Sample records for efficiency boost converter

  1. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-11-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  2. Computer simulations of optimum boost and buck-boost converters

    NASA Technical Reports Server (NTRS)

    Rahman, S.

    1982-01-01

    The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  3. Nonlinear program based optimization of boost and buck-boost converter designs

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Lee, F. C.

    The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  4. Two-inductor boost and buck converters

    NASA Astrophysics Data System (ADS)

    White, J. L.; Muldoon, W. J.

    The derivation, analysis and design of a coupled inductor boost converter is presented. Aspects of the qualitative ac behavior of coupled inductor converters are discussed. Considerations for the design of the magnetics for such converters are addressed.

  5. A PIPO Boost Converter with Low Ripple and Medium Current Application

    NASA Astrophysics Data System (ADS)

    Bandri, S.; Sofian, A.; Ismail, F.

    2018-04-01

    This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.

  6. Design and dSpace interfacing of current fed high gain dc to dc boost converter for low voltage applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.

    2017-11-01

    In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.

  7. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.

    PubMed

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-06-13

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.

  8. High static gain single-phase PFC based on a hybrid boost converter

    NASA Astrophysics Data System (ADS)

    Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo

    2017-05-01

    In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.

  9. AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Dawam, A. H. A.; Muhamad, M.

    2018-03-01

    This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.

  10. Modeling and sizing the coil in boost converters dedicated to photovoltaic sources

    NASA Astrophysics Data System (ADS)

    Atik, Lotfi; Fares, Mohammed Amine; Zaraket, Jean; Bachir, Ghalem; Aillerie, Michel

    2018-05-01

    The coil is a very important element in a wide range of power electrical systems as such as those used in converter or inverter dedicated to extract and to adapt the value and the shape of the intensity and the voltage delivered by renewable energy sources. Thus, knowing its behavior in converters is paramount to obtain a maximum conversion efficiency and reliability. In this context, this paper presents a global study of a DC/DC boost converter dedicated to photovoltaic sources based on the modeling of the behavior of the coil or the inductance as a function of the switching frequency.

  11. Effect of pole zero location on system dynamics of boost converter for micro grid

    NASA Astrophysics Data System (ADS)

    Lavanya, A.; Vijayakumar, K.; Navamani, J. D.; Jayaseelan, N.

    2018-04-01

    Green clean energy like photo voltaic, wind energy, fuel cell can be brought together by microgrid.For low voltage sources like photovoltaic cell boost converter is very much essential. This paper explores the dynamic analysis of boost converter in a continuous conduction mode (CCM). The transient performance and stability analysis is carried out in this paper using time domain analysis and frequency domain analysis techniques. Boost converter is simulated using both PSIM and MATLAB software. Furthermore, state space model obtained and the transfer function is derived. The converter behaviour when a step input is applied is analyzed and stability of the converter is analyzed from bode plot frequency for open loop. Effect of the locations of poles and zeros in the transfer function of boost converter and how the performance parameters are affected is discussed in this paper. Closed loop performance with PI controller is also analyzed for boost converter.

  12. Analysis of high voltage step-up nonisolated DC-DC boost converters

    NASA Astrophysics Data System (ADS)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  13. Chaos minimization in DC-DC boost converter using circuit parameter optimization

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Natarajan, Rajasekar; Gourav, Kumar; Padmavathi, P.

    2017-11-01

    DC-DC converters are prone to several types of nonlinear phenomena including bifurcation, quasi periodicity, intermittency and chaos. These undesirable effects must be controlled for periodic operation of the converter to ensure the stability. In this paper an effective solution to control of chaos in solar fed DC-DC boost converter is proposed. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The obtained results are compared with the operation of traditional boost converter. Further the obtained results with BFA optimized parameter ensures the operations of the converter are within the controllable region. To elaborate the study of bifurcation analysis with optimized and unoptimized parameters are also presented.

  14. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  15. Exploration of the Chaotic Behaviour in a Buck-Boost Converter Depending on the Converter and Load Elements

    NASA Astrophysics Data System (ADS)

    Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol

    2016-08-01

    In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.

  16. Sliding mode control of direct coupled interleaved boost converter for fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Ding, Y. H.; Ke, X.; Ma, X.

