stephenson-Jones, Marcus; Suryanarayana, Shreyas M; Robertson, Brita; Grillner, Sten

    2014-12-01

    The dopaminergic system influences motor behavior, signals reward and novelty, and is an essential component of the basal ganglia in all vertebrates including the lamprey, one of the phylogenetically oldest vertebrates. The intrinsic organization and function of the lamprey basal ganglia is highly conserved. For instance, the direct and indirect pathways are modulated through dopamine D1 and D2 receptors in lamprey and in mammals. The nucleus of the tuberculum posterior, a homologue of the substantia nigra pars compacta (SNc)/ventral tegmental area (VTA) is present in lamprey, but only scarce data exist about its connectivity. Likewise, the D2 receptor is expressed in the striatum, but little is known about its localization in other brain areas. We used in situ hybridization and tracer injections, both in combination with tyrosine hydroxylase immunohistochemistry, to characterize the SNc/VTA efferent and afferent connectivity, and to relate its projection pattern with D2 receptor expression in particular. We show that most features of the dopaminergic system are highly conserved. As in mammals, the direct pallial (cortex in mammals) input and the basal ganglia connectivity with the SNc/VTA are present as part of the evaluation system, as well as input from the tectum as the evolutionary basis for salience/novelty detection. Moreover, the SNc/VTA receives sensory information from the olfactory bulbs, optic tectum, octavolateral area, and dorsal column nucleus, and it innervates, apart from the nigrostriatal pathway, several motor-related areas. This suggests that the dopaminergic system also contributes to the control of different motor centers at the brainstem level.

  3. A connection between the Efferent Auditory System and Noise-Induced Tinnitus Generation. Reduced contralateral suppression of TEOAEs in patients with noise-induced tinnitus

    PubMed Central

    Lalaki, Panagiota; Hatzopoulos, Stavros; Lorito, Guiscardo; Kochanek, Krzysztof; Sliwa, Lech; Skarzynski, Henryk

    2011-01-01

    Summary Background Subjective tinnitus is an auditory perception that is not caused by external stimulation, its source being anywhere in the auditory system. Furthermore, evidence exists that exposure to noise alters cochlear micromechanics, either directly or through complex feed-back mechanisms, involving the medial olivocochlear efferent system. The aim of this study was to assess the role of the efferent auditory system in noise-induced tinnitus generation. Material/Methods Contralateral sound-activated suppression of TEOAEs was performed in a group of 28 subjects with noise-induced tinnitus (NIT) versus a group of 35 subjects with normal hearing and tinnitus, without any history of exposure to intense occupational or recreational noise (idiopathic tinnitus-IT). Thirty healthy, normally hearing volunteers were used as controls for the efferent suppression test. Results Suppression of the TEOAE amplitude less than 1 dB SPL was considered abnormal, giving a false positive rate of 6.7%. Eighteen out of 28 (64.3%) patients of the NIT group and 9 out of 35 (25.7%) patients of the IT group showed abnormal suppression values, which were significantly different from the controls’ (p<0.0001 and p<0.045, respectively). Conclusions The abnormal activity of the efferent auditory system in NIT cases might indicate that either the activity of the efferent fibers innervating the outer hair cells (OHCs) is impaired or that the damaged OHCs themselves respond abnormally to the efferent stimulation. PMID:21709642

  4. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions.

    PubMed

    Kimura, A; Imbe, H; Donishi, T

    2010-04-14

    In the rat cortex, the two non-primary auditory areas, posterodorsal and ventral auditory areas, may constitute the two streams of auditory processing in their distinct projections to the posterior parietal and insular cortices. The posterior parietal cortex is considered crucial for auditory spatial processing and directed attention, while possible auditory function of the insular cortex is largely unclear. In this study, we electrophysiologically delineated an auditory area in the caudal part of the granular insular cortex (insular auditory area, IA) and examined efferent connections of IA with anterograde tracer biocytin to deduce the functional significance of IA. IA projected to the rostral agranular insular cortex, a component of the lateral prefrontal cortex. IA also projected to the adjacent dysgranular insular cortex and the caudal agranular insular cortex and sent feedback projections to cortical layer I of the primary and secondary somatosensory areas. Corticofugal projections terminated in auditory, somatosensory and visceral thalamic nuclei, and the bottom of the thalamic reticular nucleus that could overlap the visceral sector. The ventral part of the caudate putamen, the external cortex of the inferior colliculus and the central amygdaloid nucleus were also the main targets. IA exhibited neural response to transcutaneous electrical stimulation of the forepaw in addition to acoustic stimulation (noise bursts and pure tones). The results suggest that IA subserves diverse functions associated with somatosensory, nociceptive and visceral processing that may underlie sound-driven emotional and autonomic responses. IA, being potentially involved in such extensive cross-modal sensory interactions, could also be an important anatomical node of auditory processing linked to higher neural processing in the prefrontal cortex.

  5. Tau Pathology Spread in PS19 Tau Transgenic Mice Following Locus Coeruleus (LC) Injections of Synthetic Tau Fibrils is Determined by the LC’s Afferent and Efferent Connections

    PubMed Central

    Iba, Michiyo; McBride, Jennifer D.; Guo, Jing L.; Zhang, Bin; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2015-01-01

    Filamentous tau inclusions are hallmarks of Alzheimer’s disease (AD) and other neurodegenerative tauopathies. An increasing number of studies implicate the cell-to-cell propagation of tau pathology in the progression of tauopathies. We recently showed [25] that inoculation of preformed synthetic tau fibrils (tau PFFs) into the hippocampus of young transgenic (Tg) mice (PS19) overexpressing human P301S mutant tau induced robust tau pathology in anatomically connected brain regions including the locus coeruleus (LC). Since Braak and colleagues hypothesized that the LC is the first brain structure to develop tau lesions and since LC has widespread connections throughout the CNS, LC neurons could be the critical initiators of the stereotypical spreading of tau pathology through connectome-dependent transmission of pathological tau in AD. Here, we report that injections of tau PFFs into the LC of PS19 mice induced propagation of tau pathology to major afferents and efferents of the LC. Notably, tau pathology propagated along LC efferent projections was localized not only to axon terminals but also to neuronal perikarya, suggesting transneuronal transfer of templated tau pathology to neurons receiving LC projections. Further, brainstem neurons giving rise to major LC afferents also developed perikaryal tau pathology. Surprisingly, while tangle bearing neurons degenerated in the LC ipsilateral to the injection site starting 6 months post-injection, no neuron loss was seen in the contralateral LC wherein tangle bearing neurons gradually cleared tau pathology by 6–12 months post-injection. However, the spreading pattern of tau pathology observed in our LC-injected mice is different from that in AD brains since hippocampus and entorhinal cortex, which are affected in early stages of AD, were largely spared of tau inclusions in our model. Thus, while our study tested critical aspects of the Braak hypothesis of tau pathology spread, this novel mouse model provides unique

  6. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex

    NASA Astrophysics Data System (ADS)

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  7. Paradoxically greater interhemispheric transfer deficits in partial than complete callosal agenesis.

    PubMed

    Aglioti, S; Beltramello, A; Tassinari, G; Berlucchi, G

    1998-10-01

    Symptoms of interhemispheric disconnection are typically much less severe in callosal agenesis than after surgical section of the corpus callosum. Sperry [Sperry, R. W., Plasticity of neural maturation. Developmental Biology, 1968, 2 (Suppl.), 306-327.] has attributed this difference to two interconnected factors: (1) the callosal section is usually performed after the brain has lost the maximal degree of functional plasticity associated with the early stages of development and (2) the removal of an already formed structure is more disruptive for functional brain organization than the failure of the same structure to develop. It has been suggested that functional compensation is less efficient if callosal agenesis is partial rather than complete [Dennis, M., Impaired sensory and motor differentiation with corpus callosum agenesis: A lack of callosal inhibition during ontogeny? Neuropsychologia, 1976, 14, 455-469.]. This suggestion is supported by the present findings of partial left-hand anomia, partial left-field alexia and poor tactile cross-localization in a subject with a congenital absence of the posterior part of the corpus callosum due to an arteriovenous malformation. In agreement with many previous studies, similar, though more severe, symptoms of interhemispheric disconnection were found in a subject with a complete section of the corpus callosum, but not in a subject with complete callosal agenesis. Praxic control of the left hand on verbal commands was severely deficient in the callosotomy subject, but it was normal in the subject with callosal hypogenesis. The lesser degree of compensation in partial compared to complete callosal agenesis may be explained by a reduced pressure to develop extracallosal means of interhemispheric communication, contingent on the partial existence of callosal connections, as well as by the later occurrence in development of the causes of callosal hypogenesis compared to those of total callosal agenesis.

  8. Ultrastructure and synaptic connectivity of main and accessory olfactory bulb efferent projections terminating in the rat anterior piriform cortex and medial amygdala.

    PubMed

    Park, Sook Kyung; Kim, Jong Ho; Yang, Eun Sun; Ahn, Dong Kuk; Moon, Cheil; Bae, Yong Chul

    2014-09-01

    Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29%) in the aPir contacted 2-4 postsynaptic dendrites, only 7% of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95%) contacted dendritic spines, whereas most identified boutons in the MeA (64%) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.

  9. Are there efferent synapses in fish taste buds?

    PubMed

    Reutter, Klaus; Witt, Martin

    2004-12-01

    In fish, nerve fibers of taste buds are organized within the bud's nerve fiber plexus. It is located between the sensory epithelium consisting of light and dark elongated cells and the basal cells. It comprises the basal parts and processes of light and dark cells that intermingle with nerve fibers, which are the dendritic endings of the taste sensory neurons belonging to the cranial nerves VII, IX or X. Most of the synapses at the plexus are afferent; they have synaptic vesicles on the light (or dark) cells side, which is presynaptic. In contrast, the presumed efferent synapses may be rich in synaptic vesicles on the nerve fibers (presynaptic) side, whereas the cells (postsynaptic) side may contain a subsynaptic cistern; a flat compartment of the smooth endoplasmic reticulum. This structure is regarded as a prerequisite of a typical efferent synapse, as occurring in cochlear and vestibular hair cells. In fish taste buds, efferent synapses are rare and were found only in a few species that belong to different taxa. The significance of efferent synapses in fish taste buds is not well understood, because efferent connections between the gustatory nuclei of the medulla with taste buds are not yet proved.

  10. Electrophysiological Correlates of Morphological Neuroplasticity in Human Callosal Dysgenesis.

    PubMed

    Lazarev, Vladimir V; de Carvalho Monteiro, Myriam; Vianna-Barbosa, Rodrigo; deAzevedo, Leonardo C; Lent, Roberto; Tovar-Moll, Fernanda

    2016-01-01

    In search for the functional counterpart of the alternative Probst and sigmoid bundles, considered as morphological evidence of neuroplasticity in callosal dysgenesis, electroencephalographic (EEG) coherence analysis was combined with high resolution and diffusion tensor magnetic resonance imaging. Data of two patients with callosal agenesis, plus two with typical partial dysgenesis with a remnant genu, and one atypical patient with a substantially reduced genu were compared to those of fifteen neurotypic controls. The interhemispheric EEG coherence between homologous nontemporal brain regions corresponded to absence or partial presence of callosal connections. A generalized coherence reduction was observed in complete acallosal patients, as well as coherence preservation in the anterior areas of the two patients with a remnant genu. jThe sigmoid bundles found in three patients with partial dysgenesis correlated with augmented EEG coherence between anterior regions of one hemisphere and posterior regions of the other. These heterologous (crossed) interhemispheric connections were asymmetric in both imaging and EEG patterns, with predominance of the right-anterior-to-left-posterior connections over the mirror ones. The Probst bundles correlated with higher intrahemispheric long-distance coherence in all patients. The significant correlations observed for the delta, theta and alpha bands indicate that these alternative pathways are functional, although the neuropsychological nature of this function is still unknown.

  11. Unplugging the callose plug from sieve pores.

    PubMed

    Xie, Bo; Hong, Zonglie

    2011-04-01

    The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds.

  12. Callose synthesis during reproductive development in monocotyledonous and dicotyledonous plants.

    PubMed

    Shi, Xiao; Han, Xiao; Lu, Tie-gang

    2016-01-01

    Callose, a linear β-1,3-glucan molecule, plays important roles in a variety of processes in angiosperms, including development and the response to biotic and abiotic stress. Despite the importance of callose deposition, our understanding of the roles of callose in rice reproductive development and the regulation of callose biosynthesis is limited. GLUCAN SYNTHASE-LIKE genes encode callose synthases (GSLs), which function in the production of callose at diverse sites in plants. Studies have shown that callose participated in plant reproductive development, and that the timely deposition and degradation of callose were essential for normal male gametophyte development. In this mini-review, we described conserved sequences found in GSL family proteins from monocotyledonous (Oryza sativa and Zea mays) and dicotyledonous (Arabidopsis thaliana and Glycine max) plants. We also describe the latest findings on callose biosynthesis and deposition during reproductive development and discuss future challenges in unraveling the mechanism of callose synthesis and deposition in higher plants.

  13. Callose synthesis during reproductive development in monocotyledonous and dicotyledonous plants

    PubMed Central

    Shi, Xiao; Han, Xiao; Lu, Tie-gang

    2016-01-01

    Callose, a linear β-1,3-glucan molecule, plays important roles in a variety of processes in angiosperms, including development and the response to biotic and abiotic stress. Despite the importance of callose deposition, our understanding of the roles of callose in rice reproductive development and the regulation of callose biosynthesis is limited. GLUCAN SYNTHASE-LIKE genes encode callose synthases (GSLs), which function in the production of callose at diverse sites in plants. Studies have shown that callose participated in plant reproductive development, and that the timely deposition and degradation of callose were essential for normal male gametophyte development. In this mini-review, we described conserved sequences found in GSL family proteins from monocotyledonous (Oryza sativa and Zea mays) and dicotyledonous (Arabidopsis thaliana and Glycine max) plants. We also describe the latest findings on callose biosynthesis and deposition during reproductive development and discuss future challenges in unraveling the mechanism of callose synthesis and deposition in higher plants. PMID:26451709

  14. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.

    PubMed

    Brown, Guy J; Ferry, Robert T; Meddis, Ray

    2010-02-01

    The neural mechanisms underlying the ability of human listeners to recognize speech in the presence of background noise are still imperfectly understood. However, there is mounting evidence that the medial olivocochlear system plays an important role, via efferents that exert a suppressive effect on the response of the basilar membrane. The current paper presents a computer modeling study that investigates the possible role of this activity on speech intelligibility in noise. A model of auditory efferent processing [Ferry, R. T., and Meddis, R. (2007). J. Acoust. Soc. Am. 122, 3519-3526] is used to provide acoustic features for a statistical automatic speech recognition system, thus allowing the effects of efferent activity on speech intelligibility to be quantified. Performance of the "basic" model (without efferent activity) on a connected digit recognition task is good when the speech is uncorrupted by noise but falls when noise is present. However, recognition performance is much improved when efferent activity is applied. Furthermore, optimal performance is obtained when the amount of efferent activity is proportional to the noise level. The results obtained are consistent with the suggestion that efferent suppression causes a "release from adaptation" in the auditory-nerve response to noisy speech, which enhances its intelligibility.

  15. Vestibular efferent neurons project to the flocculus

    NASA Technical Reports Server (NTRS)

    Shinder, M. E.; Purcell, I. M.; Kaufman, G. D.; Perachio, A. A.

    2001-01-01

    A bilateral projection from the vestibular efferent neurons, located dorsal to the genu of the facial nerve, to the cerebellar flocculus and ventral paraflocculus was demonstrated. Efferent neurons were double-labeled by the unilateral injections of separate retrograde tracers into the labyrinth and into the floccular and ventral parafloccular lobules. Efferent neurons were found with double retrograde tracer labeling both ipsilateral and contralateral to the sites of injection. No double labeling was found when using a fluorescent tracer with non-fluorescent tracers such as horseradish peroxidase (HRP) or biotinylated dextran amine (BDA), but large percentages of efferent neurons were found to be double labeled when using two fluorescent substances including: fluorogold, microruby dextran amine, or rhodamine labeled latex beads. These data suggest a potential role for vestibular efferent neurons in modulating the dynamics of the vestibulo-ocular reflex (VOR) during normal and adaptive conditions.

  16. Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement.

    PubMed

    Paul, Lynn K

    2011-03-01

    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)-the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome).

  17. A case of callosal agenesis with strong anatomical and functional asymmetries.

    PubMed

    Jäncke, L; Wunderlich, G; Schlaug, G; Steinmetz, H

    1997-10-01

    A 30-year-old right-handed man (W.D.) with total callosal agenesis was examined neuropsychologically and with magnetic resonance imaging. Basic neuropsychological testing revealed normal intelligence and average attentional capabilities. Anatomically, W.D. shows strong leftward perisylvian asymmetry both for the planum temporale and planum parietale, an unusual pattern not found in our database of more than 200 brains of young and healthy individuals. Functionally, W.D. has strong right hand superiority for hand skill and tactile object recognition, indicating unusual left hemisphere dominance for both functions. Our observations could support the hypothesis that callosal connectivity and hemispheric asymmetry may be inversely related.

  18. Depletion of Inositol Polyphosphate 4-Phosphatase II Suppresses Callosal Axon Formation in the Developing Mice.

    PubMed

    Ji, Liting; Kim, Nam-Ho; Huh, Sung-Oh; Rhee, Hae Jin

    2016-06-30

    The corpus callosum is a bundle of nerve fibers that connects the two cerebral hemispheres and is essential for coordinated transmission of information between them. Disruption of early stages of callosal development can cause agenesis of the corpus callosum (AgCC), including both complete and partial callosal absence, causing mild to severe cognitive impairment. Despite extensive studies, the etiology of AgCC remains to be clarified due to the complicated mechanism involved in generating AgCC. The biological function of PI3K signaling including phosphatidylinositol-3,4,5-trisphosphate is well established in diverse biochemical processes including axon and dendrite morphogenesis, but the function of the closely related phosphatidylinositol-3,4,-bisphosphate (PI(3,4)P2) signaling, particularly in the nervous system, is largely unknown. Here, we provide the first report on the role of inositol polyphosphate 4-phosphatase II (INPP4B), a PI(3,4)P2 metabolizing 4-phosphatase in the regulation of callosal axon formation. Depleting INPP4B by in utero electroporation suppressed medially directed callosal axon formation. Moreover, depletion of INPP4B significantly attenuated formation of Satb2-positive pyramidal neurons and axon polarization in cortical neurons during cortical development. Taken together, these data suggest that INPP4B plays a role in the regulating callosal axon formation by controlling axon polarization and the Satb2-positive pyramidal neuron population. Dysregulation of INPP4B during cortical development may be implicated in the generation of partial AgCC.

  19. Imaging spectrum of pediatric corpus callosal pathology: a pictorial review.

    PubMed

    Hyun Yoo, Jeong; Hunter, Jill

    2013-04-01

    A wide spectrum of pediatric corpus callosal diseases can occur in the pediatric age group. Cross-sectional magnetic resonance imaging plays an important role in the diagnosis of these patients. We reviewed our imaging record and collected cases of corpus callosal pathology. The purpose of this review is to illustrate the imaging features of various corpus callosal lesions encountered in children.

  20. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with "Candidatus Liberibacter asiaticus".

    PubMed

    Koh, Eun-Ji; Zhou, Lijuan; Williams, Donna S; Park, Jiyoung; Ding, Ningyuan; Duan, Yong-Ping; Kang, Byung-Ho

    2012-07-01

    Huanglongbing (HLB) is a destructive disease of citrus trees caused by phloem-limited bacteria, Candidatus Liberibacter spp. One of the early microscopic manifestations of HLB is excessive starch accumulation in leaf chloroplasts. We hypothesize that the causative bacteria in the phloem may intervene photoassimilate export, causing the starch to over-accumulate. We examined citrus leaf phloem cells by microscopy methods to characterize plant responses to Liberibacter infection and the contribution of these responses to the pathogenicity of HLB. Plasmodesmata pore units (PPUs) connecting companion cells and sieve elements were stained with a callose-specific dye in the Liberibacter-infected leaf phloem cells; callose accumulated around PPUs before starch began to accumulate in the chloroplasts. When examined by transmission electron microscopy, PPUs with abnormally large callose deposits were more abundant in the Liberibacter-infected samples than in the uninfected samples. We demonstrated an impairment of symplastic dye movement into the vascular tissue and delayed photoassimilate export in the Liberibacter-infected leaves. Liberibacter infection was also linked to callose deposition in the sieve plates, which effectively reduced the sizes of sieve pores. Our results indicate that Liberibacter infection is accompanied by callose deposition in PPUs and sieve pores of the sieve tubes and suggest that the phloem plugging by callose inhibits phloem transport, contributing to the development of HLB symptoms.

  1. Medial Cochlear Efferent Function: A Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Mountain, David C.

    2011-11-01

    Since the discovery of the cochlear efferent system, many hypotheses have been put forth for its function. These hypotheses for its function range from protecting the cochlea from over stimulation to improving the detection of sounds in noise. It is known that the medial efferent system innervates the outer hair cells and that stimulation of this system reduces basilar membrane and auditory nerve sensitivity which suggests that this system acts to decrease the gain of the cochlear amplifier. Here I present modeling results as well as analysis of published experimental data that suggest that the function of the medial efferent reflex is to decrease the cochlear amplifier gain by just the right amount so that the nonlinearity in the basilar membrane response lines up perfectly with the inner hair cell nonlinear transduction process to produce a hair cell receptor potential that is proportional to the logarithm of the sound pressure level.

  2. A Strategy to Validate the Role of Callose-mediated Plasmodesmal Gating in the Tropic Response.

    PubMed

    Kumar, Ritesh; Wu, Shu Wei; Iswanto, Arya Bagus Boedi; Kumar, Dhinesh; Han, Xiao; Kim, Jae-Yean

    2016-04-17

    The plant hormone auxin plays an important role in many growth and developmental processes, including tropic responses to light and gravity. The establishment of an auxin gradient is a key event leading to phototropism and gravitropism. Previously, polar auxin transport (PAT) was shown to establish an auxin gradient in different cellular domains of plants. However, Han et al. recently demonstrated that for proper auxin gradient formation, plasmodesmal callose-mediated symplasmic connectivity between the adjacent cells is also a critical factor. In this manuscript, the strategy to elucidate the role of particular genes, which can affect phototropism and gravitropism by altering the symplasmic connectivity through modulating plasmodesmal callose synthesis, is discussed. The first step is to screen aberrant tropic responses from 3-day-old etiolated seedlings of mutants or over-expression lines of a gene along with the wild type. This preliminary screening can lead to the identification of a range of genes functioning in PAT or controlling symplasmic connectivity. The second screening involves the sorting of candidates that show altered tropic responses by affecting symplasmic connectivity. To address such candidates, the movement of a symplasmic tracer and the deposition of plasmodesmal callose were examined. This strategy would be useful to explore new candidate genes that can regulate symplasmic connectivity directly or indirectly during tropic responses and other developmental processes.

  3. Literature-Based Exploration: Efferent and Aesthetic.

    ERIC Educational Resources Information Center

    Prather, Kathryn

    Efferent teaching asks the student to read for a predetermined answer, focusing on another person's ideas of the text's meaning. Aesthetic teaching allows for literature to be read and experienced as art through the reader's personal transaction with the text which focuses on one's own interest to create and understand the meaning. This paper…

  4. Vestibular Efferent Activity in Squirrel Monkeys

    DTIC Science & Technology

    1990-10-01

    animals. We will stimulate the VIIIth nerves bilaterally to antidromically identify these neurons. Subsequently, we will identify sources of synaptic...system. We will record extracellularly in alert animals from the somata of antidromically identified efferent vestibular neurons to define the level of

  5. Abnormal interhemispheric motor interactions in patients with callosal agenesis.

    PubMed

    Genç, Erhan; Ocklenburg, Sebastian; Singer, Wolf; Güntürkün, Onur

    2015-10-15

    During unilateral hand movements the activity of the contralateral primary motor cortex (cM1) is increased while the activity of the ipsilateral M1 (iM1) is decreased. A potential explanation for this asymmetric activity pattern is transcallosal cM1-to-iM1 inhibitory control. To test this hypothesis, we examined interhemispheric motor inhibition in acallosal patients. We measured fMRI activity in iM1 and cM1 in acallosal patients during unilateral hand movements and compared their motor activity pattern to that of healthy controls. In controls, fMRI activation in cM1 was significantly higher than in iM1, reflecting a normal differential task-related M1 activity. Additional functional connectivity analysis revealed that iM1 activity was strongly suppressed by cM1. Furthermore, DTI analysis indicated that this contralaterally induced suppression was mediated by microstructural properties of specific callosal fibers interconnecting both M1s. In contrast, acallosal patients did not show a clear differential activity pattern between cM1 and iM1. The more symmetric pattern was due to an elevated task-related iM1 activity in acallosal patients, which was significantly higher than iM1 activity in a subgroup of gender and age-matched controls. Also, interhemispheric motor suppression was completely absent in acallosal patients. These findings suggest that absence of callosal connections reduces inhibitory interhemispheric motor interactions between left and right M1. This effect may reveal novel aspects of mechanisms in communication of two hemispheres and establishment of brain asymmetries in general.

  6. Functional organization of human occipital-callosal fiber tracts

    PubMed Central

    Dougherty, Robert F.; Ben-Shachar, Michal; Bammer, Roland; Brewer, Alyssa A.; Wandell, Brian A.

    2005-01-01

    Diffusion tensor imaging (DTI) and fiber tracking (FT) were used to measure the occipital lobe fiber tracts connecting the two hemispheres in individual human subjects. These tracts are important for normal vision. Also, damage to portions of these tracts is associated with alexia. To assess the reliability of the DTI-FT measurements, occipital-callosal projections were estimated from each subject's left and right hemispheres independently. The left and right estimates converged onto the same positions within the splenium. We further characterized the properties of the estimated occipital-callosal fiber tracts by combining them with functional MRI. We used functional MRI to identify visual field maps in cortex and labeled fibers by the cortical functional response at the fiber endpoint. This labeling reveals a regular organization of the fibers within the splenium. The dorsal visual maps (dorsal V3, V3A, V3B, V7) send projections through a large band in the middle of the splenium, whereas ventral visual maps (ventral V3, V4) send projections through the inferior-anterior corner of the splenium. The agreement between the independent left/right estimates, further supported by previous descriptions of homologous tracts in macaque, validates the DTI-FT methods. However, a principal limitation of these methods is low sensitivity: a large number of fiber tracts that connect homotopic regions of ventral and lateral visual cortex were undetected. We conclude that most of the estimated tracts are real and can be localized with a precision of 1-2 mm, but many tracts are missed because of data and algorithm limitations. PMID:15883384

  7. Callosal agenesis followed postnatally after prenatal diagnosis.

    PubMed

    Imataka, George; Nakagawa, Eiji; Kuwashima, Shigeko; Watanabe, Hiroshi; Yamanouchi, Hideo; Arisaka, Osamu

    2006-09-01

    Callosal agenesis is a congenital brain anomaly caused by embryonal hypogenesis of the corpus callosum. Concerning the neurological prognosis, epilepsy and motor disturbance are noted in some cases, while many cases are asymptomatic and the prognosis is good. We report a fetus tentatively diagnosed with hydrocephaly on prenatal echo-encephalography, which was performed without adequate explanation to and understanding of the parents. The parents had not expected an abnormality before the screening, and were subsequently not psychologically prepared for the discovery of the congenital brain anomaly on imaging. Moreover, they received no guidance on how to deal with any possible abnormalities. The pregnant mother was referred to our hospital. Prenatal MRI was performed after informed consent was obtained, and the fetus was diagnosed with callosal agenesis. The patient was followed for 5 years, and neurological development was normal. However, the parents have remained anxious while raising the child. Thus, the prenatal diagnosis of callosal agenesis in this case caused unnecessary mental burden to the parents. Here, we report the course of the case, and discuss the way prenatal ultrasonography should be used as a prenatal screening method, and the importance of counseling before the test.

  8. Efferent pathways modulate hyperactivity in inferior colliculus.

    PubMed

    Mulders, Wilhelmina Henrica A M; Seluakumaran, Kumar; Robertson, Donald

    2010-07-14

    Animal models have demonstrated that mild hearing loss caused by acoustic trauma results in spontaneous hyperactivity in the central auditory pathways. This hyperactivity has been hypothesized to be involved in the generation of tinnitus, a phantom auditory sensation. We have recently shown that such hyperactivity, recorded in the inferior colliculus, is still dependent on cochlear neural output for some time after recovery (up to 6 weeks). We have now studied the capacity of an intrinsic efferent system, i.e., the olivocochlear system, to alter hyperactivity. This system is known to modulate cochlear neural output. Anesthetized guinea pigs were exposed to a loud sound and after 2 or 3 weeks of recovery, single-neuron recordings in inferior colliculus were made to confirm hyperactivity. Olivocochlear axons were electrically stimulated and effects on cochlear neural output and on highly spontaneous neurons in inferior colliculus were assessed. Olivocochlear stimulation suppressed spontaneous hyperactivity in the inferior colliculus. This result is in agreement with our earlier finding that hyperactivity can be modulated by altering cochlear neural output. Interestingly, the central suppression was generally much larger and longer lasting than reported previously for primary afferents. Blockade of the intracochlear effects of olivocochlear system activation eliminated some but not all of the effects observed on spontaneous activity, suggesting also a central component to the effects of stimulation. More research is needed to investigate whether these central effects of olivocochlear efferent stimulation are due to central intrinsic circuitry or to coactivation of central efferent collaterals to the cochlear nucleus.

  9. Callosal function in MS patients with mild and severe callosal damage as reflected by diffusion tensor imaging.

    PubMed

    Warlop, Nele P; Fieremans, Els; Achten, Eric; Debruyne, Jan; Vingerhoets, Guy

    2008-08-21

    In this study, callosal function was behaviourally tested in MS patients with a redundant stimuli task. Reaction times to uni- and bilateral visual stimuli are recorded. Normal subjects respond faster to bilateral than to unilateral stimuli. This effect is called the redundancy gain effect. In patients with agenesis of the corpus callosum, the redundancy gain exceeds that predicted by probability summation, suggesting a mediating influence of the corpus callosum in healthy controls. The aim of this study is to investigate the effect of callosal damage on the redundancy gain in MS patients by investigating the probability summation model. Seventeen MS patients and as many matched healthy controls performed the redundancy gain task. In order to objectify callosal damage in our MS group, diffusion tensor imaging (DTI) derived measures such as fractional anisotropy (FA) and mean diffusivity (MD) in the corpus callosum were obtained. Callosal FA and MD significantly differed in our MS group compared to the healthy controls, indicating pathological callosal involvement. Since the amount of callosal damage was highly variable within the MS group, the MS cohort was split into a low and a high callosal-injured group as quantified by FA. The high FA group performed like the healthy controls, whereas violations of the probability (race) model were found for the low FA group. We conclude that behavioural measures obtained by the redundancy gain paradigm reflect callosal pathology in MS as measured by DTI.

  10. Efferent feedback can explain many hearing phenomena

    NASA Astrophysics Data System (ADS)

    Holmes, W. Harvey; Flax, Matthew R.

    2015-12-01

    The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).

  11. Plasmodesmata without callose and calreticulin in higher plants - open channels for fast symplastic transport?

    PubMed

    Demchenko, Kirill N; Voitsekhovskaja, Olga V; Pawlowski, Katharina

    2014-01-01

    Plasmodesmata (PD) represent membrane-lined channels that link adjacent plant cells across the cell wall. PD of higher plants contain a central tube of endoplasmic reticulum (ER) called desmotubule. Membrane and lumen proteins seem to be able to move through the desmotubule, but most transport processes through PD occur through the cytoplasmic annulus (Brunkard etal., 2013). Calreticulin (CRT), a highly conserved Ca(2+)-binding protein found in all multicellular eukaryotes, predominantly located in the ER, was shown to localize to PD, though not all PD accumulate CRT. In nitrogen-fixing actinorhizal root nodules of the Australian tree Casuarina glauca, the primary walls of infected cells containing the microsymbiont become lignified upon infection. TEM analysis of these nodules showed that during the differentiation of infected cells, PD connecting infected cells, and connecting infected and adjacent uninfected cells, were reduced in number as well as diameter (Schubert etal., 2013). In contrast with PD connecting young infected cells, and most PD connecting mature infected and adjacent uninfected cells, PD connecting mature infected cells did not accumulate CRT. Furthermore, as shown here, these PD were not associated with callose, and based on their diameter, they probably had lost their desmotubules. We speculate that either this is a slow path to PD degradation, or that the loss of callose accumulation and presumably also desmotubules leads to the PD becoming open channels and improves metabolite exchange between cells.

  12. Early visual evoked potentials in callosal agenesis.

    PubMed

    Barr, Melodie S; Hamm, Jeff P; Kirk, Ian J; Corballis, Michael C

    2005-11-01

    Three participants with callosal agenesis and 12 neurologically normal participants were tested on a simple reaction time task, with visual evoked potentials collected using a high-density 128-channel system. Independent-components analyses were performed on the averaged visual evoked potentials to isolate the components of interest. Contrary to previous research with acallosals, evidence of ipsilateral activation was present in all 3 participants. Although ipsilateral visual components were present in all 4 unilateral conditions in the 2 related acallosal participants, in the 3rd, these were present only in the crossed visual field-hand conditions and not in the uncrossed conditions. Suggestions are made as to why these results differ from earlier findings and as to the neural mechanisms facilitating this ipsilateral activation.

  13. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.

    PubMed

    Guinan, John J

    2006-12-01

    This review covers the basic anatomy and physiology of the olivocochlear reflexes and the use of otoacoustic emissions (OAEs) in humans to monitor the effects of one group, the medial olivocochlear (MOC) efferents. MOC fibers synapse on outer hair cells (OHCs), and activation of these fibers inhibits basilar membrane responses to low-level sounds. This MOC-induced decrease in the gain of the cochlear amplifier is reflected in changes in OAEs. Any OAE can be used to monitor MOC effects on the cochlear amplifier. Each OAE type has its own advantages and disadvantages. The most straightforward technique for monitoring MOC effects is to elicit MOC activity with an elicitor sound contralateral to the OAE test ear. MOC effects can also be monitored using an ipsilateral elicitor of MOC activity, but the ipsilateral elicitor brings additional problems caused by suppression and cochlear slow intrinsic effects. To measure MOC effects accurately, one must ensure that there are no middle-ear-muscle contractions. Although standard clinical middle-ear-muscle tests are not adequate for this, adequate tests can usually be done with OAE-measuring instruments. An additional complication is that most probe sounds also elicit MOC activity, although this does not prevent the probe from showing MOC effects elicited by contralateral sound. A variety of data indicate that MOC efferents help to reduce acoustic trauma and lessen the masking of transients by background noise; for instance, they aid in speech comprehension in noise. However, much remains to be learned about the role of efferents in auditory function. Monitoring MOC effects in humans using OAEs should continue to provide valuable insights into the role of MOC efferents and may also provide clinical benefits.

  14. Efferent projection from the rostral ventrolateral medulla to the area postrema in rats.

    PubMed

    Frugière, A; Nunez, E; Pasaro, R; Gaytan, S; Barillot, J C

    1998-08-06

    The rostral ventrolateral medulla (RVLM) is a region of the brain primarily involved in cardiovascular control. It receives information from several areas of the brainstem, among which the area postrema (AP) and the nucleus of the solitary tract (NTS). The medial subnuclei of the solitary tract (TS) project towards the RVLM, providing cardiopulmonary information, and the AP serves information about circulatory hormones. Although the efferent pathways are well known, it is not the case for the connections from the RVLM towards the AP and the NTS. The present study was designed to examine the efferent connections from the RVLM onto the dorsal structures of the medulla: quantitatively by means of anatomical techniques, and functionally by means of electrophysiological techniques. Morphologically, Biocytin or Biotinylated dextran amine microinjections into the RVLM were followed by labelling of many fibres running towards the bulbar dorsomedial structures, with some pathways lying in the AP itself, or located in its caudal vicinity. Conversely, when microinjections of Fast Blue (FB) were made into the AP, FB-labelled cells could be observed within the RVLM. Electrophysiologically, single shock stimulation carried on AP allowed identification of axonal fibres issuing from somata located into the cardiovascular neuronal pool in the RVLM. From these results, we can assume: (1) the existence of dense efferent projection from RVLM to aspects of the dorsal vagal complex, including the AP and, among this dense projection, (2) the existence of some fibres terminating in, or crossing through the AP, and identified as conveying baroreceptor-related information, in the rat.

  15. Small tubules, surprising discoveries: from efferent ductules in the turkey to the discovery that estrogen receptor alpha is essential for fertility in the male

    PubMed Central

    Hess, R.A.

    2017-01-01

    Efferent ductules are small, delicate tubules that connect rete testis with the head of the epididymis, first identified by de Graaf in 1668. Although difficult to find in routine dissection, the ductules are an essential component of the male reproductive tract and in larger mammals occupy up more than 50% of the caput epididymidis. My introduction to research began with the study of efferent ductules in the domestic turkey, and to my surprise these small structures with kidney-like function become the core for numerous discoveries throughout my scientific career. In this review, only two discoveries that I found interesting will be discussed: cilia that line the efferent ductule lumen and estrogen receptors that play an essential role in regulating fluid reabsorption. A potential link between these two discoveries was uncovered in the study of efferent ductule effects observed in the estrogen receptor knockout mouse and following toxic exposure to the fungicide benomyl. PMID:28191043

  16. Callosal axon arbors in the limb representations of the somatosensory cortex (SI) in the agouti (Dasyprocta primnolopha).

    PubMed

    Rocha, E G; Santiago, L F; Freire, M A M; Gomes-Leal, W; Dias, I A; Lent, R; Houzel, J C; Franca, J G; Pereira, A; Picanço-Diniz, C W

    2007-01-10

    The present report compares the morphology of callosal axon arbors projecting from and to the hind- or forelimb representations in the primary somatosensory cortex (SI) of the agouti (Dasyprocta primnolopha), a large, lisencephlic Brazilian rodent that uses forelimb coordination for feeding. Callosal axons were labeled after single pressure (n = 6) or iontophoretic injections (n = 2) of the neuronal tracer biotinylated dextran amine (BDA, 10 kD), either into the hind- (n = 4) or forelimb (n = 4) representations of SI, as identified by electrophysiological recording. Sixty-nine labeled axon fragments located across all layers of contralateral SI representations of the hindlimb (n = 35) and forelimb (n = 34) were analyzed. Quantitative morphometric features such as densities of branching points and boutons, segments length, branching angles, and terminal field areas were measured. Cluster analysis of these values revealed the existence of two types of axon terminals: Type I (46.4%), less branched and more widespread, and Type II (53.6%), more branched and compact. Both axon types were asymmetrically distributed; Type I axonal fragments being more frequent in hindlimb (71.9%) vs. forelimb (28.13%) representation, while most of Type II axonal arbors were found in the forelimb representation (67.56%). We concluded that the sets of callosal axon connecting fore- and hindlimb regions in SI are morphometrically distinct from each other. As callosal projections in somatosensory and motor cortices seem to be essential for bimanual interaction, we suggest that the morphological specialization of callosal axons in SI of the agouti may be correlated with this particular function.

  17. Visual speech gestures modulate efferent auditory system.

    PubMed

    Namasivayam, Aravind Kumar; Wong, Wing Yiu Stephanie; Sharma, Dinaay; van Lieshout, Pascal

    2015-03-01

    Visual and auditory systems interact at both cortical and subcortical levels. Studies suggest a highly context-specific cross-modal modulation of the auditory system by the visual system. The present study builds on this work by sampling data from 17 young healthy adults to test whether visual speech stimuli evoke different responses in the auditory efferent system compared to visual non-speech stimuli. The descending cortical influences on medial olivocochlear (MOC) activity were indirectly assessed by examining the effects of contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) at 1, 2, 3 and 4 kHz under three conditions: (a) in the absence of any contralateral noise (Baseline), (b) contralateral noise + observing facial speech gestures related to productions of vowels /a/ and /u/ and (c) contralateral noise + observing facial non-speech gestures related to smiling and frowning. The results are based on 7 individuals whose data met strict recording criteria and indicated a significant difference in TEOAE suppression between observing speech gestures relative to the non-speech gestures, but only at the 1 kHz frequency. These results suggest that observing a speech gesture compared to a non-speech gesture may trigger a difference in MOC activity, possibly to enhance peripheral neural encoding. If such findings can be reproduced in future research, sensory perception models and theories positing the downstream convergence of unisensory streams of information in the cortex may need to be revised.

  18. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2014-01-01

    Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur. PMID:24795733

  19. Callosal transfer in different subtypes of developmental dyslexia.

    PubMed

    Fabbro, F; Pesenti, S; Facoetti, A; Bonanomi, M; Libera, L; Lorusso, M L

    2001-02-01

    Sixteen controls (age 6-13) and 20 native Italian children with developmental dyslexia (age 7-15) received a test of callosal transfer of tactile information. Among the dyslexic children, 7 had a diagnosis of L-type, 7 of P-type and 6 of M-type dyslexia according to Bakker's classification. Both control children and children with dyslexia made a significantly larger number of errors in the crossed localization condition (implying callosal transfer of tactile information) vs. the uncrossed condition. In the same condition, children with dyslexia made a significantly larger number of errors than controls. In the crossed localization condition L-types and M-types made a significantly larger number of errors than P-types and controls, while there was no significant difference in performance between P-types and controls. These findings are discussed in terms of defective callosal transfer or deficient somatosensory representation in children with L- and M-dyslexia.

  20. Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Adams, M. M.; Webster, M. J.; Gattass, R.; Blumberg, D. M.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Previous immunohistochemical studies combined with retrograde tracing in macaque monkeys have demonstrated that corticocortical projections can be differentiated by their content of neurofilament protein. The present study analyzed the distribution of nonphosphorylated neurofilament protein in callosally projecting neurons located at the V1/V2 border. All of the retrogradely labeled neurons were located in layer III at the V1/V2 border and at an immediately adjacent zone of area V2. A quantitative analysis showed that the vast majority (almost 95%) of these interhemispheric projection neurons contain neurofilament protein immunoreactivity. This observation differs from data obtained in other sets of callosal connections, including homotypical interhemispheric projections in the prefrontal, temporal, and parietal association cortices, that were found to contain uniformly low proportions of neurofilament protein-immunoreactive neurons. Comparably, highly variable proportions of neurofilament protein-containing neurons have been reported in intrahemispheric corticocortical pathways, including feedforward and feedback visual connections. These results indicate that neurofilament protein is a prominent neurochemical feature that identifies a particular population of interhemispheric projection neurons at the V1/V2 border and suggest that this biochemical attribute may be critical for the function of this subset of callosal neurons.

  1. [Callose accumulation during treatment of tomato (Lycopersicon esculentum L.) cells with biotic elicitors].

    PubMed

    Emel'ianov, V I; Kravchuk, Zh N; Poliakovskiĭ, S A; Dmitriev, A P

    2008-01-01

    Time-course of induced accumulation of callose in tomato cells has been studied. Localization of callose in L. esculenthum cells was investigated by fluorescent microscopy technique, and the optimal time for its determination was found. Callose accumulation in tomato cells treated with different biotic elicitors was determined. Nonlinear dependence between callose accumulation and concentration of chitin oligomers (with 3-5 N-acetylglucosamine fragments) was established. Increasing of callose accumulation in tomato cells was proportional to the increase of concentration ofchitin dimer and chitosan in the culture medium.

  2. Anterior commissure absence without callosal agenesis: a new brain malformation.

    PubMed

    Mitchell, T N; Stevens, J M; Free, S L; Sander, J W; Shorvon, S D; Sisodiya, S M

    2002-04-23

    The authors report a novel human brain malformation characterized by the absence of the anterior commissure without callosal agenesis, but associated with gross unilateral panhemispheric malformation incorporating subependymal heterotopia, subcortical heterotopia, and gyral abnormalities including temporal malformation and polymicrogyria. In contrast, a normal anterior commissure was found in 125 control subjects and in 113 other subjects with a range of brain malformations.

  3. Agnosia, apraxia, callosal disconnection and other specific cognitive disorders.

    PubMed

    Acciarresi, Monica

    2012-01-01

    Cortical function deficits have long been studied by anatomoclinic correlations. Recent functional imaging studies have allowed scientists to better understand which cerebral areas and which networks are involved in cognitive function deficit. This chapter will review the current knowledge on agnosia, apraxia and callosal disconnection syndromes.

  4. The Efferent Medial Olivocochlear-Hair Cell Synapse

    PubMed Central

    Elgoyhen, Ana Belén; Katz, Eleonora

    2011-01-01

    Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse. PMID:21762779

  5. Enhanced redundancy gain in schizophrenics: a correlate of callosal dysfunction?

    PubMed

    Florio, Vincenzo; Marzi, Carlo A; Girelli, Andrea; Savazzi, Silvia

    2008-09-01

    An abnormal pattern of hemispheric asymmetry, possibly as a result of disturbed interhemispheric communication, is widely, albeit by no means unanimously, held as a major cause of schizophrenia. To behaviourally test interhemispheric communication in schizophrenia we used a task that has been shown to be a reliable indicator of callosal functioning, namely, the redundant signals effect (RSE). It consists of the speeding of simple reaction time when responding to double as opposed to single visual stimuli. When the stimuli in a pair are presented to different hemispheres patients who underwent total commissurotomy or suffer from callosal agenesis show a paradoxically enhanced RSE with respect to healthy controls. Therefore, if schizophrenia patients have a callosal abnormality they ought to show a similar effect. In three experiments we tested a total of 55 patients with a diagnosis of schizophrenia and 51 healthy controls. In Experiment 1 we presented unilateral single stimuli and bilateral simultaneous double stimuli. The RSE was reliably larger in schizophrenics than in controls. In Experiment 2 the temporal interval between the two stimuli in a pair was varied. We found that while in controls the RSE disappeared with interstimulus intervals longer than 17ms, in schizophrenia patients there was a RSE only for simultaneous double stimuli. Finally, in Experiment 3 we found that there was no enhanced redundancy gain in schizophrenics when the double stimuli were presented to one and the same hemisphere, and therefore, with no need for callosal transmission. All in all, the present results provide evidence of a callosal dysfunction in schizophrenia that impairs interhemispheric integration.

  6. Fetal development of the corpus callosum: Insights from a 3T DTI and tractography study in a patient with segmental callosal agenesis.

    PubMed

    Scola, Elisa; Sirgiovanni, Ida; Avignone, Sabrina; Cinnante, Claudia Maria; Biffi, Riccardo; Fumagalli, Monica; Triulzi, Fabio

    2016-10-01

    Commissural embryology mechanisms are not yet completely understood. The study and comprehension of callosal dysgenesis can provide remarkable insights into embryonic or fetal commissural development. The diffusion tensor imaging (DTI) technique allows the in vivo analyses of the white-matter microstructure and is a valid tool to clarify the disturbances of brain connections in patients with dysgenesis of the corpus callosum (CC). The segmental callosal agenesis (SCAG) is a rare partial agenesis of the corpus callosum (ACC). In a newborn with SCAG the DTI and tractography analyses proved that the CC was made of two separate segments consisting respectively of the ventral part in the genu and body of the CC, connecting the frontal lobes, and the dorsal part in the CC splenium and the attached hippocampal commissure (HC), connecting the parietal lobes and the fornix. These findings support the embryological thesis of a separated origin of the ventral and the dorsal parts of the CC.

  7. Connectivity

    ERIC Educational Resources Information Center

    Grush, Mary, Ed.

    2006-01-01

    Connectivity has dramatically changed the landscape of higher education IT. From "on-demand" services for net-gen students and advanced eLearning systems for faculty, to high-performance computing grid resources for researchers, IT now provides more networked services than ever to connect campus constituents to each other and to the world.…

  8. A Specific Role for Efferent Information in Self-Recognition

    ERIC Educational Resources Information Center

    Tsakiris, M.; Haggard, P.; Franck, N.; Mainy, N.; Sirigu, A.

    2005-01-01

    We investigated the specific contribution of efferent information in a self-recognition task. Subjects experienced a passive extension of the right index finger, either as an effect of moving their left hand via a lever ('self-generated action'), or imposed externally by the experimenter ('externally-generated action'). The visual feedback was…

  9. Callosal microstructural abnormalities in Alzheimer's disease and alcoholism: same phenotype, different mechanisms.

    PubMed

    Pitel, Anne-Lise; Chanraud, Sandra; Sullivan, Edith V; Pfefferbaum, Adolf

    2010-10-30

    Magnetic resonance (MRI) and diffusion tensor imaging (DTI) data were acquired in 13 Alzheimer's disease (AD) patients, 15 elderly alcoholics, and 32 elderly controls. Midsagittal area, length, dorsoventral height, fractional anisotropy (FA), and mean diffusivity (MD) of the total corpus callosum and volume of the lateral ventricles were measured; area, FA, and MD were also determined for the callosal genu, body, and splenium. On DTI, both patient groups had lower FA and higher MD than controls in all callosal regions. On MRI, both patient groups had smaller genu than controls; additional size deficits were present in the alcoholism group's callosal body and the AD group's splenium. The callosal arch was higher in the AD but not the alcoholic group compared with controls. The two patient groups had larger ventricles than controls, and the AD group had larger ventricles than the alcoholic group. Callosal area correlated with its height, and callosal FA and MD correlated with ventricular volume in AD, whereas callosal area correlated only with FA in alcoholics. In AD, the disruption of the callosal integrity, which was associated with distorted callosal shape, was related to ventricular dilation, which has been shown in twin studies to be under a multitude of genetic, polygenetic, and environmental influences. Conversely, in alcoholism, disruption of callosal microstructural integrity was related to shrinkage of the corpus callosum itself.