    2017-12-01

    A three phase direct coupled interleaved boost converter (TP-DIBC) was recommended in this paper. This converter has a small unbalance current sharing among the branches of TP-DIBC. An adaptive control law sliding mode control (SMC) is designed for the TP-DIBC. The aim is to 1) reduce ripple output voltage, inductor current and regulate output voltage tightly 2) The total current carried by direct coupled interleaved boost converter (DIBC) must be equally shared between different parallel branches. The efficacy and robustness of the proposed TP-DIBC and adaptive SMC is confirmed via computer simulations using Matlab SimPower System Tools. The simulation result is in line with the expectation.

  17. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  18. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    NASA Astrophysics Data System (ADS)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  19. Research procedure for buck-boost converter for small electric vehicles

    NASA Astrophysics Data System (ADS)

    Vacheva, Gergana; Hinov, Nikolay; Penev, Dimitar

    2017-12-01

    In the current paper is developed a mathematical model realized in Matlab for describing a buck-boost converter for control of small electric vehicle. The model is presented with differential equations which describes the processes in the converter. Through the research of this model it can be accomplished the optimal work mode of a small electric vehicles. The proposed converter can be used in a wide range of applications like small electric vehicles, smart grids and different systems for energy storage.

  20. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  1. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  2. Simulation comparison of proportional integral derivative and fuzzy logic in controlling AC-DC buck boost converter

    NASA Astrophysics Data System (ADS)

    Faisal, A.; Hasan, S.; Suherman

    2018-03-01

    AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.

  3. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  4. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  5. Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hua; Kim, Hyeokjin; Erickson, Robert

    In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less

  6. Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters

    DOE PAGES

    Chen, Hua; Kim, Hyeokjin; Erickson, Robert; ...

    2017-01-01

    In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less

  7. Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  8. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  9. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    ERIC Educational Resources Information Center

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  10. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  11. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  12. Optimized MPPT algorithm for boost converters taking into account the environmental variables

    NASA Astrophysics Data System (ADS)

    Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel

    2016-07-01

    This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.

  13. Transformerless dc-Isolated Converter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1987-01-01

    Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.

  14. Technologies for converter topologies

    DOEpatents

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  15. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  16. dc analysis and design of zero-voltage-switched multi-resonant converters

    NASA Astrophysics Data System (ADS)

    Tabisz, Wojciech A.; Lee, Fred C.

    Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.

  17. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

    PubMed

    Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

    2017-03-01

    In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling.

    PubMed

    Peng, Hui; Zheng, Yi; Blumenstein, Michael; Tao, Dacheng; Li, Jinyan

    2018-04-16

    CRISPR/Cas9 system is a widely used genome editing tool. A prediction problem of great interests for this system is: how to select optimal single guide RNAs (sgRNAs) such that its cleavage efficiency is high meanwhile the off-target effect is low. This work proposed a two-step averaging method (TSAM) for the regression of cleavage efficiencies of a set of sgRNAs by averaging the predicted efficiency scores of a boosting algorithm and those by a support vector machine (SVM).We also proposed to use profiled Markov properties as novel features to capture the global characteristics of sgRNAs. These new features are combined with the outstanding features ranked by the boosting algorithm for the training of the SVM regressor. TSAM improved the mean Spearman correlation coefficiencies comparing with the state-of-the-art performance on benchmark datasets containing thousands of human, mouse and zebrafish sgRNAs. Our method can be also converted to make binary distinctions between efficient and inefficient sgRNAs with superior performance to the existing methods. The analysis reveals that highly efficient sgRNAs have lower melting temperature at the middle of the spacer, cut at 5'-end closer parts of the genome and contain more 'A' but less 'G' comparing with inefficient ones. Comprehensive further analysis also demonstrates that our tool can predict an sgRNA's cutting efficiency with consistently good performance no matter it is expressed from an U6 promoter in cells or from a T7 promoter in vitro. Online tool is available at http://www.aai-bioinfo.com/CRISPR/. Python and Matlab source codes are freely available at https://github.com/penn-hui/TSAM. Jinyan.Li@uts.edu.au. Supplementary data are available at Bioinformatics online.

  19. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  20. Series-Connected Buck Boost Regulators

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2005-01-01

    A series-connected buck boost regulator (SCBBR) is an electronic circuit that bucks a power-supply voltage to a lower regulated value or boosts it to a higher regulated value. The concept of the SCBBR is a generalization of the concept of the SCBR, which was reported in "Series-Connected Boost Regulators" (LEW-15918), NASA Tech Briefs, Vol. 23, No. 7 (July 1997), page 42. Relative to prior DC-voltage-regulator concepts, the SCBBR concept can yield significant reductions in weight and increases in power-conversion efficiency in many applications in which input/output voltage ratios are relatively small and isolation is not required, as solar-array regulation or battery charging with DC-bus regulation. Usually, a DC voltage regulator is designed to include a DC-to-DC converter to reduce its power loss, size, and weight. Advances in components, increases in operating frequencies, and improved circuit topologies have led to continual increases in efficiency and/or decreases in the sizes and weights of DC voltage regulators. The primary source of inefficiency in the DC-to-DC converter portion of a voltage regulator is the conduction loss and, especially at high frequencies, the switching loss. Although improved components and topology can reduce the switching loss, the reduction is limited by the fact that the converter generally switches all the power being regulated. Like the SCBR concept, the SCBBR concept involves a circuit configuration in which only a fraction of the power is switched, so that the switching loss is reduced by an amount that is largely independent of the specific components and circuit topology used. In an SCBBR, the amount of power switched by the DC-to-DC converter is only the amount needed to make up the difference between the input and output bus voltage. The remaining majority of the power passes through the converter without being switched. The weight and power loss of a DC-to-DC converter are determined primarily by the amount of power

  1. Distributed control system for parallel-connected DC boost converters

    DOEpatents

    Goldsmith, Steven

    2017-08-15

    The disclosed invention is a distributed control system for operating a DC bus fed by disparate DC power sources that service a known or unknown load. The voltage sources vary in v-i characteristics and have time-varying, maximum supply capacities. Each source is connected to the bus via a boost converter, which may have different dynamic characteristics and power transfer capacities, but are controlled through PWM. The invention tracks the time-varying power sources and apportions their power contribution while maintaining the DC bus voltage within the specifications. A central digital controller solves the steady-state system for the optimal duty cycle settings that achieve a desired power supply apportionment scheme for a known or predictable DC load. A distributed networked control system is derived from the central system that utilizes communications among controllers to compute a shared estimate of the unknown time-varying load through shared bus current measurements and bus voltage measurements.

  2. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  3. Single-stage three-phase boost power factor correction circuit for AC-DC converter

    NASA Astrophysics Data System (ADS)

    Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.

    2018-01-01

    This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.

  4. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  5. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storagemore » device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.« less

  6. Closed-loop analysis and control of a non-inverting buck-boost converter

    NASA Astrophysics Data System (ADS)

    Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong

    2010-11-01

    In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.

  7. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  8. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  9. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    ScienceCinema

    Johnson, Mark; Friedman, David

    2018-06-12

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  10. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Mark; Friedman, David

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  11. A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration

    NASA Astrophysics Data System (ADS)

    Kasiran, A. N.; Ponniran, A.; Harimon, M. A.; Hamzah, H. H.

    2018-04-01

    This study is to analyze design principles of boost inductor and capacitor used in the 4-level DC-DC boost converter to realize size reduction of passive component referring to their attributes. The important feature of this circuit is that most of the boost-up energy is transferred from the capacitor-clamped to the output side which the small inductance can be used at the input side. The inductance of the boost inductor is designed by referring the inductor current ripple. On the other hand, the capacitance of the capacitor-clamped is designed by considering voltage stress on semiconductor devices and also the used switching frequency. Besides that, according to the design specifications, the required inductance in 4-level DC-DC boost converter is decreased compared to a conventional conventional DC-DC boost converter. Meanwhile, voltage stress on semiconductor device is depending on the maximum voltage ripple of the capacitor-clamped. A 50 W 4-level DC-DC boost converter prototype has been constructed. The results show that the inductor current ripple was 1.15 A when the inductors, 1 mH and 0.11 mH were used in the conventional and 4-level DC-DC boost converters, respectively. Thus, based on the experimental results, it shows that the reduction of passive components by referring to their attributes in 4-level DC-DC boost converter is achieved. Moreover, the decreasing of voltage stress on the semiconductor devices is an advantage for the selection of low ON-resistance of the devices which will contribute to the reduction of the semiconductor conduction loss. The integration result of boost converter and H-bridge inverter is also shown.