  10. A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise.

    PubMed

    Clark, Nicholas R; Brown, Guy J; Jürgens, Tim; Meddis, Ray

    2012-09-01

    The potential contribution of the peripheral auditory efferent system to our understanding of speech in a background of competing noise was studied using a computer model of the auditory periphery and assessed using an automatic speech recognition system. A previous study had shown that a fixed efferent attenuation applied to all channels of a multi-channel model could improve the recognition of connected digit triplets in noise [G. J. Brown, R. T. Ferry, and R. Meddis, J. Acoust. Soc. Am. 127, 943-954 (2010)]. In the current study an anatomically justified feedback loop was used to automatically regulate separate attenuation values for each auditory channel. This arrangement resulted in a further enhancement of speech recognition over fixed-attenuation conditions. Comparisons between multi-talker babble and pink noise interference conditions suggest that the benefit originates from the model's ability to modify the amount of suppression in each channel separately according to the spectral shape of the interfering sounds.

  11. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization.

  12. Efferent projections of the ectostriatum in the pigeon (Columba livia)

    NASA Technical Reports Server (NTRS)

    Husband, S. A.; Shimizu, T.

    1999-01-01

    The ectostriatum is a major visual component of the avian telencephalon. The core region of the ectostriatum (Ec) receives visual input from the optic tectum through thalamic nuclei. In the present study, the efferent projections of the ectostriatum were investigated by using the anterograde tracers Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine. Projection patterns resulting from these tracers were confirmed by the retrograde tracer cholera toxin subunit B. When anterograde tracers were injected in Ec, primary projections were seen traveling dorsolaterally to the belt region of the ectostriatum (Ep) and the neostriatal area immediately surrounding Ep (Ep2). Neurons in Ep sent projections primarily to the overlying Ep2. The efferents of Ep2 traveled dorsolaterally to terminate in three telencephalic regions, from anterior to posterior: (1) neostriatum frontale, pars lateralis (NFL), (2) area temporo-parieto-occipitalis (TPO), and (3) neostriatum intermedium, pars lateralis (NIL). A part of the archistriatum intermedium and the lateral part of the neostriatum caudale also received somewhat minor projections. In addition, some neurons in Ec were also the source of direct, but minor, projections to the NFL, TPO, NIL, and archistriatum intermedium. The topographical relationship among the primary (Ec), secondary (Ep and Ep2), and tertiary (NFL, TPO, NIL) areas indicate that the neural populations for visual processing are organized along the rostral-caudal axis. Thus, the anterior Ec sent efferents to the anterior Ep, which in turn sent projections to anterior Ep2. Neurons in the anterior Ep2 sent projections to NFL and the anterior TPO. Similarly, the intermediate and posterior Ec sent projections to corresponding parts of Ep, whose efferents projected to intermediate and posterior Ep2, respectively. The intermediate Ep2 gave rise to major projections to TPO, whereas posterior Ep2 neurons sent efferents primarily to NIL. The organization of this

  13. The role of the anterior commissure in callosal agenesis.

    PubMed

    Barr, Melodie S; Corballis, Michael C

    2002-10-01

    Two individuals with callosal agenesis (J.P. and M.M.) and 10 neurologically normal participants were tested on tasks requiring interhemispheric visual integration. M.M., whose anterior commissure was within normal limits, was much worse at matching colors and letters between visual fields than within visual fields, whereas J.P., whose anterior commissure was greatly enlarged, showed no evidence of interhemispheric disconnection. This suggests that in some cases of callosal agenesis, probably a minority, an enlarged anterior commissure may compensate for the lack of the corpus callosum. Neither acallosal participant showed interhemispheric disconnection on tasks requiring integration of location and orientation, however, suggesting that the anterior commissure plays no role in such tasks. These tasks may depend on subcortical commissures, such as the intertectal commissure.

  14. Morphogenesis of callosal arbors in the parietal cortex of hamsters.

    PubMed

    Hedin-Pereira, C; Lent, R; Jhaveri, S

    1999-01-01

    The morphogenesis of callosal axons originating in the parietal cortex was studied by anterograde labeling with Phaseolus lectin or biocytin injected in postnatal (P) hamsters aged 7-25 days. Some labeled fibers were serially reconstructed. At P7, some callosal fibers extended as far as the contralateral rhinal fissure, with simple arbors located in the homotopic region of the opposite cortical gray matter, and two or three unbranched sprouts along their trajectory. From P7 to P13, the homotopic arbors became more complex, with branches focused predominantly, but not exclusively, in the supra- and infragranular layers of the homotopic region. Simultaneously, the lateral extension of the trunk axon in the white matter became shorter, finally disappearing by P25. Arbors in the gray matter were either bilaminar (layers 2/3 and 5) or supragranular. A heterotopic projection to the lateral cortex was consistently seen at all ages; the heterotopic arbors follow a similar sequence of events to that seen in homotopic regions. These observations document that callosal axons undergo regressive tangential remodeling during the first postnatal month, as the lateral extension of the trunk fiber gets eliminated. Radially, however, significant arborization occurs in layer-specific locations. The protracted period of morphogenesis suggests a correspondingly long plastic period for this system of cortical fibers.

  15. More Than a Leak Sealant. The Mechanical Properties of Callose in Pollen Tubes1

    PubMed Central

    Parre, Elodie; Geitmann, Anja

    2005-01-01

    While callose is a well-known permeability barrier and leak sealant in plant cells, it is largely unknown whether this cell wall polymer can also serve as a load-bearing structure. Since callose occurs in exceptionally large amounts in pollen, we assessed its role for resisting tension and compression stress in this cell. The effect of callose digestion in Solanum chacoense and Lilium orientalis pollen grains demonstrated that, depending on the species, this cell wall polymer represents a major stress-bearing structure at the aperture area of germinating grains. In the pollen tube, it is involved in cell wall resistance to circumferential tension stress, and despite its absence at the growing apex, callose is indirectly involved in the establishment of tension stress resistance in this area. To investigate whether or not callose is able to provide mechanical resistance against compression stress, we subjected pollen tubes to local deformation by microindentation. The data revealed that lowering the amount of callose resulted in reduced cellular stiffness and increased viscoelasticity, thus indicating clearly that callose is able to resist compression stress. Whether this function is relevant for pollen tube mechanics, however, is unclear, as stiffened growth medium caused a decrease in callose deposition. Together, our data provide clear evidence for the capacity of cell wall callose to resist tension and compression stress, thus demonstrating that this amorphous cell wall substance can have a mechanical role in growing plant cells. PMID:15618431

  16. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.

    PubMed Central

    Koralek, K A; Killackey, H P

    1990-01-01

    During the first postnatal week, the distribution of callosal projection neurons in the rat somatosensory cortex changes from a uniform to a discontinuous pattern. To determine if this change is influenced by afferent inputs to the somatosensory cortex, the effect of both early unilateral infraorbital nerve section and unilateral removal of the dorsal thalamus on the distribution of callosal projections in rat somatosensory cortex was examined. One month after either of the above manipulations at birth, the tangential distribution of callosal projections in the somatosensory cortex was examined using the combined retrograde and anterograde transport of horseradish peroxidase. Both manipulations alter the distribution of callosal projection neurons and terminations in the somatosensory cortex. After infraorbital nerve section, the distribution of callosal projections is altered in the contralateral primary somatosensory cortex. The abnormalities observed are consistent with the altered distribution of thalamocortical projections. In addition, consistent abnormalities were observed in the pattern of callosal projections of the second somatosensory area of both hemispheres. Most notably, they are absent in a portion of the region that contains the representation of the mystacial vibrissae and sinus hairs in this area. Thalamic ablation resulted in highly aberrant patterns of callosal projections in the somatosensory cortex on the operated side, where abnormal bands and clusters of callosal projections were observed in apparently random locations. These results are interpreted as evidence that both peripheral and central inputs influence the maturational changes in the distribution of callosal projection neurons. Images PMID:2304906

  17. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility

    PubMed Central

    McMenamin, Caitlin A; Travagli, R Alberto

    2016-01-01

    The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions. PMID:27302177

  18. Medial efferent mechanisms in children with auditory processing disorders.

    PubMed

    Mishra, Srikanta K

    2014-01-01

    Auditory processing disorder (APD) affects about 2-5% of children. However, the nature of this disorder is poorly understood. Children with APD typically have difficulties in complex listening situations. One mechanism thought to aid in listening-in-noise is the medial olivocochlear (MOC) inhibition. The purpose of this review was to critically analyze the published data on MOC inhibition in children with APD to determine whether the MOC efferents are involved in these individuals. The otoacoustic emission (OAE) methods used to assay MOC reflex were examined in the context of the current understanding of OAE generation mechanisms. Relevant literature suggests critical differences in the study population and OAE methods. Variables currently known to influence MOC reflex measurements, for example, middle-ear muscle reflexes or OAE signal-to-noise ratio, were not controlled in most studies. The use of potentially weaker OAE methods and the remarkable heterogeneity across studies does not allow for a definite conclusion whether or not the MOC reflex is altered in children with APD. Further carefully designed studies are needed to confirm the involvement of MOC efferents in APD. Knowledge of efferent functioning in children with APD would be mechanistically and clinically beneficial.

  19. Diffusion Weighted Callosal Integrity Reflects Interhemispheric Communication Efficiency in Multiple Sclerosis

    ERIC Educational Resources Information Center

    Warlop, Nele P.; Achten, Eric; Debruyne, Jan; Vingerhoets, Guy

    2008-01-01

    We aimed to investigate the relation between damage in the corpus callosum and the performance on an interhemispheric communication task in patients with multiple sclerosis (MS). Relative callosal lesion load defined as the ratio between callosal area and the total lesion load in the total corpus callosum, and the diffusion tensor imaging (DTI)…

  20. Sex differences in the incidence of total callosal agenesis in BALB/cCF mice.

    PubMed

    Manhães, Alex C; Medina, Alexandre E; Schmidt, Sergio L

    2002-06-14

    Corpus callosum (CC) development and adult morphology seems to be affected by sex. Here we analyzed the incidence of total callosal agenesis in 341 adult male and 318 female BALB/cCF mice. This strain of mice presents total or partial callosal agenesis in approximately 20-30% of its population. No significant differences were found in overall distributions of CC lengths and in average callosal lengths (totally acallosal excluded) between male and female mice. However, a highly significant difference in the incidence of total callosal agenesis was demonstrated: 18% (n=56) of the female mice presented such trait as opposed to 10% of males (n=34). This last result suggests that sex is a relevant factor in callosal development in its earliest stages of formation.

  1. Stimulation of callose synthesis in vivio correlates with changes in intracellular distribution of the callose synthase activator [beta]-Furfuryl-[beta]-Glucoside

    SciTech Connect

    Ohana, P.; Benziman, M.; Delmer, D.P. )

    1993-01-01

    [beta]-Furfuryl-[beta]-glucoside (FG) has been shown to be a specific endogenous activator of higher plant callose synthase. Because glycosides such as FG are usually sequestered in vacuoles, we have proposed that activation of callose synthesis in vivo may involve a change in the compartmentation on FG and Ca[sup 2+], resulting in a synergistic activation of callose synthase. The use of suspension-cultured barley (Hordeum bulbosum L.) cells provides evidence that FG is largely sequestered in the vacuole. Furthermore, conditions that lead to induction of callose synthesis in vivo correspondingly lead to elevation of the cytoplasmic concentration of FG. These conditions include the lowering of cytoplasmic pH or elevation of cytoplasmic Ca[sup 2+]. Oligogalacturonide elicitors have also been reported to cause similar changes in cytoplasmic pH and Ca[sup 2+] concentration, and such an elicitor also causes and elevation in cytoplasmic FG coupled with stimulation of callose synthesis. These results support the concept that a relative redistribution of FG between cytoplasm and vacuole may be one of the components of the signal transduction pathway for elicitation of callose synthase in vivo. 18 refs., 1 fig., 2 tabs.

  2. Increased callose deposition in plants lacking DYNAMIN-RELATED PROTEIN 2B is dependent upon POWDERY MILDEW RESISTANT 4.

    PubMed

    Leslie, Michelle E; Rogers, Sean W; Heese, Antje

    2016-11-01

    Callose deposition within the cell wall is a well-documented plant immune response to pathogenic organisms as well as to pathogen-/microbe- associated molecular patterns (P/MAMPs). However, the molecular mechanisms that modulate pathogen-induced callose deposition are less understood. We reported previously that Arabidopsis plants lacking the vesicle trafficking component DYNAMIN-RELATED PROTEIN 2B (DRP2B) display increased callose deposition in response to the PAMP flg22. Here, we show that increased number of flg22-induced callose deposits in drp2b leaves is fully dependent on the callose synthase POWDERY MILDEW RESISTANT 4 (PMR4). We propose that in addition to functioning in flg22-induced endocytosis of the plant receptor, FLAGELLIN SENSING 2, DRP2B may regulate the trafficking of proteins involved in callose synthesis, such as PMR4, and/or callose degradation.

  3. Callose deposition is required for somatic embryogenesis in plasmolyzed Eleutherococcus senticosus zygotic embryos.

    PubMed

    Tao, Lei; Yang, Yang; Wang, Qiuyu; You, Xiangling

    2012-10-31

    Dynamic changes in callose content, which is deposited as a plant defense response to physiological changes, were analyzed during somatic embryogenesis in Eleutherococcus senticosus zygotic embryos plasmolyzed in 1.0 M mannitol. During plasmolysis, callose deposition was clearly observed inside the plasma membrane of zygotic embryo epidermal cells using confocal laser scanning microscopy. The callose content of zygotic embryos gradually increased between 0 and 12 h plasmolysis and remained stable after 24 h plasmolysis. During eight weeks induction of somatic embryogenesis, the callose content of explants plasmolyzed for 12 h was slightly higher than explants plasmolyzed for 6 or 24 h, with the largest differences observed after 6 weeks culture, which coincided with the maximum callose content and highest number of globular somatic embryos. The highest frequency of somatic embryo formation was observed in explants plasmolyzed for 12 h. The somatic embryo induction rate and number of somatic embryos per explant were markedly different in zygotic embryos pretreated with plasmolysis alone (78.0%, 43 embryos per explant) and those pretreated with plasmolysis and the callose synthase inhibitor 2-deoxy-d-glucose (11.5%, 8 embryos per explant). This study indicates that callose production is required for somatic embryogenesis in plasmolyzed explants.

  4. Efferent inhibition of carotid body chemoreception in chronically hypoxic cats.

    PubMed

    Lahiri, S; Smatresk, N; Pokorski, M; Barnard, P; Mokashi, A

    1983-11-01

    The effects of chronic hypoxia on carotid chemoreceptor afferent activity before and after sectioning the carotid sinus nerves (CSN) were studied in cats exposed to 10% O2 for 21-49 days in a chamber at sea level. For comparison, chronically normoxic cats at sea level were also studied. The cats were anesthetized, paucifiber preparation for the measurement of carotid chemosensory activity from a small slip of CSN was made, and their steady-state responses to 4-5 levels of arterial pressure of O2 (PaO2) at a constant PaCO2 and to 3-4 levels of PaCO2 in hyperoxia were measured before and after sectioning the CSN. The chemosensory response to hypoxia in the cats with intact CSN after chronic exposure to hypoxia was not reduced relative to the cats that breathed room air at sea level. Sectioning the CSN significantly augmented the chemosensory responses to hypoxia in all the chronically hypoxic but not significantly in the normoxic cats. The responses to moderate hypercapnia during hyperoxia were not significantly changed by cutting the CSN in either group. We conclude that there is a significant CSN efferent inhibition of chemosensory activity due to chronic hypoxia in the cat. This implies that without the efferent inhibition the hypoxic chemosensitivity is increased by chronic hypoxia.

  5. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse.

    PubMed

    Jordan, Paivi M; Fettis, Margaret; Holt, Joseph C

    2015-06-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed.

  6. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    PubMed Central

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  7. Callose is integral to the development of permanent tetrads in the liverwort Sphaerocarpos.

    PubMed

    Renzaglia, Karen S; Lopez, Renee A; Johnson, Eric E

    2015-03-01

    A striking feature of the liverwort Sphaerocarpos is that pairs of male and female spores remain united in permanent tetrads. To identify the nature of this phenomenon and to test the hypothesis that callose is involved, we examined spore wall development in Sphaerocarpos miche lii, with emphasis on the appearance, location and fate of callose vis-à-vis construction of the sculptoderm. All stages of sporogenesis were examined using differential interference contrast optics, and aniline blue fluorescence to locate callose. For precise localization, specimens were immunogold labeled with anti-callose antibody and observed in the transmission electron microscope. Callose plays a role in Sphaerocarpos spore wall development not described in any other plant, including other liverworts. A massive callose matrix forms outside of the sculptured sporocyte plasmalemma that predicts spore wall ornamentation. Consequently, layers of exine form across adjacent spores uniting them. Spore wall development occurs entirely within the callose and involves the production of six layers of prolamellae that give rise to single or stacked tripartite lamellae (TPL). Between spores, an anastomosing network of exine layers forms in lieu of intersporal septum development. As sporopollenin assembles on TPL, callose progressively disappears from the inside outward leaving layers of sporopollenin impregnated exine, the sculptoderm, overlying a thick fibrillar intine. This developmental mechanism provides a direct pathway from callose deposition to sculptured exine that does not involve the intermediary primexine found in pollen wall development. The resulting tetrad, encased in a single wall, provides a simple model for development of permanent dyads and tetrads in the earliest fossil plants.

  8. Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington's disease.

    PubMed

    Gatto, Rodolfo G; Chu, Yaping; Ye, Allen Q; Price, Steven D; Tavassoli, Ehsan; Buenaventura, Andrea; Brady, Scott T; Magin, Richard L; Kordower, Jeffrey H; Morfini, Gerardo A

    2015-09-15

    Cumulative evidence indicates that the onset and severity of Huntington's disease (HD) symptoms correlate with connectivity deficits involving specific neuronal populations within cortical and basal ganglia circuits. Brain imaging studies and pathological reports further associated these deficits with alterations in cerebral white matter structure and axonal pathology. However, whether axonopathy represents an early pathogenic event or an epiphenomenon in HD remains unknown, nor is clear the identity of specific neuronal populations affected. To directly evaluate early axonal abnormalities in the context of HD in vivo, we bred transgenic YFP(J16) with R6/2 mice, a widely used HD model. Diffusion tensor imaging and fluorescence microscopy studies revealed a marked degeneration of callosal axons long before the onset of motor symptoms. Accordingly, a significant fraction of YFP-positive cortical neurons in YFP(J16) mice cortex were identified as callosal projection neurons. Callosal axon pathology progressively worsened with age and was influenced by polyglutamine tract length in mutant huntingtin (mhtt). Degenerating axons were dissociated from microscopically visible mhtt aggregates and did not result from loss of cortical neurons. Interestingly, other axonal populations were mildly or not affected, suggesting differential vulnerability to mhtt toxicity. Validating these results, increased vulnerability of callosal axons was documented in the brains of HD patients. Observations here provide a structural basis for the alterations in cerebral white matter structure widely reported in HD patients. Collectively, our data demonstrate a dying-back pattern of degeneration for cortical projection neurons affected in HD, suggesting that axons represent an early and potentially critical target for mhtt toxicity.

  9. The roles of callose, elicitors and ethylene in thigmomorphogenesis and gravitropism

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.

    1984-01-01

    A correlation (both temporal and through the inhibitor, 2-deoxy-D-glucose) of callose deposition and ethylene evolution in mechanically perturbed (MP) bean or pine stems or in gravitationally stimulated corn shoots was demonstrated. It was suggested that the callose, which is deposited on the inside of the cell wall, and adjacent to the plasma membrane causes, in some way, the ethylene production. A hypothesis explaining the mechanism is discussed which states that there is a chemical activation of the enzyme system by the callose which is being deposited in apposition with it. Experimental data supporting the hypothesis are presented.

  10. Effect of human auditory efferent feedback on cochlear gain and compression.

    PubMed

    Yasin, Ifat; Drga, Vit; Plack, Christopher J

    2014-11-12

    The mammalian auditory system includes a brainstem-mediated efferent pathway from the superior olivary complex by way of the medial olivocochlear system, which reduces the cochlear response to sound (Warr and Guinan, 1979; Liberman et al., 1996). The human medial olivocochlear response has an onset delay of between 25 and 40 ms and rise and decay constants in the region of 280 and 160 ms, respectively (Backus and Guinan, 2006). Physiological studies with nonhuman mammals indicate that onset and decay characteristics of efferent activation are dependent on the temporal and level characteristics of the auditory stimulus (Bacon and Smith, 1991; Guinan and Stankovic, 1996). This study uses a novel psychoacoustical masking technique using a precursor sound to obtain a measure of the efferent effect in humans. This technique avoids confounds currently associated with other psychoacoustical measures. Both temporal and level dependency of the efferent effect was measured, providing a comprehensive measure of the effect of human auditory efferents on cochlear gain and compression. Results indicate that a precursor (>20 dB SPL) induced efferent activation, resulting in a decrease in both maximum gain and maximum compression, with linearization of the compressive function for input sound levels between 50 and 70 dB SPL. Estimated gain decreased as precursor level increased, and increased as the silent interval between the precursor and combined masker-signal stimulus increased, consistent with a decay of the efferent effect. Human auditory efferent activation linearizes the cochlear response for mid-level sounds while reducing maximum gain.

  11. Right unilateral jargonagraphia as a symptom of callosal disconnection.

    PubMed

    Ihori, Nami; Murayama, Junko; Mimura, Masaru; Miyazawa, Yumi; Kawamura, Mitsuru

    2006-01-01

    We report the case of a right-handed patient who exhibited right unilateral jargonagraphia after a traumatic callosal hemorrhage. The lesions involved the entire corpus callosum, except for the lower part of the genu and the splenium. The patient's right unilateral jargonagraphia was characterized by neologisms and perseveration in kanji and kana, and was more prominent in kana than kanji. The jargonagraphia was similar to that observed in crossed aphasia, except that agraphia occurred only with the right hand. The patient also showed right unilateral tactile anomia and right tactile alexia, along with right-ear extinction on a dichotic listening test for verbal stimuli, which suggested that language function was lateralized to the right hemisphere. Since this patient had learned to write with his right hand, kinesthetic images of characters were thought to be formed and stored dominantly in the left hemisphere. We suggest that the callosal lesions disturbed the interhemispheric transfer of information for the dual-route procedures for writing in the right hemisphere, allowing the kinesthetic images of characters stored in the left hemisphere to be processed freely, resulting in the right unilateral jargonagraphia. At least two factors seem to explain that kana was more defective than kanji. First, writing in kana, which is assumed to be processed mainly via a sub-word phoneme to grapheme conversion route, might depend more strongly on lateralized linguistic processing than writing in kanji. Second, kanji, which represent meaning as well as phonology, with much more complicated graphic patterns than kana, are assumed to be processed in both hemispheres.

  12. Clinical features and associated abnormalities in children and adolescents with corpus callosal anomalies.

    PubMed

    Kim, Young Uhk; Park, Eun Sook; Jung, Soojin; Suh, Miri; Choi, Hyo Seon; Rha, Dong-Wook

    2014-02-01

    Callosal anomalies are frequently associated with other central nervous system (CNS) and/or somatic anomalies. We retrospectively analyzed the clinical features of corpus callosal agenesis/hypoplasia accompanying other CNS and/or somatic anomalies. We reviewed the imaging and clinical information of patients who underwent brain magnetic resonance imaging in our hospital, between 2005 and 2012. Callosal anomalies were isolated in 13 patients, accompanied by other CNS anomalies in 10 patients, associated with only non-CNS somatic anomalies in four patients, and with both CNS and non-CNS abnormalities in four patients. Out of 31 patients, four developed normally, without impairments in motor or cognitive functions. Five of nine patients with cerebral palsy were accompanied by other CNS and/or somatic anomalies, and showed worse Gross Motor Function Classification System scores, compared with the other four patients with isolated callosal anomaly. In addition, patients with other CNS anomalies also had a higher seizure risk.

  13. Measuring Callose Deposition, an Indicator of Cell Wall Reinforcement, During Bacterial Infection in Arabidopsis.

    PubMed

    Jin, Lin; Mackey, David M

    2017-01-01

    The plant cell wall responds dynamically during interaction with various pathogens. Upon recognition of "nonself" components, plant cells deploy a variety of immune responses including cell wall fortification. Callose, a β-(1, 3)-D-glucan polymer, is a component of the material deposited at the site of infection between the plasma membrane and the preexisting cell wall that is hypothesized to serve as a physical barrier and platform for directed antimicrobial compound deposition. The defense-associated function of callose deposition is supported by its induction during pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI) and its inhibition by defense suppressing virulence effectors. Thus, callose deposition is a commonly monitored read-out in plant defense. This protocol describes the use of aniline blue staining and fluorescent microscopy to measure callose deposition in bacteria-infected or elicitor-challenged Arabidopsis leaf tissues.

  14. Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses.

    PubMed

    Lichtenhan, J T; Wilson, U S; Hancock, K E; Guinan, J J

    2016-03-01

    Inhibition of cochlear amplifier gain by the medial olivocochlear (MOC) efferent system has several putative roles: aiding listening in noise, protection against damage from acoustic overexposure, and slowing age-induced hearing loss. The human MOC reflex has been studied almost exclusively by measuring changes in otoacoustic emissions. However, to help understand how the MOC system influences what we hear, it is important to have measurements of the MOC effect on the total output of the organ of Corti, i.e., on cochlear nerve responses that couple sounds to the brain. In this work we measured the inhibition produced by the MOC reflex on the amplitude of cochlear nerve compound action potentials (CAPs) in response to moderate level (52-60 dB peSPL) clicks from five, young, normal hearing, awake, alert, human adults. MOC activity was elicited by 65 dB SPL, contralateral broadband noise (CAS). Using tympanic membrane electrodes, approximately 10 h of data collection were needed from each subject to yield reliable measurements of the MOC reflex inhibition on CAP amplitudes from one click level. The CAS produced a 16% reduction of CAP amplitude, equivalent to a 1.98 dB effective attenuation (averaged over five subjects). Based on previous reports of efferent effects as functions of level and frequency, it is possible that much larger effective attenuations would be observed at lower sound levels or with clicks of higher frequency content. For a preliminary comparison, we also measured MOC reflex inhibition of DPOAEs evoked from the same ears with f2's near 4 kHz. The resulting effective attenuations on DPOAEs were, on average, less than half the effective attenuations on CAPs.

  15. The brainstem efferent acoustic chiasm in pigmented and albino rats.

    PubMed

    Reuss, Stefan; Closhen-Gabrisch, Stefanie; Closhen, Christina

    2016-02-01

    The present study examined whether structural peculiarities in the brain-efferent pathway to the organ of Corti may underlie functional differences in hearing between pigmented and albino individuals of the same mammalian species. Pigmented Brown-Norway rats and albino Wistar rats received unilateral injections of an aqueous solution of the retrograde neuronal tracer Fluorogold (FG) into the scala tympani of the cochlea to identify olivocochlear neurons (OCN) in the brainstem superior olivary complex. After five days, brains were perfusion-fixed and brainstem sections were cut and analyzed with respect to retrogradely labeled neurons. Intrinsic neurons of the lateral system were located exclusively in the ipsilateral lateral superior olive (LSO) in both groups. Shell neurons surrounding the LSO and in periolivary regions, which made up only 5-8% of all OCN, were more often contralaterally located in albino than in pigmented animals. A striking difference was observed in the laterality of neurons of the medial olivocochlear (MOC) system, which provided more than one third of all OCN. These neurons, located in the rostral periolivary region and in the ventral nucleus of the trapezoid body, were observed contralateral to 45% in pigmented and to 68% in albino animals. Our study, the first to compare the origin of the olivocochlear bundle in pigmented and albino rats, provides evidence for differences in the crossing pattern of the olivocochlear pathway. These were found predominantly in the MOC system providing the direct efferent innervation of cochlear outer hair cells. Our findings may account for the alterations in auditory perception observed in albino mammals including man.

  16. Language lateralization in a patient with temporal lobe epilepsy and callosal agenesis.

    PubMed

    Alsaadi, Taoufik; Shahrour, Tarek M

    2015-01-01

    The corpus callosum has been proposed as a mechanism of interhemispheric inhibition that allows language dominance to develop [1]. Callosal agenesis or dysgenesis provides a test of this hypothesis, as patients lacking a normal corpus callosum should also lack normal language lateralization [2]. We report pre- and postoperative functional magnetic resonance imaging (fMRI) and neuropsychological testing in a patient with partial callosal agenesis who underwent a right temporal lobectomy for medically refractory seizures.

  17. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis.

    PubMed

    Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C; Voigt, Christian A

    2013-03-01

    A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew.

  18. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  19. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines.

    PubMed

    Naumann, Marcel; Somerville, Shauna; Voigt, Christian

    2013-06-01

    The deposition of callose, a (1,3)-β-glucan cell wall polymer, can play an essential role in the defense response to invading pathogens. We could recently show that Arabidopsis thaliana lines with an overexpression of the callose synthase gene PMR4 gained complete penetration resistance to the adapted powdery mildew Golovinomyces cichoracearum and the non-adapted powdery mildew Blumeria graminis f. sp hordei. The penetration resistance is based on the transport of the callose synthase PMR4 to the site of attempted fungal penetration and the subsequent formation of enlarged callose deposits. The deposits differed in their total diameter comparing both types of powdery mildew infection. In this study, further characterization of these callose deposits revealed that size differences were especially pronounced in the core region of the deposits. This suggests that specific, pathogen-dependent factors exist, which might regulate callose synthase transport to the core region of forming deposits.

  20. Efferent projections of the septum in the Tegu lizard, Tupinambis nigropunctatus.

    PubMed

    Sligar, C M; Voneida, T J

    1981-09-01

    A H3 proline or H3 leucine mixture was injected into the septal region of the Tegu lizard in order to determine its efferent projections. The brains were processed according to standard autoradiographic technique and counterstained with cresyl violet. Septal projections were limited to either telencephalic or diencephalic areas. Intratelencephalic projections consisted of efferents to medial pallium, nucleus accumbens, bed nucleus of the anterior commissure, preoptic area and septum itself. Fibers entering the diencephalon projected to medial habenular nucleus, dorsomedial thalamic nucleus, dorsolateral thalamic area, periventricular nucleus of the hypothalamus, lateral hypothalamic area and mammillary nucleus. The results are discussed in relation to the efferent projections of the septum in other vertebrates.

  1. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    NASA Technical Reports Server (NTRS)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  2. Associations between mobility, cognition and callosal integrity in people with parkinsonism

    PubMed Central

    Fling, Brett W.; Dale, Marian L.; Curtze, Carolin; Smulders, Katrijn; Nutt, John G.; Horak, Fay B.

    2016-01-01

    Falls in people with parkinsonism are likely related to both motor and cognitive impairments. In addition to idiopathic Parkinson's disease (PD), some older adults have lower body parkinsonism (a frontal gait disorder), characterized by impaired lower extremity balance and gait as well as cognition, but without tremor or rigidity. Neuroimaging during virtual gait suggests that interhemispheric, prefrontal cortex communication may be involved in locomotion, but contributions of neuroanatomy connecting these regions to objective measures of gait in people with parkinsonism remains unknown. Our objectives were to compare the integrity of fiber tracts connecting prefrontal and sensorimotor cortical regions via the corpus callosum in people with two types of parkinsonism and an age-matched control group and to relate integrity of these callosal fibers with clinical and objective measures of mobility and cognition. We recruited 10 patients with frontal gait disorders, 10 patients with idiopathic PD and 10 age-matched healthy control participants. Participants underwent cognitive and mobility testing as well as diffusion weighted magnetic resonance imaging to quantify white matter microstructural integrity of interhemispheric fiber tracts. People with frontal gait disorders displayed poorer cognitive performance and a slower, wider-based gait compared to subjects with PD and age-matched control subjects. Despite a widespread network of reduced white matter integrity in people with frontal gait disorders, gait and cognitive deficits were solely related to interhemispheric circuitry employing the genu of the corpus callosum. Current results highlight the importance of prefrontal interhemispheric communication for lower extremity control in neurological patients with cognitive dysfunction. PMID:27104136

  3. Sound lateralization in subjects with callosotomy, callosal agenesis, or hemispherectomy.

    PubMed

    Hausmann, Markus; Corballis, Michael C; Fabri, Mara; Paggi, Aldo; Lewald, Jörg

    2005-10-01

    The question of whether there is a right-hemisphere dominance in the processing of auditory spatial information in human cortex as well as the role of the corpus callosum in spatial hearing functions is still a matter of debate. Here, we approached this issue by investigating two late-callosotomized subjects and one subject with agenesis of the corpus callosum, using a task of sound lateralization with variable interaural time differences. For comparison, three subjects with left or right hemispherectomy were also tested by employing identical methods. Besides a significant reduction in their acuity, subjects with total or partial section of the corpus callosum exhibited a considerable leftward bias of sound lateralization compared to normal controls. No such bias was found in the subject with callosal agenesis, but merely a marginal reduction of general acuity. Also, one subject with complete resection of the left cerebral cortex showed virtually normal performance, whereas another subject with left hemispherectomy and one subject with right hemispherectomy exhibited severe deficits, with almost total loss of sound-lateralization ability. The results obtained in subjects with callosotomy indicate that the integrity of the corpus callosum is not indispensable for preservation of sound-lateralization ability. On the other hand, transcallosal interhemispheric transfer of auditory information obviously plays a significant role in spatial hearing functions that depend on binaural cues. Moreover, these data are compatible with the general view of a dominance of the right cortical hemisphere in auditory space perception.

  4. Similar synapse elimination motifs at successive relays in the same efferent pathway during development in mice

    PubMed Central

    Sheu, Shu-Hsien; Tapia, Juan Carlos; Tsuriel, Shlomo; Lichtman, Jeff W

    2017-01-01

    In many parts of the nervous system, signals pass across multiple synaptic relays on their way to a destination, but little is known about how these relays form and the function they serve. To get some insight into this question we ask how the connectivity patterns are organized at two successive synaptic relays in a simple, cholinergic efferent pathway. We found that the organization at successive relays in the parasympathetic nervous system strongly resemble each other despite the different embryological origin and physiological properties of the pre- and postsynaptic cells. Additionally, we found a similar developmental synaptic pruning and elaboration strategy is used at both sites to generate their adult organizations. The striking parallels in adult innervation and developmental mechanisms at the relays argue that a general strategy is in operation. We discuss why from a functional standpoint this structural organization may amplify central signals while at the same time maintaining positional targeting. DOI: http://dx.doi.org/10.7554/eLife.23193.001 PMID:28157072

  5. Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

    PubMed Central

    2012-01-01

    The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different between avian and mammalian species. Calcium permeation is more effective in nAChRs of mammalian cochlea than avian cochlea, and mammalian calcium permeability of nAChRs is about 3 times more than avian hair cell. Thus, mammalian nAChRs is a main component of efferent inhibition in cochlear hair cell system. PMID:24653883

  6. Auditory Efferents Facilitate Sound Localization in Noise in Humans

    PubMed Central

    Andéol, Guillaume; Guillaume, Anne; Micheyl, Christophe; Savel, Sophie; Pellieux, Lionel; Moulin, Annie

    2011-01-01

    The mammalian auditory system contains descending neural pathways, some of which project onto the cochlea via the medial olivocochlear (MOC) system. The function of this efferent auditory system is not entirely clear. Behavioral studies in animals with OC lesions suggest that the MOC serves to facilitate sound localization in noise. In the current work, noise-induced OC activity (the “OC reflex”) and sound-localization performance in noise were measured in normal-hearing humans. Consistent with earlier studies, both measures were found to vary substantially across individuals. Importantly, significant correlations were observed between OC reflex strength and the effect of noise on sound-localization performance; the stronger the OC reflex, the less marked the effect of noise. These results suggest that MOC activation by noise helps to counteract the detrimental effects of background noise on neural representations of direction-dependent spectral features, which are especially important for accurate localization in the up/down and front/back dimensions. PMID:21543605

  7. Evidence against a hypothesis of vestibular efferent function

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1994-01-01

    Efferent stimulation and nicotinic agonists can either decrease or increase the frequency of occurrence of EPSPs recorded from VIIIth nerve afferents in the frog. It has been hypothesized that the distribution of hair cell resting membrane potentials overlaps the equilibrium potential dictated by the nicotinic-gated channels on the hair cells. Nicotinic mediated increases in EPSP frequency would then be due to depolarization of hair cells that were more hyperpolarized at rest, while decreases in EPSP frequency would be due to hyperpolarization of hair cells more depolarized at rest. In order to test this hypothesis, while recording from afferents which showed an increase in EPSP frequency due to bath application of the nicotinic agonist DMPP (1,1-dimethyl-4-phenylpiperizinium iodide), hair cells were depolarized with 10 mM K+ in the bath, and then the effects of DMPP on EPSP frequency were assessed. In this situation, DMPP still increased EPSP frequency, suggesting that the equilibrium potential for the nicotinic-gated channel was much more positive than the resting potentials of the hair cells. An alternative hypothesis then seems likely, that the nicotinic receptors on hair cells are able to activate different iontophores that result in either hair cell depolarization or hyperpolarization, dependent upon which iontophore predominates in the hair cells innervating a particular afferent.

  8. Active sensing without efference copy: referent control of perception.

    PubMed

    Feldman, Anatol G

    2016-09-01

    Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.

  9. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  10. Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons.

    PubMed

    Baranek, Constanze; Dittrich, Manuela; Parthasarathy, Srinivas; Bonnon, Carine Gaiser; Britanova, Olga; Lanshakov, Dmitriy; Boukhtouche, Fatiha; Sommer, Julia E; Colmenares, Clemencia; Tarabykin, Victor; Atanasoski, Suzana

    2012-02-28

    First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.

  11. Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons

    PubMed Central

    Baranek, Constanze; Dittrich, Manuela; Parthasarathy, Srinivas; Bonnon, Carine Gaiser; Britanova, Olga; Lanshakov, Dmitriy; Boukhtouche, Fatiha; Sommer, Julia E.; Colmenares, Clemencia; Tarabykin, Victor; Atanasoski, Suzana

    2012-01-01

    First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski–Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification. PMID:22334647

  12. Assessing prenatal white matter connectivity in commissural agenesis.

    PubMed

    Kasprian, Gregor; Brugger, Peter C; Schöpf, Veronika; Mitter, Christian; Weber, Michael; Hainfellner, Johannes A; Prayer, Daniela

    2013-01-01

    Complete or partial agenesis of the corpus callosum are rather common developmental abnormalities, resulting in a wide spectrum of clinical neurodevelopmental deficits. Currently, a significant number of these cases are detected by prenatal sonography during second trimester screening examinations. However, major uncertainties about a detailed morphological diagnosis and the clinical significance do not allow accurate prenatal counselling. Here, we were able to demonstrate the 3D connectivity of aberrant commissural tracts in 16 cases with complete and four cases with partial callosal agenesis using the foetal magnetic resonance imaging techniques of diffusion tensor imaging and tractography in utero and in vivo between gestational weeks 20 and 37. The 'misguided' pre-myelinated callosal axons that represent the bundle of Probst were non-invasively visualized, and they showed a degree of structural integrity similar to that of the callosal pathways of age-matched foetuses without cerebral pathologies. In two foetuses, we were able to prove, by post-mortem histology, that diffusion tensor imaging allows the depiction of the bundle of Probst, even during early stages of pre-myelination at 20 and 22 gestational weeks. In cases with partial callosal agenesis, an aberrant sigmoid-shaped bundle was prenatally depicted, confirming the findings of heterotopic interhemispheric connectivity in adults with partial callosal agenesis. In addition to the corpus callosum, other white matter pathways were also involved, including somatosensory and motor pathways that showed significantly higher fractional anisotropy values in cases with callosal agenesis compared with control subjects. A detailed prenatal assessment of abnormal white matter connectivity in cases of midline anomalies will help to explain and understand the clinical heterogeneity in these cases, taking future foetal neurological counselling strategies to a new level.

  13. Interhemispheric Lipoma, Callosal Anomaly, and Malformations of Cortical Development: A Case Series.

    PubMed

    Niwa, Tetsu; de Vries, Linda S; Manten, Gwendolyn T R; Lequin, Maarten; Cuppen, Inge; Shibasaki, Jun; Aida, Noriko

    2016-04-01

    Intracranial lipomas are rare congenital malformations. The most common type of intracranial lipoma is the interhemispheric lipoma, which is frequently associated with callosal anomalies such as hypogenesis or agenesis of the corpus callosum. In contrast, interhemispheric lipomas are less often accompanied with malformations of cortical development (MCD). We report magnetic resonance imaging findings of three infants with an interhemispheric lipoma, associated with a callosal anomaly, and MCD: two infants with nodular interhemispheric lipoma, agenesis of the corpus callosum, and polymicrogyria, and one infant with interhemispheric curvilinear lipoma, hypoplasia of the corpus callosum, and heterotopias. An association was suggested regarding the occurrence of these malformations.

  14. Right-ear advantage drives the link between olivocochlear efferent 'antimasking' and speech-in-noise listening benefits.

    PubMed

    Bidelman, Gavin M; Bhagat, Shaum P

    2015-05-27

    The mammalian cochlea receives feedback from the brainstem medial olivocochlear (MOC) efferents, whose putative 'antimasking' function is to adjust cochlear amplification and enhance peripheral signal detection in adverse listening environments. Human studies have been inconsistent in demonstrating a clear connection between this corticofugal system and behavioral speech-in-noise (SIN) listening skills. To elucidate the role of brainstem efferent activity in SIN perception, we measured ear-specific contralateral suppression of transient-evoked otoacoustic emissions (OAEs), a proxy measure of MOC activation linked to auditory learning in noisy environments. We show that suppression of cochlear emissions is stronger with a more basal cochlear bias in the right ear compared with the left ear. Moreover, a strong negative correlation was observed between behavioral SIN performance and right-ear OAE suppression magnitudes, such that lower speech reception thresholds in noise were predicted by larger amounts of MOC-related activity. This brain-behavioral relation was not observed for left ear SIN perception. The rightward bias in contralateral MOC suppression of OAEs, coupled with the stronger association between physiological and perceptual measures, is consistent with left-hemisphere cerebral dominance for speech-language processing. We posit that corticofugal feedback from the left cerebral cortex through descending MOC projections sensitizes the right cochlea to signal-in-noise detection, facilitating figure-ground contrast and improving degraded speech analysis. Our findings demonstrate that SIN listening is at least partly driven by subcortical brain mechanisms; primitive stages of cochlear processing and brainstem MOC modulation of (right) inner ear mechanics play a critical role in dictating SIN understanding.

  15. Autoradiographic study of the efferent connections of the entorhinal cortex in the rat

    SciTech Connect

    Wyss, J.M.

    1981-07-10

    The major findings can be summarized as follows. Whereas the projection of the lateral entorhinal area (LEA) to the dentate gyrus is broad in its longitudinal extent, the medial entorhinal area (MEA), and especially the ventral portion of this zone, projects in a more lamellar fashion. In the transverse plane the LEA preferentially projects to the inner (dorsal) blade of the dentate gyrus, while the MEA innervates both blades equally. Within the radial dimension, the entorhinal cortex projects to the dentate gyrus according to a medial to lateral gradient, with lateral portions of the LEA projecting along the pial surface and successively more medial portions of the entorhinal projecting closer to the granule cells. The commissural entorhinal to dentate projections are similar to the ipsilateral projections in location; however, they are considerably reduced in septotemporal extent and do not arise from cells in the ventral half of either LEA or the intermediate entorhinal area (IEA). The projection of the entorhinal cortex to Ammon's horn reflects the same longitudinal characteristics as the dentate projections. An alvear input which extends only to the pyramidal cells at the CA1-subicular junction was most noticeable at ventral hippocampal levels. The extrahippocampal projections arise predominantly from cells in the LEA and project forward along the angular bundle to the piriform and periamygdaloid cortices, as well as the endopiriform nucleus, the lateral, basolateral, and cortical amygdaloid nuclei, the nucleus of the lateral olfactory tract, the olfactory tubercle, the anterior olfactory nucleus, the taenia tecta, and the indusium griseum.

  16. Efferent connections of the orbitofrontal cortex in the marmoset (Saguinus oedipus).

    PubMed

    Leichnetz, G R; Astruc, J

    1975-02-07

    Unilateral partial ablations were made in the orbitofrontal cortex of 4 adult marmosets (Saguinus oedipus) and fiber degeneration was traced using the Nauta-Gygax and Fink-Heimer selective silver impregnation techniques. Corticocortical projections were found to the ipsilateral convexity and medial aspect of the frontal lobe and to the homologous orbitofrontal areas of the contralateral hemisphere. Fiber degeneration was followed through the uncinate fascicle to the temporal and insular cortices, and caudally into the rostrolateral entorhinal cortex. Other fibers joined the cingulum bundle and terminated throughout the cingulate cortex. Subcortical projections were observed to the lateral and basal amygdaloid nuclei, caudate head, ventrolateral putamen and ventral claustrum. The lateral preoptic and hypothalamic areas received a small number of fibers, as did the intralaminar and reticular thalamic nuclei. The dorsomedial nucleus of the thalamus was recipient of a large group of fibers which followed the ventral internal capsule and joined the inferior thalamic peduncle to terminate there. Preterminal debris appeared heaviest in the dorsomedial thalamic nucleus, pars magnocellularis (MDmc) in more caudal orbital lesions. A subthalamic projection to field H of Forel was observed. A small number of fibers terminated in the lateral midbrain tegmentum, but no appreciable fiber degeneration was observed more caudally than the midbrain. These results are compared in some areas to findings in the rhesus monkey. The possibility of a topical organization in the orbital cortical and thalamic projections is discussed.

  17. Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to doublecortin deficiency.

    PubMed

    Kappeler, Caroline; Dhenain, Marc; Phan Dinh Tuy, Françoise; Saillour, Yoann; Marty, Serge; Fallet-Bianco, Catherine; Souville, Isabelle; Souil, Evelyne; Pinard, Jean-Marc; Meyer, Gundela; Encha-Razavi, Ferechté; Volk, Andreas; Beldjord, Cherif; Chelly, Jamel; Francis, Fiona

    2007-01-10

    Mutated doublecortin (DCX) gives rise to severe abnormalities in human cortical development. Adult Dcx knockout mice show no major neocortical defects but do have a disorganized hippocampus. We report here the developmental basis of these hippocampal abnormalities. A heterotopic band of neurons was identified starting at E17.5 in the CA3 region and progressing throughout the CA1 region by E18.5. At neonatal stages, the CA1 heterotopic band was reduced, but the CA3 band remained unchanged, continuing into adulthood. Thus, in mouse, migration of CA3 neurons is arrested during development, whereas CA1 cell migration is retarded. On the Sv129Pas background, magnetic resonance imaging (MRI) also suggested abnormal dorsal hippocampal morphology, displaced laterally and sometimes rostrally and associated with medial brain structure abnormalities. MRI and cryosectioning showed agenesis of the corpus callosum in Dcx knockout mice on this background and an intermediate, partial agenesis in heterozygote mice. Wild-type littermates showed no callosal abnormalities. Hippocampal and corpus callosal abnormalities were also characterized in DCX-mutated human patients. Severe hippocampal hypoplasia was identified along with variable corpus callosal defects ranging from total agenesis to an abnormally thick or thin callosum. Our data in the mouse, identifying roles for Dcx in hippocampal and corpus callosal development, might suggest intrinsic roles for human DCX in the development of these structures.

  18. The callosal dilemma: explaining diaschisis in the context of hemispheric rivalry via a neural network model.

    PubMed

    Reggia, J A; Goodall, S M; Shkuro, Y; Glezer, M

    2001-07-01

    It is often suggested that a major factor in diaschisis is the loss of transcallosal excitation to the intact hemisphere from the lesioned one. However, there is long-standing disagreement in the broader experimental literature about whether transcallosal interhemispheric influences in the human brain are primarily excitatory or inhibitory. Some experimental data are apparently better explained by assuming inhibitory callosal influences. Past neural network models attempting to explore this issue have encountered the same dilemma: in intact models, inhibitory callosal influences best explain strong cerebral lateralization like that occurring with language, but in lesioned models, excitatory callosal influences best explain experimentally observed hemispheric activation patterns following brain damage. We have now developed a single neural network model that can account for both types of data, i.e., both diaschisis and strong hemisphere specialization in the normal brain, by combining excitatory callosal influences with subcortical cross-midline inhibitory interactions. The results suggest that subcortical competitive processes may be a more important factor in cerebral specialization than is generally recognized.