  12. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  13. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  14. A high-efficiency thermoelectric converter for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, J.D.; El-Genk, M.S.

    1990-01-01

    This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reducemore » or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.« less

  15. A high-efficiency thermoelectric converter for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, J.D.; El-Genk, M.S.

    1990-12-31

    This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reducemore » or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.« less

  16. Modeling and analysis of fractional order DC-DC converter.

    PubMed

    Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmad Taher

    2017-07-11

    Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Simultaneous DC and three phase output using hybrid converter

    NASA Astrophysics Data System (ADS)

    Surenderanath, S.; Rathnavel, P.; Prakash, G.; Rayavel, P.

    2018-04-01

    This Paper introduces new hybrid converter topologies which can supply simultaneously three phase AC as well as DC from a single DC source. The new Hybrid Converter is derived from the single switch controlled Boost converter by replacing the controlled switch with voltage source inverter (VSI). This new hybrid converter has the advantages like reduced number of switches as compared with conventional design having separate converter for supplying three phase AC and DC loads, provide DC and three AC outputs with an increased reliability, resulting from the inherent shoot through protection in the inverter stage. The proposed converter, studied in this paper, is called Boost-Derived Hybrid Converter (BDHC) as it is obtained from the conventional boost topology. A DSPIC based feedback controller is designed to regulate the DC as well as AC outputs. The proposed Converter can supply DC and AC loads at 95 V and 35 V (line to ground) respectively from a 48 V DC source.

  18. An inductor-based converter with EMI reduction for low-voltage thermoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Zhao, Kai; Li, Zunchao

    2017-07-01

    This paper presents a self-powered inductor-based converter which harvests thermoelectric energy and boosts extremely low voltage to a typical voltage level for supplying body sensor nodes. Electromagnetic interference (EMI) of the converter is reduced by spreading spectrum of fundamental frequency and harmonics via pseudo-random modulation, which is obtained via combining the linear feedback shift register and digitally controlled oscillator. Besides, the methods, namely extracting energy near MPP and reducing the power dissipation, are employed to improve the power efficiency. The presented inductor-based converter is designed and verified in CSMC CMOS 0.18-µm 1P6M process. The results reveal that it achieves the high efficiency and EMI reduction at the same time.

  19. Robust control of the DC-DC boost converter based on the uncertainty and disturbance estimator

    NASA Astrophysics Data System (ADS)

    Oucheriah, Said

    2017-11-01

    In this paper, a robust non-linear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed and implemented for the output voltage regulation of the DC-DC boost converter. System uncertainties, external disturbances and unknown non-linear dynamics are lumped as a signal that is accurately estimated using a low-pass filter and their effects are cancelled by the controller. This methodology forms the basis of the UDE-based controller. A simple procedure is also developed that systematically determines the parameters of the controller to meet certain specifications. Using simulation, the effectiveness of the proposed controller is compared against the sliding-mode control (SMC). Experimental tests also show that the proposed controller is robust to system uncertainties, large input and load perturbations.

  20. PV source based high voltage gain current fed converter

    NASA Astrophysics Data System (ADS)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  1. Adaptive fractional order sliding mode control for Boost converter in the Battery/Supercapacitor HESS

    PubMed Central

    Xu, Dan; Zhou, Huan; Zhou, Tao

    2018-01-01

    In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system. PMID:29702696

  2. Adaptive fractional order sliding mode control for Boost converter in the Battery/Supercapacitor HESS.

    PubMed

    Wang, Jianlin; Xu, Dan; Zhou, Huan; Zhou, Tao

    2018-01-01

    In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system.

  3. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  4. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  5. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2017-12-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  6. Distributed photovoltaic architecture powering a DC bus: Impact of duty cycle and load variations on the efficiency of the generator

    NASA Astrophysics Data System (ADS)

    Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel

    2018-05-01

    This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.

  7. A linear polarization converter with near unity efficiency in microwave regime

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Wang, Shen-Yun; Geyi, Wen

    2017-04-01

    In this paper, we present a linear polarization converter in the reflective mode with near unity conversion efficiency. The converter is designed in an array form on the basis of a pair of orthogonally arranged three-dimensional split-loop resonators sharing a common terminal coaxial port and a continuous metallic ground slab. It converts the linearly polarized incident electromagnetic wave at resonance to its orthogonal counterpart upon the reflection mode. The conversion mechanism is explained by an equivalent circuit model, and the conversion efficiency can be tuned by changing the impedance of the terminal port. Such a scheme of the linear polarization converter has potential applications in microwave communications, remote sensing, and imaging.