  19. The Plasmodesmal Protein PDLP1 Localises to Haustoria-Associated Membranes during Downy Mildew Infection and Regulates Callose Deposition

    PubMed Central

    Sklenar, Jan; Findlay, Kim; Piquerez, Sophie J. M.; Jones, Alexandra M. E.; Robatzek, Silke; Jones, Jonathan D. G.; Faulkner, Christine

    2014-01-01

    The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata. PMID:25393742

  20. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance

    PubMed Central

    Herburger, Klaus; Holzinger, Andreas

    2015-01-01

    Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780

  1. Influence of medial olivocochlear efferents on the sharpness of cochlear tuning estimates in children.

    PubMed

    Mishra, Srikanta K; Dinger, Zoë

    2016-08-01

    The present study objectively quantified the efferent-induced changes in the sharpness of cochlear tuning estimates and compared these alterations in cochlear tuning between adults and children. Click evoked otoacoustic emissions with and without contralateral broadband noise were recorded from 15 young adults and 14 children aged between 5 and 10 yrs. Time-frequency distributions of click evoked otoacoustic emissions were obtained via the S-transform, and the otoacoustic emission latencies were used to estimate the sharpness of cochlear tuning. Contralateral acoustic stimulation caused a significant reduction in the sharpness of cochlear tuning estimates in the low to mid frequency region, but had no effect in the higher frequencies (3175 and 4000 Hz). The magnitude of efferent-induced changes in cochlear tuning estimates was similar between adults and children. The current evidence suggests that the stimulation of the medial olivocochlear efferent neurons causes similar alterations in cochlear frequency selectivity in adults and children.

  2. Association of efferent neurons to the compartmental architecture of the superior colliculus.

    PubMed Central

    Illing, R B

    1992-01-01

    The superior colliculus is a layered structure in the mammalian midbrain serving multimodal sensorimotor integration. Its intermediate layers are characterized by a compartmental architecture. These compartments are apparent through the clustering of terminals of major collicular afferents, which in many instances match the heterogeneous distribution of tissue components such as acetylcholinesterase, choline acetyltransferase, substance P, and parvalbumin. The present study was undertaken to determine whether efferent cells observe this compartmental architecture. It was found that subpopulations of both descending and ascending collicular efferents originate from perikarya situated in characteristic positions relative to the collicular compartments defined by elevated acetylcholinesterase activity and that their dendrites appear to be specifically coordinated with the heterogeneous environment. With the specific interlocking of afferent and efferent neurons through spatially distinguished neural networks, the compartmental architecture apparently constitutes an essential element for the determination of information flow in the superior colliculus. Images PMID:1438296

  3. Altered callose deposition during embryo sac formation of multi-pistil mutant (mp1) in Medicago sativa.

    PubMed

    Zhou, H C; Jin, L; Li, J; Wang, X J

    2016-06-03

    Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion.

  4. Vagal cardiac efferent innervation in F344 rats: Effects of chronic intermittent hypoxia.

    PubMed

    Cheng, Zixi Jack

    2017-03-01

    Chronic intermittent hypoxia (CIH), which is a physiological consequence of obstructive sleep apnea, reduces baroreflex control of heart rate (HR). Previously, we showed that the heart rate (HR) response to electrical stimulation of the vagal efferent nerve was significantly increased following CIH in F344 rats. Since vagal cardiac efferent from the nucleus ambiguus (NA) project to cardiac ganglia and regulate HR, we hypothesized that vagal cardiac efferent innervation of cardiac ganglia is reorganized. Young adult F344 rats were exposed either to room air (RA) or to intermittent hypoxia for 35-50days. Fluorescent tracer DiI was injected into the NA to label vagal efferent innervation of cardiac ganglia which had been counterstained by Fluoro-Gold (FG) injections (i.p). Confocal microscopy was used to examine vagal cardiac efferent axons and terminals in cardiac ganglia. NA axons entered cardiac ganglia and innervated principal neurons (PNs) with robust basket endings in both RA control and CIH animals. In addition, the percentage of PNs which were innervated by DiI-labeled fibers in ganglia was similar. In CIH rats, abnormally large swollen cardiac axon segments and disorganized terminals as well as leaky endings were observed. In general, vagal efferent terminal varicosities around PNs appeared larger and the number of varicosities was significantly increased. Interestingly, some cardiac axons had sprouting-like terminal structures in the cardiac ganglia as well as in cardiac muscle, which had not been found in RA control. Finally, CIH increased the size of PNs and reduced the ratio of nucleus to PN somata. Thus, CIH significantly remodeled the structure of vagal cardiac axons and terminals in cardiac ganglia as well as cardiac PNs.

  5. Hsp70 vaccination-induced primary immune responses in efferent lymph of the draining lymph node.

    PubMed

    Vrieling, Manouk; Santema, Wiebren; Vordermeier, Martin; Rutten, Victor; Koets, Ad

    2013-10-01

    Bovine paratuberculosis is a highly prevalent chronic infection of the small intestine in cattle, caused by Mycobacterium avium subspecies paratuberculosis (MAP). In earlier studies we showed the protective effect of Hsp70/DDA subunit vaccination against paratuberculosis. In the current study we set out to measure primary immune responses generated at the site of Hsp70 vaccination. Lymph vessel cannulation was performed to obtain efferent lymph from the prescapular lymph node draining the neck area where the vaccine was applied. Hsp70 vaccination induced a significant increase of CD21(+) B cells in efferent lymph, accounting for up to 40% of efferent cells post-vaccination. Proliferation (Ki67(+)) within the CD21(+) B cell and CD4(+) T cell populations peaked between day 3 and day 5 post-vaccination. From day 7, Hsp70-specific antibody secreting cells (ASCs) could be detected in efferent lymph. Hsp70-specific antibodies, mainly of the IgG1 isotype, were also detected from this time point onwards. However, post-vaccination IFN-γ production in efferent lymph was non-sustained. In conclusion, Hsp70-vaccination induces only limited Th1 type immune responsiveness as reflected in efferent lymph draining the vaccination site. This is in line with our previous observations in peripheral blood. The main primary immunological outcome of the Hsp70/DDA subunit vaccination is B cell activation and abundant Hsp70-specific IgG1 production. This warrants the question whether Hsp70-specific antibodies contribute to the observed protective effect of Hsp70 vaccination in calves.

  6. Callose Deposition Is Responsible for Apoplastic Semipermeability of the Endosperm Envelope of Muskmelon Seeds1

    PubMed Central

    Yim, Kyu-Ock; Bradford, Kent J.

    1998-01-01

    Semipermeable cell walls or apoplastic “membranes” have been hypothesized to be present in various plant tissues. Although often associated with suberized or lignified walls, the wall component that confers osmotic semipermeability is not known. In muskmelon (Cucumis melo L.) seeds, a thin, membranous endosperm completely encloses the embryo, creating a semipermeable apoplastic envelope. When dead muskmelon seeds are allowed to imbibe, solutes leaking from the embryo are retained within the envelope, resulting in osmotic water uptake and swelling called osmotic distention (OD). The endosperm envelope of muskmelon seeds stained with aniline blue, which is specific for callose (β-1,3-glucan). Outside of the aniline-blue-stained layer was a Sudan III- and IV-staining (lipid-containing) layer. In young developing seeds 25 d after anthesis (DAA) that did not exhibit OD, the lipid layer was already present but callose had not been deposited. At 35 DAA, callose was detected as distinct vesicles or globules in the endosperm envelope. A thick callose layer was evident at 40 DAA, coinciding with development of the capacity for OD. Removal of the outer lipid layer by brief chloroform treatment resulted in more rapid water uptake by both viable and nonviable (boiled) seeds, but did not affect semipermeability of the endosperm envelope. The aniline-blue-staining layer was digested by β-1,3-glucanase, and these envelopes lost OD. Thus, apoplastic semipermeability of the muskmelon endosperm envelope is dependent on the deposition of a thick callose-containing layer outside of the endosperm cell walls. PMID:9733528

  7. Callosal Degradation in HIV-1 Infection Predicts Hierarchical Perception: A DTI study

    PubMed Central

    Müller-Oehring, Eva M.; Schulte, Tilman; Rosenbloom, Margaret J.; Pfefferbaum, Adolf; Sullivan, Edith V.

    2010-01-01

    HIV-1 infection affects white matter circuits linking frontal, parietal, and subcortical regions that subserve visuospatial attention processes. Normal perception requires the integration of details, preferentially processed in the left hemisphere, and the global composition of an object or scene, preferentially processed in the right hemisphere. We tested whether HIV-related callosal white matter degradation contributes to disruption of selective lateralized visuospatial and attention processes. A hierarchical letter target detection paradigm was devised, where large (global) letters were composed of small (local) letters. Participants were required to identify target letters among distractors presented at global, local, both or neither level. Attention was directed to one (global or local) or both levels. Participants were 21 HIV-1 infected and 19 healthy control men and women who also underwent Diffusion Tensor Imaging (DTI). HIV-1 participants showed impaired hierarchical perception owing to abnormally enhanced global facilitation effects but no impairment in attentional control on local-global feature selection. DTI metrics revealed poorer fiber integrity of the corpus callosum in HIV-1 than controls that was more pronounced in posterior than anterior regions. Analysis revealed a double dissociation of anterior and posterior callosal compromise in HIV-1 infection: Compromise in anterior but not posterior callosal fiber integrity predicted response conflict elicited by global targets, whereas compromise in posterior but not anterior callosal fiber integrity predicted response facilitation elicited by global targets. We conclude that component processes of visuospatial perception are compromised in HIV-1 infection attributable, at least in part, to degraded callosal microstructural integrity relevant for local-global feature integration. PMID:20018201

  8. Relationship between teat-end callosity and occurrence of clinical mastitis.

    PubMed

    Neijenhuis, F; Barkema, H W; Hogeveen, H; Noordhuizen, J P

    2001-12-01

    A longitudinal study in 15 herds, with a total of 2157 cows, was conducted to examine the relationship between teat-end callosity (TEC) and the incidence of clinical mastitis. During the 1.5-yr study period, clinical mastitis was diagnosed by the farmers based on clinical signs. Teat-end callosity was scored every month according to a teat-end callosity classification system, which discriminates between teat-end callosity thickness (TECT) and roughness (TECR). Differences in TECT between healthy and clinical mastitis quarters within infected cows were small but significant 3 mo before (0.13 higher), in the month during which the clinical mastitis occurred (0.08 higher), and in the following 2 mo (0.06 and 0.05 higher). To compare TECT and TECR between cows with and without clinical mastitis, 199 cows with clinical mastitis were paired with control cows based on herd, days in milk, and parity. Clinical mastitis cows had more TEC than their healthy herd mates, particularly when clinical mastitis occurred between the second and fifth months of lactation. Clinical Escherichia coli mastitis in the second or third month of lactation occurred in cows with less TEC than in cows with clinical mastitis caused by other pathogens. Clinical culture-negative, yeast, Klebsiella pneumoniae, and Enterobacter aerogenes mastitis cows had more TECT and TECR than other cows with clinical mastitis in the same month of lactation. Pointed teat ends had higher TECT and TECR than flat or inverted teat ends. Teat-end callosity thickness increased with a higher milk yield at peak production.

  9. Modulation of vagal efferent fibre discharge by mechanoreceptors in the stomach, duodenum and colon of the ferret.

    PubMed Central

    Grundy, D; Salih, A A; Scratcherd, T

    1981-01-01

    1. A single-fibre-dissection technique was used to investigate the reflex modulation of vagal efferent fibre discharge by afferent fibres from various parts of the gastrointestinal tract of the urethane-anaesthetized ferret. 2. All but four of the 168 efferent fibres isolated in this study were spontaneously active. The majority of these had discharge frequencies of less than 6 spikes/sec. 3. All the efferent units received an afferent input from mechanoreceptors in the stomach. Two main types of response to gastric distension were seen: (i) an increase in efferent discharge and (ii) a decrease or complete suppression of efferent discharge. 4. The vagal efferent discharge was also modulated by duodenal and colonic distension, with the major effect being one of inhibition. 5. Bilateral vagotomy completely abolished the response to gastric distension in 68% of the units tested. The response to colonic and duodenal distension, however, was relatively unaffected by vagotomy. Thus the vagus provides the major afferent pathway from the stomach to these vagal efferent fibres, whilst the major input from the duodenum and colon is via a non-vagal pathway. Both vagal and splanchnic afferents therefore converge on to the vagal nucleus. 6. The destinations of these vagal efferent fibres and their possible functions are discussed. PMID:7320920

  10. Ninth Grade Students' Negotiation of Aesthetic, Efferent, and Critical Stances in Response to a Novel Set in Afghanistan

    ERIC Educational Resources Information Center

    Taliaferro, Cheryl

    2011-01-01

    This qualitative, action research study was guided by two primary research questions. First, how do students negotiate aesthetic, efferent, and critical stances when reading a novel set in Afghanistan? Second, how do aesthetic and efferent stances contribute to or hinder the adoption of a critical stance? A large body of research exists that…

  11. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.

    PubMed

    Ye, Zhanlei; Goutman, Juan D; Pyott, Sonja J; Glowatzki, Elisabeth

    2017-02-17

    Just before the onset of hearing, the inner hair cells (IHCs) receive inhibitory efferent input from cholinergic medial olivocochlear (MOC) neurons originating in the brainstem. This input may serve a role in the maturation of the ascending (afferent) auditory system by inhibiting spontaneous activity of the IHCs. To investigate the molecular mechanisms regulating these IHC efferent synapses, we combined electrical stimulation of the efferent fibres with patch clamp recordings from the IHCs to measure efferent synaptic strength. By examining evoked responses, we show that activation of mGluRs by general and group I specific mGluR agonists enhances IHC efferent inhibition. This enhancement is blocked by application of a group I mGluR1-specific antagonist, indicating that enhancement of IHC efferent inhibition is mediated by group I mGluRs and specifically by mGluR1s. By comparing spontaneous and evoked responses, we show that group I mGluR agonists act presynaptically to increase neurotransmitter release without affecting postsynaptic responsiveness. Moreover, endogenous glutamate released from the IHCs also enhances IHC efferent inhibition via the activation of group I mGluRs. Finally, immunofluorescent analysis indicates that the efferent terminals are sufficiently close to IHC glutamate release sites to allow activation of mGluRs on the efferent terminals by glutamate spillover. Together, these results suggest that glutamate released from the IHCs activates group I mGluRs (mGluR1s), likely present on the efferent terminals, which, in turn, enhances release of acetylcholine and inhibition of the IHCs. Thus, mGluRs establish a local negative feedback loop positioned to regulate IHC activity and maturation of the ascending auditory system in the developing cochlea. This article is protected by copyright. All rights reserved.

  12. The vomeronasal cortex - afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice.

    PubMed

    Gutiérrez-Castellanos, Nicolás; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2014-01-01

    Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex.

  13. Afferent and Efferent Aspects of Mandibular Sensorimotor Control in Adults Who Stutter

    ERIC Educational Resources Information Center

    Daliri, Ayoub; Prokopenko, Roman A.; Max, Ludo

    2013-01-01

    Purpose: Individuals who stutter show sensorimotor deficiencies in speech and nonspeech movements. For the mandibular system, the authors dissociated the sense of kinesthesia from the efferent control component to examine whether kinesthetic integrity itself is compromised in stuttering or whether deficiencies occur only when generating motor…

  14. Efferent and Aesthetic Stance: Understanding the Definition of Lois Lowry's "The Giver" as Metaphor.

    ERIC Educational Resources Information Center

    Menexas, Vicky

    1997-01-01

    Clarifies the "efferent" and "aesthetic" stance on Louise Rosenblatt's theoretical continuum by relating her model to the plot, characters, and scenes in Lois Lowry's "The Giver." Shows that Rosenblatt's view applies to the ways readers read texts and to the way characters in the texts read their text-worlds. Presents…

  15. [Response of efferent vestibular fibers to horizontal rotation in frogs (Rana esculenta L.)].

    PubMed

    Caston, J; Gribenski, A

    1975-01-01

    The activity of efferent vestibular fibres has been recorded on the nerve of the left vertical anterior semicircular canal detached from its ampulla during rotations in the horizontal plane. Different types of responses have been found; they are noted in table I and pictured on fig. 2.

  16. The postnatal maturation of efferent tubules in the rat: a light and electron microscopy study.

    PubMed

    Francavilla, S; Moscardelli, S; Bruno, B; Barcellona, P S; De Martino, C

    1986-07-01

    The postnatal maturation of the epithelium and tubule wall of efferent tubules in the rat was investigated by light and transmission electron microscopy, from birth to 50 days of age, when sperms were released from the seminiferous tubules and appeared in the genital duct. At the end of the first week of life, an endocytotic apparatus is differentiated in the epithelial cells. During the third week of life, efferent tubules developed specializations for the transport of sperms and fluids, namely the appearance of ciliated elements interspersed among the principal cells of the epithelium, and differentiation of myoid elements in the tubule wall. The appearance of specializations related to endocytosis and fluid transport across the epithelium preceded the canalization of the seminiferous cords which, in fact, is reported to appear at the end of the second week of life in the rat, along with the initial secretion of testicular fluid. This suggested that the maturation of efferent tubules is not triggered by the passage of testicular fluid, as surmised for the postnatal differentiation of caput epididymis. The postnatal maturation of efferent tubules was almost complete 35 days after birth. The appearance of sperms in the genital duct of 50-day-old animals was not associated with any remarkable structural change.

  17. Differential effects of motor efference copies and proprioceptive information on response evaluation processes.

    PubMed

    Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian

    2013-01-01

    It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response.

  18. Sense of effort revisited: relative contributions of sensory feedback and efferent copy.

    PubMed

    Scotland, Samantha; Adamo, Diane E; Martin, Bernard J

    2014-02-21

    Although controversial, muscular effort perception is frequently attributed to the efferent copy of the associated motor command. While peripheral/sensory information is thought to be necessary for force modulation/control, it is not involved in initial force production. We recently showed in right-handers, that perception of effort was asymmetric for grasp-force tasks. This asymmetry was related to individual differences in right and left hand strength and an intrinsic component. A difference in gain (input/output magnitude relationship) for each limb/hemisphere system was proposed as the mechanism explaining intrinsic asymmetries. To further investigate the relative contributions of efferent copy and sensory feedback to the sense of effort, vibration was used to distort sensory information from the muscles providing the reference force. Visual feedback (vision) of the reference hand force was also manipulated. The absolute error (AE) was generally larger in the vision than no-vision condition and the influence of reference hand vibration was significant for left hand matching of the right hand reference force. However, this effect was negligible when matching in the reverse condition. These two results may reflect an interaction between two phenomena: (1) visual feedback, which represents the total output force may not be congruent with the internal representation of effort associated with the efferent copy and eventually the proprioceptive feedback; and (2) a vibration-induced larger AE for left than right hand contralateral matching indicates that the contribution of proprioceptive feedback to force matching is significant for the left but not the right hand/hemisphere system. Overall, it may be suggested that in right-handers, the sense of effort associated with the right hand may be primarily based on the efferent copy while the left hand/hemisphere system may use a combination of efferent copy and proprioceptive feedback. However, the weight of each type of

  19. The Syndrome of Frontonasal Dysplasia, Callosal Agenesis, Basal Encephalocele, and Eye Anomalies - Phenotypic and Aetiological Considerations.

    PubMed

    Richieri-Costa, Antonio; Guion-Almeida, Maria Leine

    2004-01-01

    We report ten sporadic cases of Brazilian patients with facial midline defects, callosal agenesis, basal encephalocele, and ocular anomalies. This very rare cluster of anomalies has been well reported before. However, only until recently it is recognized as a syndrome belonging to frontonasal dysplasia spectrum. The ten cases confirm a distinct clinical entity and help to define the phenotype more precisely than previously. Up to now etiology remains unknown, although we conjecture that it is due to a mutation in TGIF gene.

  20. Diffusion-weighted imaging in fetuses with unilateral cortical malformations and callosal agenesis.

    PubMed

    Glenn, O A; Quiroz, E M; Berman, J I; Studholme, C; Xu, D

    2010-06-01

    DWI was performed in fetuses with callosal agenesis and unilateral cortical malformations. ADC values were retrospectively measured in the developing white matter underlying the cortical malformation and compared with the corresponding contralateral white matter. In all 3 patients, ADC values were lower under the areas of cortical malformation compared with the normal contralateral side. Our findings suggest that there are structural differences in the developing white matter underlying areas of cortical malformation.

  1. Relation of callosal structure to cognitive abilities in temporal lobe epilepsy.

    PubMed

    Schneider, Christine; Helmstaedter, Christoph; Luders, Eileen; Thompson, Paul M; Toga, Arthur W; Elger, Christian; Weber, Bernd

    2014-01-01

    The main objective of this paper is to analyze the influence of mesial temporal lobe epilepsy (mTLE) on the morphology of the corpus callosum (CC) and its relation to cognitive abilities. More specifically, we investigated correlations between intellectual abilities and callosal morphology, while additionally exploring the modulating impact of (a) side of seizure onset (b) age of disease onset. For this reason a large representative sample of patients with hippocampal sclerosis (n = 79; 35 males; 44 females; age: 18-63 years) with disease onset ranging from 0 to 50 years of age, and consisting of 46 left and 33 right mTLE-patients was recruited. Intelligence was measured using the Wechsler-Adult Intelligence Scale Revised. To get localizations of correlations with high anatomic precision, callosal morphology was examined using computational mesh-based modeling methods, applied to anatomical brain MRI scans. Intellectual performance was positively associated with callosal thickness in anterior and midcallosal callosal regions, with anterior parts being slightly more affected by age of disease onset and side of seizure onset than posterior parts. Earlier age at onset of epilepsy was associated with lower thickness in anterior and midcallosal regions. In addition, laterality of seizure onset had a significant influence on anterior CC morphology, with left hemispheric origin having stronger effects. We found that in mTLE, anterior and midcallosal CC morphology are related to cognitive performance. The findings support recent findings of detrimental effects of early onset mTLE on anterior brain regions and of a distinct effect particularly of left mTLE on frontal lobe functioning and structure. The causal nature of the relationship remains an open question, i.e., whether CC morphology impacts IQ development or whether IQ development impacts CC morphology, or both.

  2. Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose

    PubMed Central

    Parra-Vega, Verónica; Corral-Martínez, Patricia; Rivas-Sendra, Alba; Seguí-Simarro, Jose M.

    2015-01-01

    The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal, and electron microscopy to analyze the structure and composition of the first cell walls formed during conventional Brassica napus microspore embryogenesis, and in cultures treated to alter the intracellular Ca2+ levels. Our results revealed that one of the first signs of embryogenic commitment is the formation of a callose-rich, cellulose-deficient layer beneath the intine (the subintinal layer), and of irregular, incomplete cell walls. In these events, Ca2+ may have a role. We propose that abnormal cell walls are due to a massive callose synthesis and deposition of excreted cytoplasmic material, and the parallel inhibition of cellulose synthesis. These features were absent in pollen-like structures and in microspore-derived embryos, few days after the end of the heat shock, where abnormal cell walls were no longer produced. Together, our results provide an explanation to a series of relevant aspects of microspore embryogenesis including the role of Ca2+ and the occurrence of abnormal cell walls. In addition, our discovery may be the explanation to why nuclear fusions take place during microspore embryogenesis. PMID:26635844

  3. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    PubMed Central

    Tagawa, Yoshiaki; Hirano, Tomoo

    2012-01-01

    Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism. PMID:23213574

  4. Variability in the distribution of callosal projection neurons in the adult rat parietal cortex.

    PubMed

    Ivy, G O; Gould, H J; Killackey, H P

    1984-07-23

    Previous reports have shown that the barrel field area of the parietal cortex of the adult rat contains relatively few callosal projection neurons, even though callosal projection neurons are abundant in this cortical region in the neonatal rat. Furthermore, it has been shown that many of the callosal neurons which seem to disappear as the animal matures do not die, but project to ipsilateral cortical areas. These findings rely on the ability of retrograde transport techniques which utilize injections of horseradish peroxidase (HRP) or of fluorescent dyes into one hemisphere. We now show that several technical modifications of the HRP technique yield a wider distribution of HRP-containing neurons in the contralateral barrel field area of the adult rat than previously reported. These include implants of HRP pellets into transected axons of the corpus callosum, the addition of DMSO and nonidet P40 to Sigma VI HRP, wheat germ agglutinin HRP and the use of tetramethyl benzidine as the chromogen in the reaction procedure. Our findings have implications for transport studies in general and for the development of the cortical barrel field in particular.

  5. Efferent limb of gastrojejunostomy obstruction by a whole okra phytobezoar: Case report and brief review

    PubMed Central

    Zin, Thant; Maw, Myat; Pai, Dinker Ramananda; Paijan, Rosaini Binti; Kyi, Myo

    2012-01-01

    A phytobezoar is one of the intraluminal causes of gastric outlet obstruction, especially in patients with previous gastric surgery and/or gastric motility disorders. Before the proton pump inhibitor era, vagotomy, pyloroplasty, gastrectomy and gastrojejunostomy were commonly performed procedures in peptic ulcer patients. One of the sequelae of gastrojejunostomy is phytobezoar formation. However, a bezoar causing gastric outlet obstruction is rare even with giant gastric bezoars. We report a rare case of gastric outlet obstruction due to a phytobezoar obstructing the efferent limb of the gastrojejunostomy site. This phytobezoar which consisted of a whole piece of okra (lady finger vegetable) was successfully removed by endoscopic snare. To the best of our knowledge, this is the first case of okra bezoar-related gastrojejunostomy efferent limb obstruction reported in the literature. PMID:22624073

  6. Difference in cochlear efferent activity between musicians and non-musicians.

    PubMed

    Micheyl, C; Khalfa, S; Perrot, X; Collet, L

    1997-03-03

    The present study aimed to confirm and extend the finding, suggested by the results of a previous study, of different auditory neural efferent functioning in musicians compared with non-musicians. The activity of the medial olivocochlear bundle (MOCB), an auditory efferent subsystem, was measured through the contralaterally induced attenuation of the amplitude of evoked otoacoustic emissions (EOAEs) in two groups, one of musicians and one of non-musicians, paired for age and sex. The results indicated a statistically significant difference between the two groups, with the musicians showing greater amplitude reduction upon contralateral noise stimulation than non-musicians (U-test, U = 204, p < 0.025, n = 32). These results indicate greater MOCB activity in musicians than in non-musicians. The possible origins and implications of this finding are discussed.

  7. Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea

    PubMed Central

    Roux, Isabelle; Wersinger, Eric; McIntosh, J. Michael; Fuchs, Paul A.; Glowatzki, Elisabeth

    2011-01-01

    In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-clamp recordings from inner hair cells (IHCs) in acutely excised apical turns of the rat cochlea from embryonic day 21 to postnatal day 8 (P8). Responses to 1 mM acetylcholine (ACh) were detected from P0 on in almost every IHC. The ACh-activated current amplitude increased with age and demonstrated the same pharmacology as α9-containing nAChRs. Interestingly, at P0, the ACh response was not coupled to SK2 channels, so that the initial cholinergic response was excitatory and could trigger action potentials in IHCs. Coupling to SK current was detected earliest at P1 in a subset of IHCs and by P3 in every IHC studied. Clustered nAChRs and SK2 channels were found on IHCs from P1 on using Alexa Fluor 488 conjugated α-bungarotoxin and SK2 immunohistochemistry. The number of nAChRs clusters increased with age to 16 per IHC at P8. Cholinergic efferent synaptic currents first appeared in a subset of IHCs at P1 and by P3 in every IHC studied, contemporaneously with ACh-evoked SK currents, suggesting that SK2 channels may be necessary at onset of synaptic function. An analogous pattern of development was observed for the efferent synapses that form later (P6–P8) on outer hair cells in the basal cochlea. PMID:22016543

  8. Arc mRNA induction in striatal efferent neurons associated with response learning.

    PubMed

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  9. In vivo treatments with fulvestrant and anastrozole differentially affect gene expression in the rat efferent ductules.

    PubMed

    Gomes, Gisele Renata Oliveira; Yasuhara, Fabiana; Siu, Erica Rosanna; Fernandes, Sheilla Alessandra Ferreira; Avellar, Maria Christina Werneck; Lazari, Maria Fatima Magalhaes; Porto, Catarina Segreti

    2011-01-01

    Estrogen plays a key role in maintaining the morphology and function of the efferent ductules. We previously demonstrated that the antiestrogen fulvestrant markedly affected gene expression in the rat efferent ductules. The mechanism of fulvestrant action to modulate gene expression may involve not only the blockade of ESR1 and ESR2 estrogen receptors, but also the activation of ESR1 and ESR2 when the receptors are tethered to AP-1 or SP1 transcription factors, or the activation of the G protein-coupled estrogen receptor 1. We therefore compared the effects of two strategies to interfere with estrogen action in the rat efferent ductules: treatment with fulvestrant or with the aromatase inhibitor anastrozole. Whereas fulvestrant markedly increased Mmp7 and Spp1, and reduced Nptx1 mRNA levels, no changes were observed with anastrozole. Fulvestrant caused changes in epithelial morphology that were not seen with anastrozole. Fulvestrant shifted MMP7 immunolocalization in the epithelial cells from the supranuclear to the apical region; this effect was less pronounced with anastrozole. In vitro studies of (35)S-methionine incorporation showed that protein release was increased, whereas tissue protein content in the efferent ductules of fulvestrant-treated rats was decreased. Although fulvestrant markedly affected gene expression, no changes were observed on AP-1 and SP1 DNA-binding activity. The blockade of ESRs seems to be the major reason explaining the differences between both treatments. At least some of the effects of fulvestrant appear to result from compensatory mechanisms activated by the dramatic changes caused by ESR1 blockade.

  10. The role of the renal afferent and efferent nerve fibers in heart failure

    PubMed Central

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  11. The role of the renal afferent and efferent nerve fibers in heart failure.

    PubMed

    Booth, Lindsea C; May, Clive N; Yao, Song T

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  12. The renal nerves in chronic heart failure: efferent and afferent mechanisms.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF.

  13. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  14. Neocortical efferent neurons with very slowly conducting axons: strategies for reliable antidromic identification.

    PubMed

    Swadlow, H A

    1998-02-20

    Although simple in concept, reliable antidromic identification of efferent populations poses numerous technical challenges and is subject to a host of sampling biases, most of which select against the detection of the neurons with slowly conducting axons. This problem is particularly acute in studies of the neocortex. Many neocortical efferent systems have large sub-populations with very slowly conducting, nonmyelinated axons and these elements have been relatively neglected in antidromic studies of neocortical neurons. The present review attempts to redress this problem by analyzing the steps that must necessarily precede antidromic identification and the sampling biases associated with each of these steps. These steps include (1) initial recognition that the microelectrode is near a neuron; (2) activation of the efferent axon via the stimulating electrode; (3) conduction of the antidromic impulse from stimulation site to soma; (4) detection of the antidromic spike in the extracellular record and (5) discriminating antidromic from synaptic activation. Experimental strategies are suggested for minimizing the sampling biases associated with each of these steps; most of which can be reduced or eliminated by appropriate experimental procedures. Careful attention to such procedures will make it possible to better understand the nature and function of the information flow along the very slowly conducting axonal systems of the neocortex.

  15. Organ-specific activation of the gastric branch of the efferent vagus nerve by ghrelin in urethane-anesthetized rats.

    PubMed

    Habara, Hiromi; Hayashi, Yujiro; Inomata, Norio; Niijima, Akira; Kangawa, Kenji

    2014-01-01

    Ghrelin plays multiple physiological roles such as growth hormone secretion and exerting orexigenic actions; however, its physiological roles in the electrical activity of autonomic nerves remain unclear. Here, we investigated the effects of human ghrelin on several autonomic nerve activities in urethane-anesthetized rats using an electrophysiological method. Intravenous injection of ghrelin at 3 μg/kg significantly and transiently potentiated the efferent activity of the gastric vagus nerve; however, it did not affect the efferent activity of the hepatic vagus nerve. The activated response to ghrelin in the gastric efferent vagus nerve was not affected by the gastric afferent vagotomy, suggesting that this effect was not induced via the gastric afferent vagus nerve. Ghrelin did not affect the efferent activity of the brown adipose tissue, adrenal gland sympathetic nerve, and the renal sympathetic nerve. In addition, rectal temperature and the plasma concentrations of norepinephrine, corticosterone, and renin were also not changed by ghrelin. These findings demonstrate that ghrelin stimulates the gastric efferent vagus nerve in an organ-specific manner without affecting the gastric afferent vagus nerve and that ghrelin does not acutely affect the efferent basal activity of the sympathetic nerve in rats.

  16. [Callose content in cell walls of leaf epidermis and mesophyll in Alisma plantago-aquatica L. plants growing in different conditions of water supply].

    PubMed

    Ovruts'ka, I I

    2014-01-01

    The relative callose content in Alisma plantago-aquatica leaves has been studied at the phases of budding and flowering--fruiting. The callose content in cell walls was shown to vary depending on the type of tissue, phase of ontogenesis and of water supply.

  17. Sound localization in callosal agenesis and early callosotomy subjects: brain reorganization and/or compensatory strategies.

    PubMed

    Lessard, Nadia; Lepore, Franco; Villemagne, Jean; Lassonde, Maryse

    2002-05-01

    In order to evaluate the callosal involvement in sound localization, the present study examined the response accuracy of acallosal and early callosotomized subjects to monaural and binaural auditory targets presented in three-dimensional space. In these subjects, bilateral localization cues, such as interaural time and level differences, are integrated at the cortical and subcortical levels without the additional support of the callosal commissure. Because acallosal and early-callosotomized subjects have developed with this reduced source of binaural activation of cortical cells, they might have perfected their ability to use monaural sound localization cues. This hypothesis was tested by assessing localization performance under both binaural and monaural listening conditions. Five subjects with callosal agenesis, one callosotomized subject operated early in life and 19 control subjects were asked to localize broad-band noise bursts (BBNBs) of fixed intensity in the horizontal plane in an anechoic chamber. BBNBs were delivered through randomly selected loudspeakers. Two conditions were tested: (i) localization of a stationary sound source; and (ii) localization of a moving sound source. Listeners had to report the apparent stimulus location by pointing to its perceived position on a graduated perimeter. The results indicated that the acallosal subjects were less accurate than controls, but only in the binaural moving sound condition. More interestingly, in the monaural testing conditions, some of the acallosal subjects and the early-callosotomized subject performed significantly better than control subjects. This suggests that, because of the absence of the corpus callosum, these subjects compensate for their reduced access to cortically determined binaural cues by making more efficient use of monaural cues.

  18. Outcome after anterior callosal section that spares the splenium in pediatric patients with drop attacks.

    PubMed

    Yang, Peng-Fan; Lin, Qiao; Mei, Zhen; Chen, Zi-Qian; Zhang, Hui-Jian; Pei, Jia-Sheng; Tian, Jun; Jia, Yan-Zeng; Zhong, Zhong-Hui

    2014-07-01

    We report on the efficacy and safety of extended, one-stage anterior callosal section that spares the splenium, which is performed in a large series of pediatric patients with drop attacks. Twenty-nine pediatric patients with drop attacks were studied (19 males and 10 females; mean age: 9.9 years). As presurgical factors, the age at surgery, age at seizure onset, age at drop attack onset, sex, hemiparesis, severe mental retardation, electroencephalograph abnormalities, magnetic resonance imaging abnormalities, and (18)fluorodeoxyglucose positron emission tomography abnormalities were analyzed. All patients had multiple seizure types, including drop attacks, atypical absence seizures, complex partial seizures, tonic seizures, and generalized tonic-clonic seizures. All patients were developmentally impaired and had electroencephalograph results showing marked secondary bilateral synchrony. All patients received an extended, one-stage callosal section, leaving only the splenium intact. The mean follow-up time was 5.2 years. Seizure outcome (cessation of seizures or ≥ 90% seizure reduction) was achieved in 79.3% of patients with drop attacks. The families assessed the overall daily function as improved in 62.1% of the patients, unchanged in 24.1%, and worse in 13.8%. Family satisfaction with callosotomy was achieved in 82.8% of the patients. The majority of the patients had some degree of a transient acute postoperative disconnection syndrome that disappeared within 3 weeks. Postoperatively, patients showed a consistent increase in attention levels. We conclude that extended callosal sectioning that leaves the splenium intact should be considered a good palliative surgical option for pediatric patients with drop attacks and that diminishment of epileptic discharge synchrony is a good prognostic sign following callosotomy. We also found that the postoperative increase in attention levels was as useful as seizure control in improving the quality of life of these

  19. Arthrogryposis multiplex congenita with callosal agenesis and dentato-olivary dysplasia.

    PubMed

    Saito, Yoshiaki; Hayashi, Masaharu; Miyazono, Yayoi; Shimogama, Tatsuro; Ohno, Kousaku

    2006-05-01

    We report the autopsy case of a boy with arthrogryposis multiplex congenita, associated with callosal agenesis and dentato-olivary dysplasia. The patient manifested with dysmorphic facial features and suffered from intractable epilepsy during the neonatal period. These sets of complications suggest that a common molecular mechanism may be involved in the development of corpus callosum and the folding of the dentate and inferior olivary nuclei. Deep brain structures, including the brainstem and the cerebellum, may be involved in the pathophysiology of symptomatic generalized epilepsy. The differential diagnoses for the clinical and pathological characteristics of this patient are discussed.

  20. Reflex control of the human inner ear: a half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking.

    PubMed

    Lilaonitkul, Watjana; Guinan, John J

    2009-03-01

    The high sensitivity and frequency selectivity of the mammalian cochlea is due to amplification produced by outer hair cells (OHCs) and controlled by medial olivocochlear (MOC) efferents. Data from animals led to the view that MOC fibers provide frequency-specific inhibitory feedback; however, these studies did not measure intact MOC reflexes. To test whether MOC inhibition is primarily at the frequency that elicits the MOC activity, acoustically elicited MOC effects were quantified in humans by the change in otoacoustic emissions produced by 60-dB SPL tone and half-octave-band noise elicitors at different frequencies relative to a 40-dB SPL, 1-kHz probe tone. On average, all elicitors produced MOC effects that were skewed (elicitor frequencies -1 octave below the probe produced larger effects than those -1 octave above). The largest MOC effects were from elicitors below the probe frequency for contra- and bilateral elicitors but were from elicitors centered at the probe frequency for ipsilateral elicitors. Typically, ipsilateral elicitors produced larger effects than contralateral elicitors and bilateral elicitors produced effects near the ipsi+contra sum. Elicitors at levels down to 30-dB SPL produced similar patterns. Tuning curves (TCs) interpolated from these data were V-shaped with Q10s approximately 2. These are sharper than MOC-fiber TCs found near 1 kHz in cats and guinea pigs. Because cochlear amplification is skewed (more below the best frequency of a cochlear region), these data are consistent with an anti-masking role of MOC efferents that reduces masking by reducing the cochlear amplification seen at 1 kHz.

  1. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns

    PubMed Central

    2011-01-01

    Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen

  2. Contribution of lymph formation in the popliteal node to efferent lymph flow following stimulation of the sympathetic chain in the sheep.

    PubMed

    Thornbury, K D; McHale, N G; McGeown, J G

    1990-01-01

    Lymph flow and contraction frequency were measured in popliteal efferent lymphatics. Stimulation of the ipsilateral sympathetic chain resulted in an approximate threefold increase in lymph flow, while contraction frequency increased 28% (n = 6). Occlusion of the metatarsal afferent lymphatics with a pneumatic cuff reduced efferent flow from 18 to 4 microliters/min after 25 min (n = 5), indicating that approximately 80% of popliteal efferent lymph is derived from the foot. After occlusion of the afferent lymphatics, sympathetic stimulation failed to increase efferent lymph flow significantly, while efferent contraction frequency still showed a significant rise. It is concluded that lymph formation in the popliteal node does not contribute to the rise in efferent lymph flow following sympathetic stimulation.

  3. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis

    PubMed Central

    Hess, Rex A

    2014-01-01

    Abstract: Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules. PMID:26413389

  4. Bilateral subcortical heterotopia with partial callosal agenesis in a mouse mutant.

    PubMed

    Rosen, G D; Azoulay, N G; Griffin, E G; Newbury, A; Koganti, L; Fujisaki, N; Takahashi, E; Grant, P E; Truong, D T; Fitch, R H; Lu, L; Williams, R W

    2013-04-01

    Cognition and behavior depend on the precise placement and interconnection of complex ensembles of neurons in cerebral cortex. Mutations that disrupt migration of immature neurons from the ventricular zone to the cortical plate have provided major insight into mechanisms of brain development and disease. We have discovered a new and highly penetrant spontaneous mutation that leads to large nodular bilateral subcortical heterotopias with partial callosal agenesis. The mutant phenotype was first detected in a colony of fully inbred BXD29 mice already known to harbor a mutation in Tlr4. Neurons confined to the heterotopias are mainly born in midgestation to late gestation and would normally have migrated into layers 2-4 of overlying neocortex. Callosal cross-sectional area and fiber number are reduced up to 50% compared with coisogenic wildtype BXD29 substrain controls. Mutants have a pronounced and highly selective defect in rapid auditory processing. The segregation pattern of the mutant phenotype is most consistent with a two-locus autosomal recessive model, and selective genotyping definitively rules out the Tlr4 mutation as a cause. The discovery of a novel mutation with strong pleiotropic anatomical and behavioral effects provides an important new resource for dissecting molecular mechanisms and functional consequences of errors of neuronal migration.

  5. Interhemispheric transfer of kinesthetic information and line bisection task performance in patient with callosal agenesis.

    PubMed

    Makashvili, M; Chichinadze, K; Domianidze, T

    2009-09-01

    Patient G.J., male, 7 yrs, with callosal agenesis, was found perfectly able to cross-replicate hand postures in right-to left and left-to-right directions. Bimanual coordination as well as touch localization and intermanual matching were performed without errors. He failed to name 2 out of 8 objects, palpated with the left hand. At the age of 13 patient performed like normal controls in line bisection task, was successful in intermanual replication of hand postures and intermanual matching while failed to name 8 out of 12 familiar objects palpated with the left hand. G.J.'s case does not support idea about bilateral presentation of language centers and development of compensatory ipsilateral afferents in patients with callosal agenesis. Presence of anterior and interictal commissures in G.J. did not contribute to the exchange of information between sensory areas of the right hemisphere and language centers of the left half brain. However, normal intermanual matching and replication of hand postures, as well as high level of line bisection task performance suggests, that anterior and/or intertectal commissure could contribute to the functional integration of sensory areas of the two hemispheres.

  6. Wnt5a induces Ryk-dependent and -independent effects on callosal axon and dendrite growth.

    PubMed

    Clark, Charlotte E J; Richards, Linda J; Stacker, Steven A; Cooper, Helen M

    2014-02-01

    The non-canonical Wnt receptor, Ryk, promotes chemorepulsive axon guidance in the developing mouse brain and spinal cord in response to Wnt5a. Ryk has also been identified as a major suppressor of axonal regrowth after spinal cord injury. Thus, a comprehensive understanding of how growing axons and dendrites respond to Wnt5a-mediated Ryk activation is required if we are to overcome this detrimental activity. Here we undertook a detailed analysis of the effect of Wnt5a/Ryk interactions on axonal and dendritic growth in dissociated embryonic mouse cortical neuron cultures, focusing on callosal neurons known to be responsive to Ryk-induced chemorepulsion. We show that Ryk inhibits axonal growth in response to Wnt5a. We also show that Wnt5a inhibits dendrite growth independently of Ryk. However, this inhibition is relieved when Ryk is present. Therefore, Wnt5a-mediated Ryk activation triggers divergent responses in callosal axons and dendrites in the in vitro context.

  7. Hemispheric Asymmetry and Callosal Integration of Visuospatial Attention in Schizophrenia: A Tachistoscopic Line Bisection Study

    PubMed Central

    McCourt, Mark E.; Shpaner, Marina; Javitt, Daniel C.; Foxe, John J.

    2008-01-01

    Background A hallmark of visuospatial neglect syndrome is that patients with lesions to right parietal cortex misbisect horizontal lines far rightward of veridical center. Neurologically normal subjects misbisect lines with a systematic leftward bias (pseudoneglect). Both phenomena, as well as neuroimaging studies, disclose a predominant right hemisphere control of spatial attention. Numerous studies of patients with schizophrenia have implicated global deficits of either right or left hemisphere function, as well as compromised integrity of the corpus callosum. Methods To better understand the functional implications of schizophrenia we utilized a forced-choice tachistoscopic line bisection task to probe the status of right hemisphere control of spatial attention, and compared left- versus right-hand unimanual responses to index the degree of callosal transfer of visuospatial information in both patient and control groups. Results In contrast to the significant leftward bisection errors of control subjects, patients exhibit no significant leftward error. Whereas control subjects evince a significant correlation between left- and right-hand bisection errors, patients lack a significant intermanual correlation. Conclusions The lack of significant leftward bisection error of patients implies a deficit of right hemisphere function. The lack of a significant correlation between left- and right-hand bisection errors in patients implies a loss of callosal integrity. PMID:18485672

  8. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae

    PubMed Central

    Voigt, Christian A.

    2014-01-01

    Plants are exposed to a wide range of potential pathogens, which derive from diverse phyla. Therefore, plants have developed successful defense mechanisms during co-evolution with different pathogens. Besides many specialized defense mechanisms, the plant cell wall represents a first line of defense. It is actively reinforced through the deposition of cell wall appositions, so-called papillae, at sites of interaction with intruding microbial pathogens. The papilla is a complex structure that is formed between the plasma membrane and the inside of the plant cell wall. Even though the specific biochemical composition of papillae can vary between different plant species, some classes of compounds are commonly found which include phenolics, reactive oxygen species, cell wall proteins, and cell wall polymers. Among these polymers, the (1,3)-β-glucan callose is one of the most abundant and ubiquitous components. Whereas the function of most compounds could be directly linked with cell wall reinforcement or an anti-microbial effect, the role of callose has remained unclear. An evaluation of recent studies revealed that the timing of the different papilla-forming transport processes is a key factor for successful plant defense. PMID:24808903

  9. Arrested Development and Disrupted Callosal Microstructure Following Pediatric Traumatic Brain Injury: Relation to Neurobehavioral Outcomes

    PubMed Central

    Ewing-Cobbs, Linda; Prasad, Mary R.; Swank, Paul; Kramer, Larry; Cox, Charles S.; Fletcher, Jack M.; Barnes, Marcia; Zhang, Xiaoling; Hasan, Khader M.

    2008-01-01

    Chronic pediatric traumatic brain injury (TBI) is associated with significant and persistent neurobehavioral deficits. Using diffusion tensor imaging (DTI), we examined area, fractional anisotropy (FA), radial diffusion, and axial diffusion from six regions of the corpus callosum (CC) in 41 children and adolescents with TBI and 31 comparison children. Midsagittal cross-sectional area of the posterior body and isthmus was similar in younger children irrespective of injury status; however, increased area was evident in the older comparison children but was obviated in older children with TBI, suggesting arrested development. Similarly, age was correlated significantly with indices of tissue microstructure only for the comparison group. TBI was associated with significant reduction in FA and increased radial diffusivity in the posterior third of the CC and in the genu. The axial diffusivity did not differ by either age or group. Logistic regression analyses revealed that FA and radial diffusivity were equally sensitive to post-traumatic changes in 4 of 6 callosal regions; radial diffusivity was more sensitive for the rostral midbody and splenium. IQ, working memory, motor, and academic skills were correlated significantly with radial diffusion and/or FA from the isthmus and splenium only in the TBI group. Reduced size and microstructural changes in posterior callosal regions after TBI suggest arrested development, decreased organization, and disrupted myelination. Increased radial diffusivity was the most sensitive DTI-based surrogate marker of the extent of neuronal damage following TBI; FA was most strongly correlated with neuropsychological outcomes. PMID:18655838

  10. Efferent Vestibular Neurons Show Homogenous Discharge Output But Heterogeneous Synaptic Input Profile In Vitro

    PubMed Central

    Mathews, Miranda A.; Murray, Andrew; Wijesinghe, Rajiv; Cullen, Karen; Tung, Victoria W. K.; Camp, Aaron J.