  8. Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter

    NASA Astrophysics Data System (ADS)

    Moamaei, Parvin

    Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.

  9. High Efficiency Single Output ZVS-ZCS Voltage Doubled Flyback Converter

    NASA Astrophysics Data System (ADS)

    Kaliyaperumal, Deepa; Saju, Hridya Merin; Kumar, M. Vijaya

    2016-06-01

    A switch operating at high switching frequency increases the switching losses of the converter resulting in lesser efficiency. Hence this paper proposes a new topology which has resonant switches [zero voltage switching (ZVS)] in the primary circuit to eliminate the above said disadvantages, and voltage doubler zero current switching (ZCS) circuit in the secondary to double the output voltage, and hence the output power, power density and efficiency. The design aspects of the proposed topology for a single output of 5 V at 50 kHz, its simulation and hardware results are discussed in detail. The analysis of the results obtained from a 2.5 W converter reveals the superiority of the proposed converter.

  10. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    PubMed Central

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  11. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    PubMed

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  12. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems

    PubMed Central

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  13. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.

    PubMed

    Brunelli, Davide

    2016-03-04

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions.

  14. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  15. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    NASA Astrophysics Data System (ADS)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  16. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  17. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  18. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  19. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  20. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  1. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    NASA Astrophysics Data System (ADS)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  2. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-04-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  3. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  4. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  5. Comparison between a classical command law and a new advanced recovery command law in a MCB-ARS boost

    NASA Astrophysics Data System (ADS)

    Petit, Pierre; Saint-Eve, Frédéric; Sawicki, Jean-Paul; Aillerie, Michel

    2017-02-01

    This paper focuses on an original performed command on DC-DC boosts developed for applications in the LMOPS lab for the photovoltaic energy conversion and more specifically the Photovoltaic panels connected to HVDC smart grids. This boost, commonly named MCB-ARS (Magnetically Coupled Boost with Active Recovery Switch) presents great advantages concerning the simplicity of the command on the single constitutive switch, the global efficiency and the voltage conversion ratio. A fine analysis of the losses all over the entire converter shows that losses are not distributed uniformly in the constituting components. So a previous modification described in a previous paper consisting in the conducting assistance on the power flowing intermediate diode, performed advantageously the global efficiency. The present analysis takes into account the fact that the new configuration obtained after this important improvement looks like a classical half-bridge push-pull stage and may be controlled by a twice complementary command. In that way, a comparison has been done between a natural commutation recovery diode and an assisted switch commutation driven in a push-pull mode. As attempted, the switching command laws in charge to assume the energy transfer has been compared to the classical previous system described in anterior papers, and we demonstrate in this publication that a commutation based on a push-pull command mode within the two switches of the MCB-ARS converter is possible and increases the power transfer.

  6. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  7. Fuzzy control of power converters based on quasilinear modelling

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Lee, W. L.; Chou, Y. W.

    1995-03-01

    Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.

  8. Use of nonlinear design optimization techniques in the comparison of battery discharger topologies for the space platform

    NASA Technical Reports Server (NTRS)

    Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1990-01-01

    A detailed comparison of a boost converter, a voltage-fed, autotransformer converter, and a multimodule boost converter, designed specifically for the space platform battery discharger, is performed. Computer-based nonlinear optimization techniques are used to facilitate an objective comparison. The multimodule boost converter is shown to be the optimum topology at all efficiencies. The margin is greatest at 97 percent efficiency. The multimodule, multiphase boost converter combines the advantages of high efficiency, light weight, and ample margin on the component stresses, thus ensuring high reliability.

  9. Solid state light source driver establishing buck or boost operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Fred

    A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boostmore » converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.« less

  10. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-07-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  11. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-01-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  12. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    PubMed

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  13. A Hybrid Converter for Improving Light Load Efficiency

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi

    In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.

  14. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  15. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOEpatents

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  16. Optimal feed-forward compensation for PWM dc/dc converters with 'linear' and 'quadratic' conversion ratio

    NASA Astrophysics Data System (ADS)

    Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo

    1992-04-01

    The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.