    2015-01-01

    Despite the importance of our sense of balance we still know remarkably little about the central control of the peripheral balance system. While previous work has shown that activation of the efferent vestibular system results in modulation of afferent vestibular neuron discharge, the intrinsic and synaptic properties of efferent neurons themselves are largely unknown. Here we substantiate the location of the efferent vestibular nucleus (EVN) in the mouse, before characterizing the input and output properties of EVN neurons in vitro. We made transverse serial sections through the brainstem of 4-week-old mice, and performed immunohistochemistry for calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT), both expressed in the EVN of other species. We also injected fluorogold into the posterior canal and retrogradely labelled neurons in the EVN of ChAT:: tdTomato mice expressing tdTomato in all cholinergic neurons. As expected the EVN lies dorsolateral to the genu of the facial nerve (CNVII). We then made whole-cell current-, and voltage-clamp recordings from visually identified EVN neurons. In current-clamp, EVN neurons display a homogeneous discharge pattern. This is characterized by a high frequency burst of action potentials at the onset of a depolarizing stimulus and the offset of a hyperpolarizing stimulus that is mediated by T-type calcium channels. In voltage-clamp, EVN neurons receive either exclusively excitatory or inhibitory inputs, or a combination of both. Despite this heterogeneous mixture of inputs, we show that synaptic inputs onto EVN neurons are predominantly excitatory. Together these findings suggest that the inputs onto EVN neurons, and more specifically the origin of these inputs may underlie EVN neuron function. PMID:26422206

  11. How can the auditory efferent system protect our ears from noise-induced hearing loss? Let us count the ways

    NASA Astrophysics Data System (ADS)

    Marshall, Lynne; Miller, Judi A. Lapsley

    2015-12-01

    It is a cause for some debate as to how the auditory olivocochlear (OC) efferent system could protect hearing from noise trauma. In this review, we examined physiological research to find mechanisms that could effectively attenuate the response to sound. For each purported mechanism, we indicate which part of the OC-efferent system is responsible for the function and the site of action. These mechanisms include basilar-membrane phase shifts at high stimulus levels; changes in outer-hair-cell stiffness and phase lag associated with efferent slow effects; small decreases in endocochlear potentials causing small decreases in outer- and inner-hair-cell output; low-spontaneous-rate and medium-spontaneous-rate fibers showing OC-induced decrements at high levels; auditory-nerve initial-peak reduction; OC effect increasing over minutes; cholinergic activation of anti-apoptotic pathways; and anti-excitotoxicity. There are clearly multiple opportunities for the OC-efferent system to protect the inner ear from noise trauma. From further exploration into the mechanisms outlined here, as well as to-be-discovered mechanisms, we will gain a greater understanding of the protective nature of the OC-efferent system. These findings could aid our ability to design better predictive tests for people at risk for noise-induced hearing loss.

  12. Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability.

    PubMed

    Patuzzi, R B; Thompson, M L

    1991-07-01

    We have measured the changes in neural and microphonic sensitivity in the basal turn of the guinea-pig cochlea produced by intense acoustic overstimulation (10 kHz, 115 dB SPL for 60 s and 150 s). As reported previously, the drop in neural and microphonic sensitivities observed after overstimulation were highly correlated [Patuzzi et al. (1989) Hear. Res. 39, 189-202]. Presentation of a non-traumatizing pure-tone to the contralateral ear (10 kHz, 80 dB SPL) during acoustic overstimulation reduced the amount of acoustic trauma measured using the neural response or the microphonic response. Transection of the medial olivo-cochlear system of efferent fibres at the floor of the fourth ventricle abolished this protective effect of contralateral sound and dramatically reduced the variability in the data. Since the low-frequency microphonic is a simple measure of the receptor current through the outer hair cells, and this current probably plays a part in enhancing the mechanical sensitivity of the cochlea, the protection of the microphonic we have observed suggests that the efferent system protects neural sensitivity by protecting the mechano-electrical transduction of outer hair cells. The drop in variability after sectioning the efferents also suggests that inter-animal variations in susceptibility to noise trauma may be a consequence of differing tonic activity of the efferents, and/or a variation in the sensitivity of the efferent pathway.

  13. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions

    PubMed Central

    Fee, Michale S.

    2012-01-01

    In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current “time” in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources. PMID:22754501

  14. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    PubMed

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  15. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure.

    PubMed

    Kumagai, Hiroo; Oshima, Naoki; Matsuura, Tomokazu; Iigaya, Kamon; Imai, Masaki; Onimaru, Hiroshi; Sakata, Katsufumi; Osaka, Motohisa; Onami, Toshiko; Takimoto, Chie; Kamayachi, Tadashi; Itoh, Hiroshi; Saruta, Takao

    2012-02-01

    Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy.

  16. The effect on the efferent vagal nerves to the heart of stimulating atrial receptors in the dog.

    PubMed

    Walters, G E; Mary, D A

    1986-10-01

    In chloralose-anaesthetized dogs, distension of small balloons at the pulmonary vein-atrial junctions to stimulate atrial receptors with myelinated vagal afferent nerves causes an increase in heart rate but does not influence the activity in efferent vagal cardiac nerves. However, distension of these small balloons also stimulates atrial receptors with non-myelinated vagal and sympathetic afferent nerves, which are thought to affect the heart rate and activity in efferent vagal cardiac nerves. In the present investigation, seven dogs anaesthetized with chloralose were studied by distension of small balloons at the pulmonary vein-atrial junctions and in the left atrial appendage, and by graded cooling of the vagal nerves in the neck; cooling to 9 degrees C was used to prevent the increase in activity in myelinated vagal afferent nerves to distension of the small balloons and cooling to 0 degree C was used to prevent responses to the distension in all vagal afferent nerves. Eleven vagal efferent nerve fibers were studied which responded to stimulation of carotid baroreceptors and chemoreceptors. Distension of the small balloons did not affect the activity in these eleven efferent vagal nerve fibres, with the vagi at 37 degrees C or during vagal cooling to 9 degrees C or to 0 degree C. The results indicate that upon distension of the small balloons, none of the three types of atrial receptor influence the activity in efferent vagal cardiac nerves. The results support the conclusion that stimulation of atrial receptors with myelinated vagal afferent nerves, responsible for the reflex increase in heart rate, does not influence the activity in efferent vagal cardiac nerves.

  17. [Tonic conjugated action of receptor-receptor fibers and of the efferent vestibular system on the spontaneous afferene activity of a semicircular canal in the frog].

    PubMed

    Gribenski, A; Caston, J

    1976-01-01

    In the frog, the joint action of non-afferent vestibular systems [i.e. the efferent vestibular system and the receptor-receptor fibre system] on the afferent vestibular activity is null or very small. The receptor-receptor fibre system being inhibitory, it seems that the efferent vestibular system as a whole is facilitatory, which agrees with previous results.

  18. Intermittent Alien Hand Syndrome and Callosal Apraxia in Multiple Sclerosis: Implications for Interhemispheric Communication

    PubMed Central

    Lunardelli, A.; Sartori, A.; Mengotti, P.; Rumiati, R. I.; Pesavento, V.

    2014-01-01

    We report a case of a 47-year-old woman with 35-year history of multiple sclerosis, who showed alien hand signs, a rare behavioural disorder that involves unilateral goal-directed movements that are contrary to the individual's intention. Alien hand syndrome has been described in multiple sclerosis (MS) only occasionally and is generally suggestive of callosal disconnection. The patient presented also with bilateral limb apraxia and left hand agraphia, raising the possibility of cortical dysfunction or disconnection, in addition to corpus callosum and white matter involvement. Her specific pattern of symptoms supports the role of the corpus callosum in interhemispheric communication for complex as well as fine motor activities and may indicate that it can serve as both an inhibitory and excitatory function depending on task demands. PMID:24803736

  19. Intermittent alien hand syndrome and callosal apraxia in multiple sclerosis: implications for interhemispheric communication.

    PubMed

    Lunardelli, A; Sartori, A; Mengotti, P; Rumiati, R I; Pesavento, V

    2014-01-01

    We report a case of a 47-year-old woman with 35-year history of multiple sclerosis, who showed alien hand signs, a rare behavioural disorder that involves unilateral goal-directed movements that are contrary to the individual's intention. Alien hand syndrome has been described in multiple sclerosis (MS) only occasionally and is generally suggestive of callosal disconnection. The patient presented also with bilateral limb apraxia and left hand agraphia, raising the possibility of cortical dysfunction or disconnection, in addition to corpus callosum and white matter involvement. Her specific pattern of symptoms supports the role of the corpus callosum in interhemispheric communication for complex as well as fine motor activities and may indicate that it can serve as both an inhibitory and excitatory function depending on task demands.

  20. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects

    PubMed Central

    Yamakawa, Kentaro; Rajendran, Pradeep S.; Takamiya, Tatsuo; Yagishita, Daigo; So, Eileen L.; Mahajan, Aman; Shivkumar, Kalyanam

    2015-01-01

    Vagal nerve stimulation (VNS) has been shown to have antiarrhythmic effects, but many of these benefits were demonstrated in the setting of vagal nerve decentralization. The purpose of this study was to evaluate the role of afferent fiber activation during VNS on efferent control of cardiac hemodynamic and electrophysiological parameters. In 37 pigs a 56-electrode sock was placed over the ventricles to record local activation recovery intervals (ARIs), a surrogate of action potential duration. In 12 of 37 animals atropine was given systemically. Right and left VNS were performed under six conditions: both vagal trunks intact (n = 25), ipsilateral right (n = 11), ipsilateral left (n = 14), contralateral right (n = 7), contralateral left (n = 10), and bilateral (n = 25) vagal nerve transection (VNTx). Unilateral VNTx significantly affected heart rate, PR interval, Tau, and global ARIs. Right VNS after ipsilateral VNTx had augmented effects on hemodynamic parameters and increase in ARI, while subsequent bilateral VNTx did not significantly modify this effect (%change in ARI in intact condition 2.2 ± 0.9% vs. ipsilateral VNTx 5.3 ± 1.7% and bilateral VNTx 5.3 ± 0.8%, P < 0.05). Left VNS after left VNTx tended to increase its effects on hemodynamics and ARI response (P = 0.07), but only after bilateral VNTx did these changes reach significance (intact 1.1 ± 0.5% vs. ipsilateral VNTx 3.6 ± 0.7% and bilateral VNTx 6.6 ± 1.6%, P < 0.05 vs. intact). Contralateral VNTx did not modify VNS response. The effect of atropine on ventricular ARI was similar to bilateral VNTx. We found that VNS activates afferent fibers in the ipsilateral vagal nerve, which reflexively inhibit cardiac parasympathetic efferent electrophysiological and hemodynamic effects. PMID:26371172

  1. Short latency cutaneous reflex responses of gamma-efferents in the decerebrate cat.

    PubMed

    Murphy, P R; Hammond, G R

    1992-01-01

    The effect of single shock stimulation, up to 20 x threshold (T), of the sural nerve on the discharges of triceps surae gamma-efferents was investigated in decerebrate cats. Units were classified as static (12) or dynamic (7) on the basis of their resting discharge rates (Murphy et al. 1984). All neurones were excited at short latency by sural nerve stimulation and response size was graded with stimulus intensity. Short latency mixed or inhibitory responses were not evident. Although reflex effects first occurred at low stimulus strengths (less than or equal to 1.5T) in both types of efferent, most responses appeared at higher intensities (greater than 1.5T). The estimated central delays of the responses of static (3.0 +/- 1.1 ms, mean +/- SD) and dynamic (3.4 +/- 1.0 ms) gamma-motoneurones were not significantly different and are consistent with spinal oligosynaptic pathways. The present results differ from those of the only previous study (Johansson and Sojka 1985) of the short latency responses of triceps surae static and dynamic gamma-motoneurones to sural nerve stimulation, in which mixed and inhibitory effects were common in anaesthetised cats. Although differences in recording techniques and gamma sampling may account for the apparent disparity between these studies, it is also feasible that a difference in the setting of interneuronal pathways in the two types of preparation is responsible. The results are discussed in relation to the control of gamma-motoneurones with particular reference to the "final common input" hypothesis (Johansson 1981; Appelberg et al. 1983).

  2. The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    PubMed Central

    Findlay, Anne M.; Honma, Susanne; Jeremy, Rita J.; Strominger, Zoe; Bukshpun, Polina; Wakahiro, Mari; Brown, Warren S.; Paul, Lynn K.; Barkovich, A. James; Mukherjee, Pratik; Nagarajan, Srikantan S.; Sherr, Elliott H.

    2012-01-01

    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step

  3. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity.

    PubMed

    Zhang, Hui; Shi, Wu Liang; You, Jiang Feng; Bian, Ming Di; Qin, Xiao Mei; Yu, Hui; Liu, Qing; Ryan, Peter R; Yang, Zhen Ming

    2015-06-01

    Seventy-one cultivars of sweet sorghum (Sorghum bicolor L.) were screened for aluminium (Al) tolerance by measuring relative root growth (RRG). Two contrasting cultivars, ROMA (Al tolerant) and POTCHETSTRM (Al sensitive), were selected to study shorter term responses to Al stress. POTCHETSTRM had higher callose synthase activity, lower β-1,3-glucanase activity and more callose deposition in the root apices during Al treatment compared with ROMA. We monitored the expression of 12 genes involved in callose synthesis and degradation and found that one of these, SbGlu1 (Sb03g045630.1), which encodes a β-1,3-glucanase enzyme, best explained the contrasting deposition of callose in ROMA and POTCHETSTRM during Al treatment. Full-length cDNAs of SbGlu1 was prepared from ROMA and POTCHETSTRM and expressed in Arabidopsis thaliana using the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Independent transgenic lines displayed significantly greater Al tolerance than wild-type plants and vector-only controls. This phenotype was associated with greater total β-1,3-glucanase activity, less Al accumulation and reduced callose deposition in the roots. These results suggest that callose production is not just an early indicator of Al stress in plants but likely to be part of the toxicity pathway that leads to the inhibition of root growth.

  4. Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget.

    PubMed

    Fortes, Ana M; Testillano, Pilar S; Del Carmen Risueño, Maria; Pais, Maria S

    2002-09-01

    Callose and cutin deposition were followed by staining with Aniline Blue and Nile Red and by immunolocalization using antibodies raised against callose. Along with morphogenesis induction from internodes of Humulus lupulus var. Nugget, a temporal and spatial differential deposition of callose and cutin was observed. A cutin layer showing bright yellow autofluorescence appears, surrounding cells or groups of cells committed to express morphogenic competence. This cutin layer that evolves to a randomly organized network appeared underneath a callose layer and may create a specific cellular environment with altered permeability and altered receptors providing conditions for entering the cell cycle. The incipient callose accumulation in control explants cultured on basal medium suggests the involvement of callose in the initiation of the morphogenic programme leading to nodule formation. A scanning electron microscopic study during the organogenic process showed that before shoot bud regeneration, the cutin layer increases in thickness and acquires a smooth texture. This cutin layer is specific to nodular organogenic regions and disappeared with plantlet regeneration. This layer may control permeability to water and solute transfer throughout plantlet regeneration.

  5. Axon diameter relates to synaptic bouton size: structural properties define computationally different types of cortical connections in primates.

    PubMed

    Innocenti, Giorgio M; Caminiti, Roberto

    2017-04-01

    Neural connections are implemented by axons of different diameters, whose spectrum increases depending on species and areas. Axon diameter determines conduction velocity and is proportional to the size of the cell body of origin. We describe that in motor, callosal connections of the monkey thick axons distribute larger boutons than thin axons, suggesting that faster axons also release more neurotransmitter at their termination, probably activating more powerfully their targets.

  6. The effects of callosal agenesis on the susceptibility to seizures elicited by pentylenetetrazol in BALB/cCF mice.

    PubMed

    Medina, Alexandre E; Manhães, Alex C; Schmidt, Sergio L

    2002-01-01

    The effects of callosal agenesis in sensitivity to pentylenetetrazol (PTZ) were studied in 199 (95 males and 104 females) mice of the BALB/cCF strain. This strain presents agenesis of the corpus callosum (CC) in approximately 30% of its population. Seizures were elicited by intraperitoneally injected PTZ. Animals were tested with doses of 40 and 50 mg/kg. Seizure severity was expressed by the following scoring scale: 0 (no abnormal behavior, NAB); 1 (myoclonus, M); 2 (running bouncing clonus, RBC); 3 (tonic hindlimb extension, THE). For the 40-mg/kg dose, abnormal mice were found to be more susceptible, displaying more severe seizures more often then normal mice. Normal female mice were also more susceptible to PTZ than males for this dose. No significant differences were found for the 50-mg/kg dose as a result of the fact that most animals displayed RBC. These data indicate that callosal development and sex are important factors affecting seizure susceptibility.

  7. The contribution of late-generated neurons to the callosal projection in rat: a study with prenatal x-irradiation

    SciTech Connect

    Jensen, K.F.; Altman, J.

    1982-08-01

    Studies utilizing horseradish peroxidase tracing methods have suggested that there are species differences in the relative contribution of the different neocortical layers to the callosal projection. The present investigation utilized x-irradiation at different gestational ages to eliminate the late-generated neurons in the rat neocortex. The caudorostral gradient of reduction in the neuronal population of the supragranular layers is closely correlated with the gradient of reduction in the size of the corpus callosum. Furthermore, the callosal projection is absent in anteroposterior cortical segments in which the development of the supragranular layers was prevented without a reduction of the number of neurons in the infragranular layers of the neocortex. These results indicate that late-generated neurons residing primarily in the supragranular layers are essential for the formation of the corpus callosum.

  8. Developmental Regulation of the (1,3)-beta-Glucan (Callose) Synthase from Tomato : Possible Role of Endogenous Phospholipases.

    PubMed

    Ma, S; Gross, K C; Wasserman, B P

    1991-06-01

    Activity levels of UDP-glucose: (1,3)-beta-glucan (callose) synthase in microsomal membranes of pericarp tissue from tomato fruit (Lycoperisicon esculentum Mill, cv Rutgers) were determined during development and ripening. Addition of the phospholipase inhibitors O-phosphorylcholine and glycerol-1-phosphate to homogenization buffers was necessary to preserve enzyme activity during homogenization and membrane isolation. Enzyme activity declined 90% from the immature green to the red ripe stage. The polypeptide composition of the membranes did not change significantly during ripening. The enzyme from immature fruit was inactivated by exogenously added phospholipases A(2), C, and D. These results suggest that the decline in callose synthase activity during ontogeny may be a secondary effect of endogenous lipase action.

  9. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons.

    PubMed

    Bratton, B O; Martelli, D; McKinley, M J; Trevaks, D; Anderson, C R; McAllen, R M

    2012-11-01

    The 'inflammatory reflex' acts through efferent neural connections from the central nervous system to lymphoid organs, particularly the spleen, that suppress the production of inflammatory cytokines. Stimulation of the efferent vagus has been shown to suppress inflammation in a manner dependent on the spleen and splenic nerves. The vagus does not innervate the spleen, so a synaptic connection from vagal preganglionic neurons to splenic sympathetic postganglionic neurons was suggested. We tested this idea in rats. In a preparatory operation, the anterograde tracer DiI was injected bilaterally into the dorsal motor nucleus of vagus and the retrograde tracer Fast Blue was injected into the spleen. On histological analysis 7-9 weeks later, 883 neurons were retrogradely labelled from the spleen with Fast Blue as follows: 89% in the suprarenal ganglia (65% left, 24% right); 11% in the left coeliac ganglion; but none in the right coeliac or either of the superior mesenteric ganglia. Vagal terminals anterogradely labelled with DiI were common in the coeliac but sparse in the suprarenal ganglia, and confocal analysis revealed no putative synaptic connection with any Fast Blue-labelled cell in either ganglion. Electrophysiological experiments in anaesthetized rats revealed no effect of vagal efferent stimulation on splenic nerve activity or on that of 15 single splenic-projecting neurons recorded in the suprarenal ganglion. Together, these findings indicate that vagal efferent neurons in the rat neither synapse with splenic sympathetic neurons nor drive their ongoing activity.

  10. Efferents and afferents in an intact muscle nerve: background activity and effects of sural nerve stimulation in the cat.

    PubMed

    Bessou, P; Joffroy, M; Pagès, B

    1981-11-01

    1. The background activity was observed in gamma and alpha efferent fibres and in group I and II fibres innervating the muscle gastrocnemius lateralis or medialis. The reflex effects of ipsilateral and contralateral sural nerve stimulations on the muscle efferents were analysed together with their consequences upon the afferents of the same muscle. The observations were made in the decerebrated cat without opening the neural loops between the muscle and the spinal cord.2. The multi-unit discharges of each category of fibres were obtained, on line, by an original electronic device (Joffroy, 1975, 1980) that sorted the action potentials from the whole electrical activity of a small branch of gastrocnemius lateralis or medialis nerve according to the direction and velocity of propagation of the potentials.3. The small nerve may be regarded as a representative sample of different functional groups of fibres conducting faster than 12 m.sec(-1) and supplying gastrocnemius muscles.4. Some gamma efferents were always tonically firing except when a transient flaccid state developed. Usually the alpha efferents were silent, probably because the muscle was fixed close to the minimal physiological length.5. Separate and selective stimulations of Abeta, Adelta and C fibres of ipsilateral and contralateral sural nerve showed that each group could induce the excitation of gamma neurones. The reciprocal inhibition period of alpha efferents during a flexor reflex was only once accompanied by a small decrease in gamma-firing.6. The reflex increase of over-all frequency of gamma efferents resulted from an increased firing rate of tonic gamma neurones and from the recruitment of gamma neurones previously silent. When the gamma efferents in the small nerve naturally occurred in two subgroups, the slower-conducting subgroup (mainly composed of tonic gamma axons) was activated before the faster-conducting subgroup (mostly composed by gamma axons with no background discharge). Some rare

  11. Subcortical connections of area V4 in the macaque

    PubMed Central

    Gattass, Ricardo; Galkin, Thelma W; Desimone, Robert; Ungerleider, Leslie G

    2014-01-01

    Area V4 has numerous, topographically organized connections with multiple cortical areas, some of which are important for spatially organized visual processing, and others which seem important for spatial attention. Although the topographic organization of V4’s connections with other cortical areas has been established, the detailed topography of its connections with subcortical areas is unclear. We therefore injected retrograde and anterograde tracers in different topographical regions of V4 in nine macaques to determine the organization of its subcortical connections. The injection sites included representations ranging from the fovea to far peripheral eccentricities in both the upper and lower visual fields. The topographically organized connections of V4 included bidirectional connections with four subdivisions of the pulvinar, two subdivisions of the claustrum, and the interlaminar portions of the lateral geniculate nucleus, and efferent projections to the superficial and intermediate layers of the superior colliculus, the thalamic reticular nucleus, and the caudate nucleus. All of these structures have a possible role in spatial attention. The nontopographic, or converging, connections included bidirectional connections with the lateral nucleus of the amygdala, afferent inputs from the dorsal raphe, median raphe, locus coeruleus, ventral tegmentum and nucleus basalis of Meynert, and efferent projections to the putamen. Any role of these structures in attention may be less spatially specific. J. Comp. Neurol. 522:1941–1965, 2014. PMID:24288173

  12. Differential Effects of Brain Disorders on Structural and Functional Connectivity

    PubMed Central

    Vega-Pons, Sandro; Olivetti, Emanuele; Avesani, Paolo; Dodero, Luca; Gozzi, Alessandro; Bifone, Angelo

    2017-01-01

    Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate. PMID:28119556

  13. Differential Effects of Brain Disorders on Structural and Functional Connectivity.

    PubMed

    Vega-Pons, Sandro; Olivetti, Emanuele; Avesani, Paolo; Dodero, Luca; Gozzi, Alessandro; Bifone, Angelo

    2016-01-01

    Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate.

  14. Lifelong strength training mitigates the age-related decline in efferent drive.

    PubMed

    Unhjem, Runar; Nygård, Mona; van den Hoven, Lene T; Sidhu, Simranjit K; Hoff, Jan; Wang, Eivind

    Recently, we documented age-related attenuation of efferent drive to contracting skeletal muscle. It remains elusive if this indication of reduced muscle strength is present with lifelong strength training. For this purpose, we examined evoked potentials in the calf muscles of 11 [71 ± 4 (SD) yr] strength-trained master athletes (MA) contrasted with 10 (71 ± 4 yr) sedentary (SO) and 11 (73 ± 6 yr) recreationally active (AO) old subjects, as well as 9 (22 ± 2 yr) young controls. As expected, MA had higher leg press maximal strength (MA, 185 ± 32 kg; AO, 128 ± 15 kg; SO, 106 ± 11 kg; young, 147 ± 22 kg, P < 0.01) and rate of force development (MA, 5,588 ± 2,488 N/s; AO, 2,156 ± 1,100 N/s; SO, 2,011 ± 825 N/s; young, 3,663 ± 1,140 N/s, P < 0.05) than the other groups. MA also exhibited higher musculus soleus normalized V waves during maximal voluntary contractions (MVC) [maximal V wave amplitude/maximal M wave during MVC (Vsup/Msup); 0.28 ± 0.15] than AO (0.13 ± 0.06, P < 0.01) and SO (0.11 ± 0.05, P < 0.01), yet lower than young (0.45 ± 0.12, P < 0.01). No differences were apparent between the old groups in H reflex recorded at rest or during MVC [maximal H reflex amplitude/maximal M wave during rest (Hmax/Mmax); maximal H reflex amplitude during MVC/maximal M wave during MVC (Hsup/Msup)], and all were lower (P < 0.01) than young. MA (34.4 ± 2.1 ms) had shorter (P < 0.05) H reflex latency compared with AO (36.4 ± 3.7 ms) and SO (37.3 ± 3.2 ms), but longer (P < 0.01) than young (30.7 ± 2.0 ms). Using interpolated twitch analysis, MA (89 ± 7%) had plantar flexion voluntary activation similar to young (90 ± 6%), and this was higher (P < 0.05), or tended to be higher (P = 0.06-0.09), than SO (83 ± 10%) and AO (84 ± 5%). These observations suggest that lifelong strength training has a protective effect against age-related attenuation of efferent drive. In contrast, no beneficial effect seems to derive from habitual recreational activity, indicating

  15. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum.

    PubMed

    Luders, Eileen; Toga, Arthur W; Thompson, Paul M

    2014-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum.

  16. Paralinguistic processing in children with callosal agenesis: emergence of neurolinguistic deficits.

    PubMed

    Brown, Warren S; Symingtion, Melissa; VanLancker-Sidtis, Diana; Dietrich, Rosalind; Paul, Lynn K

    2005-05-01

    Recent research revealed impaired processing of both nonliteral meaning and affective prosody in adults with agenesis of the corpus callosum (ACC) and normal intelligence. Since normal children have incomplete myelination of the corpus callosum, it was hypothesized that paralanguage deficits in children with ACC would be less apparent relative to their peers. The Familiar and Novel Language Comprehension Test (FANL-C) and Prosody Test were given to 18 children with ACC and normal intelligence and 17 controls matched for age (7-13 years), education, and IQ (83-122). When controlling for age, children with ACC were significantly poorer in comprehension of the precise meaning of both literal and nonliteral items on the FANL-C. Adults with ACC had previously been shown to have difficulty only on nonliteral items. The effect size for nonliteral comprehension in children with ACC was smaller than that seen in adults. There was only a trend for the child ACC group to perform worse on the recognition of affective prosody. Thus, while deficits in paralinguistic processing were apparent, children with ACC were not as clearly different from age peers as adults, and were equally deficient at comprehending literal and nonliteral expressions. The differences in results between adults and children with ACC are thought to reflect incomplete callosal development in normal children, and the importance of the corpus callosum in the early stages of the development of the ability to process literal language.

  17. Genetic and functional analyses identify DISC1 as a novel callosal agenesis candidate gene.

    PubMed

    Osbun, Nathan; Li, Jiang; O'Driscoll, Mary C; Strominger, Zoe; Wakahiro, Mari; Rider, Eric; Bukshpun, Polina; Boland, Elena; Spurrell, Cailyn H; Schackwitz, Wendy; Pennacchio, Len A; Dobyns, William B; Black, Graeme C M; Sherr, Elliott H

    2011-08-01

    Agenesis of the corpus callosum (AgCC) is a congenital brain malformation that occurs in approximately 1:1,000-1:6,000 births. Several syndromes associated with AgCC have been traced to single gene mutations; however, the majority of AgCC causes remain unidentified. We investigated a mother and two children who all shared complete AgCC and a chromosomal deletion at 1q42. We fine mapped this deletion and show that it includes Disrupted-in-Schizophrenia 1 (DISC1), a gene implicated in schizophrenia and other psychiatric disorders. Furthermore, we report a de novo chromosomal deletion at 1q42.13 to q44, which includes DISC1, in another individual with AgCC. We resequenced DISC1 in a cohort of 144 well-characterized AgCC individuals and identified 20 sequence changes, of which 4 are rare potentially pathogenic variants. Two of these variants were undetected in 768 control chromosomes. One of these is a splice site mutation at the 5' boundary of exon 11 that dramatically reduces full-length mRNA expression of DISC1, but not of shorter forms. We investigated the developmental expression of mouse DISC1 and find that it is highly expressed in the embryonic corpus callosum at a critical time for callosal formation. Taken together our results suggest a significant role for DISC1 in corpus callosum development.

  18. Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss

    PubMed Central

    Marsh, Ashley P.L.; Lukic, Vesna; Pope, Kate; Bromhead, Catherine; Tankard, Rick; Ryan, Monique M.; Yiu, Eppie M.; Sim, Joe C.H.; Delatycki, Martin B.; Amor, David J.; McGillivray, George; Sherr, Elliott H.; Bahlo, Melanie; Leventer, Richard J.

    2015-01-01

    Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy. Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation studies and cohort analysis and Western blot of patient-derived cells. Results: Affected family members presented with postnatal microcephaly and profound developmental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stopgain mutation in adenosine monophosphate deaminase 2 (AMPD2) was identified within the linkage region on chromosome 1. Molecular analyses confirmed that the mutation segregated with disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated individuals with related imaging phenotypes did not reveal additional AMPD2 mutations. Conclusions: We describe a family with a novel stopgain mutation in AMPD2. We expand the phenotype recently described as PCH type 9 to include progressive postnatal microcephaly, complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related imaging phenotypes failed to identify mutations in AMPD2, suggesting that AMPD2 mutations are not a common cause of combined callosal and pontocerebellar defects. PMID:27066553

  19. Mid-callosal plane determination using preferred directions from diffusion tensor images

    NASA Astrophysics Data System (ADS)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  20. [Readjustment of the efferent activity of the scratching generator in response to stimulation of cutaneous afferents of the hindlimb of the decerebrate immobilized cat].

    PubMed

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator efferent activity caused by the phasic electrical stimulation of ipsilateral hindlimb skin nerves during different hindlimb positions were studied in decerebrated immobilized cats. Stimulation was followed by short latency inhibition of the efferent activity. Stimulation did not cause correlation shifts in the common "aiming" and "scratching" activity. Changes in the efferent activity cycle duration and intensity depended on the stimulation phase. Inversion of intensity changes occurred with transition from the middle-force to strong stimulation. A functional role of the dependence of the efferent activity rebuilding on the stimulation phase is considered. The scratching generator is supposed to contain a model of the afferent inflow which enters the spinal cord during real scratching.

  1. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways

    PubMed Central

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi

    2015-01-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin–horseradish peroxidase (WGA–HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA–HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg. PMID:25582052

  2. Stronger efferent suppression of cochlear neural potentials by contralateral acoustic stimulation in awake than in anesthetized chinchilla

    PubMed Central

    Aedo, Cristian; Tapia, Eduardo; Pavez, Elizabeth; Elgueda, Diego; Delano, Paul H.; Robles, Luis

    2015-01-01

    There are two types of sensory cells in the mammalian cochlea, inner hair cells, which make synaptic contact with auditory-nerve afferent fibers, and outer hair cells that are innervated by crossed and uncrossed medial olivocochlear (MOC) efferent fibers. Contralateral acoustic stimulation activates the uncrossed efferent MOC fibers reducing cochlear neural responses, thus modifying the input to the central auditory system. The chinchilla, among all studied mammals, displays the lowest percentage of uncrossed MOC fibers raising questions about the strength and frequency distribution of the contralateral-sound effect in this species. On the other hand, MOC effects on cochlear sensitivity have been mainly studied in anesthetized animals and since the MOC-neuron activity depends on the level of anesthesia, it is important to assess the influence of anesthesia in the strength of efferent effects. Seven adult chinchillas (Chinchilla laniger) were chronically implanted with round-window electrodes in both cochleae. We compared the effect of contralateral sound in awake and anesthetized condition. Compound action potentials (CAP) and cochlear microphonics (CM) were measured in the ipsilateral cochlea in response to tones in absence and presence of contralateral sound. Control measurements performed after middle-ear muscles section in one animal discarded any possible middle-ear reflex activation. Contralateral sound produced CAP amplitude reductions in all chinchillas, with suppression effects greater by about 1–3 dB in awake than in anesthetized animals. In contrast, CM amplitude increases of up to 1.9 dB were found in only three awake chinchillas. In both conditions the strongest efferent effects were produced by contralateral tones at frequencies equal or close to those of ipsilateral tones. Contralateral CAP suppressions for 1–6 kHz ipsilateral tones corresponded to a span of uncrossed MOC fiber innervation reaching at least the central third of the chinchilla

  3. Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction.

    PubMed

    Loughlin, S E; Foote, S L; Bloom, F E

    1986-06-01

    The present study examines the spatial distribution within rat locus coeruleus of neurons projecting to particular brain regions. In order to accurately recreate, in digital and pictorial formats, the spatial distribution of neurons for the entire nucleus locus coeruleus, three-dimensional reconstructions were created which specified the location of each individual Nissl-stained locus coeruleus cell in each of five nuclei. Dynamic computerized displays were visually analyzed and statistically compared. The nuclei from different brains were found to be strikingly similar in density and distribution of cells. In order to determine whether the cells of origin for particular locus coeruleus projections were clustered within the nucleus, reconstructions were created of the distributions of cells labeled by injections of a retrograde tracer, horseradish peroxidase, into particular terminal regions. Groups consisting of animals with injections into the same target areas were visually and statistically compared. The cells of origin of most efferent projections were found to be spatially organized within locus coeruleus. Specifically, projections to both the dorsal and ventral hippocampus originated solely from the dorsal segment of the nucleus, while spinal cord projections originated from ventral-posterior locus coeruleus. Cells of origin of cerebral and cerebellar cortical efferents, as well as hypothalamic efferents, exhibited less clustering, although reliable differences in distribution were observed. The most striking example of clustered cells of origin was exhibited by the large norepinephrine-containing cells constituting the anterior pole of locus coeruleus which were labeled only by hypothalamic injections. This analysis of spatial organization within locus coeruleus is unique in its utilization of a defined control group, experimental groups consisting of strictly defined replications, accurate three-dimensional reconstruction, and statistical comparisons. The

  4. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  5. Tonic efferent-induced cochlear damping in roosting and echolocating mustached bats.

    PubMed

    Xie, D H; Henson, O W

    1998-10-01

    The activity of the medial olivocochlear (MOC) efferent system in mustached bats, Pteronotus p. parnellii, was studied by monitoring changes in the mechanical properties of the cochlea. The changing properties were expressed by the decay time (DT) of cochlear microphonic potentials produced by transient-induced ringing (Henson et al., 1995). Tape-recorded roost noise (biosonar and communication sounds) produced sudden, marked decreases in DT when presented to the contralateral ear of animals adapted to the quiet. When the animals were first removed from their roosts the DT was relatively short (1.2-1.5 ms) but this gradually lengthened by about 0.5-1.0 ms as they rested in a quiet chamber. The time required to reach a stable, quiet-adapted state after noise exposure varied with SPL and exposure time; in many experiments recovery was in the range of 90-120 min. When quiet-adapted bats were isolated and allowed to fly and echolocate for 20 min, the DTs measured within a few minutes after the end of the flight were also short and only slowly returned to longer preflight values. The administration of a single dose of gentamicin, which blocks MOC effects, greatly reduced the amount of suppression (damping) observed after periods of noise and echolocation sound exposure. We conclude that tonic MOC activity is induced by the natural vocalizations and roost noise and this activity probably regulates and protects the highly resonant cochlear partition.

  6. [Efferent innervation of the arteries of human leptomeninx in arterial hypertension].

    PubMed

    Chertok, V M; Kotsiuba, A E; Babich, E V

    2009-01-01

    Structure of the efferent nerve plexuses (adrenergic, acetylcholinestherase- and cholinacetyltranspherase-positive, NO-dependent), was studied in the arteries of human leptomeninx with different diameters. Material was obtained from the corpses of the healthy people and of the patients with initial stages of arterial hypertension (AH). It was shown that the concentrations of cholinergic and adrenergic nerve fibers and varicosities in axon terminal part, innervating the arteries with the diameters ranging from 450 till 100 microm, were not significantly different. In these arteries, NO-ergic plexuses were also detected. In patients with AH, regardless the arterial diameters, the significant increase (up to 15-20%) of adrenergic nerve fiber and varicosity concentrations was found. The changes in cholinergic nerve fiber concentration were found to depend on the vessel diameter: the significant decrease of these parameter was observed only in arteries with the diameter of 100-200 microm. No significant changes in nerve plexus concentration was noticed in the arteries with greater or smaller diameter. In NO-ergic neural conductors, the enzyme activity decreased only in the large arteries, and remained almost unchanged in the small vascular branches. The changes in the vasomotor innervation described in AH, are interpreted as a vasomotor innervation dysfunction of the leptomeninx arteries that may result in the hemodynamic disturbances.

  7. Efferent projections of the dorsal ventricular ridge and the striatum in the Tegu lizard. Tupinambis nigropunctatus.

    PubMed

    Voneida, T J; Sligar, C M

    1979-07-01

    A H3 proline-leucine mixture was injected into the dorsal ventricular ridge (DVR) and striatum of the Tegu lizard in order to determine their efferent projections. The brains were processed according to standard radioautographic technique, and counterstained with cresyl violet. DVR projections were generally restricted to the telencephalon, while striatal projections were limited to diencephalic and mesencephalic structures. Thus the anterior DVR projects ipsilaterally to nuclei sphericus and lateralis amygdalae, striatum (ipsilateral and contralateral) ventromedial nucleus of the hypothalamus, nucleus accumbens, anterior olfactory nucleus, nucleus of the lateral olfactory tract and lateral pallium. Posterior DVR projections enter ipsilateral anterior olfactory nucleus, lateral and interstitial amygdalar nuclei, olfactory tubercle and bulb, nucleus of the lateral olfactory tract and a zone surrounding the ventromedial hypothalamic nucleus. Labeled axons from striatal injections pass caudally in the lateral forebrain bundle to enter (via dorsal peduncle) nuclei dorsomedialis, medialis posterior, entopeduncularis anterior, and a zone surrounding nucleus rotundus. Others join the ventral peduncle of LFB and enter ventromedial nucleus (thalami), while the remaining fibers continue caudally in the ventral peduncle to the mesencephalic prerubral field, central gray, substantia nigra, nucleus intercollicularis, reticular formation and pretectal nucleus posterodorsalis. These results are discussed in relation to the changing notions regarding terminology, classification and functions of dorsl ventricular ridge and striatum.

  8. Roles of the Contralateral Efferent Reflex in Hearing Demonstrated with Cochlear Implants.

    PubMed

    Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Wilson, Blake S

    2016-01-01

    Our two ears do not function as fixed and independent sound receptors; their functioning is coupled and dynamically adjusted via the contralateral medial olivocochlear efferent reflex (MOCR). The MOCR possibly facilitates speech recognition in noisy environments. Such a role, however, is yet to be demonstrated because selective deactivation of the reflex during natural acoustic listening has not been possible for human subjects up until now. Here, we propose that this and other roles of the MOCR may be elucidated using the unique stimulus controls provided by cochlear implants (CIs). Pairs of sound processors were constructed to mimic or not mimic the effects of the contralateral MOCR with CIs. For the non-mimicking condition (STD strategy), the two processors in a pair functioned independently of each other. When configured to mimic the effects of the MOCR (MOC strategy), however, the two processors communicated with each other and the amount of compression in a given frequency channel of each processor in the pair decreased with increases in the output energy from the contralateral processor. The analysis of output signals from the STD and MOC strategies suggests that in natural binaural listening, the MOCR possibly causes a small reduction of audibility but enhances frequency-specific inter-aural level differences and the segregation of spatially non-overlapping sound sources. The proposed MOC strategy could improve the performance of CI and hearing-aid users.

  9. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart.

  10. Efferent Feedback in a Spinal-Like Controller: Reaching With Perturbations.

    PubMed

    Stefanovic, Filip; Galiana, Henrietta L

    2016-01-01

    We use simulations of a controller that adopts a spinal-like network topology for goal-oriented reaching and assess its sensitivity to the dynamics of internal elements that allow context-independent performance. Such internal elements are often referred to as inverse or forward models of the periphery dynamics, depending on the proposed controller theory. Here, the "models" are used in a forward implementation, and we evaluate how the controller's performance would be affected by the nature of the model. For each point-to-point reaching motion experiment, we use forms of internal "efference models" (e.g., full mathematical representations of peripheral dynamics, simple spindle feedback, etc.) driven by motor reafference, then compare hand trajectories and hand path speeds in the presence or absence of external perturbations. It is demonstrated that a simple velocity-based model reduced the effects of dynamic perturbations by as much as 66%. In addition, the 2D hand trajectories varied from a biological reference by only 0.05 cm. Thus, the controller facilitated biological like motions while providing response to dynamic events which are omitted in earlier biomimetic controllers. This research suggests that these spinal-like systems are robust and tunable via gain-fields without the need of context dependent pre-planning.

  11. Chemical Topography of Efferent Projections from the Median Preoptic Nucleus to Pontine Monoaminergic Cell Groups in the Rat

    NASA Technical Reports Server (NTRS)

    Zardetto-Smith, Andrea M.; Johnson, Alan Kim

    1995-01-01

    This study examined efferent output from the median preoptic nucleus (MNPO) to pontine noradrenergic and serotonergic cell groups using an anterograde tracing technique (Phaseolus vulgaris leucoagglutinin, PHA-L) combined with glucose oxidase immunocytochemistry to serotonin (5-HT) or to dopamine-beta-hydroxylase (DBH). Injections of PHA-L into the ventral MNPO resulted in moderate axonal labeling within the region of the B7 and B8 serotonergic groups in the dorsal raphe. PHA-L labeled fibers and punctate processes were observed in close apposition to many of the 5-HT immunoreactive neurons in these regions. In contrast, sparse terminal labeling was found within the B5 group in the raphe pontis nucleus, and only trace fiber labeling observed in the B3 and B6 groups. Efferents from the MNPO also provided moderate innervation to the A6 and A7 noradrenergic groups. PHA-L labeled punctate processes were found most frequently in close apposition to DBH-immunoreactive neurons at mid- to caudal levels of the locus coeruleus. Some labeled axons were also present within the A7 and A5 groups. Additionally, a close apposition between labeled MNPO efferents and 5-HT fibers within the lateral parabrachial nucleus was observed. The results indicate the MNPO provides a topographic innervation of monoaminergic groups in the upper brainstem.

  12. Chemical Topography of Efferent Projections from the Median Preoptic Nucleus to Pontine Monoaminergic Cell Groups in the Rat

    NASA Technical Reports Server (NTRS)

    Zardetto-Smith, Andrea M.; Johnson, Alan Kim

    1995-01-01

    This study examined efferent output from the median preoptic nucleus (MnPO) to pontine noradrenergic and serotonergic cell groups using an anterograde tracing technique (Phaseolus vulgaris leucoagglutinin, PHA-L) combined with glucose oxidase immunocytochemistry to scrotonin (5-HT) or to dopamine-(beta)-hydroxylase (DBH). Injections of PHA-L into the ventral MNPO resulted in moderate axonal labeling within the region of the B7 and B8 serotonergic groups in the dorsal raphe. PHA-L labeled fibers and punctate processes were observed in close apposition to many of the 5-HT immunoreactive neurons in these regions, In contrast, sparse terminal labeling was found within the B5 group in the raphe pontis nucleus, and only trace fiber labeling observed in the B3 and B6 groups. Efferents from the MNPO also provided moderate innervation to the A6 and A7 noradrenergic groups. PHA-L labeled punctate processes were found most frequently in close apposition to DBH-immunorcactive neurons at mid- to caudal levels of the locus coeruleus. Some labeled axons were also present within the A7 and A5 groups. Additionally, a close apposition between labeled MNPO efferents and 5-HT fibers within the lateral parabrachial nucleus was observed, The results indicate the MNPO provides a topographic innerva- tion of monoaminergic groups in the upper brainstem.

  13. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults.

    PubMed

    Hannah, Keppler; Ingeborg, Dhooge; Leen, Maes; Annelies, Bockstael; Birgit, Philips; Freya, Swinnen; Bart, Vinck

    2014-01-01

    The objective of the current study was to evaluate the predictive role of the olivocochlear efferent reflex strength in temporary hearing deterioration in young adults exposed to music. This was based on the fact that a noise-protective role of the medial olivocochlear (MOC) system was observed in animals and that efferent suppression (ES) measured using contralateral acoustic stimulation (CAS) of otoacoustic emissions (OAEs) is capable of exploring the MOC system. Knowing an individual's susceptibility to cochlear damage after noise exposure would enhance preventive strategies for noise-induced hearing loss. The hearing status of 28 young adults was evaluated using pure-tone audiometry, transient evoked OAEs (TEOAEs) and distortion product OAEs (DPOAEs) before and after listening to music using an MP3 player during 1 h at an individually determined loud listening level. CAS of TEOAEs was measured before music exposure to determine the amount of ES. Regression analysis showed a distinctive positive correlation between temporary hearing deterioration and the preferred gain setting of the MP3 player. However, no clear relationship between temporary hearing deterioration and the amount of ES was found. In conclusion, clinical measurement of ES, using CAS of TEOAEs, is not correlated with the amount of temporary hearing deterioration after 1 h music exposure in young adults. However, it is possible that the temporary hearing deterioration in the current study was insufficient to activate the MOC system. More research regarding ES might provide more insight in the olivocochlear efferent pathways and their role in auditory functioning.

  14. Morphological and ultrastructural study of the efferent ductules in the Chinese soft-shelled turtle Pelodiscus sinensis.

    PubMed

    Waqas, Muhammad Yasir; Liu, Tengfei; Yang, Ping; Ahmed, Nisar; Zhang, Qian; Hu, Lisi; Hong, Chen; Chen, Qiusheng

    2016-02-01

    Comparative study of the turtle excurrent duct system increases our understanding the evolution of sperm motility and fertility maintenance in higher vertebrates. Therefore, in this study we observed the histology and ultrastructure organization of efferent ductules in the Pelodiscus sinensis using light and transmission electron microscopy. The efferent ductules are extra- testicular and 22-28 in number originate from rete testis. The epithelium is entirely composed of two types of cells, the predominant non-ciliated and ciliated cells. The ciliated cells have long cilia that protrude into the lumen to form a meshwork. These cells associated with clusters of mitochondria in the supranuclear cytoplasm and possess coated vesicles, vacuole, intracellular spaces, and junction complexes. Ciliated cells in the proximal portion of the ductules contain an endocytic apparatus with coated pits and tubules in the apical cytoplasm. Interdigitations and lipid droplets are predominantly present around the nuclei of these cells. The non-ciliated cells have clusters of mitochondria present in both the supranuclear and perinuclear cytoplasm whereas, the nuclei of these cells are lightly stained. Moreover, the contour of the epithelium towards lumen is irregular as it has a deep indentation. The apical cytoplasm goes deep into the lumen to form cytoplasmic processes. This is the first study to describe the detailed features of efferent ductules in Pelodiscus sinensis with, special focus on the morphology of ciliated cells, as these cells are involved in the mixing of luminal fluid and transport of spermatozoa towards the distal region.

  15. Language lateralization in individuals with callosal agenesis: an fMRI study.

    PubMed

    Pelletier, Isabelle; Paquette, Natacha; Lepore, Franco; Rouleau, Isabelle; Sauerwein, Catherine H; Rosa, Christine; Leroux, Jean-Maxime; Gravel, Pierre; Valois, Katja; Andermann, Frederick; Saint-Amour, Dave; Lassonde, Maryse

    2011-06-01

    Since the seminal work of Broca in 1861, it is well established that language is essentially processed in the left hemisphere. However, the origin of hemispheric specialization remains controversial. Some authors posit that language lateralization is genetically determined, while others have suggested that hemispheric specialization develops with age. Tenants of the latter view have further suggested that the adult pattern of left hemispheric specialization is achieved by means of callosal inhibition of homologous speech areas in the right hemisphere during ontogeny. According to this hypothesis, one would expect language to develop bilaterally in the acallosal brain. A recent functional magnetic resonance imaging (fMRI) study in one patient with agenesis of the corpus callosum suggests that this might indeed be the case (Riecker et al., 2007). However, given the large anatomic and functional variability in the population of subjects with agenesis of the corpus callosum, this finding needs to be more extensively replicated. In the present study, we explored language lateralization in six individuals with agenesis of the corpus callosum using an fMRI protocol which included a syntactic decision task and a sub-vocal verbal fluency task. Two neurologically intact control groups, one comparable to the acallosals in terms of IQ, age and education (n=6) and one group with a high IQ (n=5), performed the same tasks. No differences were found between language lateralization of the subjects with agenesis of the corpus callosum and the control groups in the receptive speech task. However, for expressive speech, the groups differed with respect to frontal activations, with the acallosal participants showing a more bilateral pattern of activation than the high-IQ participants only. No differences were found for temporal regions. Overall, these results indicate that the corpus callosum is not essential for the establishment of lateralized language functions.

  16. Arrangement of fiber tracts forming Probst bundle in complete callosal agenesis: report of two cases with an evaluation by diffusion tensor tractography.

    PubMed

    Utsunomiya, H; Yamashita, S; Takano, K; Okazaki, M

    2006-12-01

    We report two patients with complete callosal agenesis in whom Probst bundles in both hemispheres could be depicted by diffusion tensor tractography (DTT). While one patient had no associated telencephalic anomaly other than callosal agenesis, the other had cortical dysplasia in the right frontal lobe. Although Probst bundles in the three normal hemispheres were well developed, that in the hemisphere which was affected by cortical dysplasia was small and poorly developed. DTT also showed that the fibers from the frontal pole ran more on the inner side of the Probst bundle than those from a more caudal region of the frontal lobe. Furthermore, fibers from the orbital gyri ran along the outermost side of Probst bundle. The arrangement of these fiber tracts in Probst bundle may reflect the developmental process of callosal fibers in their normal formation.

  17. Frontonasal dysplasia, callosal agenesis, basal encephalocele, and eye anomalies syndrome with a partial 21q22.3 deletion.

    PubMed

    Guion-Almeida, Maria Leine; Richieri-Costa, Antonio; Jehee, Fernanda Sarquis; Passos-Bueno, Maria Rita Santos; Zechi-Ceide, Roseli Maria

    2012-07-01

    We describe a girl with a phenotype characterized by frontonasal dysplasia, callosal agenesis, basal encephalocele, and eye anomalies who presents a 46,XX,r(21) karyotype. Array-comparative genomic hybridization using the Afflymetrix 100K DNA oligoarray set showed an interstitial deletion 21q22.3 of approximately 219 kb. Conventional karyotype of both parents was normal, and it was not possible to perform the molecular studies. In this report we raise the hypothesis that the deleted genes located at 21q22.3 could account to the phenotype.

  18. Periventricular nodular heterotopia, frontonasal encephalocele, corpus callosal dysgenesis and arachnoid cyst: A constellation of abnormalities in a child with epilepsy.

    PubMed

    Krishnan, Prasad; Chattopadhyay, Arijit; Saha, Manash

    2014-01-01

    A 7-year-old male child presented with poorly controlled generalized tonic-clonic seizures. On examination, he was mentally retarded, deaf and had a swelling at the root on the nose. Computed tomography scan done previously revealed a left temporal arachnoid cyst (AC) due to which he was referred for surgery. However, magnetic resonance imaging revealed a constellation of abnormalities - all of which could be responsible for his seizures. The combination of periventricular nodular heterotopias with encepaholcele is rarely described in the literature, and more infrequently so its combination with AC and callosal dysgenesis - the Chudley-Mccullough syndrome. We describe the case and review relevant literature on this subject.

  19. Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect.

    PubMed

    Goldberg, R L; Henson, O W

    1998-08-01

    The mustached bat, Pteronotus p. parnellii, has a finely tuned cochlea that rings at its resonant frequency in response to an acoustic tone pip. The decay time (DT) and frequency of these damped oscillations can be measured from the cochlear microphonic potential (CM) to study changes in cochlear mechanics. In this report, we describe phasic changes that occur in synchrony with communication sound vocalizations of the bat. Three animals with chronically implanted electrodes were studied. During the experiments, 1-2 ms tone pips were emitted from a speaker every 200 ms. This triggered a computer analysis of the resulting CM to determine the DT and cochlear resonance frequency (CRF) of the ringing. The time relative to vocalizations was determined by monitoring the output of a microphone placed near a bat's mouth. Similar results were obtained from all three bats tested. In a representative case, the average DT was 2.33 +/- 0.25 ms while the bat was quiet, but it decreased by 46% to 1.26 +/- 0.75 during vocalizations, which indicates a greater damping of the cochlear partition. Sometimes, DT started decreasing immediately before the bat vocalized. After the end of a vocalization, the return to baseline values varied from rapid (milliseconds) to gradual (1-2 seconds). The CRF also changed from baseline values during vocalization, although the amount and direction of change were not predictable. When gentamicin was administered to block the action of medial olivocochlear (MOC) efferents, DT reduction was still evident during vocalization but less pronounced. We conclude that phasic changes in damping occur in synchrony with vocalization, and that the MOC system plays a role in causing suppression. Since suppression can begin prior to vocalization, this may be a synkinetic effect, mediated by neural outflow to the ear in synchrony with neural outflow to the middle ear muscles and the muscles used for vocalization.

  20. The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control.

    PubMed

    Merker, Bjorn

    2013-01-01

    The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons by which to express cortical contents in overt behavior. Implemented through a staggered cortical "efference cascade" originating in the descending axons of layer five pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes final integration for action of cortical information through a system of interconnected subcortical way stations. Coherent and effective action control requires the inclusion of a continually updated joint "global best estimate" of current sensory, motivational, and motor circumstances in this process. I have previously proposed that this running best estimate is extracted from cortical probabilistic preliminaries by a subcortical neural "reality model" implementing our conscious sensory phenomenology. As such it must exhibit first person perspectival organization, suggested to derive from formating requirements of the brain's subsystem for gaze control, with the superior colliculus at its base. Gaze movements provide the leading edge of behavior by capturing targets of engagement prior to contact. The rotation-based geometry of directional gaze movements places their implicit origin inside the head, a location recoverable by cortical probabilistic source reconstruction from the rampant primary sensory variance generated by the incessant play of collicularly triggered gaze movements. At the interface between cortex and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may precipitate the brain's global best estimate of its momentary circumstances through multiple constraint satisfaction across its afferents from numerous cortical areas and colliculus. As phenomenal content of our sensory awareness, such a global best estimate would exhibit perspectival organization centered on a purely implicit first person origin, inherently incapable of appearing as a phenomenal content of the sensory space it serves.

  1. Concurrent fast and slow synchronized efferent phrenic activities in time and frequency domain.

    PubMed

    Schmid, K; Böhmer, G; Weichel, T

    1990-09-24

    In urethane-anesthetized or decerebrated vagotomized rabbits efferent multifiber activity of the phrenic nerve was investigated for synchronized activities both in time and frequency domains. When respiratory drive was steadily increased by either an elevation of end-tidal CO2 concentration or i.v. administration of 4-aminopyridine, medium-frequency oscillations (MFO) first increased, then decreased and finally became absent. The power of high-frequency oscillations (HFO) steadily rose with increasing respiratory drive. In contrast to HFO which revealed a unimodal spectral peak of mostly small bandwidth, the MFO spectrum in most cases consisted of a broad complex. This complex in some cases was composed of two distinct peaks, i.e. MFO were heterogenous. The low- and high-frequency fractions of the MFO complex were related predominantly to the first and last third of inspiration, respectively. Examination of the on-going multifiber activity of the phrenic nerve with an expanded time scale revealed that lower frequency MFO probably result from synchronized ramp-like wave activity during early and mid-inspiration. The duration of the observed ramps well matched the corresponding MFO frequency. We suggest that these ramps might result from propagated synchronized waves of high-threshold phrenic motoneurons. During the last part of inspiration, however, MFO, like HFO, resulted from burst-like synchronized discharge of phenic motoneurons. Thus HFO are superimposed on ramp-like and burst-like activity of the MFO. It is assumed that the decline of MFO at high respiratory drive may be due to the increasing strength of HFO bursts which interrupt ramp activity in the MFO range and thus let MFO appear 'invisible' to the recording electrode. Both MFO and HFO were visually detectable in postinspiration.

  2. The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control

    PubMed Central

    Merker, Bjorn

    2013-01-01

    The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons by which to express cortical contents in overt behavior. Implemented through a staggered cortical “efference cascade” originating in the descending axons of layer five pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes final integration for action of cortical information through a system of interconnected subcortical way stations. Coherent and effective action control requires the inclusion of a continually updated joint “global best estimate” of current sensory, motivational, and motor circumstances in this process. I have previously proposed that this running best estimate is extracted from cortical probabilistic preliminaries by a subcortical neural “reality model” implementing our conscious sensory phenomenology. As such it must exhibit first person perspectival organization, suggested to derive from formating requirements of the brain's subsystem for gaze control, with the superior colliculus at its base. Gaze movements provide the leading edge of behavior by capturing targets of engagement prior to contact. The rotation-based geometry of directional gaze movements places their implicit origin inside the head, a location recoverable by cortical probabilistic source reconstruction from the rampant primary sensory variance generated by the incessant play of collicularly triggered gaze movements. At the interface between cortex and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may precipitate the brain's global best estimate of its momentary circumstances through multiple constraint satisfaction across its afferents from numerous cortical areas and colliculus. As phenomenal content of our sensory awareness, such a global best estimate would exhibit perspectival organization centered on a purely implicit first person origin, inherently incapable of appearing as a phenomenal content of the sensory

  3. Medial vestibular connections with the hypocretin (orexin) system

    NASA Technical Reports Server (NTRS)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  4. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition.

    PubMed

    Kulich, Ivan; Vojtíková, Zdeňka; Glanc, Matouš; Ortmannová, Jitka; Rasmann, Sergio; Žárský, Viktor

    2015-05-01

    Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.

  5. Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vitro.

    PubMed

    Cifuentes, Carolina; Bulone, Vincent; Emons, Anne Mie C

    2010-02-01

    The conditions that favor the in vitro synthesis of cellulose from tobacco BY-2 cell extracts were determined. The procedure leading to the highest yield of cellulose consisted of incubating digitonin extracts of membranes from 11-day-old tobacco BY-2 cells in the presence of 1 mM UDP-glucose, 8 mM Ca(2+) and 8 mM Mg(2+). Under these conditions, up to nearly 40% of the polysaccharides synthesized in vitro corresponded to cellulose, the other polymer synthesized being callose. Transmission electron microscopy analysis revealed the occurrence of two types of structures in the synthetic reactions. The first type consisted of small aggregates with a diameter between 3 and 5 nm that associated to form fibrillar strings of a maximum length of 400 nm. These structures were sensitive to the acetic/nitric acid treatment of Updegraff and corresponded to callose. The second type of structures was resistant to the Updegraff reagent and corresponded to straight cellulose microfibrils of 2-3 nm in diameter and 200 nm to up to 5 microm in length. In vitro reactions performed on electron microscopy grids indicated that the minimal rate of microfibril elongation in vitro is 120 nm/min. Measurements of retardance by liquid crystal polarization microscopy as a function of time showed that small groups of microfibrils increased in retardance by up to 0.047 nm/min per pixel, confirming the formation of organized structures.

  6. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice.

    PubMed

    Chumak, Tetyana; Bohuslavova, Romana; Macova, Iva; Dodd, Nicole; Buckiova, Daniela; Fritzsch, Bernd; Syka, Josef; Pavlinkova, Gabriela

    2016-05-01

    The development, maturation, and maintenance of the inner ear are governed by temporal and spatial expression cascades of transcription factors that form a gene regulatory network. ISLET1 (ISL1) may be one of the major players in this cascade, and in order to study its role in the regulation of inner ear development, we produced a transgenic mouse overexpressing Isl1 under the Pax2 promoter. Pax2-regulated ISL1 overexpression increases the embryonic ISL1(+) domain and induces accelerated nerve fiber extension and branching in E12.5 embryos. Despite these gains in early development, the overexpression of ISL1 impairs the maintenance and function of hair cells of the organ of Corti. Mutant mice exhibit hyperactivity, circling behavior, and progressive age-related decline in hearing functions, which is reflected in reduced otoacoustic emissions (DPOAEs) followed by elevated hearing thresholds. The reduction of the amplitude of DPOAEs in transgenic mice was first detected at 1 month of age. By 6-9 months of age, DPOAEs completely disappeared, suggesting a functional inefficiency of outer hair cells (OHCs). The timing of DPOAE reduction coincides with the onset of the deterioration of cochlear efferent terminals. In contrast to these effects on efferents, we only found a moderate loss of OHCs and spiral ganglion neurons. For the first time, our results show that the genetic alteration of the medial olivocochlear (MOC) efferent system induces an early onset of age-related hearing loss. Thus, the neurodegeneration of the MOC system could be a contributing factor to the pathology of age-related hearing loss.

  7. The physiologic effects of ileal reservoirs and efferent conduits complementing ileoanal anastomosis: an experimental study in dogs.

    PubMed

    Rosemurgy, A S; Schraut, W H; Block, G E

    1983-10-01

    S-shaped ileal reservoirs (SSRs) and double-barreled ileal reservoirs (DBRs) of equal size were placed 6 or 2 cm from the anus and evaluated over 1 year for their ability to improve the functional incontinence noted after an ileoanal anastomosis (IAA). Compared to straight IAA, both reservoirs prolonged intestinal transit (235 minutes versus 135 minutes, P less than 0.001) and alleviated frequency without causing nutritional abnormalities. The capacity of the reservoirs was greater than that of a comparable length of distal ileum in dogs (n = 6) with straight IAA (304 +/- 16 ml versus 102 +/- 2 ml, P less than 0.001). The SSRs (n = 9), in contrast to the DBRs (n = 10), developed excessive volume capacity (360 +/- 30 ml versus 254 +/- 104 ml, P less than 0.01) and obstructive complications. Reservoirs with 6 cm efferent conduits (n = 13), in contrast to those with a 2 cm efferent conduit (n = 6), underwent marked dilatation (334 +/- 24 ml versus 238 +/- 13 ml, P less than 0.005). Electromyography and manometry revealed the DBRs to be more contractile than the SSRs but less than ileum proximal to the anus in dogs with a straight IAA. Ileal reservoirs improve results after IAA. Reservoirs should be complaint and yet contractile (e.g., DBR) so as to discourage excessive dilatation, which is the harbinger of obstruction. Ileal conduits facilitate reservoir placement, but if longer than 2 cm they excessively impeded reservoir emptying, predisposing to excessive reservoir dilatation and obstruction. A DBR with a 2 cm efferent conduit results in continence without obstructive problems.

  8. Cerebellar cortical efferent fibers of the paraflocculus of tree shrew (Tupaia glis).

    PubMed

    Haines, D E; Whitworth, R H

    1978-11-01

    Efferent projections from the paraflocculus of the tree shrew (Tupaia glis) were studied utilizing the Fink and Heimer ('67) method. Cerebellar corticonuclear fibers of both dorsal (Dpf) and ventral (Vpf) divisions of the paraflocculus terminate in the lateral cerebellar nucelus (NL) and in the posterior interposed nucleus (NIP). These fibers are ipsilateral, topographically organized and arranged into at least two zones. Following injury to either the Dpf or Vpf, degenerated axons are found in lateral and caudal regions of the NIP respectively. Consequently, these two portions of the paraflocculus have relatively exclusive terminal fields with overlap only at the periphery. Preterminal debris is seen in basically similar areas of the NL (caudolateral, caudal, ventral) after damage to either the Dpf or Vpf. This observation leads to the conclusion that the terminal fields for these areas of parafloccular cortex are largely coextensive in the NL. In addition to the topographical representation of the Dpf and Vpf in both the NL and NIP, there is evidence that these corticonuclear fibers are also organized into the general zonal pattern hypothesized by Voogd ('69). Persistent and numerous degenerated axons from both the Dpf and Vpf end in lateral and caudal NIP, respectively, corroborating the presence of a relatively wide zone C2 in both divisions of the paraflocculus. The Dpf and Vpf also project into the NL to a terminal field that appears to consist of two portions. One part located in caudal, ventral and/or caudoventral areas of the NL and a second at slightly more rostral and rostrolateral areas. The presence of a cortical region which is affiliated with two areas of the NL substantiates not only the existence of zone D in the paraflocculus, but gives experimental evidence that it may consist of two parts as previously suggested (Voogd, '69). From the Dpf many fibers enter the NL while few are seen in this nucleus after damage to the Vpf. This suggests that zone

  9. Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster).

    PubMed

    Seelke, Adele M H; Perkeybile, Allison M; Grunewald, Rebecca; Bales, Karen L; Krubitzer, Leah A

    2016-02-15

    Early-life sensory experiences have a profound effect on brain organization, connectivity, and subsequent behavior. In most mammals, the earliest sensory inputs are delivered to the developing brain through tactile contact with the parents, especially the mother. Prairie voles (Microtus ochrogaster) are monogamous and, like humans, are biparental. Within the normal prairie vole population, both the type and the amount of interactions, particularly tactile contact, that parents have with their offspring vary. The question is whether these early and pervasive differences in tactile stimulation and social experience between parent and offspring are manifest in differences in cortical organization and connectivity. To address this question, we examined the cortical and callosal connections of the primary somatosensory area (S1) in high-contact (HC) and low-contact (LC) offspring using neuroanatomical tracing techniques. Injection sites within S1 were matched so that direct comparisons between these two groups could be made. We observed several important differences between these groups. The first was that HC offspring had a greater density of intrinsic connections within S1 compared with LC offspring. Additionally, HC offspring had a more restricted pattern of ipsilateral connections, whereas LC offspring had dense connections with areas of parietal and frontal cortex that were more widespread. Finally, LC offspring had a broader distribution of callosal connections than HC offspring and a significantly higher percentage of labeled callosal neurons. This study is the first to examine individual differences in cortical connections and suggests that individual differences in cortical connections may be related to natural differences in parental rearing styles associated with tactile contact.

  10. Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis.

    PubMed

    Ling You, Xiang; Seon Yi, Jae; Eui Choi, Yong

    2006-05-01

    Eleutherococcus senticosus zygotic embryos were pretreated with 1.0 M mannitol or sucrose for 3-24 h. This pretreatment resulted in a high frequency of somatic-embryo formation on hormone-free medium. All the somatic embryos developed directly and independently from single epidermal cells on the surface of zygotic embryos after plasmolyzing pretreatment. Scanning electron microscopic observation revealed that the epidermal cells of hypocotyls rapidly became irregular and showed a random orientation before somatic-embryo development commenced. At the same time, the epidermal cells in the untreated control remained regular. Callose concentration determined by fluorometric analysis increased sharply in E. senticosus zygotic embryos after plasmolyzing pretreatment but remained low in the untreated control. Aniline blue fluorescent staining of callose showed that the plasmolyzing pretreatment of zygotic embryos resulted in heavy accumulation of callose between the plasma membrane and cell walls. On the basis of these results, we suggest that plasmolyzing pretreatment of zygotic embryos induces the accumulation of callose, and the interruption of cell-to-cell communication imposed by this might stimulate the reprogramming of epidermal cells into embryogenically competent cells and finally induce somatic-embryo development from single cells.

  11. [Readjustment of the efferent activity of the scratching generator in response to stimulation of muscle afferents of the hindlimb of the decerebrate immobilized cat].

    PubMed

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator activity caused by phasic electrical stimulation of ipsilateral hindlimb muscle nerves during different hindlimb positions were studied in decerebrated immobilized cats. Strong dependence of these rebuildings on the stimulation phase was observed. The character of the "scratch" cycle duration rebuilding was formed by the scratching generator tendency to bring efferent activity into such correlation with the stimulus that the stimulation moment coincided with the moment of efferent activity phase triggering. Phasic altering of the efferent activity intensity rebuilding was observed against a background of "aiming" and "scratching" activity correlation shift in the direction of strengthening activation of muscles innervated by the stimulated nerve. This rebuilding was intensified when the hindlimb deflects from the aimed position in the direction of corresponding muscles stretching. Physiological sense of "rebuilding absence phases" is discussed. It is postulated that absence of the duration and intensity changes can be achieved simultaneously only with definite correlation between phase and intensity of the afferent impulsation burst.

  12. Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster)

    PubMed Central

    Seelke, Adele M. H.; Perkeybile, Allison M.; Grunewald, Rebecca; Bales, Karen L.; Krubitzer, Leah A.

    2015-01-01

    Early life sensory experiences have a profound effect on brain organization, connectivity and subsequent behavior. In most mammals, the earliest sensory inputs are delivered to the developing brain through tactile contact with the parents, especially the mother. Prairie voles (Microtus ochrogaster) are monogamous and, like humans, are biparental. Within the normal prairie vole population, both the type and amount of interactions, particularly tactile contact, that parents have with their offspring varies. The question is whether these early and pervasive differences in tactile stimulation and social experience between parent and offspring are manifest in differences in cortical organization and connectivity. To address this question we examined the cortical and callosal connections of the primary somatosensory area (S1) in high contact (HC) and low contact (LC) offspring using neuroanatomical tracing techniques. Injection sites within S1 were matched so that direct comparisons between these two groups could be made. We observed several important differences between these groups. The first was that HC offspring had a greater density of intrinsic connections within S1 compared to LC offspring. The HC offspring had a more restricted pattern of ipsilateral connections while LC offspring had dense connections with areas of parietal and frontal cortex that were more widespread. Finally, LC offspring had a broader distribution of callosal connections than HC offspring and a significantly higher percentage of callosal labeled neurons. To date, this is the first study that examines individual differences in cortical connections and suggests that they may be related to natural differences in parental rearing styles associated with tactile contact. PMID:26101098

  13. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.

    PubMed

    Ulusoy, Ilkay; Halici, Ugur; Nalçaci, Erhan; Anaç, Ilker; Leblebicio Eroğlu, Kemal; Başar-Eroğlu, Canan

    2004-04-01

    This study is an extension of the experimental research of Nalçaci et al., who presented 16 subjects with a reversal of checkerboard pattern as stimuli in the right visual field or left visual field and recorded EEG at O1, O2, P3, and P4. They applied the chosen bandpass filters (4-8, 8-15, 15-20, 20-32 Hz) to the VEPs of subjects and obtained four different components for each VEP. The first aim of this study is to improve the previous report using some methods in time-frequency domain to estimate interhemispheric delays and amplitudes in a time window. Using the improved estimates of interhemispheric delays, the second aim is to estimate the proportion of callosal fibers of different diameters that are activated by visual stimuli by comparing amplitudes of VEPs in different frequency bands. If the relation between frequency components of VEP and delays for callosal fibers of different dimension were reliable, it would give us an opportunity to deal with amplitude of bandpass-filtered VEPs in order to see approximately the proportion of these fibers activated by a certain stimulus. By using frequency-dependent shifts in time and maximizing the cross correlation of direct VEP (DVEP-VEP obtained from contralateral hemisphere)-indirect VEP (IVEP-VEP obtained from ipsilateral hemisphere) pairs in the time-frequency domain, we examined the delay not only at P100 and N160 peaks but along a meaningful time interval as well. Furthermore, by shifting back the IVEP according to the delay estimated at each time window, both the amplitudes and energies of the synchronized DVEP-IVEP pairs were compared at the chosen frequency bands. The percentages of IVEPs at each band was then examined further in conjunction with the distribution of axon diameters in the posterior pole of the CC, questioning the relation between the distributions of the axon diameters and activations at each band. We established an energy definition to express the activation in the fibers. When the energy

  14. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep.

    PubMed

    Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N

    2015-02-01

    Previous studies indicate that catheter-based renal denervation reduces blood pressure and renal norepinephrine spillover in human resistant hypertension. The effects of this procedure on afferent sensory and efferent sympathetic renal nerves, and the subsequent degree of reinnervation, have not been investigated. We therefore examined the level of functional and anatomic reinnervation at 5.5 and 11 months after renal denervation using the Symplicity Flex catheter. In normotensive anesthetized sheep (n=6), electric stimulation of intact renal nerves increased arterial pressure from 99±3 to 107±3 mm Hg (afferent response) and reduced renal blood flow from 198±16 to 85±20 mL/min (efferent response). In a further group (n=6), immediately after denervation, renal sympathetic nerve activity was absent and the responses to electric stimulation were abolished. At 11 months after denervation (n=5), renal sympathetic nerve activity and the responses to electric stimulation were at normal levels. Immunohistochemical staining for renal efferent (tyrosine hydroxylase) and renal afferent nerves (calcitonin gene-related peptide), as well as renal norepinephrine levels, was normal 11 months after denervation. Findings at 5.5 months after denervation were similar (n=5). In summary, catheter-based renal denervation effectively ablated the renal afferent and efferent nerves in normotensive sheep. By 11 months after denervation the functional afferent and efferent responses to electric stimulation were normal. Reinnervation at 11 months after denervation was supported by normal anatomic distribution of afferent and efferent renal nerves. In view of this evidence, the mechanisms underlying the prolonged hypotensive effect of catheter-based renal denervation in human resistant hypertension need to be reassessed.

  15. Connected Traveler

    SciTech Connect

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  16. Dual efferent projections of the trigeminal principal sensory nucleus to the thalamic ventroposteromedial nucleus in the squirrel monkey.

    PubMed

    Ganchrow, D; Mehler, W R

    1986-07-24

    Anterograde degeneration methods demonstrated two efferent components from the trigeminal principal sensory nucleus (PrV) to the thalamic ventroposteromedial nucleus (VPM) in the squirrel monkey: fibers from the dorsal PrV coursed within the central tegmental tract and terminated in a dorsoventromedial strip of the ipsilateral VPM; fibers from the ventral PrV mainly decussated caudal to the interpeduncular nucleus and terminated in the contralateral VPM exclusive of the sector receiving the dorsal PrV component, contralaterally. Adjacent Nissl sections showed an apparent increase in glial profiles accompanying an intense somal staining among the deafferented neuronal population in the VPM, coextensive with those regions in the VPM exhibiting terminal field degeneration.

  17. Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats.

    PubMed

    Kadowaki, Akito; Matsukawa, Kanji; Wakasugi, Rie; Nakamoto, Tomoko; Liang, Nan

    2011-04-01

    To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the motor activity, preceding the tachycardia response. The increase in CSNA lasted for 4-5 s and returned to the baseline, even though the motor activity was not ended. The increase of 6 ± 1 beats/min in heart rate appeared with the same time course of the increase in CSNA. In contrast, CVNA never decreased but increased throughout the motor activity, in parallel with a rise in mean arterial blood pressure (MAP). The peak increase in CVNA was 37 ± 9% at 5 s after the motor onset. The rise in MAP gradually developed to 21 ± 2 mmHg and was sustained throughout the spontaneous motor activity. Partial sinoaortic denervation (SAD) blunted the baroreflex sensitivity of the MAP-CSNA and MAP-CVNA relationship to 22-33% of the control. Although partial SAD blunted the initial increase in CSNA to 53% of the control, the increase in CSNA was sustained throughout the motor activity. In contrast, partial SAD almost abolished the increase in CVNA during the motor activity, despite the augmented elevation of 31 ± 1 mmHg in MAP. Because afferent inputs from both muscle receptors and arterial baroreceptors were absent or greatly attenuated in the partial SAD condition, only central command was operating during spontaneous fictive motor activity in decerebrate cats. Therefore, it is likely that central command causes activation of cardiac sympathetic outflow but does not produce withdrawal of cardiac parasympathetic outflow during spontaneous motor activity.

  18. Ca2+ and Ca2+-activated K+ channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse

    PubMed Central

    de San Martín, Javier Zorrilla; Pyott, Sonja; Ballestero, Jimena; Katz, Eleonora

    2010-01-01

    In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage-clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q-and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels which are known to curtail the duration of the terminal action potential in several types of neurons. PMID:20826678

  19. Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse.

    PubMed

    Zorrilla de San Martín, Javier; Pyott, Sonja; Ballestero, Jimena; Katz, Eleonora

    2010-09-08

    In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic alpha9alpha10 receptor coupled to the activation of SK2 Ca(2+)-activated K(+) channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), omega-agatoxin IVA and omega-conotoxin GVIA, respectively, we show that Ca(2+) entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca(2+) entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca(2+)-activated K(+) channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons.

  20. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.

    PubMed

    López-Cruz, Jaime; Óscar, Crespo-Salvador; Emma, Fernández-Crespo; Pilar, García-Agustín; Carmen, González-Bosch

    2017-01-01

    Plants activate responses against pathogens, including the oxidative burst. Necrotrophic pathogens can produce reactive oxygen species (ROS) that benefit the colonization process. Previously, we have demonstrated that tomato plants challenged with Botrytis cinerea accumulate ROS and callose, together with the induction of genes involved in defence, signalling and oxidative metabolism. Here, we studied the infection phenotype of the Δbcsod1 strain in both tomato and Arabidopsis plants. This mutant lacks bcsod1, which encodes Cu-Zn superoxide dismutase (SOD). This enzyme catalyses the conversion of superoxide ion ( O2-) into hydrogen peroxide (H2 O2 ). ROS play a protective role and act as signals in plants. Δbcsod1 displayed reduced virulence compared with wild-type B05.10 in both species. Plants infected with Δbcsod1 accumulated less H2 O2 and more O2- than those infected with B05.10, which is associated with an increase in the defensive polymer callose. This supports a major role of fungal SOD in H2 O2 production during the plant-pathogen interaction. The early induction of the callose synthase gene PMR4 suggested that changes in ROS altered plant defensive responses at the transcriptional level. The metabolites and genes involved in signalling and in response to oxidative stress were differentially expressed on Δbcsod1 infection, supporting the notion that plants perceive changes in ROS balance and activate defence responses. A higher O2(-) /H2 O2 ratio seems to be beneficial for plant protection against this necrotroph. Our results highlight the relevance of callose and the oxylipin 12-oxo-phytodienoic acid (OPDA) in the response to changes in the oxidative environment, and clarify the mechanisms that underlie the responses to Botrytis in Arabidopsis and tomato plants.

  1. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex.

    PubMed

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain

    2015-01-01

    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  2. Relationship between male sterility and β-1,3-glucanase activity and callose deposition-related gene expression in wheat (Triticum aestivum L.).

    PubMed

    Liu, H Z; Zhang, G S; Zhu, W W; Ba, Q S; Niu, N; Wang, J W; Ma, S C; Wang, J S

    2015-01-26

    In previous studies, we first isolated one different protein β-1,3-glucanase using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry from normal wheat (Triticum aestivum L.) and chemical hybridization agent-induced male sterility (CIMS) wheat. In this experiment, β-1,3-glucanase activity and the expression of a callose deposition-related gene, UDP-glucose phosphorylase (UGPase), were determinate in normal, CIMS, and genetic male sterility (GS) wheat. β-1,3-glucanase activity was significantly different between the fertile and sterile lines during callose synthesis and degradation, but there was no difference between CIMS and GS wheat. The UGPase gene of callose deposition was highly expressed in the meiophase and sharply decreased in the tetrad stage. However, the expression of the UGPase gene was significantly different between the fertile and sterile lines. These data indicated that β-1,3-glucanase activity and the expression of the UGPase gene play important roles in the male sterility of wheat. Consequently, pollen mother cells (PMCs) might degenerate at the early meiosis stage, and differences in UGPase gene expression and β-1,3-glucanase activity might eventually result in complete pollen collapse. In addition, the critical period of anther abortion might be the meiosis stage to the tetrad stage rather than what we previously thought, the mononuclear period.

  3. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase.

    PubMed

    Wawrzynska, Anna; Rodibaugh, Natalie L; Innes, Roger W

    2010-05-01

    Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1 and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here, we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA- and methyl jasmonate (JA)-inducible defense genes, and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production or signaling by independent mechanisms and that negative regulation of defense signaling by GSL5 may be independent of callose production.

  4. Synergistic Activation of Defense Responses in Arabidopsis by Simultaneous Loss of the GSL5 Callose Synthase and the EDR1 Protein Kinase

    PubMed Central

    Wawrzynska, Anna; Rodibaugh, Natalie L.; Innes, Roger W.

    2012-01-01

    Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1, and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA and methyl-jasmonate (JA) inducible defense genes and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4, PMR4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production and/or signaling by independent mechanisms, and that negative regulation of defense signaling by GSL5 may be independent of callose production. PMID:20367466

  5. Effects of 3-beta-diol, an androgen metabolite with intrinsic estrogen-like effects, in modulating the aquaporin-9 expression in the rat efferent ductules

    PubMed Central

    Picciarelli-Lima, Patrícia; Oliveira, André G; Reis, Adelina M; Kalapothakis, Evanguedes; Mahecha, Germán AB; Hess, Rex A; Oliveira, Cleida A

    2006-01-01

    Background Fluid homeostasis is critical for normal function of the male reproductive tract and aquaporins (AQP) play an important role in maintenance of this water and ion balance. Several AQPs have been identified in the male, but their regulation is not fully comprehended. Hormonal regulation of AQPs appears to be dependent on the steroid in the reproductive tract region. AQP9 displays unique hormonal regulation in the efferent ductules and epididymis, as it is regulated by both estrogen and dihydrotestosterone (DHT) in the efferent ductules, but only by DHT in the initial segment epididymis. Recent data have shown that a metabolite of DHT, 5-alpha-androstane-3-beta-17-beta-diol (3-beta-diol), once considered inactive, is also present in high concentrations in the male and indeed has biological activity. 3-beta-diol does not bind to the androgen receptor, but rather to estrogen receptors ER-alpha and ER-beta, with higher affinity for ER-beta. The existence of this estrogenic DHT metabolite has raised the possibility that estradiol may not be the only estrogen to play a major role in the male reproductive system. Considering that both ER-alpha and ER-beta are highly expressed in efferent ductules, we hypothesized that the DHT regulation of AQP9 could be due to the 3-beta-diol metabolite. Methods To test this hypothesis, adult male rats were submitted to surgical castration followed by estradiol, DHT or 3-beta-diol replacement. Changes in AQP9 expression in the efferent ductules were investigated by using immunohistochemistry and Western blotting assay. Results Data show that, after castration, AQP9 expression was significantly reduced in the efferent ductules. 3-beta-diol injections restored AQP9 expression, similar to DHT and estradiol. The results were confirmed by Western blotting assay. Conclusion This is the first evidence that 3-beta-diol has biological activity in the male reproductive tract and that this androgen metabolite has estrogen-like activity in

  6. How do the medial olivocochlear efferents influence the biomechanics of the outer hair cells and thereby the cochlear amplifier? Simulation results

    NASA Astrophysics Data System (ADS)

    Saremi, Amin; Stenfelt, Stefan; Verhulst, Sarah

    2015-12-01

    The bottom-up signal pathway, which starts from the outer ear and leads to the brain cortices, gives the classic image of the human sound perception. However, there have been growing evidences in the last six decades for existence of a functional descending network whereby the central auditory system can modulate the early auditory processing, in a top-down manner. The medial olivocochlear efferent fibers project from the superior olivary complex at the brainstem into the inner ear. They are linked to the basal poles of the hair cells by forming synaptic cisterns. This descending network can activate nicotinic cholinergic receptors (nAChR) that increase the membrane conductance of the outer hair cells and thereby modify the magnitude of the active force generated inside the cochlea. The aim of the presented work is to quantitatively investigate how the changes in the biomechanics of the outer hair cells, caused by the efferent activation, manipulate the cochlear responses. This is done by means of a frequency-domain biophysical model of the cochlea [12] where the parameters of the model convey physiological interpretations of the human cochlear structures. The simulations manifest that a doubling of the outer hair cell conductance, due to efferent activation, leads to a frequency-dependent gain reduction along the cochlear duct with its highest effect at frequencies between 1 kHz and 3.5 kHz and a maximum of approximately 10 dB gain reduction at 2 kHz. This amount of the gain inhibition and its frequency dependence reasonably agrees with the experimental data recorded from guinea pig, cat and human cochleae where the medial olivococlear efferents had been elicited by broad-band stimuli. The simulations also indicate that the efferent-induced increase of the outer hair cell conductance increases the best frequency of the cochlear responses, in the basal region. The presented simulations quantitatively confirm that activation of the medial olivocochlear efferents can

  7. Microstructural callosal abnormalities in normal-appearing brain of children with developmental delay detected with diffusion tensor imaging.

    PubMed

    Ding, Xiao-Qi; Sun, Yimeng; Kruse, Bernd; Illies, Till; Zeumer, Hermann; Fiehler, Jens; Lanfermann, Heinrich

    2009-06-01

    Callosal fibres play an important role in psychomotor and cognitive functions. The purpose of this study was to investigate possible microstructural abnormalities of the corpus callosum in children with developmental delay, who have normal conventional brain MR imaging results. Seventeen pediatric patients (aged 1-9 years) with developmental delay were studied. Quantitative T2 and fractional anisotropy (FA) values were measured at the genu and splenium of the corpus callosum (CC). Fibre tracking, volumetric determination, as well as fibre density calculations of the CC were also carried out. The results were compared with those of the age-matched healthy subjects. A general elevation of T2 relaxation times (105 ms in patients vs. 95 ms in controls) and reduction of the FA values (0.66 in patients vs. 0.74 in controls) at the genu of the CC were found in patients. Reductions of the fibre numbers (5,464 in patients vs. 8,886 in controls) and volumes (3,415 ml in patients vs. 5,235 ml in controls) of the CC were found only in patients older than 5 years. The study indicates that despite their inconspicuous findings in conventional MRI microstructural brain abnormalities are evident in these pediatric patients suffering from developmental delay.

  8. Effects of callosal agenesis on rotational side preference of BALB/cCF mice in the free swimming test.

    PubMed

    Filgueiras, Cláudio C; Manhães, Alex C

    2004-11-05

    In order to test the hypothesis that the ontogenetic development of the corpus callosum is related to the establishment of behavioral laterality, the rotatory behavior in the free swimming test was studied in male mice of the BALB/cCF strain, in which approximately 20% of the animals present total or partial callosal agenesis. All animals were submitted to three sessions of the free-swimming rotatory test in three different sessions (diameter of the recipient = 21 cm; session duration = 5 min; inter-test interval = 48 h). The number and direction of the 30 and 360 degrees turns were recorded. Animals were classified as side-consistent turners (to the right or to the left) when they did not change their preferred side of rotation in all three sessions and in both turning units. In general our results suggested that acallosal animals present more pronounced laterality than normal ones. In the acallosal group, the percentage of consistent turners was significantly higher than that of non-consistent turners. The percentage of animals that presented strong turning preferences in the acallosal group was higher than in the normal group. In first session, the acallosal group presented a higher average number of turns to preferred side than the normal group. Taken together, our results constitute an endorsement to the hypothesis that the normal development of the corpus callosum is related to the establishment of cerebral laterality.

  9. Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43-q44.

    PubMed

    Nagamani, Sandesh C Sreenath; Erez, Ayelet; Bay, Carolyn; Pettigrew, Anjana; Lalani, Seema R; Herman, Kristin; Graham, Brett H; Nowaczyk, Malgorzata Jm; Proud, Monica; Craigen, William J; Hopkins, Bobbi; Kozel, Beth; Plunkett, Katie; Hixson, Patricia; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau Wai

    2012-02-01

    Submicroscopic deletions involving chromosome 1q43-q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43-q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion.

  10. Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L.

    PubMed

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Melissa, Pelagia

    2012-04-01

    The subcellular targets of hexavalent chromium [Cr(VI)] were examined in Allium cepa root tips with confocal laser scanning microscopy. Cr(VI) exerted dose- and time-dependent negative effects on root growth rate, the mitotic index and microtubule (MT) organization during cell division cycle. Interphase MTs were more resistant than the mitotic ones, but when affected they were shorter, sparse and disoriented. The preprophase band of MTs became poorly organized, branched or with fragmented MTs, whilst neither a perinuclear array nor a prophase spindle was formed. Metaphase spindles converged to eccentric mini poles or consisted of dissimilar halves and were unable to correctly orient the chromosomes. Anaphase spindles were less disturbed, but chromatids failed to separate; neither did they move to the poles. At telophase, projecting, lagging or bridging chromosomes and micronuclei also occurred. Phragmoplasts were unilaterally developed, split, located at unexpected sites and frequently dissociated from the branched and misaligned cell plates. Chromosomal aberrations were directly correlated with MT disturbance. The morphology and distribution of endoplasmic reticulum was severely perturbed and presumably contributed to MT disassembly. Heavy callose apposition was also induced by Cr(VI), maybe in the context of a cellular defence reaction. Results indicate that MTs are one of the main subcellular targets of Cr(VI), MT impairment underlies chromosomal and mitotic aberrations, and MTs may constitute a reliable biomonitoring system for Cr(VI) toxicity in plants.

  11. Comparison of morphological changes in efferent lymph nodes after implantation of resorbable and non-resorbable implants in rabbits

    PubMed Central

    2011-01-01

    Background Magnesium alloys as biodegradable implant materials received much interest in recent years. It is known that products of implant degradation can induce several types of immune response. Hence, the aim of this study was to examine the morphological changes of efferent lymph nodes after implantation of different resorbable magnesium alloys (MgCa0.8, LAE442) in comparison to commercially available resorbable (PLA) and non-resorbable (titanium) implant materials as well as control groups without implant material. Methods The different implant materials were inserted intramedullary into the rabbit tibia. After postoperative observation periods of three and six months, popliteal lymph nodes were examined histologically and immunhistologically and compared to lymph nodes of sham operated animals and animals without surgery. Haematoxylin and eosin staining was performed for cell differentiation. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection, mouse anti-CD68 primary antibodies for macrophage detection. Evaluation of all sections was performed applying a semi quantitative score. Results The histological evaluation demonstrated low and moderate levels of morphological changes for both magnesium alloys (LAE442 and MgCa0.8). Higher than moderate values were reached for titanium in sinus histiocytosis and histiocytic apoptosis (3 months) and for PLA in histiocytic apoptosis (3 and 6 months). The immune response to all investigated implants had a non-specific character and predominantly was a foreign-body reaction. LAE442 provoked the lowest changes which might be due to a lower degradation rate in comparison to MgCa0.8. Therewith it is a promising candidate for implants with low immunogenic potential. Conclusion Both examined magnesium alloys did not cause significantly increased morphological changes in efferent lymph nodes in comparison to the widely used implant materials titanium and PLA. LAE442

  12. Role of Efferent Sympathoadrenal Effects in Cooling-Induced Hemodynamic Perturbations in Rats: An Investigation by Spectrum Analysis.

    PubMed

    Liu, Yia-Ping; Lin, Yi-Hsien; Lin, Chen-Cheng; Lin, Yu-Chieh; Chen, Yu-Chun; Lee, Po-Lei; Tung, Che-Se

    2015-10-31

    Cold stress may produce hemodynamic perturbations but the underlying mechanisms are still not clear. Spectral analysis was used in this study to explore that sympathoadrenal activation could be involved in mechanisms of hemodynamic perturbations to cooling. Conscious rats after treatment with a control vehicle (saline) compared with withdrawal of sympathetic influences by ganglion blocker hexamethonium (HEX) or chemical sympathectomy guanethidine (GUA) were challenged by stressful cooling as acute immersing all four extremities in ice water (4 ± 2°C) for 10 min. Plasma nitric oxide (NO) and the appearance of Dichroitic notch (DN) were measured in comparison between treatment groups throughout the experimental course. Hemodynamic indices were telemetrically monitored, and variability of blood pressure and heart rate (BPV; HRV) were assessed over a range of frequencies: very-low frequency (VLF: 0.02-0.2 Hz), low frequency (LF: 0.2-0.6 Hz), high frequency (HF: 0.6-3 Hz), normalized (n)LF, nHF, ratio LF/HF of HRV (LF/HF(HRV)), and total power (TP: ≤3 Hz). Results showed that the concomitant reciprocal changes of spectral powers existed between frequencies of BPV and HRV to the stressful cooling (i.e. VLF(BPV) versus VLF(HRV), LF(BPV) versus LF(HRV), and nLF(BPV) versus nLF(HRV)) which contribute to the underlying mechanisms of sympathetic efferent influences and myogenic cardiovascular responsiveness. Furthermore, compared with the control vehicle in the stressful cooling, HEX restrained the increase of the pressor, tachycardia and VLF(BPV), except that VLF(HRV) was reduced. GUA abolished pressor, however, restrained the increase of the tachycardia, VLF(BPV) and LF(BPV). In addition, GUA reversed the downward tendency of nLF(BPV) into an upward tendency and attenuated both nLF(HRV) and LF/HF(HRV). DN was virtually undetectable after HEX management but was apparently noticeable after GUA management. Finally, the increase of plasma NO after cooling was diminished

  13. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  14. Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota.

    PubMed Central

    Flock, A; Russell, I

    1976-01-01

    1. Intracellular recordings were made from morphologically identified hair cells in the lateral line canal organs of the burbot Lota lota. 2. I.p.s.p.s were recorded from hair cells when the efferent fibres were excited by electrical stimulation of the lateral line nerve. The i.p.s.p.s were abolished when the fish was injected with immobilizing concentration of Flaxedil which is known to block the efferent synapses. 3. The i.p.s.p.s are accompanied by a decrease in the resistance of the hair cell membrane and an increase in the intracellular receptor potential. 4. Spontaneous and mechanically evoked e.p.s.p.s which were recorded intracellularly from the post-synaptic afferent nerve terminals were reduced in amplitude for the duration of the i.p.s.p. Images A, B C PMID:948076

  15. Making Connections

    ERIC Educational Resources Information Center

    Turner, Paul

    2015-01-01

    This article aims to illustrate a process of making connections, not between mathematics and other activities, but within mathematics itself--between diverse parts of the subject. Novel connections are still possible in previously explored mathematics when the material happens to be unfamiliar, as may be the case for a learner at any career stage.…

  16. Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation

    PubMed Central

    Sheets, Lavinia

    2017-01-01

    Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants—fish whose hair-cell organs are devoid of afferent and efferent innervation—to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals. PMID:28112265

  17. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension

    PubMed Central

    Foss, Jason D.; Fink, Gregory D.

    2015-01-01

    Clinical data suggest that renal denervation (RDNX) may be an effective treatment for human hypertension; however, it is unclear whether this therapeutic effect is due to ablation of afferent or efferent renal nerves. We have previously shown that RDNX lowers arterial pressure in hypertensive Dahl salt-sensitive (S) rats to a similar degree observed in clinical trials. In addition, we have recently developed a method for selective ablation of afferent renal nerves (renal-CAP). In the present study, we tested the hypothesis that the antihypertensive effect of RDNX in the Dahl S rat is due to ablation of afferent renal nerves by comparing the effect of complete RDNX to renal-CAP during two phases of hypertension in the Dahl S rat. In the early phase, rats underwent treatment after 3 wk of high-NaCl feeding when mean arterial pressure (MAP) was ∼140 mmHg. In the late phase, rats underwent treatment after 9 wk of high NaCl feeding, when MAP was ∼170 mmHg. RDNX reduced MAP ∼10 mmHg compared with sham surgery in both the early and late phase, whereas renal-CAP had no antihypertensive effect. These results suggest that, in the Dahl S rat, the antihypertensive effect of RDNX is not dependent on pretreatment arterial pressure, nor is it due to ablation of afferent renal nerves. PMID:26661098

  18. Time-frequency analysis of stimulus frequency otoacoustic emissions and their changes with efferent stimulation in guinea pigs

    NASA Astrophysics Data System (ADS)

    Berezina-Greene, Maria A.; Guinan, John J.

    2015-12-01

    To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.

  19. Differential action for ethanol on baroreceptor reflex control of heart rate and sympathetic efferent discharge in rats

    SciTech Connect

    Xin, Z.; Abdel-Rahman, A.R.A.; Wooles, W.R.

    1988-01-01

    The acute effects of ethanol (0.33, 0.66, or 1 g/kg) on baroreflex control of heart rate (HR) and sympathetic efferent discharge (SED) were investigated in rats. The two higher doses of ethanol caused a progressive and significant increase in baseline SED and a slight increase in HR. The findings suggest that the sensitivity of the reflex control of SED was preserved whereas that of HR was impaired after acute ethanol administration. Since these findings were obtained in the same animals, the data suggest that acute ethanol has a differential action on reflex control of SED and HR. Further, the significant increase in SED after moderate and high doses of ethanol suggests an increased central sympathetic tone as recordings were made from preganglionic nerve fibers (splanchnic nerve). The absence of an increase in baseline MAP, in spite of a significant increase in baseline SED following acute ethanol injection, could be explained, at least in part, by an ethanol-evoked reduction in pressor responsiveness to phenylephrine, an ..cap alpha..-adrenergic agonist.

  20. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granulomas.

    PubMed

    Heuser, Anke; Mecklenburg, Lars; Ockert, Deborah; Kohler, Manfred; Kemkowski, Jörg

    2013-01-01

    Testicular tubular dilatation and degeneration and epididymal sperm granulomas were frequently seen in 4-week toxicity studies using different phosphodiesterase-4 (PDE4) inhibitors in Wistar rats, including the prototypic PDE4 inhibitor BYK169171. To investigate the pathogenesis of testicular and epididymal lesions, a time course study with BYK169171 was conducted with sequential necropsies after 7, 14, 21, and 28 days of treatment. After 7 days, a dilatation of efferent ducts and of the initial segment of the epididymis and a subacute interstitial inflammation were seen followed by a diffuse dilatation of seminiferous tubules in the testis. Dilatation and inflammation were most pronounced after 14 days. Single animals also exhibited vascular necrosis in the inflamed interstitium. Although dilatation decreased later in the study, the incidence and severity of tubular degeneration increased from 14 days onward. Sperm granulomas developed in efferent ducts and in the caput and cauda of the epididymis after 14 days. Our results demonstrate a clear time course of PDE4 inhibition-induced lesions, with dilatation preceding sperm granuloma formation. We conclude that the most likely mechanism of toxicity is a disturbance of fluid homeostasis in efferent and epididymal ducts resulting in abnormal luminal fluid and sperm contents, epithelial damage at specific sites of the excurrent duct system, sperm leakage, and granuloma formation.

  1. Altered effective connectivity within default mode network in major depression disorder

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  2. Postnatal development of corticocortical efferents from area 17 in the cat's visual cortex

    SciTech Connect

    Price, D.J.; Zumbroich, T.J.

    1989-02-01

    We are interested in the postnatal development of corticocortical connections in the cat's visual cortex. In this study, we injected the anterograde tracer 3H-proline into visual cortical area 17 of kittens, aged 4-70 d, and adult cats to visualize the distribution of terminals of the association projections to areas 18, 19, 21a, and the lateral suprasylvian visual cortex. The density of anterograde label was quantified using computerized image analysis. There was dense labeling at topographically appropriate locations in area 18 in animals of all ages. In 4- and 8-d-old kittens, other extrastriate areas (19, 21a and the lateral suprasylvian cortex) contained only sparse label, localized in a few solitary axons; these areas were densely labeled in animals aged 12 d or more. In kittens aged 4-20 d there was considerable, widespread label within fibers located in the white matter, and many of these axons lay underneath regions of extrastriate, and also striate, cortex that were almost certainly not destined to be persistently innervated by cells at the injection site. This pattern of extensive white matter label was not seen in animals older than 20 d. In each extrastriate region, from the earliest age at which we identified dense cortical innervation from area 17, the terminals were distributed in clusters. At first these patches were mainly in infragranular layers, but later, during the second and third postnatal weeks, they began to appear in more superficial laminae. By 70 d, an adult-like distribution of terminals was found in each extrastriate area: most fibers appeared to end in layers II and III in areas 18, 19, and 21a and centered on layer IV in the medial bank of the middle suprasylvian sulcus in adult cats. We suggest that the development of ipsilateral association projections from area 17 to extrastriate cortex is a 2-stage process.

  3. The centrally projecting Edinger-Westphal nucleus--I: Efferents in the rat brain.

    PubMed

    Dos Santos Júnior, Edmilson D; Da Silva, André V; Da Silva, Kelly R T; Haemmerle, Carlos A S; Batagello, Daniella S; Da Silva, Joelcimar M; Lima, Leandro B; Da Silva, Renata J; Diniz, Giovanne B; Sita, Luciane V; Elias, Carol F; Bittencourt, Jackson C

    2015-10-01

    The oculomotor accessory nucleus, often referred to as the Edinger-Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW-EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW-EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW-LHA and EW-CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the

  4. Diffusion Tensor MR Imaging Evaluation of Callosal Abnormalities in Schizophrenia: A Meta-Analysis.

    PubMed

    Zhuo, Chuanjun; Liu, Mei; Wang, Lina; Tian, Hongjun; Tang, Jinsong

    2016-01-01

    Widespread white matter (WM) abnormalities have been found in patients with schizophrenia. Corpus callosum (CC) is the key area that connects the left and right brain hemispheres. However, the results of studies considering different subregions of the CC as regions of interest in patients with schizophrenia have been inconsistent. To obtain a more consistent evaluation of the diffusion characteristics change of the corpus callosum (CC) related to schizophrenia. A meta-analysis involving fractional anisotropy (FA) values in the CC of 729 schizophrenic subjects and 682 healthy controls from 22 studies was conducted. Overall FA values in the CC of the schizophrenic group were less than that of the healthy control group [weighted mean difference (WMD) = -0.021,P< 0.001]. So were the FA values in the genus region (WMD = -0.019, P< 0.001) and the splenium region (WMD = -0.020, P< 0.001) of the CC respectively. The FA reduction was also significant in subjects with chronic schizophrenia (WMD = -0.032, P< 0.001) and first-episode schizophrenia (WMD = -0.014, P = 0.001). In present study, we demonstrated an overall FA decrease in the CC of schizophrenic patients. In the two subgroup analyses of the genu vs splenium region and chronic vs first-episode schizophrenia, the decrease of all groups was significant. Further studies with more homogenous populations and standardized DTI protocols are needed to confirm and extend these findings.

  5. Only Connect.

    ERIC Educational Resources Information Center

    LeMieux, Anne C.

    2000-01-01

    Describes how the author connects with today's adolescent readers by means of laughter and literature. Claims young adult literature can facilitate the growth of empathy and provide an impetus for adolescents to transcend the isolation modern culture engenders. (NH)

  6. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker.

    PubMed

    Swanson, L W; Hartman, B K

    1975-10-15

    A sensitive immunofluorescence technique was used to describe systematically the distrubution of dopamine-beta-hydroxylase (DBH)-containing cell bodies, non-terminal fiber pathways, and terminal fields in the brain of the male albino rat. DBH is the enzyme that catalyzes the conversion of dopamine to noradrenaline, and as such is useful as an anatomical marker for noradrenaline and possibly adrenaline neurons. The enzyme is not present in dopamine- or indolamine-containing neurons. Ten micron frozen sections (1-in 20 series) were prepared in the frontal, sagittal, and horizontal planes from the olfactory bulb to the upper cervical segments of the spinal cord; adjacent sections in each plane were stained for DBH and for cells (toluidine blue=azure II). An atlas consisting of 40 projection drawings of selected frontal sections illustrates the results of the investigation. DBH perikarya are confined to three groups in the pons and medulla: the well defined locus coeruleus, a more diffuse but continuous subcoeruleus group that arches through the pons and ventral medulla, and a third dorsal medullary group centered in the dorsal motor nucleus of the vagus. A single principal adrenergic fiber system distributes a great many of the axons from these neuron groups to a majority of nuclear areas in the brain. In the pons and medulla two components of the fiber system may be distinguished. A medullary branch may be followed from the posterior aspect of the subcoeruleus group dorsally and then anteriorly through the lateral tegmental field and ventral aspect of the vestibular complex to a position subjacent to the locus coeruleus, where it is joined by a subcoeruleus branch consisting of a large number of fibers coursing among cells along the length of the subcoeruleus group, and by fibers arising from the locus coeruleus. Anterior to the locus coeruleus the principal adrenergic bundle courses as a single fiber tract immediately ventrolateral to the central gray in the mesencephalon and in the zona incerta and substantia innominata in the diencephalon. At the level of the septal area separate bundles reach the cortex dorsally over the genu of the corpus calosum via the medial septal-diagonal band nuclei and the lateral septum and ventrally between the olfactory tubercle and caudate-putamen. In the medulla and pons adrenergic fibers undoubtedly course in both directions. Anterior to the most rostral pontine cell bodies, however, all fibers presumably ascend. Along the course of the bundle distinct branches emerge to innervate circumscribed terminal fields. In addition, certain regions of the brain such as the reticular formation and pontine gray receive diffuse DBH innervation derived from less clearly defined pathways. A small number of areas in the brain contain little or no detectable DBH. These include the caudate-putamen, nucleus accumbens, globus pallidus, olfactory tubercle, subthalamic nucleus, substantia nigra, pretectal area, third, fourth and sixth cranial verve nuclei, and the trapezoid body nucleus.

  7. Nitric oxide: a co-modulator of efferent peptidergic neurosecretory cells including a unique octopaminergic neurone innervating locust heart.

    PubMed

    Bullerjahn, Alexander; Mentel, Tim; Pflüger, Hans-Joachim; Stevenson, Paul A

    2006-08-01

    Our findings suggest that nitric oxide (NO) acts as peripheral neuromodulator in locusts, in which it is commonly co-localized with RF-like peptide in neurosecretory cells. We also present the first evidence for NO as a cardio-regulator in insects. Putative NO-producing neurones were detected in locust pre-genital free abdominal ganglia by NADPH-diaphorase histochemistry and with an antibody against NO synthase (NOS). With both methods, we identified the same 14 somata in each examined ganglion: two dorsal posterior midline somata; six ventral posterior midline somata; and three pairs of lateral somata. A combination of NOS-detection methods with nerve tracing and transmitter immunocytochemistry revealed that at least 12 of these cells were efferent, of which four were identified as peptidergic neurosecretory cells with an antiserum detecting RFamide-like peptides. One of the latter was unequivocally identified as an octopaminergic dorsal unpaired median (DUM) neurone, which specifically projected to the heart ("DUM-heart"). Its peripheral projections revealed by axon tracing appeared as a meshwork of varicose endings encapsulating the heart. NOS-like immunoreactive profiles were found in the heart nerve. NO donors caused a dose-dependent increase in heart rate. This cardio-excitatory effect was negatively correlated to resting heart rate and seemed to be dependent on the physiological state of the animal. Hence, NO released from neurones such as the rhythmically active DUM-heart might exert continuous control over the heart. Possible mechanisms for the actions of NO on the heart and interactions with other neuromodulators co-localized in the DUM-heart neurone (octopamine, taurine, RF-amide-like peptide) are discussed.

  8. See-through Brains and Diffusion Tensor MRI Clarified Fiber Connections: A Preliminary Microstructural Study in a Mouse with Callosal Agenesis.

    PubMed

    Kerever, Aurelien; Kamagata, Koji; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yamada, Taihei; Hori, Masaaki; Kamiya, Kouhei; Nishikori, Akira; Aoki, Shigeki; Arikawa-Hirasawa, Eri

    2015-01-01

    Clearing methods that render the brain optically transparent allow high-resolution three-dimensional (3D) imaging of neural networks. We used diffusion tensor imaging (DTI) and two-photon imaging of cleared brains to analyze white matter in BTBR mice. We confirmed corpus callosum agenesis and identified an abnormal commissure close to the third ventricle. DTI and cleared-brain two-photon imaging revealed that these commissural fibers constituted a frontal clustering of the ventral hippocampal commissure and provided a detailed assessment of white matter structure in mice.

  9. Device Connectivity

    PubMed Central

    Walsh, John; Roberts, Ruth; Morris, Richard

    2015-01-01

    Patients with diabetes have to take numerous factors/data into their therapeutic decisions in daily life. Connecting the devices they are using by feeding the data generated into a database/app is supposed to help patients to optimize their glycemic control. As this is not established in practice, the different roadblocks have to be discussed to open the road. That large telecommunication companies are now entering this market might be a big help in pushing this forward. Smartphones offer an ideal platform for connectivity solutions. PMID:25614015

  10. Connected Traveler

    SciTech Connect

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  11. Callosal size in first-episode schizophrenia patients with illness duration of less than one year: A cross-sectional MRI study.

    PubMed

    Takahashi, Michio; Matsui, Mie; Nakashima, Mitsuhiro; Takahashi, Tsutomu; Suzuki, Michio

    2017-02-01

    Previous studies have reported a reduction in the size of the corpus callosum (CC) on the mid-sagittal plane in patients with schizophrenia. However, findings for the size of the callosal area in patients with first-episode schizophrenia (FESz) are inconsistent. A possibility for these conflicting results is that the duration of illness in patients with FESz affects the CC size. The present study investigated the CC size abnormalities in patients with FESz. Forty-six patients with FESz whose duration of illness was less than 1year and 46 age-, sex-, and handedness-matched healthy controls were recruited to examine the CC size using magnetic resonance imaging. We measured the area of the CC using the Witelson's scheme, which divided the whole area into seven subdivisions. Analysis of covariance indicated there was no difference in the whole or regional areas of the CC between patients with FESz and healthy controls. The rostrum of the CC was significantly correlated with the total score for negative symptoms and some of the subtotal scores. Our findings indicate that there was no reduction in the whole or regional area of the CC among patients with FESz. When comparing the callosal morphology and symptoms, negative symptoms increased in severity as the rostrum area of the CC decreased in size. Further studies are needed to investigate whether the size of the anterior CC is associated with the pathology observed in the early stages of FESz.

  12. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves.

    PubMed

    Slewinski, Thomas L; Baker, R Frank; Stubert, Adam; Braun, David M

    2012-11-01

    The tie-dyed2 (tdy2) mutant of maize (Zea mays) displays variegated green and yellow leaves. Intriguingly, the yellow leaf tissues hyperaccumulate starch and sucrose, the soluble sugar transported long distance through the phloem of veins. To determine the molecular basis for Tdy2 function, we cloned the gene and found that Tdy2 encodes a callose synthase. RNA in situ hybridizations revealed that in developing leaves, Tdy2 was most highly expressed in the vascular tissue. Comparative expression analysis with the vascular marker maize PINFORMED1a-yellow fluorescent protein confirmed that Tdy2 was expressed in developing vein tissues. To ascertain whether the defect in tdy2 leaves affected the movement of sucrose into the phloem or its long-distance transport, we performed radiolabeled and fluorescent dye tracer assays. The results showed that tdy2 yellow leaf regions were defective in phloem export but competent in long-distance transport. Furthermore, transmission electron microscopy of tdy2 yellow leaf regions showed incomplete vascular differentiation and implicated a defect in cell-to-cell solute movement between phloem companion cells and sieve elements. The disruption of sucrose movement in the phloem in tdy2 mutants provides evidence that the Tdy2 callose synthase functions in vascular maturation and that the vascular defects result in impaired symplastic trafficking into the phloem translocation stream.

  13. Callose and cellulose synthase gene expression analysis from the tight cluster to the full bloom stage and during early fruit development in Malus × domestica.

    PubMed

    Guerriero, Gea; Giorno, Filomena; Folgado, Raquel; Printz, Bruno; Baric, Sanja; Hausman, Jean-Francois

    2014-01-01

    Apple (Malus × domestica) is an economically important temperate fruit-bearing crop which belongs to the family of Rosaceae and its pomaceous fruit is one of the most commonly cultivated. Several studies have demonstrated that the cell wall plays a pivotal role during flower and fruit development. It takes active part in pollen tube growth and contributes to determine the fruit firmness trait through the action of cell wall-related enzymes (i.e. polygalacturonase and pectinmethylesterase). We have investigated the expression of callose and cellulose synthase genes during flowering from tight cluster to anthesis and during early fruit development in domesticated apple. We also link the changes observed in gene expression to the profile of soluble non-structural carbohydrates at different developmental stages of flowers/fruitlets and to the qualitative results linked to wall polysaccharides' composition obtained through near-infrared spectroscopy. This work represents an important addition to the study of tree physiology with respect to the analysis of the expression of callose and cellulose synthase genes during flower and early fruit development in domesticated apple.

  14. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea.

    PubMed

    Scalschi, Loredana; Sanmartín, Maite; Camañes, Gemma; Troncho, Pilar; Sánchez-Serrano, José J; García-Agustín, Pilar; Vicedo, Begonya

    2015-01-01

    Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.

  15. Connected Learning.

    ERIC Educational Resources Information Center

    Brown, David E.

    2000-01-01

    California has numerous niche programs stressing both academic rigor and career connections. These occur most successfully where business and elected officials support K-12 partnerships and provide job-shadowing opportunities, internships, and classroom instruction offered by business partners. A sidebar outlines school-to-work principles. (MLH)

  16. Learning Connections

    ERIC Educational Resources Information Center

    Royer, Regina D.; Richards, Patricia O.

    2005-01-01

    In this edition of Learning Connections, the authors show how technology can enhance study of weather patterns, reading comprehension, real-world training, critical thinking, health education, and art criticism. The following sections are included: (1) Social Studies; (2) Language Arts; (3) Computer Science and ICT; (4) Art; and (5) Health.…

  17. Get Connected

    ERIC Educational Resources Information Center

    Horton, Jessica; Hagevik, Rita; Adkinson, Bennett; Parmly, Jilynn

    2013-01-01

    Technology can be both a blessing and a curse in the classroom. Although technology can provide greater access to information and increase student engagement, if screen time replaces time spent outside, then students stand to lose awareness and connectivity to the surrounding natural environment. This article describes how Google Earth can foster…

  18. Role of NMDA receptors in the lateralized potentiation of amygdala afferent and efferent neural transmission produced by predator stress.

    PubMed

    Adamec, Robert; Blundell, Jacqueline; Burton, Paul

    2005-09-15

    The present study investigated the role of NMDA receptors in behavioral and neuroplastic changes in amygdala efferent (central amygdala to periaqueductal gray-ACE-PAG) and amygdala afferent (ventral angular bundle to basolateral amygdala-VAB-BLA) pathways in response to predator stress. Effects on brain and behavioral response to predator stress of competitive block of NMDA receptors with a dose of 10 mg/kg of CPP (3-(2-carboxypiperazin4-yl)propyl-l-phosphonic acid) were studied. Behavioral response to stress was tested with hole board, elevated plus maze, light/dark box, social interaction and acoustic startle tests. CPP was administered i.p. 30 min prior to predator stress and blocked the effects of predator on some but not all behaviors measured 8-9 days later. Effects of predator stress and CPP on potentials evoked in the PAG by single pulse stimulation of the ACE and in the BLA by single pulse stimulation of VAB were assessed 10-11 days after predator stress. Predator stress potentiated ACE-PAG evoked potentials in the right but not the left hemisphere, replicating previous work. Predator stress potentiated VAB-BLA transmission in both hemispheres 10-11 days after predator stress. Right hemisphere VAB-BLA potentiation replicated and extended past studies showing right hemisphere potentiation at 1 and 9 days after stress. Left VAB-BLA potentiation effects differed from the long term depression seen in VAB-BLA at 1 and 9 days after stress in previous studies. CPP blocked predator stress-induced potentiation of ACE-PAG and VAB-BLA evoked potentials in the right hemisphere. CPP did not block left VAB-BLA potentiation, rather CPP amplified it. Left hemisphere effects of CPP were interpreted as reflecting block of NMDA dependent long term depression, which unmasked a non-NMDA dependent potentiation. Taken together, the findings add to a body of evidence suggesting that a syndrome of behavioral changes follows predator stress. Components of this syndrome likely

  19. Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment.

    PubMed

    Hugo, Honor J; Lebret, Stephanie; Tomaskovic-Crook, Eva; Ahmed, Nuzhat; Blick, Tony; Newgreen, Donald F; Thompson, Erik W; Ackland, M Leigh

    2012-04-01

    versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.

  20. Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas

    PubMed Central

    Hintiryan, Houri; Gou, Lin; Zingg, Brian; Yamashita, Seita; Lyden, Hannah M.; Song, Monica Y.; Grewal, Arleen K.; Zhang, Xinhai; Toga, Arthur W.; Dong, Hong-Wei

    2012-01-01

    We introduce the first open resource for mouse olfactory connectivity data produced as part of the Mouse Connectome Project (MCP) at UCLA. The MCP aims to assemble a whole-brain connectivity atlas for the C57Bl/6J mouse using a double coinjection tracing method. Each coinjection consists of one anterograde and one retrograde tracer, which affords the advantage of simultaneously identifying efferent and afferent pathways and directly identifying reciprocal connectivity of injection sites. The systematic application of double coinjections potentially reveals interaction stations between injections and allows for the study of connectivity at the network level. To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org). Systematic double coinjections were made into different regions of the main olfactory bulb (MOB) and data from 18 MOB cases (~72 pathways; 36 efferent/36 afferent) currently are available to view in iConnectome within their corresponding atlas level and their own bright-field cytoarchitectural background. Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available. Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections. PMID:22891053

  1. Experimental studies of gastric dysfunction in motion sickness: The effect of gastric and vestibular stimulation on the vagal and splanchnic gastric efferents

    NASA Technical Reports Server (NTRS)

    Niijima, A.; Jiang, Z. Y.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The experiments were conducted in anaesthetized rats. In the first part of the experiments, the effect of CuSO4 on the afferent activity in the gastric branch of the vagus nerve was investigated. Gastric perfusion of CuSO4 solution (0.04 percent and 0.08 percent) provoked an increase in afferent activity. In the second part of the experiments, the reflex effects of gastric perfusion of CuSO4 solution, repetitive stimulation of the gastric vagus nerve, and caloric stimulation of the right vestibular apparatus (5-18 C water) on gastric autonomic outflow were investigated. The results of these experiments showed that these three different types of stimulation caused an inhibition in efferent activity of the gastric vagus nerve and a slight activation of the splanchnic gastric efferents. The summation of the effect of each stimulation was also observed. These results, therefore, provide evidence for a possible integrative inhibitory function of the vagal gastric center as well as an excitatory function of gastric sympathetic motoneurons in relation to motion sickness.

  2. Observations on the connectivity of the parvicellular reticular formation with respect to a vomiting center

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1983-01-01

    The intrinsic and extrinsic connections of the parvicellular reticular formation (PCRF) that have been demonstrated by fiber degeneration studies and studied by more recently introduced horseradish peroxidase retrograde cell labeling are reviewed in an attempt to delimit the connectivity of the region in the PCRF where electrical stimulation produced emesis. Evidence is presented that certain specific functional subdivisions in PCRF such as the salivatory nuclei and the cells which give rise to the vestibular efferent projections can be delimited. An attempt is made to differentiate the sources of brain stem afferent connections with the nucleus of the tractus solitarius, the vagal nucleus and the nucleus ambiguus complex. The literature bearing on the histochemistry of the brain stem is reviewed in a search for clues to possible unique histo- or immunochemical cytological subdivisions in the parvicellular reticular formation.

  3. Trench connection.

    PubMed

    Jamieson, Alan J; Fujii, Toyonobu

    2011-10-23

    'Trench Connection' was the first international symposium focusing primarily on the hadal zone (depths greater than 6000 m). It was held at the University of Tokyo's Atmosphere and Ocean Research Institute in November 2010. The symposium was successful in having attracted an international collective of scientists and engineers to discuss the latest developments in the exploration and understanding of the deepest environments on Earth. The symposium sessions were categorized into three themes: (i) new deep-submergence technology; (ii) trench ecology and evolution; and (iii) the physical environment. Recent technological developments have overcome the challenges of accessing the extreme depths, which have in turn prompted an international renewed interest in researching physical and biological aspects of the hadal ecosystems. This bringing together of international participants from different disciplines led to healthy discussions throughout the symposium, providing potential opportunities and realizations of where the future of unravelling hadal ecology lies. Hadal science is still at relatively rudimentary levels compared with those of shallower marine environments; however, it became apparent at the symposium that it is now an ever-expanding scientific field.

  4. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

    PubMed

    Matsukawa, Kanji

    2012-01-01

    Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.

  5. Antigen- and receptor-driven regulatory mechanisms. VII. H-2-restricted anti-idiotypic suppressor factor from efferent suppressor T cells

    PubMed Central

    1981-01-01

    Azobenzenearsonate (ABA)-specific T cell-derived suppressor factor (TsF1) from A/J mice was used to induced second-order suppressor T cells (Ts2). Comparison of suppressor T cells induced by antigen (Ts1) with Ts2 induced by TsF1 revealed that Ts1 were afferent suppressors active only when given at the time of antigen priming, and not thereafter, whereas Ts2 could act when transferred at any time up to 1 d before antigen challenge for a delayed-type hypersensitivity response. This was true even when the recipient could be shown to be fully immune before transfer of Ts2, thus defining these cells as efferent suppressors. The anti-idiotypic specificity of the Ts2 was demonstrated by the ability of Ts to bind to idiotype (cross-reactive idiotype [CRI])-coated Petri dishes. A soluble extract from Ts2 (TsF2) was also capable of mediating efferent suppression that was functionally antigen- (ABA) specific. Comparison of TsF1 with this new factor, TsF2, revealed that both lack Ig-constant-region determinants, possess H-2-coded determinants, and show specific binding (to ABA and to CRI+-Ig, respectively). TsF1 acts in strains that differ with respect to H-2 and background genes, whereas TsF2 shows H-2- and non-H- 2-linked genetic restrictions. This existence of H-2 restriction of TsF2 activity suggests that the apparent discrepancies in studies of H- 2 restriction of TsF may be a result of the analysis of two separate classes of TsF, only one of which shows genetically restricted activity, thus unifying several models of suppressor cell activity. PMID:6165799

  6. Excitatory cholinergic and purinergic signaling in bladder are equally susceptible to botulinum neurotoxin a consistent with co-release of transmitters from efferent fibers.

    PubMed

    Lawrence, Gary W; Aoki, K Roger; Dolly, J Oliver

    2010-09-01

    Mediators of neuromuscular transmission in rat bladder strips were dissected pharmacologically to examine their susceptibilities to inhibition by botulinum neurotoxins (BoNTs) and elucidate a basis for the clinical effectiveness of BoNT/A in alleviating smooth muscle spasms associated with overactive bladder. BoNT/A, BoNT/C1, or BoNT/E reduced peak and average force of muscle contractions induced by electric field stimulation (EFS) in dose-dependent manners by acting only on neurogenic, tetrodotoxin-sensitive responses. BoNTs that cleaved vesicle-associated membrane protein proved to be much less effective. Acetylcholine (ACh) and ATP were found to provide virtually all excitatory input, because EFS-evoked contractions were abolished by the muscarinic receptor antagonist, atropine, combined with either a desensitizing agonist of P2X(1) and P2X(3) or a nonselective ATP receptor antagonist. Both transmitters were released in the innervated muscle layer and, thus, persisted after removal of urothelium. Atropine or a desensitizer of the P2X(1) or P2X(3) receptors did not alter the rate at which muscle contractions were weakened by BoNT/A. Moreover, although cholinergic and purinergic signaling could be partially delineated by using high-frequency EFS (which intensified a transient, largely atropine-resistant spike in muscle contractions that was reduced after P2X receptor desensitization), they proved equally susceptible to BoNT/A. Thus, equi-potent blockade of ATP co-released with ACh from muscle efferents probably contributes to the effectiveness of BoNT/A in treating bladder overactivity, including nonresponders to anticholinergic drugs. Because purinergic receptors are known mediators of sensory afferent excitation, inhibition of efferent ATP release by BoNT/A could also help to ameliorate acute pain and urgency sensation reported by some recipients.

  7. White Matter Compromise of Callosal and Subcortical Fiber Tracts in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Lincoln, Alan J.; Muller, Ralph-Axel

    2010-01-01

    Objective: Autism spectrum disorder (ASD) is increasingly viewed as a disorder of functional networks, highlighting the importance of investigating white matter and interregional connectivity. We used diffusion tensor imaging (DTI) to examine white matter integrity for the whole brain and for corpus callosum, internal capsule, and middle…

  8. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte

    PubMed Central

    Herrmann, Markus M; Pinto, Sheena; Kluth, Jantjeline; Wienand, Udo; Lorbiecke, René

    2006-01-01

    Background The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Results Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-β-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. Conclusion ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition

  9. Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec.

    PubMed

    Künzle, H

    1997-06-01

    Different tracer substances were injected into the superior colliculus (CoS) in order to study its afferents and efferents with the meso-rhombencephalic tegmentum, the precerebellar nuclei and the cerebellum in the Madagascan hedgehog tenrec. The overall pattern of tectal connectivity in tenrec was similar to that in other mammals, as, e.g. the efferents to the contralateral paramedian reticular formation. Similarly the origin of the cerebello-tectal projection in mainly the lateral portions of the tenrec's cerebellar nuclear complex corresponded to the findings in species with little binocular overlap. In comparison to other mammals, however, the tenrec showed a consistent projection to the ipsilateral inferior olivary nucleus, in addition to the classical contralateral tecto-olivary projection. The tenrec's CoS also appeared to receive an unusually prominent monoaminergic input particularly from the substantia nigra, pars compacta. There was a reciprocal tecto-parabigeminal projection, a distinct nuclear aggregation of parabigeminal neurons, however, was difficult to identify. The dorsal lemniscal nucleus did not show perikaryal labeling in contrast to the paralemniscal region. Similar to the cat but unlike the rat there were a few neurons in the nucleus of the central acoustic tract. Unlike the cat, but similar to the rat there was a distinct, predominantly ipsilateral projection to the magnocellular reticular field known to project spinalward.

  10. DISSECTING HABITAT CONNECTIVITY

    EPA Science Inventory

    abstract

    Connectivity is increasingly recognized as an important element of a successful reserve design. Connectivity matters in reserve design to the extent that it promotes or hinders the viability of target populations. While conceptually straightforward, connectivity i...

  11. Connective Tissue Disorders

    MedlinePlus

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  12. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  13. Functioning of Circuits Connecting Thalamus and Cortex.

    PubMed

    Sherman, S Murray

    2017-03-16

    Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver, which carries the main information between cells, and modulator, which modifies how driver inputs function. Identifying driver inputs helps to reveal functional computational circuits, and one set of such circuits identified by this approach are cortico-thalamo-cortical (or transthalamic corticocortical) circuits. This, in turn, leads to the conclusion that there are two types of thalamic relay: first order nuclei (such as the lateral geniculate nucleus) that relay driver input from a subcortical source (i.e., retina), and higher order nuclei (such as the pulvinar) which are involved in these transthalamic pathways by relaying driver input from layer 5 of one cortical area to another. This thalamic division is also seen in other sensory pathways and beyond these so that most of thalamus by volume consists of higher-order relays. Many, and perhaps all, direct driver connections between cortical areas are paralleled by an indirect cortico-thalamo-cortical (transthalamic) driver route involving higher order thalamic relays. Such thalamic relays represent a heretofore unappreciated role in cortical functioning, and this assessment challenges and extends conventional views regarding both the role of thalamus and mechanisms of corticocortical communication. Finally, many and perhaps the vast majority of driver inputs relayed through thalamus arrive via branching axons, with extrathalamic targets often being subcortical motor centers. This raises the possibility that inputs relayed by thalamus to cortex also serve as efference copies, and this may represent an important feature of information relayed up the cortical hierarchy via transthalamic circuits. © 2017 American Physiological Society. Compr Physiol 7:713-739, 2017.

  14. Macaque accessory optic system: II. Connections with the pretectum

    SciTech Connect

    Baleydier, C.; Magnin, M.; Cooper, H.M. )

    1990-12-08

    Connections of the accessory optic system (AOS) with the pretectum are described in the macaque monkey. Injections of tritiated amino acids in the pretectum demonstrate a major contralateral projection to the dorsal (DTN), lateral (LTN), and medial (MTN) terminal nuclei of the AOS and a sparser projection to the ipsilateral LTN. Injections of retrograde tracers, Fast Blue (FB), or wheat germ agglutinin horseradish peroxidase (WGA-HRP) plus nonconjugated horseradish peroxidase (HRP) in the LTN show that the pretectal-LTN projection originates from two nuclei. The main source of pretectal efferents to the LTN is from the pretectal olivary nucleus (OPN) and is entirely contralateral. This projection, which appears unique to primates, originates from the large multipolar cells of the OPN. In addition to this projection, the nucleus of the optic tract (NOT) projects to the ipsilateral LTN, as in nonprimates. Injection of WGA-HRP in the pretectum shows a reciprocal predominantely ipsilateral projection from the LTN to the pretectum. Retinas were observed after injection of FB in the LTN. The retinal ganglion cells projecting to the AOS are mainly distributed near the fovea and in the nasal region of the contralateral eye, suggesting a nasotemporal pattern of decussation. The demonstration of a direct connection between LTN and OPN forces to a reconsideration of the functional role of the AOS. Previous descriptions of luminance responsive cells in the LTN support a possible participation of this nucleus in the control of the pupillary light reflex.

  15. Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas.

    PubMed

    Négyessy, László; Nepusz, Tamás; Zalányi, László; Bazsó, Fülöp

    2008-10-22

    Cognition is based on the integrated functioning of hierarchically organized cortical processing streams in a manner yet to be clarified. Because integration fundamentally depends on convergence and the complementary notion of divergence of the neuronal connections, we analysed integration by measuring the degree of convergence/divergence through the connections in the network of cortical areas. By introducing a new index, we explored the complementary convergent and divergent nature of connectional reciprocity and delineated the backward and forward cortical sub-networks for the first time. Integrative properties of the areas defined by the degree of convergence/divergence through their afferents and efferents exhibited distinctive characteristics at different levels of the cortical hierarchy. Areas previously identified as hubs exhibit information bottleneck properties. Cortical networks largely deviate from random graphs where convergence and divergence are balanced at low reciprocity level. In the cortex, which is dominated by reciprocal connections, balance appears only by further increasing the number of reciprocal connections. The results point to the decisive role of the optimal number and placement of reciprocal connections in large-scale cortical integration. Our findings also facilitate understanding of the functional interactions between the cortical areas and the information flow or its equivalents in highly recurrent natural and artificial networks.

  16. Efferents from the lateral frontal cortex to spinomedullary target areas, trigeminal nuclei, and spinally projecting brainstem regions in the hedgehog tenrec.

    PubMed

    Künzle, H; Lotter, G

    1996-08-12

    This study was done in the Madagascan lesser hedgehog tenrec, an insectivore with a very poorly differentiated neocortex. The cortical region, known to give rise to spinal projections, was injected with tracer, and the cortical efferents to brainstem and spinal cord were analyzed. Bulbar reticular fields, in addition, were identified according to their cells of origin and the laterality of their spinal projections after injection of tracer. Only few cortical fibers could be traced from the bulbar pyramid into the ipsilateral spinal cord, particularly to the lateral funiculus. The projections to the dorsal column nuclei and the classical spinally projecting brainstem regions were also weak. Faint projections were demonstrated to the nucleus of the posterior commissure and the nucleus of Darkschewitsch. In comparison to other mammals, there was no evidence that the contralateral cortico-bulbo-spinal pathway was strengthened, substituting for the almost non-existent contralateral corticospinal projection. Unlike the sensorimotor apparatus controlling limb and body movements, the brainstem regions controlling the head and neck received prominent cortical projections. Direct corticotrigeminal projections and indirect pathways were well represented. The projections to the trigeminal nuclei and the lateral reticular fields were clearly bilateral; those to the superior colliculus were predominantly ipsilateral. The corticobulbar fibers left the pyramid along its entire extent; the principal trigeminal nucleus and the dorsolateral pontine tegmentum were supplied by additional fibers of the corticotegmental tract. The lateral frontal cortex also projected densely to the dorsolateral hypothalamus, the periaqueductal gray, and the adjacent mesencephalic tegmentum, components of the emotional motor system.

  17. Disappearance of afferent and efferent nerve terminals in the inner ear of the chick embryo after chronic treatment with beta-bungarotoxin

    PubMed Central

    1977-01-01

    Beta-Bungarotoxin(beta-BT) was applied to chick embryos at 3-day intervals beginning on the 4th day of incubation to see the effect of chronically and massively applied beta-BT, and to investigate the hair cell-nerve relationship in the developing inner ear by electron microscopy. On the 10th day of incubation, nerve terminals had achieved contact with differentiating hair cells, but the acoustico-vestibular ganglion cells of treated animals were decreased in number to one-third of those of the control. By the 14th day, most of the ganglion cells degenerated and disappeared, and only a few nerve terminals were seen in the neuroepithelium. At this time, most of the hair cells lacked synaptic contacts with nerve terminals; but their presynaptic specialization remained intact and they showed evidence of continuing differentiation. On the 17th day, the acoustico-vestibular ganglion cells were completely absent. All the hair cells were devoid of afferent and efferent innervation but were fully differentiated on the 21st day. Beta-BT was found to have a similar destructive effect on cultured spinal ganglion cells. The present study shows that beta-BT kills acoustico-vestibular and spinal nerve cells when applied chronically and massively during development. Furthermore, the differentiation of hair cells proceeds normally, and their presynaptic specializations are maintained when nerve terminals are absent during later developmental stages. PMID:856835

  18. Restoration of the efferent phase of the sneeze reflex after regression of an Arnold-Chiari malformation with compression of the medulla oblongata.

    PubMed

    Songu, Murat; Can, Nazan; Gelal, Fazil

    2013-01-01

    The precise location of the sneeze center in the human brain has not been definitively identified. The aim of this report is to contribute to the effort to detect its location. We report the case of a 13-year-old boy who presented to our outpatient clinic for evaluation of an inability to sneeze. In an attempt to trigger the afferent (nasal) phase of the sneeze reflex, we first applied a cotton swab and later a silver nitrate stick to the patient's nasal mucosa. Once that was accomplished, we observed that the patient could not complete the efferent (expiratory) phase of the sneeze reflex, and thus he did not sneeze. Cranial magnetic resonance imaging (MRI) revealed that his cerebellar tonsils extended approximately 10 mm inferiorly through the foramen magnum, which represented a type I Arnold-Chiari malformation. The tonsils were noted to have compressed the posterolateral portion of the medulla oblongata. At follow-up 21 months later, we noted that the patient was able to sneeze spontaneously as well as with nasal stimulation. Repeat MRI revealed that the Arnold-Chiari malformation had undergone a spontaneous partial regression, which resulted in relief of the compression of the medulla oblongata. We believe that the patient's earlier inability to sneeze might have been attributable to the compression of the medulla oblongata by the cerebellar tonsils and that the site of the compression might represent the location of his sneeze center.

  19. Thirsty business: cell, region, and membrane specificity of aquaporins in the testis, efferent ducts, and epididymis and factors regulating their expression.

    PubMed

    Hermo, Louis; Smith, Charles E

    2011-01-01

    Water content within the male reproductive tract is stringently regulated in order to promote sperm differentiation and maturation. Aquaporins (AQP) are a family of integral membrane proteins allowing the transcellular transport of water, gases, urea, glycerol, and ions. Past studies from our lab have revealed the following. In the testis, Sertoli cells express AQP 8, whereas germ cells express AQP 7. In the efferent ducts (ED), AQP 1, 9, and 10 localize to microvilli of nonciliated cells, in addition to a basolateral staining for AQP 1, whereas AQP 1 and 10 localize to ciliated cells. AQP 7 and 11 are expressed in the ED epithelium of young but not adult rats, suggesting suppression of translation as rats age. In the adult epididymis, AQP 1 appears in endothelial cells of vascular channels and myoid cells, whereas AQP 3 delineates basal cells. In principal cells, AQP 9 and 11 appear on microvilli, whereas AQP 7 localizes to lateral then to basal plasma membranes in a region-specific manner; AQP 7 also associates with myoid cells. AQP 5 is expressed in corpus and cauda regions. Additionally, several AQPs are expressed by some but not all basal (AQP 7, 11), clear (AQP 7, 9), and halo (AQP 7, 11) cells. Regulation studies reveal a role for estrogen, androgens, and lumicrine factors. These findings indicate unique associations of AQPs with specific membrane domains in a cell type- and region-specific manner within the EDs and epididymis, as well as complex regulation patterns of expression.

  20. The auditory cross-section (AXS) test battery: A new way to study afferent/efferent relations linking body periphery (ear, voice, heart) with brainstem and cortex

    NASA Astrophysics Data System (ADS)

    Lauter, Judith

    2002-05-01

    Several noninvasive methods are available for studying the neural bases of human sensory-motor function, but their cost is prohibitive for many researchers and clinicians. The auditory cross section (AXS) test battery utilizes relatively inexpensive methods, yet yields data that are at least equivalent, if not superior in some applications, to those generated by more expensive technologies. The acronym emphasizes access to axes-the battery makes it possible to assess dynamic physiological relations along all three body-brain axes: rostro-caudal (afferent/efferent), dorso-ventral, and right-left, on an individually-specific basis, extending from cortex to the periphery. For auditory studies, a three-level physiological ear-to-cortex profile is generated, utilizing (1) quantitative electroencephalography (qEEG); (2) the repeated evoked potentials version of the auditory brainstem response (REPs/ABR); and (3) otoacoustic emissions (OAEs). Battery procedures will be explained, and sample data presented illustrating correlated multilevel changes in ear, voice, heart, brainstem, and cortex in response to circadian rhythms, and challenges with substances such as antihistamines and Ritalin. Potential applications for the battery include studies of central auditory processing, reading problems, hyperactivity, neural bases of voice and speech motor control, neurocardiology, individually-specific responses to medications, and the physiological bases of tinnitus, hyperacusis, and related treatments.

  1. Inhibition and Ultraviolet-Induced Chemical Modification of UDP-Glucose:(1,3)-β-Glucan (Callose) Synthase by Chlorpromazine 1

    PubMed Central

    Harriman, Robert W.; Shao, Ai-Ping; Wasserman, Bruce P.

    1992-01-01

    UDP-glucose:(1,3)-β-glucan (callose) synthase (CS) from storage tissue of red beet (Beta vulgaris L.) was strongly inhibited by the phenothiazine drug chlorpromazine (CPZ). In the absence of ultraviolet irradiation, CPZ was a noncompetitive inhibitor with 50% inhibitory concentration values for plasma membrane and solubilized CS of 100 and 90 μm, respectively. Both the Ca2+- and Mg2+- stimulated components of CS activity were affected. CPZ inhibition was partially alleviated at saturating levels of Ca2+, but not Mg2+, suggesting that CPZ interferes with the Ca2+-binding site of CS. Binding experiments with [14C]CPZ, however, showed strong non-specific partitioning of CPZ into the plasma membrane, providing evidence that perturbation of the membrane environment is probably the predominant mode of inhibition. Ultraviolet irradiation at 254 nm markedly enhanced CPZ inhibition, with complete activity loss following exposure to 4 μm CPZ for 2 min. Inhibition followed a pseudo-first order mechanism with at least three CPZ binding sites per CS complex. Under these conditions, [3H]CPZ was covalently incorporated into plasma membrane preparations by a free radical mechanism; however, polypeptide labeling profiles showed labeling to be largely nonspecific, with many polypeptides labeled even at [3H]CPZ levels as low as 1 μm, and with boiled membranes. Although CPZ is one of the most potent known inhibitors of CS, its use as a photolabel will require a homogeneous CS complex or establishment of conditions that protect against the interaction of CPZ with specific binding sites located on various polypeptide components of the CS complex. PMID:16653219

  2. D-(/sup 3/H)aspartate retrograde labelling of callosal and association neurons of somatosensory areas I and II of cats

    SciTech Connect

    Barbaresi, P.; Fabri, M.; Conti, F.; Manzoni, T.

    1987-09-08

    Experiments were carried out on cats to ascertain whether corticocortical neurons of somatosensory areas I (SI) and II (SII) could be labelled by retrograde axonal transport of D-(/sup 3/H)aspartate (D-(/sup 3/H)Asp). This tritiated enantiomer of the amino acid aspartate is (1) taken up selectively by axon terminals of neurons releasing aspartate and/or glutamate as excitatory neurotransmitter, (2) retrogradely transported and accumulated in perikarya, (3) not metabolized, and (4) visualized by autoradiography. A solution of D-(/sup 3/H)Asp was injected in eight cats in the trunk and forelimb zones of SI (two cats) or in the forelimb zone of SII (six cats). In order to compare the labelling patterns obtained with D-(/sup 3/H)Asp with those resulting after injection of a nonselective neuronal tracer, horseradish peroxidase (HRP) was delivered mixed with the radioactive tracer in seven of the eight cats. Furthermore, six additional animals received HRP injections in SI (three cats; trunk and forelimb zones) or SII (three cats; forelimb zone). D-(/sup 3/H)Asp retrograde labelling of perikarya was absent from the ipsilateral thalamus of all cats injected with the radioactive tracer but a dense terminal plexus of anterogradely labelled corticothalamic fibers from SI and SII was observed, overlapping the distribution area of thalamocortical neurons retrogradely labelled with HRP from the same areas. D-(/sup 3/H)Asp-labelled neurones were present in ipsilateral SII (SII-SI association neurones) in cats injected in SI. In these animals a bundle of radioactive fibres was observed in the rostral portion of the corpus callosum entering the contralateral hemisphere. There, neurones retrogradely labelled with silver grains were present in SI (SI-SI callosal neurons).

  3. Resting-state brain networks revealed by granger causal connectivity in frogs.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli.

  4. Age-related decline in Kv3.1b expression in the mouse auditory brainstem correlates with functional deficits in the medial olivocochlear efferent system.

    PubMed

    Zettel, Martha L; Zhu, Xiaoxia; O'Neill, William E; Frisina, Robert D

    2007-06-01

    Kv3.1b channel protein is widely distributed in the mammalian auditory brainstem, but studies have focused mainly on regions critical for temporal processing, including the medial nucleus of the trapezoid body (MNTB) and anteroventral cochlear nucleus (AVCN). Because temporal processing declines with age, this study was undertaken to determine if the expression of Kv3.1b likewise declines, and if changes are specific to these nuclei. Immunocytochemistry using an anti-Kv3.1b antibody was performed, and the relative optical density of cells and neuropil was determined from CBA/CaJ mice of four age groups. Declines in expression in AVCN, MNTB, and lateral superior olive (35, 26, and 23%) were found, but changes were limited to neuropil. Interestingly, cellular optical density declines were found in superior paraolivary nucleus, ventral nucleus of the trapezoid body, and lateral nucleus of the trapezoid body (24, 29, and 26%), which comprise the medial olivocochlear (MOC) feedback system. All declines occurred by middle age (15 months old). No age-related changes were found in the remaining regions of cochlear nucleus or in the inferior colliculus. Contralateral suppression of distortion-product otoacoustic emission amplitudes of age-matched littermates also declined by middle age, suggesting a correlation between Kv3.1 expression and MOC function. In search of more direct evidence for such a correlation, Kv3.1b knockout mice were examined. Knockouts show poor MOC function as compared to +/+ and +/- genotypes. Thus, Kv3.1b expression declines in MOC neurons by middle age, and these changes appear to correlate with functional declines in efferent activity in both middle-aged CBA mice and Kv3.1b knockout mice.

  5. The mammalian efferent vestibular system plays a crucial role in the high-frequency response and short-term adaptation of the vestibuloocular reflex

    PubMed Central

    Hübner, Patrick P.; Khan, Serajul I.

    2015-01-01

    Although anatomically well described, the functional role of the mammalian efferent vestibular system (EVS) remains unclear. Unlike in fish and reptiles, the mammalian EVS does not seem to play a role in modulation of primary afferent activity in anticipation of active head movements. However, it could play a role in modulating long-term mechanisms requiring plasticity such as vestibular adaptation. We measured the efficacy of vestibuloocular reflex (VOR) adaptation in α9-knockout mice. These mice carry a missense mutation of the gene encoding the α9 nicotinic acetylcholine receptor (nAChR) subunit. The α9 nAChR subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic EVS. We measured the VOR gain (eye velocity/head velocity) in 26 α9-knockout mice and 27 cba129 control mice. Mice were randomly assigned to one of three groups: gain-increase adaptation (1.5×), gain-decrease adaptation (0.5×), or no adaptation (baseline, 1×). After adaptation training (horizontal rotations at 0.5 Hz with peak velocity 20°/s), we measured the sinusoidal (0.2–10 Hz, 20–100°/s) and transient (1,500–6,000°/s2) VOR in complete darkness. α9-Knockout mice had significantly lower baseline gains compared with control mice. This difference increased with stimulus frequency (∼5% <1 Hz to ∼25% >1 Hz). Moreover, vestibular adaptation (difference in VOR gain of gain-increase and gain-decrease adaptation groups as % of gain increase) was significantly reduced in α9-knockout mice (17%) compared with control mice (53%), a reduction of ∼70%. Our results show that the loss of α9 nAChRs moderately affects the VOR but severely affects VOR adaptation, suggesting that the EVS plays a crucial role in vestibular plasticity. PMID:26424577

  6. Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): a comparison of the morphology and distribution of neurons with different efferent projections.

    PubMed

    Pakan, Janelle M P; Krueger, Kimberly; Kelcher, Erin; Cooper, Sarah; Todd, Kathryn G; Wylie, Douglas R W

    2006-03-01

    The avian nucleus lentiformis mesencephali (LM) is a visual structure involved in the optokinetic response. The LM consists of several morphologically distinct cell types. In the present study we sought to determine if different cell types had differential projections. Using retrograde tracers, we examined the morphology and distribution of LM neurons projecting to the vestibulocerebellum (VbC), inferior olive (IO), dorsal thalamus, nucleus of the basal optic root (nBOR), and midline mesencephalon. From injections into the latter two structures, small LM cells were labeled. More were localized to the lateral LM as opposed to medial LM. From injections into the dorsal thalamus, small neurons were found throughout LM. From injections into the VbC, large multipolar cells were found throughout LM. From injections into IO, a strip of medium-sized fusiform neurons along the border of the medial and lateral subnuclei was labeled. To investigate if neurons project to multiple targets we used fluorescent retrograde tracers. After injections into IO and VbC, double-labeled neurons were not observed in LM. Likewise, after injections into nBOR and IO, double-labeled neurons were not observed. Finally, we processed sections through LM for glutamic acid decarboxylase (GAD). Small neurons, mostly in the lateral LM, were labeled, suggesting that projections from LM to nBOR and midline mesencephalon are GABAergic. We conclude that two efferents of LM, VbC and IO, receive input from morphologically distinct neurons: large multipolar and medium-sized fusiform neurons, respectively. The dorsal thalamus, nBOR, and midline mesencephalon receive input from small neurons, some of which are likely GABAergic.

  7. Efferent projection from the bed nucleus of the stria terminalis suppresses activity of taste-responsive neurons in the hamster parabrachial nuclei.

    PubMed

    Li, Cheng-Shu; Cho, Young K

    2006-10-01

    Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.

  8. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  9. MedlinePlus Connect

    MedlinePlus

    ... Connect responds to requests based on diagnosis (problem) codes, medication codes, and laboratory test codes. When an EHR or patient portal submits a code request, MedlinePlus Connect returns a response that includes ...

  10. Weakly connected neural nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1990-01-01

    A new neural network architecture is proposed based upon effects of non-Lipschitzian dynamics. The network is fully connected, but these connections are active only during vanishingly short time periods. The advantages of this architecture are discussed.

  11. Power connect safety and connection interlock

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1992-01-01

    A power connect safety and connection interlock system is shown for use with inverters and other DC loads (16) which include capacitor filter banks (14) at their DC inputs. A safety circuit (20) operates a spring (26) biased, solenoid (22) driven mechanical connection interference (24) which prevents mating and therefore electrical connection between the power contactor halves (11, 13) of the main power contacts (12) until the capacitor bank is safely precharged through auxiliary contacts (18). When the DC load (16) is shut down, the capacitor bank (14) is automatically discharged through a discharging power resistor (66) by a MOSFET transistor (60) through a discharging power resistor (66) only when both the main power contacts and auxiliary contacts are disconnected.

  12. Adaptive algorithms to map how brain trauma affects anatomical connectivity in children

    NASA Astrophysics Data System (ADS)

    Dennis, Emily L.; Prasad, Gautam; Babikian, Talin; Kernan, Claudia; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-12-01

    Deficits in white matter (WM) integrity occur following traumatic brain injury (TBI), and often persist long after the visible scars have healed. Heterogeneity in injury types and locations can complicate analyses, making it harder to discover common biomarkers for tracking recovery. Here we apply a newly developed adaptive connectivity method, EPIC (evolving partitions to improve connectomics) to identify differences in structural connectivity that persist longitudinally. This data comes from a longitudinal study, in which we scanned participants (aged 8-19 years) with anatomical and diffusion MRI in both the post-acute and chronic phases (1-6 months and 13-19 months post-injury). To identify patterns of abnormal connectivity, we trained a model on data from 32 TBI patients in the post-acute phase and 45 well-matched healthy controls, reducing an initial 68x68 connectivity matrix to a 14x14 matrix. We then applied this reduced parcellation to the chronic data in participants who had returned for their chronic assessment (21 TBI and 26 healthy controls) and tested for group differences. We found significant differences in two connections, comprising callosal fibers and long anterior-posterior fibers, with the TBI group showing increased fiber density relative to controls. Longitudinal analysis revealed that these were connections that were decreasing over time in the healthy controls, as is a common developmental phenomenon, but they were increasing in the TBI group. While we cannot definitively tell why this may occur with our current data, this study provides targets for longitudinal tracking, and poses questions for future investigation.

  13. Further studies on the cortical connections of the Tegu lizard.

    PubMed

    Lohman, A H; Van Woerden-Verkley, I

    1976-02-13

    The efferent fiber connections of the caudal half of the cerebral cortex, the lateral cortex and the pallial thickening were studied using the Nauta-Gygax and Fink-Heimer techniques. The following observations were made, (1) In the caudal half of the hemisphere corticoseptal and corticohypothalamic fibers originate from the small-celled part of the mediodorsal cortex and the thickened caudal part of the dorsal cortex in its whole mediolateral extent. (2) The dorsal cortex in the middle of the hemisphere projects by way of both the pre- and postcommissural fornices. Its rostral pole distributes its fibers solely to the postcommissural fornix, whereas its caudal part projects via the precommissural fornix. (3) The posterior pallial commissure carries fibers that arise caudally in the small-celled part of the mediodorsal cortex and terminate in the contralateral ventral cortex. (4) Projections to the dorsal striatum originate from the lateral cortex, the dorsal cortex and the superficial portion of the pallial thickening. In addition, the latter two zones project to the nucleus accumbens. (5) The deep portion of the pallial thickening projects to the ventral striatum.

  14. Network connectivity value.

    PubMed

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-02-23

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant.

  15. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves.

    PubMed

    Kopp, Ulla C; Cicha, Michael Z; Smith, Lori A; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hökfelt, Tomas

    2011-02-01

    Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α(1)-and α(2)-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α(2)-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α(2A)-AR and α(2C)-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α(2)-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α(2)-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α(2)-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake.

  16. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves

    PubMed Central

    Cicha, Michael Z.; Smith, Lori A.; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hökfelt, Tomas

    2011-01-01

    Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α1-and α2-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α2-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α2A-AR and α2C-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α2-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α2-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α2-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake. PMID:21106912

  17. Connecting American Manufacturers (CAM)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-TR-2013-0221 CONNECTING AMERICAN MANUFACTURERS (CAM) Nainesh B. Rathod Imaginestics, LLC SEPTEMBER 2013...SUBTITLE CONNECTING AMERICAN MANUFACTURERS (CAM) 5a. CONTRACT NUMBER FA8650-12-C-5515 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63680F 6...Connecting American Manufacturing (CAM) initiative sought to improve participation of small manufacturers in building components for the military by

  18. 78 FR 55684 - ConnectED Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... content into the curriculum; and as classroom management software tools move everything from homework... consider promising strategies for achieving the President's goal of connecting virtually all K-12 students... policies and consider the most promising strategies for equipping K-12 schools for digital learning....

  19. Asymptotically hyperbolic connections

    NASA Astrophysics Data System (ADS)

    Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2016-09-01

    General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.

  20. Chip connectivity verification program

    NASA Technical Reports Server (NTRS)

    Riley, Josh (Inventor); Patterson, George (Inventor)

    1999-01-01

    A method for testing electrical connectivity between conductive structures on a chip that is preferably layered with conductive and nonconductive layers. The method includes determining the layer on which each structure is located and defining the perimeter of each structure. Conductive layer connections between each of the layers are determined, and, for each structure, the points of intersection between the perimeter of that structure and the perimeter of each other structure on the chip are also determined. Finally, electrical connections between the structures are determined using the points of intersection and the conductive layer connections.

  1. Unitary attention in callosal agenesis.

    PubMed

    Dell'acqua, R; Jolicoeur, P; Lassonde, M; Angrilli, A; De Bastiani, P; Pascali, A

    2005-01-01

    The interhemispheric organisation of two specific components of attention was investigated in three patients affected by partial or complete agenesis of the corpus callosum. A visuospatial component of attention was explored using a visual search paradigm in which target and distractors were displayed either unilaterally within a single visual hemifield, or bilaterally across both visual hemifields in light of prior work indicating that split-brain patients were twice as fast to scan bilateral displays compared to unilateral displays. A central component of attention was explored using a psychological refractory period (PRP) paradigm in which two visual stimuli were presented laterally at various stimulus onset asynchronies (SOAs), with each stimulus associated with a different speeded two-alternative choice task. The stimulus-response compatibility in the second task was systematically manipulated in this paradigm, in light of prior work indicating that split-brain patients exhibited a close-to-normal PRP effect (i.e., slowing of the second response as SOA is decreased), with, however, abnormally decreasing effects of the manipulation of the response mapping on the second task speed as SOA was decreased. The present results showed that, although generally slower than normals in carrying out the two tasks, the performance of each of the three acallosal patients was formally equivalent to the performance of a matched control group of normal individuals. In the visual search task, the search rate of the acallosal patients was the same for unilateral and bilateral displays. Furthermore, in the PRP task, there was more mutual interference between the lateralised tasks for the acallosal patients than that evidenced in the performance of the matched control group. It is concluded that the visuospatial component and the central component of attention in agenesis of the corpus callosum are interhemispherically integrated systems.

  2. The hippocampal continuation (indusium griseum): its connectivity in the hedgehog tenrec and its status within the hippocampal formation of higher vertebrates.

    PubMed

    Künzle, H

    2004-06-01

    The indusium griseum and its precallosal extension are usually considered poorly differentiated portions of the hippocampus. The connections of this so-called 'hippocampal continuation' (HCt) have only been analyzed so far in rodents, which show one of the least-developed HCt among mammals. In this study we have investigated the relatively well differentiated HCt of the small Madagascan hedgehog tenrec (Afrotheria) using histochemical and axonal transport techniques. The tenrec's HCt shows associative and commissural connections. It receives laminar specific afferents from the entorhinal cortex (collaterals from neurons projecting to the dentate area), the anterior and posterior piriform cortices as well as the supramammillary region. A few fibers also originate in the olfactory bulb and the dentate hilus. Among these input areas only the dentate hilus receives a significant reciprocal projection from the HCt. Additional HCt efferents are directed to the subcallosal septum (presumed septohippocampal nucleus), the olfactory tubercle and the islands of Calleja. With the exception of the supramammillary afferents and possible efferents to the supraoptic nucleus we failed, however, to demonstrate distinct thalamic and hypothalamic connections. A comparison of the connections of the HCt with those of the hippocampal subdivisions reveal some similarity between the HCt and the dentate area, but the overall pattern of connectivity does not permit a correlation of the HCt with the dentate area, let alone the cornu ammonis and the subiculum. This view is supported by histochemical findings in the tenrec (immunoreactivity to calcium binding proteins) as well as the rat (data taken from the literature). The HCt is therefore considered a region in its own right within the hippocampal formation. It may be tentatively correlated with the medial cortex of reptiles, while the dentate area and the cornu ammonis may have evolved de novo in mammals.

  3. Reading and Writing Connections.

    ERIC Educational Resources Information Center

    Mason, Jana M., Ed.

    This collection of papers, from a conference on reading and writing connections held at the University of Illinois in October 1986, reflects the value of demonstrating connections between reading instruction and writing. The book shows practitioners how writing can be blended with reading instruction and how writing activities can be used not just…

  4. Real World Graph Connectivity

    ERIC Educational Resources Information Center

    Lind, Joy; Narayan, Darren

    2009-01-01

    We present the topic of graph connectivity along with a famous theorem of Menger in the real-world setting of the national computer network infrastructure of "National LambdaRail". We include a set of exercises where students reinforce their understanding of graph connectivity by analysing the "National LambdaRail" network. Finally, we give…

  5. Artificial limb connection

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1974-01-01

    Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.

  6. Caldecott Connections to Science.

    ERIC Educational Resources Information Center

    Glandon, Shan

    This volume brings award-winning literature to all areas of the science curriculum. The lesson plan format includes the four stages of engagement, elaboration, exploration, and connection. Each story is followed by activities that make connections between literature, science, and the arts. Chapters include: (1) "Frog Went A-Courtin',"…

  7. Connecting Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  8. Making Connections with Estimation.

    ERIC Educational Resources Information Center

    Lobato, Joanne E.

    1993-01-01

    Describes four methods to structure estimation activities that enable students to make connections between their understanding of numbers and extensions of those concepts to estimating. Presents activities that connect estimation with other curricular areas, other mathematical topics, and real-world applications. (MDH)

  9. Connectivity of the amygdala, piriform, and orbitofrontal cortex during olfactory stimulation: a functional MRI study.

    PubMed

    Nigri, Anna; Ferraro, Stefania; D'Incerti, Ludovico; Critchley, Hugo D; Bruzzone, Maria Grazia; Minati, Ludovico

    2013-03-06

    The majority of existing functional MRI studies on olfactory perception have addressed the relationship between stimulus features and the intensity of activity in separate regions considered in isolation. However, anatomical studies as well as neurophysiological recordings in rats and insects suggest that odor features may also be represented in a sparse manner through the simultaneous activity of multiple cortical areas interacting as a network. Here, we aimed to map the interdependence of neural activity among regions of the human brain, representing functional connectivity, during passive smelling. Seventeen healthy participants were scanned while performing a blocked-design task alternating exposure to two unpleasant odorants and breathing fresh air. High efferent connectivity was detected for the piriform cortex and the amygdala bilaterally. By contrast, the medial orbitofrontal cortex was characterized by high afferent connectivity, notably in the absence of an overall change in the intensity of hemodynamic activity during olfactory stimulation. Our results suggest that, even in the context of an elementary task, information on olfactory stimuli is scattered by the amygdala and piriform cortex onto an anatomically sparse representation and then gathered and integrated in the medial orbitofrontal cortex.

  10. A General Approach for Quantifying Nonlinear Connectivity in the Nervous System Based on Phase Coupling.

    PubMed

    Yang, Yuan; Solis-Escalante, Teodoro; Yao, Jun; Daffertshofer, Andreas; Schouten, Alfred C; van der Helm, Frans C T

    2016-02-01

    Interaction between distant neuronal populations is essential for communication within the nervous system and can occur as a highly nonlinear process. To better understand the functional role of neural interactions, it is important to quantify the nonlinear connectivity in the nervous system. We introduce a general approach to measure nonlinear connectivity through phase coupling: the multi-spectral phase coherence (MSPC). Using simulated data, we compare MSPC with existing phase coupling measures, namely n : m synchronization index and bi-phase locking value. MSPC provides a system description, including (i) the order of the nonlinearity, (ii) the direction of interaction, (iii) the time delay in the system, and both (iv) harmonic and (v) intermodulation coupling beyond the second order; which are only partly revealed by other methods. We apply MSPC to analyze data from a motor control experiment, where subjects performed isotonic wrist flexions while receiving movement perturbations. MSPC between the perturbation, EEG and EMG was calculated. Our results reveal directional nonlinear connectivity in the afferent and efferent pathways, as well as the time delay (43 ± 8 ms) between the perturbation and the brain response. In conclusion, MSPC is a novel approach capable to assess high-order nonlinear interaction and timing in the nervous system.

  11. Quantifying bicycle network connectivity.

    PubMed

    Lowry, Michael; Loh, Tracy Hadden

    2017-02-01

    The intent of this study was to compare bicycle network connectivity for different types of bicyclists and different neighborhoods. Connectivity was defined as the ability to reach important destinations, such as grocery stores, banks, and elementary schools, via pathways or roads with low vehicle volumes and low speed limits. The analysis was conducted for 28 neighborhoods in Seattle, Washington under existing conditions and for a proposed bicycle master plan, which when complete will provide over 700 new bicycle facilities, including protected bike lanes, neighborhood greenways, and multi-use trails. The results showed different levels of connectivity across neighborhoods and for different types of bicyclists. Certain projects were shown to improve connectivity differently for confident and non-confident bicyclists. The analysis showed a positive correlation between connectivity and observed utilitarian bicycle trips. To improve connectivity for the majority of bicyclists, planners and policy-makers should provide bicycle facilities that allow immediate, low-stress access to the street network, such as neighborhood greenways. The analysis also suggests that policies and programs that build confidence for bicycling could greatly increase connectivity.

  12. Do Not Only Connect

    NASA Astrophysics Data System (ADS)

    Kirkby, M. J.

    2012-04-01

    Although the concept of connectivity has been increasingly canvassed in the last 10 years, there have been relatively few, and sometimes contradictory operational definitions. Connectivity can be reasonably associated with water flow, sediment transport and ecological habitats, and either generally or along specific pathways, for example in hyporheic exchanges, and inherits a legacy from concepts such as contributing area and hydraulic routing. Here we focus on a single mode, for overland flow, but there remain a bewildering range of operational definitions. Connectivity between two points A and B, on a flow line, can be described as a nominal variable (presence or absence of connection), as a scalar (time delay or breakthrough volume), or as increasingly complex vectors (hydrograph at B for given input at A), even at steady state for a conservative system. Detailed descriptions of dynamic connectivity between adjacent points across an area form one critical ingredient of fine scale process-based models, such as CRUM or MAHLERAN. In this way, connectivity provides a valuable way of conceptualizing the local persistence and continuity of overland flow, particularly in semi-arid areas with short bursts of rainfall and patchy surface properties. For time-spans over which the soils and topography can respond, the division between structural and functional connectivity is also valuable; structure providing a necessary pre-condition for functional connection, and function a necessary condition for change in structure. Beyond the strictly local scale, we would like to collapse the detail of overland flow connectivity into summary index variables, providing one or a few parameters that, for example, scale the response of a hillslope or small catchment to storm rainfall. Candidate indices include average travel times from runoff generating cells, average residence times and contributing areas, all potentially time-varying in response to catchment condition and storm

  13. Covariant magnetic connection hypersurfaces

    NASA Astrophysics Data System (ADS)

    Pegoraro, F.

    2016-04-01

    > In the single fluid, non-relativistic, ideal magnetohydrodynamic (MHD) plasma description, magnetic field lines play a fundamental role by defining dynamically preserved `magnetic connections' between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D magnetic connection hypersurfaces in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when .

  14. Nurturing Deep Connections.

    ERIC Educational Resources Information Center

    Kessler, Rachael

    2002-01-01

    Argues that the missing ingredient in school reform is soul, that is, deep connections among students, teachers, and administrators. Discusses five principles of leadership with soul: Personalize, pacing, permission, protection, and paradox. (PKP)

  15. Stroke Connection Magazine

    MedlinePlus

    ... edition or on the Stroke Connection website. The Poetry of Survival Poetry uses words to process emotions, and stroke appears to bring up plenty of emotions. Read the poetry of five survivors as well as guidance from ...

  16. Connecting with climate science

    NASA Astrophysics Data System (ADS)

    2017-03-01

    Protecting science-based policymaking requires engaging the public, not politicians. Cultural institutions and the arts provide non-partisan platforms for communication that can connect scientific climate change data to people's lives.

  17. Can we measure connectivity?

    NASA Astrophysics Data System (ADS)

    Brazier, Richard; Vericat, Damia; Cerda, Artemi; Brardinoni, Francesco; Batalla, Ramon; Masselink, Rens; Wittenberg, Lea; Nadal Romero, Estela; López-Tarazón, José; Estrany, Joan; Keesstra, Saskia

    2015-04-01

    Whilst the term 'connectivity' in hydrological and sediment-based research is becoming increasing well-known, it is neither used consistently in the existing literature, nor is it clear from that literature, that the connectivity of a landscape, or part of a landscape can be measured. However, it is argued that understanding how well critical source areas of water or sediment are connected to receiving surface waters, may be an essential step towards improvement of land management to mitigate flooding, soil erosion and water quality problems. The first part of this paper, therefore, explores what is currently meant by the term connectivity; addressing the differences between structural and functional, or process-based connectivity, specifically with reference to the movement of water and sediment through an ecosystem. We argue that most existing studies do not measure connectivity. Instead, they address only part of the story. Existing work may describe structural change in a landscape, which can perhaps elucidate the potential for connectivity to occur, or indeed the emergent spatial properties of an ecosystem, but it rarely quantifies the connectivity of an ecosystem in a process-based manner through time. Alternatively, a great deal of work describes fluxes of water and sediment at (sometimes multiple) points in a landscape and infers connectivity of the system via analysis of time series data; from rainfall peak to hydrograph peak or start of sediment flux until peak sediment flux within an event. Such data are doubtless useful to understand catchment function, but alone, they do not provide evidence that quantifies (for example) how well connected sediment sources are to the outlets of the catchments from which they flux. Finally, there are many examples of water and particularly sediment tracing studies, which attempt to link, either directly or indirectly water or sediment sources with their sinks (which might more usefully be termed temporary stores

  18. NASA CONNECT: Atmospheric Detectives

    NASA Technical Reports Server (NTRS)

    1999-01-01

    'The Measurement of All Things: Atmospheric Detectives' is the second of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'The Measurement of All Things: Atmospheric Detectives' students will learn how scientists use satellites, lasers, optical detectors, and wavelengths of light to measure the presence of certain gaseous elements, compounds, and aerosols in the Earth's atmosphere.

  19. [Connective tissue and inflammation].

    PubMed

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  20. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  1. Heritable Disorders of Connective Tissue

    MedlinePlus

    ... tissue, and in the special functioning of certain tissues. Connective tissue is made up of dozens of proteins, ... as “X-linked.” Who Gets Heritable Disorders of Connective Tissue? Heritable disorders of connective tissue can affect people ...

  2. Two phenotypically distinct T cells are involved in ultraviolet-irradiated urocanic acid-induced suppression of the efferent delayed-type hypersensitivity response to herpes simplex virus, type 1 in vivo

    SciTech Connect

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.

    1987-09-01

    When UVB-irradiated urocanic acid, the putative photoreceptor/mediator for UVB suppression, is administered to mice it induces a dose-dependent suppression of the delayed-type hypersensitivity response to herpes simplex virus, type 1 (HSV-1), of similar magnitude to that induced by UV irradiation of mice. In this study, the efferent suppression of delayed-type hypersensitivity by UV-irradiated urocanic acid is demonstrated to be due to 2 phenotypically distinct T cells, (Thy1+, L3T4-, Ly2+) and (Thy1+, L3T4+, Ly2-). The suppression is specific for HSV-1. This situation parallels the generation of 2 distinct T-suppressor cells for HSV-1 by UV irradiation of mice and provides further evidence for the involvement of urocanic acid in the generation of UVB suppression.

  3. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    PubMed

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  4. Underwater connection apparatus

    SciTech Connect

    Baugh, B.F.

    1987-02-10

    This patent describes, in a subsea system for the production of oil or gas from subsurface formations or the injection of liquids or gases into subsurface formations, a subsea system for landing and securing ocean floor flowlines to the system, comprising a flowline receiving structure having two slide plates which are space apart, a first circular hole in each side plate on a first centerline, and a circular projection on each side plate about the first centerline; a flowline end connection suitable for attaching directly to the flowlines before the flowlines are lowered into the water. It includes a first spring loaded pin on each side of the flowline end connection on a second centerline with the second centerline being at right angles to the centerline of the flowlines, a funnel shaped means with a cylindrical stop surface at the bottom of the funnel shaped area on each side of the flowline end connection with the cylindrical stop surface about the second centerline, and circular fixed pin members on each side of the flowline end connection for attachment of pulling tool means also about the second centerline; and a pulling tool means with a guidance nose means including attachment means for engaging the circular fixed pin members and a connection to a wire rope or the such like, a receptacle means for receiving and positioning the guidance nose means, and a wire rope means which can be tensioned to pull the guidance nose means toward and into the receptacle means.

  5. Inert electrode connection

    SciTech Connect

    Weyand, John D.; Woods, Robert W.; DeYoung, David H.; Ray, Siba P.

    1985-01-01

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000-20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1200.degree.-1500.degree. C.

  6. Inert electrode connection

    DOEpatents

    Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.

    1985-02-19

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.

  7. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  8. An update on the connections of the ventral mesencephalic dopaminergic complex

    PubMed Central

    Yetnikoff, Leora; Lavezzi, Heather N.; Reichard, Rhett A.; Zahm, Daniel S.

    2014-01-01

    This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of masssive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including human. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject. PMID:24735820

  9. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Sarkar, S.; Pandejee, Grishma Mehta; Henderson, J. A.

    2014-07-01

    Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.

  10. Parabolically connected subgroups

    SciTech Connect

    Netai, Igor V

    2011-08-31

    All reductive spherical subgroups of the group SL(n) are found for which the intersections with every parabolic subgroup of SL(n) are connected. This condition guarantees that open equivariant embeddings of the corresponding homogeneous spaces into Moishezon spaces are algebraic. Bibliography: 6 titles.

  11. Making Connections through Conversation

    ERIC Educational Resources Information Center

    McGough, Julie; Nyberg, Lisa

    2013-01-01

    Children do not always see a connection between themselves and other living things. Sometimes they do not even realize that they, too, are animals and represent a link in the food chain. By obtaining, evaluating, and communicating information (Scientific and Engineering Practice #8 in "A Framework for K-12 Science Education" [NRC 2012,…

  12. Connections that Count

    ERIC Educational Resources Information Center

    Lloyd-Zannini, Lou

    2012-01-01

    What can parents and educators of gifted children do to help them build the connections that will allow them to thrive? In this article, the author suggests a few practical and simple things that parents and educators of gifted children might want to consider as they live and work with them day by day. He breaks those suggestions out into two…

  13. From Connectivity to Interoperability.

    ERIC Educational Resources Information Center

    Moressi, William J.; McFadden, C. Brown

    1989-01-01

    The Academic Computing Center at Winthrop College has gone beyond simple connectivity in linking its three local area networks to each other and the campus minicomputer. The environmental impact of the installation of bridges and gateways on systems, personnel, and end users is described. (MLW)

  14. Technology and Internet Connections.

    ERIC Educational Resources Information Center

    Allen, Denise; Lindroth, Linda

    1996-01-01

    Suggests that teachers can use computer software and Internet connections to enhance curriculum and capitalize student's natural interest in sports and sports figures. Provides a list of activities that students can do in relation to the Olympic games and gives information on how technology can assist in such activities. Appropriate Internet…

  15. Making News Connections.

    ERIC Educational Resources Information Center

    Swiderek, Bobbi

    1998-01-01

    Describes how one teacher uses news articles to teach connections between the present-day real world and the books that her students read. Notes that her intent is to help readers transfer concepts from one domain (their reading) to another (real life). Offers the example of how this was done with the book "The Giver" by Lois Lowry. (SR)

  16. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  17. The CORALS Connection

    ERIC Educational Resources Information Center

    Plankis, Brian; Klein, Carolyn

    2010-01-01

    The Ocean, Reefs, Aquariums, Literacy, and Stewardship (CORALS) research program helps students connect global environmental issues to local concerns and personal choices. During the 18-week program, students strengthen their understanding of coral reef decline through a classroom aquarium activity, communicate with science experts, and create…

  18. A School Connectivity Primer.

    ERIC Educational Resources Information Center

    O'Donovan, Eamonn

    2000-01-01

    Provides an overview of school networking options and explores what speedier broadband technologies mean for education. Topics include Ethernet; wireless options for connection to the Internet; local area networks; wide area networks; phone lines; satellite access; cable modems; digital subscriber line (DSL); and funding networks through the…

  19. Reading and Writing Connections.

    ERIC Educational Resources Information Center

    Fleming, Margaret, Ed.

    1985-01-01

    Drawing from both research and practice, the articles in this collection address a number of issues related to the reading and writing connection. The 24 articles are grouped into five sections: "Reading, Writing, and Thinking"; "The Parts and the Whole"; "Reading for Writing"; "Contexts for Literacy"; and…

  20. Long-Distance Connection

    ERIC Educational Resources Information Center

    Clift, Kate

    2010-01-01

    Transient populations, cultural diversity, language barriers, competing loyalties, and geographic separation are just some of the challenges international schools face in communicating and connecting with their alumni. And these issues are not going to get any easier as the sector grows. Communicating effectively with large, diverse groups of…

  1. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  2. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  3. Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots

    PubMed Central

    2013-01-01

    Background Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is their source of nutrients throughout their life. A transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that gene expression in the syncytium is different from that of the root with thousands of genes upregulated or downregulated. Among the downregulated genes are many which code for defense-related proteins. One gene which is strongly downregulated codes for the ethylene response transcription factor RAP2.6. The genome of Arabidopsis contains 122 ERF transcription factor genes which are involved in a variety of developmental and stress responses. Results Expression of RAP2.6 was studied with RT-PCR and a promoter::GUS line. During normal growth conditions the gene was expressed especially in roots and stems. It was inducible by Pseudomonas syringae but downregulated in syncytia from a very early time point on. Overexpression of the gene enhanced the resistance against H. schachtii which was seen by a lower number of nematodes developing on these plants as well as smaller syncytia and smaller female nematodes. A T-DNA mutant had a reduced RAP2.6 transcript level but this did not further increase the susceptibility against H. schachtii. Neither overexpression lines nor mutants had an effect on P. syringae. Overexpression of RAP2.6 led to an elevated expression of JA-responsive genes during early time points after infection by H. schachtii. Syncytia developing on overexpression lines showed enhanced deposition of callose. Conclusions Our results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6. It seems likely that the nematodes use effectors to actively downregulate the expression of this and other defense-related genes to avoid resistance responses of the host plant. Enhanced resistance of RAP2.6 overexpression lines seemed to be due to enhanced

  4. Flexible swivel connection

    DOEpatents

    Hoh, J.C.

    1985-02-19

    A flexible swivel boot connector for connecting a first boot shield section to a second boot shield section, both first and second boot sections having openings therethrough, the second boot section having at least two adjacent accordian folds at the end having the opening, the second boot section being positioned through the opening of the first boot section such that a first of the accordian folds is within the first boot section and a second of the accordian folds is outside of the first boot, includes first and second annular discs, the first disc being positioned within and across the first accordian fold, the second disc being positioned within and across the second accordian fold, such that the first boot section is moveably and rigidly connected between the first and second accordian folds of the second boot section.

  5. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  6. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  7. Cutter Connectivity Bandwidth Study

    NASA Astrophysics Data System (ADS)

    2002-10-01

    The goal of this study was to determine how much bandwidth is required for cutters to meet emerging data transfer requirements. The Cutter Connectivity Business Solutions Team with guidance front the Commandant's 5 Innovation Council sponsored this study. Today, many Coast Guard administrative and business functions are being conducted via electronic means. Although our larger cutters can establish part-time connectivity using commercial satellite communications (SATCOM) while underway, there are numerous complaints regarding poor application performance. Additionally, smaller cutters do not have any standard means of underway connectivity. The R&D study shows the most important factor affecting web performance and enterprise applications onboard cutters was latency. Latency describes the time it takes the signal to reach the satellite and come back down through space. The latency due to use of higher orbit satellites is causing poor application performance and inefficient use of expensive SATCOM links. To improve performance, the CC must, (1) reduce latency by using alternate communications links such as low-earth orbit satellites, (2) tailor applications to the SATCOM link and/or (3) optimize protocols used for data communication to minimize time required by present applications to establish communications between the user and the host systems.

  8. Connective Tissue Ulcers

    PubMed Central

    Dabiri, Ganary; Falanga, Vincent

    2013-01-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren’s syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. PMID:23756459

  9. Neuron-Microdevice Connections.

    NASA Astrophysics Data System (ADS)

    Regehr, Wade Gordon

    1988-12-01

    A new method for long-term recording and stimulation applicable to cultured neurons has been developed. Silicon -based microelectrodes have been fabricated using integrated -circuit technology and micromachining. The chronic connection is made by positioning the electrode tip into contact with the cell body, and gluing the device to the bottom of the culture dish. These "diving-board electrodes" consist of an insulated lead exposed only at the tip sealed to the cell body of a cultured neuron: A two-way electrical connection to Helisoma B19 neurons has been established for up to four days. Preliminary experiments with cultured superior cervical ganglion neurons indicate diving-board electrodes can be used with cultured neurons larger than 20mum in diameter. In a related technique Helisoma neurons grown on a special dish containing a multielectrode array were found to seal to the dish electrodes, establishing similar long-term connections. This capability will make it possible to conduct experiments with either diving-board electrodes or dishes that cannot be performed using conventional techniques.

  10. Connections of the terminal nerve and the olfactory system in two galeomorph sharks: an experimental study using a carbocyanine dye.

    PubMed

    Yáñez, Julián; Folgueira, Mónica; Köhler, Elisabeth; Martínez, Cristina; Anadón, Ramón

    2011-11-01

    In elasmobranchs the terminal nerve courses separately from the olfactory nerve. This characteristic makes elasmobranchs excellent models to study the anatomy and function of these two systems. Here we study the neural connections of the terminal nerve and olfactory system in two sharks by experimental tracing methods using carbocyanine dyes. The main projections from the terminal nerve system (consisting of three ganglia in Scyliorhinus canicula) course ipsilaterally to the medial septal nucleus and bilaterally to the ventromedial telencephalic pallial region. Minor terminal nerve projections were also traced ipsilaterally to diencephalic and mesencephalic levels. With regard to the olfactory connections, our results show that in sharks, unlike ray-finned fishes, the primary olfactory projections are mainly restricted to the olfactory bulb. We also performed tracer application to the olfactory bulb in order to analyze the possible central neuroanatomical relationship between the projections of the terminal nerve and the olfactory bulb. In these experiments labeled neurons and fibers were observed from telencephalic to caudal mesencephalic regions. However, we observe almost no overlap between the two systems at central levels. The afferent and the putatively efferent connections of the dogfish olfactory bulb are compared with those previously reported in other elasmobranchs. The significance of the extratelencephalic secondary olfactory projections is also discussed in a comparative context.

  11. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  12. English and Film: Connecting Children to the World

    ERIC Educational Resources Information Center

    Reid, Mark

    2015-01-01

    This paper explores the processes behind drawing different kinds of inference from a single short film. It examines the range knowledge that groups of viewers are able to derive from listening to film sound, and from summarizing the work of a whole film, using the concepts of "aesthetic" and "efferent" reading set out by Louise…

  13. Piston and connecting rod assembly

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  14. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  15. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  16. Power converter connection configuration

    SciTech Connect

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  17. Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat.

    PubMed

    Groenewegen, H J; Ahlenius, S; Haber, S N; Kowall, N W; Nauta, W J

    1986-07-01

    The organization of afferent and efferent connections of the interpeduncular nucleus (IP) has been examined in correlation with its subnuclear parcellation by using anterograde and retrograde tracing techniques. Based on Nissl, myelin, and acetylcholinesterase staining five paired and three unpaired IP subnuclei are distinguished. The unpaired division includes the rostral subnucleus (IP-R), the apical subnucleus (IP-A), and the central subnucleus (IP-C). The subnuclei represented bilaterally are the paramedian dorsal medial (IP-DM) and intermediate subnuclei (IP-I) and the laterally placed rostral lateral (IP-RL), dorsal lateral (IP-DL), and lateral subnuclei (IP-L). Immunohistochemical techniques showed cell bodies and fibers and terminals immunoreactive for substance P, leu-enkephalin, met-enkephalin, or serotonin to be differentially distributed over the different IP subnuclei. Substance P-positive perikarya were found in IP-R, enkephalin neurons in IP-R, IP-A, and the caudodorsal part of IP-C, and serotonin-containing cell bodies in IP-A and the caudal part of IP-L. Efferent IP projections were studied both by injecting tritiated leucine in IP and by injecting HRP or WGA-HRP in the presumed termination areas. The results indicate that the major outflow of IP is directed caudal-ward to the median and dorsal raphe nuclei and the caudal part of the central gray substance, i.e., the dorsal tegmental region. The projection appears to terminate mainly in the raphe nuclei, around the ventral and dorsal tegmental nuclei of Gudden, and in the dorsolateral tegmental nucleus. The descending projection to the dorsal tegmental region originates in virtually all IP subnuclei, but the main contribution comes from IP-R and the lateral subnuclei IP-RL, IP-DL, and IP-L. Sparser projections to the dorsal tegmental region originate in IP-C and IP-I, whereas the contribution of IP-A is only minimal. The projections from IP-R are mainly ipsilateral and those from IP-DM are mainly

  18. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies.

  19. Finding significantly connected voxels based on histograms of connection strengths

    NASA Astrophysics Data System (ADS)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-03-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null-distribution and significance is determined using the false discovery rate (FDR). Segmentations are based on significantly connected voxels and their FDR. In this work we focus on the thalamus and the target regions were chosen by dividing the cortex into a prefrontal/temporal zone, motor zone, somatosensory zone and a parieto-occipital zone. The obtained segmentations consistently show a sparse number of significantly connected voxels that are located near the surface of the anterior thalamus over a population of 38 subjects.

  20. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus

    SciTech Connect

    Schwaber, J.S.; Kapp, B.S.; Higgins, G.A.; Rapp, P.R.

    1982-10-01

    Although the amygdala complex has long been known to exert a profound influence on cardiovascular activity, the neuronal and connectional substrate mediating these influences remains unclear. This paper describes a direct amygdaloid projection to medullary sensory and motor structures involved in cardiovascular regulation, the nucleus of the solitary tract (NTS) and the dorsal motor nucleus (DVN), by the use of autoradiographic anterograde transport and retrograde horseradish peroxidase (HRP) techniques in rabbits. Since all of these structures are highly heterogeneous structurally and functionally, details of the specific areas of the neuronal origin and efferent distribution of the projection were examined in relation to these features and with reference to a cytoarchitecture description of the relevant forebrain regions in the rabbit. The existence of such an extensive projection system connecting these specific regions found in these studies is significant evidence in support to its potential for participation in the amygdaloid expression of cardiovascular influences and has important implications for the cellular analysis of the functional role of these influences.

  1. The chitin connection.

    PubMed

    Goldman, David L; Vicencio, Alfin G

    2012-01-01

    Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma.

  2. Connected-Sea Partons

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei; Chang, Wen-Chen; Cheng, Hai-Yang; Peng, Jen-Chieh

    2012-12-01

    According to the path-integral formalism of the hadronic tensor, the nucleon sea contains two distinct components called the connected sea (CS) and the disconnected sea (DS). We discuss how the CS and DS are accessed in the lattice QCD calculation of the moments of the parton distributions. We show that the CS and DS components of u¯(x)+d¯(x) can be extracted by using recent data on the strangeness parton distribution, the CT10 global fit, and the lattice result of the ratio of the strange to u(d) moments in the disconnected insertion. The extracted CS and DS for u¯(x)+d¯(x) have a distinct Bjorken x dependence in qualitative agreement with expectation. The analysis also shows that the momentum fraction of u¯(x)+d¯(x) is about equally divided between the CS and DS at Q2=2.5GeV2. Implications for the future global analysis of parton distributions are presented.

  3. Optimal Degrees of Synaptic Connectivity.

    PubMed

    Litwin-Kumar, Ashok; Harris, Kameron Decker; Axel, Richard; Sompolinsky, Haim; Abbott, L F

    2017-03-08

    Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits, including the insect mushroom body, also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs each neuron receives and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density.

  4. Anonymous Connections and Onion Routing

    DTIC Science & Technology

    1998-01-01

    Anonymous Connections and Onion Routing Michael G. Reed, Paul F. Syverson, and David M. Goldschlag Naval Research Laboratory Abstract Onion Routing...eavesdropping and trac analysis. Onion routing’s anonymous connections are bidirectional and near real- time, and can be used anywhere a socket connection...can be used. Any identifying information must be in the data stream carried over an anonymous connec- tion. An onion is a data structure that is

  5. Family Connections: Building Connections among Home, School, and Community

    ERIC Educational Resources Information Center

    Dikkers, Amy Garrett

    2013-01-01

    Recent research on parental involvement has explored connections between parental involvement in school and children's academic achievement. While many schools have active parent organizations and a base of parents who offer additional support, others struggle to make connections with their parents or community members. Even in places with active…

  6. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  7. Undiagnosed connective tissue diseases

    PubMed Central

    Cavagna, Lorenzo; Codullo, Veronica; Ghio, Stefano; Scirè, Carlo Alberto; Guzzafame, Eleonora; Scelsi, Laura; Rossi, Silvia; Montecucco, Carlomaurizio; Caporali, Roberto

    2016-01-01

    Abstract Among different subgroups of pulmonary arterial hypertension (PAH), those associated with connective tissue diseases (CTDs) have distinct hemodynamic and prognostic features; a correct etiologic diagnosis is thus mandatory. To estimate frequency and prognosis of previously undiagnosed CTDs in a suspect idiopathic (i) PAH cohort. Consecutive patients with PAH confirmed by right heart catheterization referred at the Cardiology Division of our Hospital without a previous rheumatological assessment or the occurrence of other conditions explaining PAH were checked for CTD by a clinical, laboratory, and instrumental evaluation. Survival in each group has also been analyzed. In our study 17 of 49 patients were classified as CTD-PAH, corresponding to a prevalence (95% CI) of 34.7% (21.7–49.6%). ANA positivity had 94% (71.3–99.9%) sensitivity and 78.1% (60–90.7%) specificity for a diagnosis of CTD-PAH; Raynaud phenomenon (RP) showed 83.3% (51.6–97.9%) sensitivity and 100% (90.5–100%) specificity for the diagnosis of Systemic Sclerosis (SSc)-PAH. At diagnosis, SSc patients were older and had a lower creatinine clearance compared with iPAH and other CTD-PAH. After a median follow-up of 44 (2–132) months, 18 of 49 (36.7%) patients died: 31.2% in the iPAH group, 20% in the CTD-, and 58.3% in the SSc-PAH group. Mortality was significantly higher in SSc-PAH (HR 3.32, 1.11–9.95, P <0.05) versus iPAH. We show a high prevalence of undiagnosed CTDs in patients with iPAH without a previous rheumatological assessment. All patients with RP were diagnosed with SSc. Our data stress the importance of a rheumatological assessment in PAH, especially because of the unfavorable prognostic impact of an associated SSc. PMID:27684814

  8. Connecting node and method for constructing a connecting node

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    A connecting node comprises a polyhedral structure comprising a plurality of panels joined together at its side edges to form a spherical approximation, wherein at least one of the plurality of panels comprises a faceted surface being constructed with a passage for integrating with one of a plurality of elements comprising a docking port, a hatch, and a window that is attached to the connecting node. A method for manufacturing a connecting node comprises the steps of providing a plurality of panels, connecting the plurality of panels to form a spherical approximation, wherein each edge of each panel of the plurality is joined to another edge of another panel, and constructing at least one of the plurality of panels to include a passage for integrating at least one of a plurality of elements that may be attached to the connecting node.

  9. Regional Brain Atrophy and Functional Connectivity Changes Related to Fatigue in Multiple Sclerosis

    PubMed Central

    Cruz Gómez, Álvaro Javier; Ventura Campos, Noelia; Belenguer, Antonio; Ávila, César; Forn, Cristina

    2013-01-01

    Fatigue is one of the most frequent symptoms in multiple sclerosis (MS), and recent studies have described a relationship between the sensorimotor cortex and its afferent and efferent pathways as a substrate of fatigue. The objectives of this study were to assess the neural correlates of fatigue in MS through gray matter (GM) and white matter (WM) atrophy, and resting state functional connectivity (rs-FC) of the sensorimotor network (SMN). Eighteen healthy controls (HCs) and 60 relapsing-remitting patients were assessed with the Fatigue Severity Scale (FSS). Patients were classified as fatigued (F) or nonfatigued (NF). We investigated GM and WM atrophy using voxel-based morphometry, and rs-FC changes with a seed-based method and independent component analysis (ICA). F patients showed extended GM and WM atrophy focused on areas related to the SMN. High FSS scores were associated with reductions of WM in the supplementary motor area. Seed analysis of GM atrophy in the SMN showed that HCs presented increased rs-FC between the primary motor and somatosensory cortices while patients with high FSS scores were associated with decreased rs-FC between the supplementary motor area and associative somatosensory cortex. ICA results showed that NF patients presented higher rs-FC in the primary motor cortex compared to HCs and in the premotor cortex compared to F patients. Atrophy reduced functional connectivity in SMN pathways and MS patients consequently experienced high levels of fatigue. On the contrary, NF patients experienced high synchronization in this network that could be interpreted as a compensatory mechanism to reduce fatigue sensation. PMID:24167590

  10. Connecting with assisted living consumers.

    PubMed

    Cameron, Kathleen A; Pinkowitz, Jackie

    2009-01-01

    Connecting with residents and their family members should be considered an integral part of medication therapy management services that pharmacists provide to assisted living communities. This article provides suggestions on how pharmacists can better connect and communicate with current and future assisted-living consumers and staff to optimize medication use, maintain resident function, and help residents age in place.

  11. The Always-Connected Generation

    ERIC Educational Resources Information Center

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  12. Parietal connectivity mediates multisensory facilitation.

    PubMed

    Brang, David; Taich, Zachary J; Hillyard, Steven A; Grabowecky, Marcia; Ramachandran, V S

    2013-09-01

    Our senses interact in daily life through multisensory integration, facilitating perceptual processes and behavioral responses. The neural mechanisms proposed to underlie this multisensory facilitation include anatomical connections directly linking early sensory areas, indirect connections to higher-order multisensory regions, as well as thalamic connections. Here we examine the relationship between white matter connectivity, as assessed with diffusion tensor imaging, and individual differences in multisensory facilitation and provide the first demonstration of a relationship between anatomical connectivity and multisensory processing in typically developed individuals. Using a whole-brain analysis and contrasting anatomical models of multisensory processing we found that increased connectivity between parietal regions and early sensory areas was associated with the facilitation of reaction times to multisensory (auditory-visual) stimuli. Furthermore, building on prior animal work suggesting the involvement of the superior colliculus in this process, using probabilistic tractography we determined that the strongest cortical projection area connected with the superior colliculus includes the region of connectivity implicated in our independent whole-brain analysis.

  13. Uncommon Connections with Common Numerators

    ERIC Educational Resources Information Center

    Lesser, Lawrence M.; Guthrie, Joe A.

    2012-01-01

    Undergraduate students who are pre-service teachers need to make connections between the college mathematics they are learning and the pre-college mathematics they will be teaching. Spanning a broad range of undergraduate curricula, this article describes useful lesser-known connections, explorations, and original proofs involving fractions. In…

  14. School Psychology Awareness: Making Connections

    ERIC Educational Resources Information Center

    Cohn, Andrea; Cowan, Katherine C.

    2011-01-01

    A day in the life of a student at school is filled with potential connections (relationships, linkages in learning, behavioral choices, etc.). Friendships with peers, relationships with teachers, acknowledgements from administrators, encouragement from coaches: These are all interpersonal connections that are essential not only to making school an…

  15. [Muscles and connective tissue: histology].

    PubMed

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism.

  16. Internet Connections: Understanding Your Access Options.

    ERIC Educational Resources Information Center

    Notess, Greg R.

    1994-01-01

    Describes levels of Internet connectivity, physical connections, and connection speeds. Compares options for connecting to the Internet, including terminal accounts, dial-up terminal accounts, direct connections through a local area network, and direct connections using SLIP (Serial Line Internet Protocol) or PPP (Point-to-Point Protocol). (eight…

  17. Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity.

    PubMed

    Davis, Simon W; Cabeza, Roberto

    2015-05-27

    Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.

  18. Cross-Hemispheric Collaboration and Segregation Associated with Task Difficulty as Revealed by Structural and Functional Connectivity

    PubMed Central

    Cabeza, Roberto

    2015-01-01

    Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks. PMID:26019335

  19. Electrophysiology of connection current spikes.

    PubMed

    Fish, Raymond M; Geddes, Leslie A

    2008-12-01

    Connection to a 60-Hz or other voltage source can result in cardiac dysrhythmias, a startle reaction, muscle contractions, and a variety of other physiological responses. Such responses can lead to injury, especially if significant ventricular cardiac dysrhythmias occur, or if a person is working at some height above ground and falls as a result of a musculoskeletal response. Physiological reactions are known to relate to intensity and duration of current exposure. The connection current that flows is a function of the applied voltage at the instant of connection, and the electrical impedance encountered by the voltage source in contact with the skin or other body tissues. In this article we describe a rarely investigated phenomenon, namely a contact, or connection, current spike that is many times higher than the steady-state current. This current spike occurs when an electrical connection is made at a non-zero voltage time in a sine wave or other waveform. Such current spikes may occur when electronic or manual switching or connecting of conductors occurs in electronic instrumentation connected to a patient. These findings are relevant to medical devices and instrumentation and to electrical safety in general.

  20. Practical lessons in remote connectivity.

    PubMed Central

    Kouroubali, A.; Starren, J.; Barrows, R. C.; Clayton, P. D.

    1997-01-01

    Community Health Information Networks (CHINs) require the ability to provide computer network connections to many remote sites. During the implementation of the Washington Heights and Inwood Community Health Management Information System (WHICHIS) at the Columbia-Presbyterian Medical Center (CPMC), a number of remote connectivity issues have been encountered. Both technical and non-technical issues were significant during the installation. We developed a work-flow model for this process which may be helpful to any health care institution attempting to provide seamless remote connectivity. This model is presented and implementation lessons are discussed. PMID:9357643

  1. Requirements for soldered electrical connections

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication is applicable to NASA programs involving solder connections for flight hardware, mission essential support equipment, and elements thereof. This publication sets forth hand and wave soldering requirements for reliable electrical connections. The prime consideration is the physical integrity of solder connections. Special requirements may exist which are not in conformance with the requirements of this publication. Design documentation contains the detail for these requirements, and they take precedence over conflicting portions of this publication when they are approved in writing by the procuring NASA installation.

  2. Cybersecurity for Connected Diabetes Devices.

    PubMed

    Klonoff, David C

    2015-04-16

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure.

  3. Hypermedia: A Vehicle for Connection.

    ERIC Educational Resources Information Center

    Babbitt, Beatrice; Usnick, Virginia

    1993-01-01

    Proposes using a hypermedia authoring program as a method for helping students make connections between definitions, representations, and applications of mathematical concepts. Provides an example involving fractions and discusses the advantages of using hypermedia. (eight references and four resources) (MDH)

  4. Optimizing connected component labeling algorithms

    NASA Astrophysics Data System (ADS)

    Wu, Kesheng; Otoo, Ekow; Shoshani, Arie

    2005-04-01

    This paper presents two new strategies that can be used to greatly improve the speed of connected component labeling algorithms. To assign a label to a new object, most connected component labeling algorithms use a scanning step that examines some of its neighbors. The first strategy exploits the dependencies among them to reduce the number of neighbors examined. When considering 8-connected components in a 2D image, this can reduce the number of neighbors examined from four to one in many cases. The second strategy uses an array to store the equivalence information among the labels. This replaces the pointer based rooted trees used to store the same equivalence information. It reduces the memory required and also produces consecutive final labels. Using an array instead of the pointer based rooted trees speeds up the connected component labeling algorithms by a factor of 5 ~ 100 in our tests on random binary images.

  5. Cybersecurity for Connected Diabetes Devices

    PubMed Central

    Klonoff, David C.

    2015-01-01

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure. PMID:25883162

  6. Rotating Connection for Electrical Cables

    NASA Technical Reports Server (NTRS)

    Manges, D. R.

    1986-01-01

    Cable reel provides electrical connections between fixed structure and rotating one. Reel carries power and signal lines while allowing rotating structure to turn up to 360 degrees with respect to fixed structure. Reel replaces sliprings. Can be used to electrically connect arm of robot with body. Reel releases cable to rotating part as it turns and takes up cable as rotating part comes back to its starting position, without tangling, twisting, or kinking.

  7. [Connective tissue diseases in adolescents].

    PubMed

    Peitz, J; Tantcheva-Poór, I

    2016-04-01

    In this article we provide a brief review of systemic lupus erythematosus, juvenile dermatomyositis, systemic scleroderma, and mixed connective tissue disease in adolescents. As skin manifestations often belong to the presenting symptoms and may have a significant impact on the quality of life, dermatologists play an important role in the management of patients with connective tissue diseases. Early diagnosis and therapy onset are crucial for the patients' long-term outcome.

  8. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes.

    PubMed

    Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi

    2005-01-01

    The olfactostriatum, a portion of the striatal complex of snakes, is the major tertiary vomeronasal structure in the ophidian brain, receiving substantial afferents from the nucleus sphericus, the primary target of accessory olfactory bulb efferents. In the present study, we have characterized the olfactostriatum of garter snakes (Thamnophis sirtalis) on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and hodology (afferent connections). The olfactostriatum is densely immunoreactive for serotonin and neuropeptide Y and shows moderate-to-weak immunoreactivity for tyrosine hydroxylase. In addition to afferents from the nucleus sphericus, the olfactostriatum receives inputs from the dorsal and lateral cortices, nucleus of the accessory olfactory tract, external and dorsolateral amygdalae, dorsomedial thalamic nucleus, ventral tegmental area and raphe nuclei. Double labeling experiments demonstrated that the distribution of serotonin and neuropeptide Y in this area almost completely overlaps the terminal field of projections from the nucleus sphericus. Also, serotonergic and dopaminergic innervation of the olfactostriatum likely arise, respectively, from the raphe nuclei and the ventral tegmental area, whereas local circuit neurons originate the neuropeptide Y immunoreactivity. These results indicate that the olfactostriatum of snakes could be a portion of the nucleus accumbens, with features characteristic of the accumbens shell, devoted to processing vomeronasal information. Comparative data suggest that a similar structure is present in the ventral striatum of amphibians and mammals.

  9. Fiber Connections of the Caudal Corpus Cerebelli, with Special Reference to the Intrinsic Circuitry, in a Teleost (Oreochromis niloticus).

    PubMed

    Imura, Kosuke; Yamamoto, Naoyuki; Yoshimoto, Masami; Endo, Masato; Funakoshi, Kengo; Ito, Hironobu

    2017-02-24

    The caudal part of the corpus cerebelli of Nile tilapia can be divided into dorsal and ventral regions. The granule cell layer of the dorsal (dGL) and ventral (vGL) regions of the caudal corpus cerebelli is known to receive indirect inputs from the telencephalon relayed by the nucleus paracommissuralis. The descending pathways are topographically organized, and the dGL and vGL receive inputs from different dorsal telencephalic parts. The caudal corpus cerebelli, in turn, projects extracerebellar efferents. However, it remains unknown how the descending telencephalic inputs are processed within the cerebellum. Therefore, the present study investigated intrinsic connections of the caudal corpus cerebelli by injecting neural tracers into the molecular layer of dorsal and ventral regions. Injections of tracers into the ventral molecular layer resulted in labeled cells in the vGL and the ganglionic layer of the ventral corpus. The axonal trajectories from labeled cells in the ganglionic layer were analyzed in detail via single-axon reconstructions, which suggested that the terminal portions were confined to the ganglionic layer of the dorsal corpus. No labeled terminals were observed outside the caudal corpus cerebelli. Tracer applications to the dorsal molecular layer resulted in labeled cells not only in the ganglionic layer and the granule cell layer of the dorsal corpus but also in the ganglionic layer of the ventral corpus. The latter finding confirms the presence of intrinsic projections from the ventral region to the dorsal region in the caudal corpus cerebelli. We further revealed that the intrinsic projection neurons are Purkinje cells by immunohistochemistry for zebrin II (aldolase C), which is a marker of Purkinje cells, combined with tracer injections into the dorsal corpus. Unlike injections into the ventral corpus, injections into the dorsal corpus resulted in labeled terminals in extracerebellar structures, such as the nucleus of the medial longitudinal

  10. Brain Connectivity and Visual Attention

    PubMed Central

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  11. MATLAB toolbox for functional connectivity.

    PubMed

    Zhou, Dongli; Thompson, Wesley K; Siegle, Greg

    2009-10-01

    The term "functional connectivity" is used to denote correlations in activation among spatially-distinct brain regions, either in a resting state or when processing external stimuli. Functional connectivity has been extensively evaluated with several functional neuroimaging methods, particularly PET and fMRI. Yet these relationships have been quantified using very different measures and the extent to which they index the same constructs is unclear. We have implemented a variety of these functional connectivity measures in a new freely available MATLAB toolbox. These measures are categorized into two groups: whole time-series and trial-based approaches. We evaluate these measures via simulations with different patterns of functional connectivity and provide recommendations for their use. We also apply these measures to a previously published fMRI data set (Siegle, G.J., Thompson, W., Carter, C.S., Steinhauer, S.R., Thase, M.E., 2007. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol. Psychiatry 610 (2), 198-209) in which activity in dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (DLPFC) was evaluated in 32 control subjects during a digit sorting task. Though all implemented measures demonstrate functional connectivity between dACC and DLPFC activity during event-related tasks, different participants appeared to display qualitatively different relationships.

  12. Continuously Connected With Mobile IP

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  13. Random Interchange of Magnetic Connectivity

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.

    2015-12-01

    Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)

  14. Brain connectivity and visual attention.

    PubMed

    Parks, Emily L; Madden, David J

    2013-01-01

    Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures.

  15. Callosal agenesis and Open lip Schizencephaly.

    PubMed

    Prasad, Maya; Iype, Mary; Nair, P M C

    2006-09-01

    We report a case of a new born who presented with neonatal seizures; and who had coexistence of a Corpus Callosum Agenesis with a bilateral Open lip Schizencephaly and a Dandy Walker malformation. The investigations for an underlying etiology, however was futile.

  16. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Nimchinsky, E. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The neurochemical characteristics of the neuronal subsets that furnish different types of corticocortical connections have been only partially determined. In recent years, several cytoskeletal proteins have emerged as reliable markers to distinguish subsets of pyramidal neurons in the cerebral cortex of primates. In particular, previous studies using an antibody to nonphosphorylated neurofilament protein (SMI-32) have revealed a consistent degree of regional and laminar specificity in the distribution of a subpopulation of pyramidal cells in the primate cerebral cortex. The density of neurofilament protein-immunoreactive neurons was shown to vary across corticocortical pathways in macaque monkeys. In the present study, we have used the antibody SMI-32 to examine further and to quantify the distribution of a subset of corticocortically projecting neurons in a series of long ipsilateral corticocortical pathways in comparison to short corticocortical, commissural, and limbic connections. The results demonstrate that the long association pathways interconnecting the frontal, parietal, and temporal neocortex have a high representation of neurofilament protein-enriched pyramidal neurons (45-90%), whereas short corticocortical, callosal, and limbic pathways are characterized by much lower numbers of such neurons (4-35%). These data suggest that different types of corticocortical connections have differential representation of highly specific neuronal subsets that share common neurochemical characteristics, thereby determining regional and laminar cortical patterns of morphological and molecular heterogeneity. These differences in neuronal neurochemical phenotype among corticocortical circuits may have considerable influence on cortical processing and may be directly related to the type of integrative function subserved by each cortical pathway. Finally, it is worth noting that neurofilament protein-immunoreactive neurons are dramatically affected in the course of

  17. The solar-stellar connection

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.

    2016-07-01

    A review of some principal results achieved in the area of stellar astrophysics with its origins in solar physics - the Solar-Stellar Connection - is presented from the perspective of an observational astronomer. The historical origins of the Solar-Stellar Connection are discussed followed by a review of key results from observations of stellar cycles analogous to the solar cycle in terms of parameters relevant to dynamo theory. A review of facets of angular momentum evolution and irradiance variations, each of which is determined by emergent, dynamo-generated magnetic fields, is given. Recent considerations of the impacts of stellar magnetic activity on the ambient radiative and energetic particle environment of the habitable zone of exoplanet systems are summarized. Some anticipated directions of the Solar-Stellar Connection in the new era of astronomy as defined by the advent of transformative facilities are presented.

  18. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  19. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  20. Parcellating connectivity in spatial maps

    PubMed Central

    Beck, Diane M.; Fei-Fei, Li

    2015-01-01

    A common goal in biological sciences is to model a complex web of connections using a small number of interacting units. We present a general approach for dividing up elements in a spatial map based on their connectivity properties, allowing for the discovery of local regions underlying large-scale connectivity matrices. Our method is specifically designed to respect spatial layout and identify locally-connected clusters, corresponding to plausible coherent units such as strings of adjacent DNA base pairs, subregions of the brain, animal communities, or geographic ecosystems. Instead of using approximate greedy clustering, our nonparametric Bayesian model infers a precise parcellation using collapsed Gibbs sampling. We utilize an infinite clustering prior that intrinsically incorporates spatial constraints, allowing the model to search directly in the space of spatially-coherent parcellations. After showing results on synthetic datasets, we apply our method to both functional and structural connectivity data from the human brain. We find that our parcellation is substantially more effective than previous approaches at summarizing the brain’s connectivity structure using a small number of clusters, produces better generalization to individual subject data, and reveals functional parcels related to known retinotopic maps in visual cortex. Additionally, we demonstrate the generality of our method by applying the same model to human migration data within the United States. This analysis reveals that migration behavior is generally influenced by state borders, but also identifies regional communities which cut across state lines. Our parcellation approach has a wide range of potential applications in understanding the spatial structure of complex biological networks. PMID:25737822

  1. Connections

    ERIC Educational Resources Information Center

    Wei, Cindy

    2007-01-01

    The author remembers back to freshmen year when NCSSSMST was considered a jumbled acronym and a pain to utter. But now, two years down the line, and their conference debut in only a few months, she remembers the NCSSSMST motto, "foster, support, and advance the creative efforts of those specialized schools whose primary purpose is to attract…

  2. Connect.

    ERIC Educational Resources Information Center

    Gralla, Preston

    1988-01-01

    Discusses two weather computer programs that allow users to see current weather maps and readings across the United States by modem hookup. Describes the features of "Weather Brief" and "Accu-Weather Forecaster" and includes the approximate daily phone cost of each. (MVL)

  3. Connecting the Dots: Rediscovering Continuity

    ERIC Educational Resources Information Center

    Camenga, Kristin A.; Yates, Rebekah B. Johnson

    2014-01-01

    The topic of continuity is typically not introduced until calculus and then reexamined in real analysis. Recognizing the connections between secondary school mathematics and the advanced mathematics studied at the college level allows teachers to better identify mathematical concepts in student ideas, motivate students by piquing their curiosity,…

  4. Caldecott Connections to Social Studies.

    ERIC Educational Resources Information Center

    Glandon, Shan

    The Caldecott Medal is awarded annually by the Association for Library Service to Children, a division of the American Library Association, to the U.S. artist of the most distinguished picture book for children. This activity book is based on the idea that connections with art teachers are a natural result of a focus on Caldecott Award literature,…

  5. Art and the Cosmic Connection

    ERIC Educational Resources Information Center

    Cobb, Whitney H.; Aiello, Monica Petty; Macdonald, Reeves; Asplund, Shari

    2014-01-01

    The interdisciplinary unit described in this article utilizes "Art and the Cosmic Connection," a free program conceived of by artists Monica and Tyler Aiello and developed by the artists, scientists, and educators through NASA's Discovery and New Frontiers Programs, to inspire learners to explore mysterious worlds in our solar…

  6. Reduced prefrontal connectivity in psychopathy.

    PubMed

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  7. Connecting the Dots in DAS

    ERIC Educational Resources Information Center

    Ford, Tracy

    2012-01-01

    Many institutions implement a distributed antenna system (DAS) as part of a holistic approach to providing better wireless coverage and capacity on campus. A DAS provides wireless service within a particular area or structure via a network of separate antenna nodes that are connected to a common source through fiber or coaxial cable. Because DAS…

  8. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  9. Connecting Kids: Exploring Diversity Together.

    ERIC Educational Resources Information Center

    Hill, Linda D.

    This book aims to show a way to guide children from different backgrounds to include each other in an atmosphere of safety, equality, choice, and fun. All of the cooperative games, creative activities, and nature experiences are organized according to 20 connecting skills that are especially important for learning to be welcoming and welcomed.…

  10. Connecting Remote Clusters with ATM

    SciTech Connect

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  11. School Wellness Policy: Community Connections

    ERIC Educational Resources Information Center

    Lambdin, Dolly; Erwin, Heather

    2007-01-01

    How can physical educators make connections to the larger community? This article discusses how physical educators can better inform community physical-activity leaders and coaches about appropriate instructional practices and how they can inform students about activities available in the community. It also offers suggestions for how to invite the…

  12. The Imagery-Creativity Connection.

    ERIC Educational Resources Information Center

    Daniels-McGhee, Susan; Davis, Gary A.

    1994-01-01

    This paper reviews historical highlights of the imagery-creativity connection, including early and contemporary accounts, along with notable examples of imagery in the creative process. It also looks at cross-modal imagery (synesthesia), a model of image-based creativity and the creative process, and implications for strengthening creativity by…

  13. Critical Connections: Health and Academics

    ERIC Educational Resources Information Center

    Michael, Shannon L.; Merlo, Caitlin L.; Basch, Charles E.; Wentzel, Kathryn R.; Wechsler, Howell

    2015-01-01

    Background: While it is a national priority to support the health and education of students, these sectors must better align, integrate, and collaborate to achieve this priority. This article summarizes the literature on the connection between health and academic achievement using the Whole School, Whole Community, and Whole Child (WSCC) framework…

  14. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  15. The PC Connection Part III.

    ERIC Educational Resources Information Center

    Chu, David L.; Zilora, Karen S.

    1986-01-01

    Presents a series of four applications of data acquisition, system control, and data analysis using personal computers. Covers topics of pilot plant information and control, automation of drug safety evaluation, analysis and characterization of petroleum resources, and high-speed analog-digital conversion connections. Part three of a series on…

  16. Connecting Slope, Steepness, and Angles

    ERIC Educational Resources Information Center

    Nagle, Courtney R.; Moore-Russo, Deborah

    2013-01-01

    All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…

  17. Teaching, Connecting & Empowering Today's Learners

    ERIC Educational Resources Information Center

    Jones, Virginia R.

    2013-01-01

    Since career and technical education (CTE) is based historically on promoting technical, hands-on, real-world applications in numerous vocations, CTE educators are uniquely poised to offer more use of instructional technology in their classrooms. Many CTE educators have remarkable connections with industry partnerships, internships and learning…

  18. 78 FR 44893 - Connect America Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... COMMISSION 47 CFR Part 54 Connect America Fund AGENCY: Federal Communications Commission. ACTION: Final rule... information collection associated with the Commission's Universal Service--Connect America Fund, Report and... of Connect America Fund and to ensure that Connect America Fund Phase I deployment occur in...

  19. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument connection. 33.29 Section 33.29... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.29 Instrument connection. (a) Unless it is constructed to prevent its connection to an incorrect instrument, each connection provided for...

  20. ConnectED: President Obama's Plan for Connecting All Schools to the Digital Age

    ERIC Educational Resources Information Center

    The White House, 2013

    2013-01-01

    Driven by new digital technologies, the future of learning is increasingly interactive, individualized, and full of real-world experiences and information. Unfortunately, the average school has about the same connectivity as the average American home, but serves 200 times as many users, and fewer than 20 percent of educators say their school's…

  1. Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration.

    PubMed

    Doubell, Timothy P; Skaliora, Irini; Baron, Jérôme; King, Andrew J

    2003-07-23

    The superior colliculus (SC) transforms both visual and nonvisual sensory signals into motor commands that control orienting behavior. Although the afferent and efferent connections of this midbrain nucleus have been well characterized, little is know about the intrinsic circuitry involved in sensorimotor integration. Transmission of visual signals from the superficial (sSC) to the deeper layers (dSC) of the SC has been implicated in both the triggering of orienting movements and the activity-dependent processes that align maps of different sensory modalities during development. However, evidence for the synaptic connectivity appropriate for these functions is lacking. In this study, we used a variety of anatomical and physiological methods to examine the functional organization of the sSC-dSC pathway in juvenile and adult ferrets. Axonal tracing in adult ferrets showed that, as in other species, sSC neurons project topographically to the dSC, providing a route for the transmission of visual signals to the multisensory output layers of the SC. We found that sSC axons terminate on dSC neurons that stain prominently for the NR1 subunit of the NMDA receptor, a subpopulation of which were identified as tectoreticulospinal projection neurons. We also show that the sSC-dSC pathway is topographically organized and mediated by monosynaptic excitatory synapses even before eye opening in young ferrets, suggesting that visual signals routed via the sSC may influence the activity of dSC neurons before the emergence of their multisensory response properties. These findings indicate that superficial- to deep-layer projections provide spatially ordered visual signals, both during development and into adulthood, directly to SC neurons that are involved in coordinating sensory inputs with motor outputs.

  2. Adipokines in connective tissue diseases.

    PubMed

    Sawicka, Karolina; Krasowska, Dorota

    2016-01-01

    Adipokines, pleiotropic molecules produced by white adipose tissue (WAT) have attracted the attention of scientists since 1994. The role of adipokines in metabolic syndrome is known and fixed. Adipokines exerting a variety of metabolic activities have contributed to the ethiopathogenesis and the consequences of metabolic syndrome. Furthermore, adipokines are involved in the regulation of inflammatory processes and autoimmunity in the light of pathogenesis of connective tissue diseases. Given some evidence for the influence of adipokines in metabolic syndrome, there may be a link between CVDs and rheumatic diseases. This review provides an overview of the literature focusing on the role of adipokines in rheumatic diseases by putting special emphasis on the potential role of leptin, resistin, adiponectin, chemerin, visfatin and novel adipokines in connective tissue diseases.

  3. The business case for connectivity

    NASA Technical Reports Server (NTRS)

    Adams, Dennis; Hirschheim, Rudy

    1991-01-01

    Information systems that provide competitive advantages to organizations can be broadly classified into those that improve the effectiveness of a business function and those that improve the reach of information in the organization. The latter, organizational connectivity systems, can be categorized as intraorganizational and interorganizational systems. Intraorganization systems provide connectivity to function areas within the business, while interorganizational systems support the exchange of business data between independent business units. These system are not confined to a single entity but span organizational boundaries which can be national or international in scope. A series of case studies was undertaken in an effort to better understand the issues and problems associated with providing an increased flow of information within and outside of an organization. Ten issues emerged from this study. In summary, it is necessary for firms to first consider how effective their internal communications systems are before launching projects that tie the organization to external systems.

  4. Pediatric Mixed Connective Tissue Disease.

    PubMed

    Berard, Roberta A; Laxer, Ronald M

    2016-05-01

    Pediatric-onset mixed connective tissue disease is among the rare disease entities in pediatric rheumatology and includes features of arthritis, polymyositis/dermatomyositis, systemic lupus erythematosus, and systemic sclerosis. Accurate recognition and diagnosis of the disease is paramount to prevent long-term morbidity. Advances in the genetic and immunologic understanding of the factors involved in the etiopathogenesis provide an opportunity for improvements in prognostication and targeted therapy. The development of a multinational cohort of patients with mixed connective tissue disease would be invaluable to provide more updated data regarding the clinical presentation, to develop a standardized treatment approach, disease activity and outcome tools, and to provide data on long-term outcomes and comorbidities.

  5. A LISP-Ada connection

    NASA Technical Reports Server (NTRS)

    Jaworski, Allan; Lavallee, David; Zoch, David

    1987-01-01

    The prototype demonstrates the feasibility of using Ada for expert systems and the implementation of an expert-friendly interface which supports knowledge entry. In the Ford LISP-Ada Connection (FLAC) system LISP and Ada are used in ways which complement their respective capabilities. Future investigation will concentrate on the enhancement of the expert knowledge entry/debugging interface and on the issues associated with multitasking and real-time expert systems implementation in Ada.

  6. Hydrological connectivity of soil pipes

    NASA Astrophysics Data System (ADS)

    Holden, J.

    2003-04-01

    Natural soil pipes are common in many parts of the world and particularly in blanket peat uplands yet there are problems in finding and defining soil pipe networks which are often located deep within the peat. Pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yield. Ground penetrating radar (GPR) technology has recently been developed for non-destructive identification and mapping of soil pipes in peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This poster presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Tracers such as sodium chloride were injected at a constant rate into an open pipe cavity. The GPR was moved across the test area downslope. The resultant radargrams were analysed and significantly increased reflectance was observed from a selection of cavities downslope. It was thus possible to determine hydrological connectivity of soil pipes within a dense pipe network across a hillslope without ground disturbance. In addition, tracers were added to the peat surface upslope of known pipe networks. It was possible to then trace the movement of water across and through the hillslope by using GPR to establish the connectivity of a range of flowpaths. Often pipe networks were supplied with water from overland flow entering through cracks and openings where the soil pipe was near the peat surface. Downslope, pipeflow contributed not only directly to streamflow but also to overland flow and near-surface throughflow on the hillslope. The same water that was within a pipe network at four metres depth could become near-surface throughflow outside of the pipe network a few metres down slope. These data allow the first three-dimensional picture of subsurface

  7. Connections for solid oxide fuel cells

    DOEpatents

    Collie, Jeffrey C.

    1999-01-01

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  8. Performance evaluations of demountable electrical connections

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Daugherty, M. A.

    Electrical conductors operating in cryogenic environments can require demountable connections along their lengths. The connections must have low resistance and high reliability and should allow ready assembly and disassembly. In this work, the performance of two types of connections has been evaluated. The first connection type is a clamped surface-to-surface joint. The second connection type is a screwed joint that incorporates male and female machine-thread components. The connections for copper conductors have been evaluated experimentally at 77 K. Experimental variables included thread surface treatment and assembly methods. The results of the evaluations are presented.

  9. Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron.

    PubMed

    Wang, Hong; D'Ambrosio, Martin A; Ren, YiLin; Monu, Sumit R; Leung, Pablo; Kutskill, Kristopher; Garvin, Jeffrey L; Janic, Branislava; Peterson, Edward L; Carretero, Oscar A

    2015-05-01

    Afferent (Af-Art) and efferent arterioles resistance regulate glomerular capillary pressure. The nephron regulates Af-Art resistance via: 1) vasoconstrictor tubuloglomerular feedback (TGF), initiated in the macula densa via Na-K-2Cl cotransporters (NKCC2) and 2) vasodilator connecting tubuloglomerular feedback (CTGF), initiated in connecting tubules via epithelial Na channels (ENaC). Furosemide inhibits NKCC2 and TGF. Benzamil inhibits ENaC and CTGF. In vitro, CTGF dilates preconstricted Af-Arts. In vivo, benzamil decreases stop-flow pressure (PSF), suggesting that CTGF antagonizes TGF; however, even when TGF is blocked, CTGF does not increase PSF, suggesting there is another mechanism antagonizing CTGF. We hypothesize that in addition to NKCC2, activation of Na/H exchanger (NHE) antagonizes CTGF, and when both are blocked CTGF dilates Af-Arts and this effect is blocked by a CTGF inhibitor benzamil. Using micropuncture, we studied the effects of transport inhibitors on TGF responses by measuring PSF while increasing nephron perfusion from 0 to 40 nl/min. Control TGF response (-7.9 ± 0.2 mmHg) was blocked by furosemide (-0.4 ± 0.2 mmHg; P < 0.001). Benzamil restored TGF in the presence of furosemide (furosemide: -0.2 ± 0.1 vs. furosemide+benzamil: -4.3 ± 0.3 mmHg; P < 0.001). With furosemide and NHE inhibitor, dimethylamiloride (DMA), increase in tubular flow increased PSF (furosemide+DMA: 2.7 ± 0.5 mmHg, n = 6), and benzamil blocked this (furosemide+DMA+benzamil: -1.1 ± 0.2 mmHg; P < 0.01, n = 6). We conclude that NHE in the nephron decreases PSF (Af-Art constriction) when NKCC2 and ENaC are inhibited, suggesting that in the absence of NKCC2, NHE causes a TGF response and that CTGF dilates the Af-Art when TGF is blocked with NKCC2 and NHE inhibitors.

  10. Protein domain connectivity and essentiality

    NASA Astrophysics Data System (ADS)

    da F. Costa, L.; Rodrigues, F. A.; Travieso, G.

    2006-10-01

    Protein-protein interactions can be properly modeled as scale-free complex networks, while the lethality of proteins has been correlated with the node degrees, therefore defining a lethality-centrality rule. In this work the authors revisit this relevant problem by focusing attention not on proteins as a whole, but on their functional domains, which are ultimately responsible for their binding potential. Four networks are considered: the original protein-protein interaction network, its randomized version, and two domain networks assuming different lethality hypotheses. By using formal statistical analysis, they show that the correlation between connectivity and essentiality is higher for domains than for proteins.

  11. Connecting cognition and consumer choice.

    PubMed

    Bartels, Daniel M; Johnson, Eric J

    2015-02-01

    We describe what can be gained from connecting cognition and consumer choice by discussing two contexts ripe for interaction between the two fields. The first-context effects on choice-has already been addressed by cognitive science yielding insights about cognitive process but there is promise for more interaction. The second is learning and representation in choice where relevant theories in cognitive science could be informed by consumer choice, and in return, could pose and answer new questions. We conclude by discussing how these two fields of research stand to benefit from more interaction, citing examples of how interfaces of cognitive science with other fields have been illuminating for theories of cognition.

  12. Connecting interacting galaxies with manifolds

    NASA Astrophysics Data System (ADS)

    Romero-Gomez, M.; Athanassoula, E.

    2017-03-01

    It is well known that the interaction between two disk galaxies generates tidal spiral arms and a connection in the form of a bridge. Here we address the question of the formation of tidal arms and bridges from a dynamical point of view. We model the bridges and tails observed in interacting galaxies using the invariant manifolds associated to the Lyapunov orbits of the Lagrangian points of the galactic system, when the two galaxies are considered as two point masses in a circular orbit.

  13. A Characterization of Invariant Connections

    NASA Astrophysics Data System (ADS)

    Hanusch, Maximilian

    2014-03-01

    Given a principal fibre bundle with structure group S and a fibre transitive Lie group G of automorphisms thereon, Wang's theorem identifies the invariant connections with certain linear maps ψ\\colon {g}→ {s}. In the present paper we prove an extension of this theorem that applies to the general situation where G acts non-transitively on the base manifold. We consider several special cases of the general theorem including the result of Harnad, Shnider and Vinet which applies to the situation where G admits only one orbit type. Along the way we give applications to loop quantum gravity.

  14. MedlinePlus Connect: How it Works

    MedlinePlus

    ... medlineplus.gov/connect/howitworks.html MedlinePlus Connect: How it Works To use the sharing features on this ... Web service provide responses in different formats. How it looks depends on how it is implemented. Web ...

  15. Understanding and Connections between Equations and Graphs.

    ERIC Educational Resources Information Center

    Knuth, Eric J.

    2000-01-01

    Presents results from a study that examined students' understanding of connections between algebraic and graphical representations of functions. Discusses a possible reason for the inadequate and often absent connections that students made between them. (ASK)

  16. Connecting Related Rates and Differential Equations

    ERIC Educational Resources Information Center

    Brandt, Keith

    2012-01-01

    This article points out a simple connection between related rates and differential equations. The connection can be used for in-class examples or homework exercises, and it is accessible to students who are familiar with separation of variables.

  17. DS-Connect: The Down Syndrome Registry

    MedlinePlus

    ... Connect® is a powerful resource where people with Down syndrome and their families can: • Connect with researchers and ... interest in participating in certain clinical studies on Down Syndrome, including studies of new medications and other treatments. • ...

  18. 33 CFR 156.130 - Connection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... operations unless it is: (1) A bolted or full threaded connection; or (2) A quick-connect coupling...

  19. 33 CFR 156.130 - Connection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... operations unless it is: (1) A bolted or full threaded connection; or (2) A quick-connect coupling...

  20. 33 CFR 156.130 - Connection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... operations unless it is: (1) A bolted or full threaded connection; or (2) A quick-connect coupling...

  1. 33 CFR 156.130 - Connection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... operations unless it is: (1) A bolted or full threaded connection; or (2) A quick-connect coupling...

  2. 33 CFR 156.130 - Connection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... operations unless it is: (1) A bolted or full threaded connection; or (2) A quick-connect coupling...

  3. Astrophysicists’ Conversational Connections on Twitter

    PubMed Central

    Holmberg, Kim; Bowman, Timothy D.; Haustein, Stefanie; Peters, Isabella

    2014-01-01

    Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists’ activities (i.e., publishing and tweeting frequency) and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions) on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators) and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets). The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions. PMID:25153196

  4. Nonlinear connectivity by Granger causality.

    PubMed

    Marinazzo, Daniele; Liao, Wei; Chen, Huafu; Stramaglia, Sebastiano

    2011-09-15

    The communication among neuronal populations, reflected by transient synchronous activity, is the mechanism underlying the information processing in the brain. Although it is widely assumed that the interactions among those populations (i.e. functional connectivity) are highly nonlinear, the amount of nonlinear information transmission and its functional roles are not clear. The state of the art to understand the communication between brain systems are dynamic causal modeling (DCM) and Granger causality. While DCM models nonlinear couplings, Granger causality, which constitutes a major tool to reveal effective connectivity, and is widely used to analyze EEG/MEG data as well as fMRI signals, is usually applied in its linear version. In order to capture nonlinear interactions between even short and noisy time series, a few approaches have been proposed. We review them and focus on a recently proposed flexible approach has been recently proposed, consisting in the kernel version of Granger causality. We show the application of the proposed approach on EEG signals and fMRI data.

  5. 78 FR 70881 - Connect America Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... COMMISSION 47 CFR Part 54 Connect America Fund AGENCY: Federal Communications Commission. ACTION: Final rule... cap carriers that accept Connect America Phase II model-based support through the state-level... allowance, and pricing requirements for Connect America Phase II. This document also addresses how...

  6. Multicultural Environmental Education--Making Connections.

    ERIC Educational Resources Information Center

    Gaughan, Sharon

    1996-01-01

    Discusses Raptors Connecting Cultures (RCC), a multicultural environmental education program for Latino students. The RCC Program attempted to make connections between local ecology in eastern Pennsylvania and the students' home countries using the concept of migration as a link. Encourages the inclusion of contributions and connections from…

  7. Connectivity in Autism: A review of MRI connectivity studies

    PubMed Central

    Rane, Pallavi; Cochran, David; Hodge, Steven M.; Haselgrove, Christian; Kennedy, David; Frazier, Jean A.

    2016-01-01

    Autism Spectrum Disorder (ASD) affects 1 in 50 children between the ages of 6–17 years as per a 2012 CDC survey of parents. The etiology of ASD is not precisely known. ASD is an umbrella term, which includes low (IQ<70) to high functioning (IQ>70) individuals. A better understanding of the disorder, and how it manifests in an individual subject can lead to more effective intervention plans to fulfill the individual’s treatment needs. Magnetic resonance imaging (MRI) is a non-invasive investigational tool that can help study the ways in which the brain develops and/or deviates from the typical developmental trajectory. MRI offers insights into the structure, function, and metabolism of the brain. In this article, we review published studies on brain connectivity changes in ASD using either resting state functional MRI or diffusion tensor imaging. The general findings of decreases in white matter integrity and long-range neural coherence are prevalent in ASD literature. However, there is somewhat less of a consensus in the detailed localization of these findings. There are even fewer studies linking these connectivity alterations with the behavioral phenotype of the disorder. Nevertheless, with the help of data sharing and large-scale analytic efforts, the field is advancing towards several convergent themes. These include reduced functional coherence of long-range intra-hemispheric cortico-cortical default mode circuitry, impaired inter-hemispheric regulation, and an associated, perhaps compensatory, increase in local and short-range cortico-subcortical coherence. PMID:26146755

  8. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections

    PubMed Central

    Ganchrow, Donald; Ganchrow, Judith R; Cicchini, Vanessa; Bartel, Dianna L; Kaufman, Daniel; Girard, David; Whitehead, Mark C

    2013-01-01

    The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2-IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014. PMID:24151133

  9. Preservice Teachers Map Compassion: Connecting Social Studies and Literacy through Nonfictional Animal Stories

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Montgomery, Sarah E.; Vander Zanden, Sarah M.

    2014-01-01

    Nonfiction stories of animal compassion were used in this literacy-social studies integrated lesson to address both efferent and aesthetic stances in transmediation of text from picture books to maps. Preservice early childhood and elementary teachers chose places from the nine recent children's stories, symbolizing them on a map while…

  10. Connecting multimodality in human communication.

    PubMed

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The

  11. Connecting multimodality in human communication

    PubMed Central

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The

  12. Behavior of concentrically loaded CFT braces connections

    PubMed Central

    Hassan, Maha M.; Ramadan, Hazem M.; Abdel-Mooty, Mohammed N.; Mourad, Sherif A.

    2013-01-01

    Concrete filled tubes (CFTs) composite columns have many economical and esthetic advantages, but the behavior of their connections is complicated. Through this study, it is aimed to investigate the performance and behavior of different connection configurations between concrete filled steel tube columns and bracing diagonals through an experimental program. The study included 12 connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. PMID:25685491

  13. Generalized magnetofluid connections in pair plasmas

    SciTech Connect

    Asenjo, Felipe A.; Comisso, Luca; Mahajan, Swadesh M.

    2015-12-15

    We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found.

  14. Generalized magnetofluid connections in pair plasmas

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Comisso, Luca; Mahajan, Swadesh M.

    2015-12-01

    We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found.

  15. Behavior of concentrically loaded CFT braces connections.

    PubMed

    Hassan, Maha M; Ramadan, Hazem M; Abdel-Mooty, Mohammed N; Mourad, Sherif A

    2014-03-01

    Concrete filled tubes (CFTs) composite columns have many economical and esthetic advantages, but the behavior of their connections is complicated. Through this study, it is aimed to investigate the performance and behavior of different connection configurations between concrete filled steel tube columns and bracing diagonals through an experimental program. The study included 12 connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

  16. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  17. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  18. Unity connecting module in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  19. The Interaction-Activity Connection

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1996-01-01

    A review is presented of the numerous studies that have been undertaken to investigate the likely interaction-activity connection among galaxies. Both observational evidence and theoretical supporting models are reviewed. Some specific examples of "interactive" galaxies from the author's own research are presented: (a) the collision-induced AGN (Active Galactic Nuclei) activity in the radio jet source 3C278; and (b) the collision-induced starburst activity in the spectacular "Cartwheel" ring galaxy. Some comments are offered concerning some of the more promising theoretical investigations that are now taking place. A few words of warning are also offered about the possible misinterpretation of putative collision-induced morphologies among some galaxy samples.

  20. Method for hermetic electrical connections

    DOEpatents

    Monroe, Saundra L [Tijeras, NM; Glass, S Jill [Albuquerque, NM; Stone, Ronnie G [Albuquerque, NM; Bond, Jamey T [Albuquerque, NM; Susan, Donald F [Albuquerque, NM

    2011-12-27

    A method of providing a hermetic, electrical connection between two electrical components by mating at least one metal pin in a glass-ceramic to metal seal connector to two electrical components, wherein the glass-ceramic to metal seal connector incorporates at least one metal pin encased (sealed) in a glass-ceramic material inside of a metal housing, with the glass-ceramic material made from 65-80% SiO.sub.2, 8-16% Li.sub.2O, 2-8% Al.sub.2O.sub.3, 1-5% P.sub.2O.sub.5, 1-8% K.sub.2O, 0.5-7% B.sub.2O.sub.3, and 0-5% ZnO. The connector retains hermeticity at temperatures as high as 700.degree. C. and pressures as high as 500 psi.

  1. Real World Connections Through Videoconferences

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth; Lytle, John (Technical Monitor)

    2002-01-01

    The Learning Technologies Project (LTP) is a partner in the National Aeronautics and Space Administration's (NASA's) educational technology program unit, an electronic community center that fosters interaction, collaboration, and sharing among educators, learners, and scientists. The goal of the NASA Glenn Research Center's Learning Technologies Project is to increase students' interest and proficiency in mathematics, science, and technology through the use of computing and communications technology and by using NASA's mission in aerospace technology as a theme. The primary components are: (1) Beginner's Guide to Aeronautics, including interactive simulation packages and teacher-created online activities. (2) NASA Virtual Visits, videoconferences (with online pre-post-conference activities) connecting students and teachers to NASA scientists and researchers.

  2. Connection routing for microoptic systems.

    PubMed

    Murdocca, M

    1990-03-10

    A recognized model for an all-optical digital computer consists of arrays of optical logic devices interconnected in free space with bulk optical components. A problem with this approach is that device arrays must be spaced to allow for components placed between them such as lenses, gratings, and beam splitters. The latency introduced by this spacing may be greater than device switching times, which means that tight loop processing of digital information is not possible. A solution to this problem is to replace large optical components with monolithically fabricated devices, lenses, mirrors, beam splitters, and combiners. Some connection freedom is lost due to practical limits on configurations of small components. These limits and a method to minimize their effects are explored here. It is concluded that log(2)N optical interconnects such as perfect shuffles and crossovers are not necessary for efficient digital architectures and that simple split, shift, and combine operations may be preferred for simpler optical implementations.

  3. Sprays and Cartan projective connections

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  4. Random geometric graphs with general connection functions

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  5. [Gastroenterologic aspects of connective tissue diseases].

    PubMed

    Altomonte, L; Zoli, A; Alessi, F; Ghirlanda, G; Greco, A V; Magarò, M

    1985-07-14

    The connective tissue disorders are a protean group of acquired diseases which have in common widespread immunologic and inflammatory alterations of connective tissue. The acquired connective tissue diseases generally include the following clinical entities: rheumatoid arthritis, systemic lupus erythematosus, polymyositis, polyarteritis nodosa, scleroderma, mixed connective tissue disease, Sjögren's and Behcet's sindromes. These entities have certain features in common which include sinovitis, pleuritis, myocarditis, endocarditis, pericarditis, peritonitis, vasculitis, myositis, changes in skin, alteration of connective tissue and nephritis. Gastrointestinal and hepatic involvement in connective tissue disorders are not the most important features, nevertheless appear almost regularly. Anorexia, nausea, vomiting, abdominal pain, malabsorption may affect patients suffering by rheumatoid arthritis, systemic lupus erythematosus and other collagenophaties. In some cases mesenteric vasculitis may cause intestinal ischemia which may result in bowel infarction, mucosal ulceration, hemorrhage, perforation. After an extensive review of the existing literature the Authors make an accurate evaluation of gastrointestinal and hepatic alterations in connective tissue diseases.

  6. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  7. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  8. Catecholaminergic connectivity to the inner ear, central auditory and vocal motor circuitry in the plainfin midshipman fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Kim, Spencer D.; Krzyminska, Zuzanna M.; Sisneros, Joseph A.

    2014-01-01

    Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory endorgan, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator which appears to largely originate from local TH-ir neurons but may include diencephalic projections as well. This study provides strong evidence for catecholamines as important neuromodulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This first demonstration of TH-ir terminals in the main endorgan of hearing in a non-mammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. PMID:24715479

  9. Brain Connectivity in Autism Spectrum Disorder

    PubMed Central

    Mohammad-Rezazadeh, Iman; Frohlich, Joel; Loo, Sandra K.; Jeste, Shafali S.

    2016-01-01

    Purpose of review Many studies have reported that individuals with autism spectrum disorder (ASD) have different brain connectivity patterns compared to typically developing individuals. However, the results of more recent studies do not unanimously support the traditional view in which individuals with ASD have lower connectivity between distal brain regions and increased connectivity within proximal brain regions. In this review, we discuss different methods for measuring brain connectivity and how the use of different metrics may contribute to the lack of convergence of investigations of connectivity in ASD. Recent findings The discrepancy in brain connectivity results across studies may be due to important methodological factors such as the connectivity measure applied, the age of patients studied, the brain region(s) examined, and the time interval and frequency band(s) in which connectivity was analyzed. Summary We conclude that more sophisticated EEG analytic approaches should be utilized to more accurately infer causation and directionality of information transfer between brain regions, which may show dynamic changes of functional connectivity in the brain. Moreover, further investigations of connectivity with respect to behavior and clinical phenotype are needed to probe underlying brain networks implicated in core deficits of ASD. PMID:26910484

  10. Boundary effects in welded steel moment connections

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Hyeog

    Unprecedented widespread failure of welded moment connections in steel frames caused by the 1994 Northridge and the 1995 Kobe earthquakes have alarmed the engineering communities throughout the world. Welded moment connections in steel frames have been traditionally designed by using the classical beam theory which leads to assumptions that the flanges transfer moment while the web connection primarily resists the shear force. However, this study shows that the magnitude and direction of the principal stresses in the connection region are better approximated by using truss analogy rather than the classical beam theory. Accordingly, both the bending moment and the shear force are transferred across the connection near the beam flanges through diagonal strut action. Thus, the beam flange region of the traditionally designed connection is overloaded. This conclusion explains, to a large extent, the recently observed steel moment connection failures. In this study, detailed finite element analyses were carried out for a representative beam-to-column subassemblage with fully welded connection. The stress distribution in the beam web and flanges in the vicinity of the connection were closely studied. The factors responsible for stress redistribution and concentration were identified by using fundamental principles of mechanics. It was concluded that peak resultant stresses can exceed the values used in simple design calculations by large margins. Using the finite element analysis results and the truss analogy to establish a realistic load path in the connection, a practical and more rational analysis and design procedure was developed. The proposed design procedure and the new connection details were successfully validated through cyclic load testing of a nearly full size specimen. The truss model represented the force transmission around the beam-to-column moment connection region very well. Results of the finite element analyses and the laboratory testing showed

  11. Connected health: a review of the literature

    PubMed Central

    2016-01-01

    The presence of social support, and more recently, connection, has been linked to multiple health benefits and longevity measures and the lack of connection is associated with premature morbidity and mortality. Connected health is a growing industry, and we were interested in determining whether or not scholars in the field have established the ways in which technology could facilitate or promote connection between patients and healthcare providers. This integrative literature review sought to collect and analyze research studies addressing social support or connection in a sample of patients with diabetes to evaluate the social support or connection metrics in use, the type of technology deployed by researchers to achieve connection, and to assess the state of the science in this area. We hypothesized that being connected to someone who cares is good for your health. We believe this holds true even when connection is accomplished with mobile technologies. Thirty five studies were included in this review, 21 utilized technology to enhance patient-provider connection. The articles included in this review were from a total of more than nine countries and took place in hospital, physician office, and community settings. They represented people from childhood through to old age. Technologies evaluated include: telephone interventions, email, text messaging, interactive voice response (IVR), video blogs, apps, websites, and social media. There were multiple operational definitions of social support and self-management used as variables within the studies. Findings from this review suggest that being connected does matter to patients with diabetes, and being connected to family matters the most, even though the associations are complex and not always predictable. Furthermore, patients with diabetes will utilize a variety of technologies to connect with healthcare providers, team members, and even other people with the same disease. The use of technology with diabetes

  12. Critical Connections: Health and Academics

    PubMed Central

    Michael, Shannon L; Merlo, Caitlin L; Basch, Charles E; Wentzel, Kathryn R; Wechsler, Howell

    2015-01-01

    BACKGROUND While it is a national priority to support the health and education of students, these sectors must better align, integrate, and collaborate to achieve this priority. This article summarizes the literature on the connection between health and academic achievement using the Whole School, Whole Community, and Whole Child (WSCC) framework as a way to address health-related barriers to learning. METHODS A literature review was conducted on the association between student health and academic achievement. RESULTS Most of the evidence examined the association between student health behaviors and academic achievement, with physical activity having the most published studies and consistent findings. The evidence supports the need for school health services by demonstrating the association between chronic conditions and decreased achievement. Safe and positive school environments were associated with improved health behaviors and achievement. Engaging families and community members in schools also had a positive effect on students' health and achievement. CONCLUSIONS Schools can improve the health and learning of students by supporting opportunities to learn about and practice healthy behaviors, providing school health services, creating safe and positive school environments, and engaging families and community. This evidence supports WSCC as a potential framework for achieving national educational and health goals. PMID:26440816

  13. The solar-coffee connection

    SciTech Connect

    Wright, G.

    2000-04-01

    Coffee connoisseurs, when they quaff a cup of coffee or enjoy a jug of joe, don't generally consider the costs to the environment of their favorite beverage. But the fact is that traditional coffee production is hard on the environment, exacting a toll on the native forests and waterways of Central America and on the migratory birds of the western hemisphere. Coffee growing is the second greatest cause of rainforest destruction after cattle ranching, because a lot of trees are cut down to dry the freshly-picked coffee crop. But espresso-sipping environmentalists and an eco-conscious Joe Public can take comfort in a promising new connection between solar energy and rainforest-friendly coffee--solar-dried coffee. And they can take pleasure in it too, because solar-dried coffee, according to virtually everyone who tries it, is the best-tasting coffee made. Considering that coffee is the second most-traded commodity next to oil, and the second most popular beverage in the world next to water, consumed by billions of people, any new process that reduces the environmental damage occasioned by coffee-growing and processing is significant.

  14. Tweaking synchronization by connectivity modifications

    NASA Astrophysics Data System (ADS)

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A.; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  15. Tweaking synchronization by connectivity modifications.

    PubMed

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  16. Thermally effective, electrically isolating heat intercept connections

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1995-06-01

    Electrical and electronic equipment often require thermally effective beat intercept connections that provide electrical isolation. Such connections can be developed by clamping, with a thermal-interference fit, an electrically insulating cylindrical tube between a central disk and an outer ring. Heat flows radially through the disk-tube-ring assembly. Thermal effectiveness, i.e., {Delta}T for a given heat flux, and electrical isolation are controlled by tube geometry and material and by connection-assembly details. Connections of this type are being developed as cryogenic heat intercepts for electrical current leads that employ high-temperature superconductors. We discuss the design considerations and details of a beat intercept connection that transfers a 45-w thermal load at 60 K with a {Delta}T of {approx} 10 K while providing 7.5 kV electrical isolation. Prototype heat intercept connections have been evaluated for their thermal and electrical performance, and the results are presented.

  17. Projective Connections and the Algebra of Densities

    SciTech Connect

    George, Jacob

    2008-11-18

    Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric')

  18. Circuits Protect Against Incorrect Power Connections

    NASA Technical Reports Server (NTRS)

    Delombard, Richard

    1992-01-01

    Simple circuits prevent application of incorrectly polarized or excessive voltages. Connected temporarily or permanently at power-connecting terminals. Devised to protect electrical and electronic equipment installed in spacecraft and subjected to variety of tests in different facilities prior to installation. Basic concept of protective circuits also applied easily to many kinds of electrical and electronic equipment that must be protected against incorrect power connections.

  19. Assembly design system based on engineering connection

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-12-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  20. Cutaneous mucinosis in mixed connective tissue disease.

    PubMed

    Favarato, Maria Helena Sampaio; Miranda, Sofia Silveira de Castro; Caleiro, Maria Teresa Correia; Assad, Ana Paula Luppino; Halpern, Ilana; Fuller, Ricardo

    2013-01-01

    Cutaneous mucinosis is a group of conditions involving an accumulation of mucin or glycosaminoglycan in the skin and its annexes. It is described in some connective tissue diseases but never in association with mixed connective tissue disease. This report concerns two cases of cutaneous mucinosis in patients with mixed connective tissue disease in remission; one patient presented the papular form, and the other reticular erythematous mucinosis. These are the first cases of mucinosis described in mixed connective tissue disease. Both cases had skin lesions with no other clinical or laboratorial manifestations, with clinical response to azathioprine in one, and to an association of chloroquine and prednisone in the other.