  17. Efficiency limits of laser power converters for optical power transfer applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  18. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting

    PubMed Central

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-01-01

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from −40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions. PMID:28282910

  19. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  20. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Astrophysics Data System (ADS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  1. Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications

    NASA Technical Reports Server (NTRS)

    Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette

    2005-01-01

    A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.

  2. Series Connected Buck-Boost Regulator

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G. (Inventor)

    2006-01-01

    A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.

  3. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  4. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  5. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    NASA Astrophysics Data System (ADS)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  6. Optimal laser wavelength for efficient laser power converter operation over temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhn, O., E-mail: oliver.hoehn@ise.fraunhofer.de; Walker, A. W.; Bett, A. W.

    2016-06-13

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined tomore » be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.« less

  7. Efficient III-Nitride MIS-HEMT devices with high-κ gate dielectric for high-power switching boost converter circuits

    NASA Astrophysics Data System (ADS)

    Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.; Sarkar, Partha; Saha, Samar K.

    2017-03-01

    The paper reports the results of a systematic theoretical study on efficient recessed-gate, double-heterostructure, and normally-OFF metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs), HfAlOx/AlGaN on Al2O3 substrate. In device architecture, a thin AlGaN layer is used in the AlGaN graded barrier MIS-HEMTs that offers an excellent enhancement-mode device operation with threshold voltage higher than 5.3 V and drain current above 0.64 A/mm along with high on-current/off-current ratio over 107 and subthreshold slope less than 73 mV/dec. In addition, a high OFF-state breakdown voltage of 1200 V is achieved for a device with a gate-to-drain distance and field-plate length of 15 μm and 5.3 μm, respectively at a drain current of 1 mA/mm with a zero gate bias, and the substrate grounded. The numerical device simulation results show that in comparison to a conventional AlGaN/GaN MIS-HEMT of similar design, a graded barrier MIS-HEMT device exhibits a better interface property, remarkable suppression of leakage current, and a significant improvement of breakdown voltage for HfAlOx gate dielectric. Finally, the benefit of HfAlOx graded-barrier AlGaN MIS-HEMTs based switching devices is evaluated on an ultra-low-loss converter circuit.

  8. SemiBoost: boosting for semi-supervised learning.

    PubMed

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  9. Designation of a polarization-converting system and its enhancement of double-frequency efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-08-01

    A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.

  10. Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2000-01-01

    DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.

  11. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    PubMed

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    NASA Astrophysics Data System (ADS)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  13. Boosting instance prototypes to detect local dermoscopic features.

    PubMed

    Situ, Ning; Yuan, Xiaojing; Zouridakis, George

    2010-01-01

    Local dermoscopic features are useful in many dermoscopic criteria for skin cancer detection. We address the problem of detecting local dermoscopic features from epiluminescence (ELM) microscopy skin lesion images. We formulate the recognition of local dermoscopic features as a multi-instance learning (MIL) problem. We employ the method of diverse density (DD) and evidence confidence (EC) function to convert MIL to a single-instance learning (SIL) problem. We apply Adaboost to improve the classification performance with support vector machines (SVMs) as the base classifier. We also propose to boost the selection of instance prototypes through changing the data weights in the DD function. We validate the methods on detecting ten local dermoscopic features from a dataset with 360 images. We compare the performance of the MIL approach, its boosting version, and a baseline method without using MIL. Our results show that boosting can provide performance improvement compared to the other two methods.

  14. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.

    1976-01-01

    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.

  15. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    NASA Astrophysics Data System (ADS)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  16. RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING

    PubMed Central

    Liu, Meizhu; Vemuri, Baba C.

    2011-01-01

    Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) – used to represent the distribution over the training data and the classification error respectively – to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643

  17. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  18. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  19. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  20. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters.

    PubMed

    Rodríguez, Juan; Lamar, Diego G; Aller, Daniel G; Miaja, Pablo F; Sebastián, Javier

    2018-04-07

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMC dc-dc ) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMC dc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMC dc-dc are presented: increasing the order of the SMC dc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting.

  1. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters

    PubMed Central

    2018-01-01

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455

  2. Numerical study of hydrodynamic behavior and conversion efficiency of a two-buoy wave energy converter

    NASA Astrophysics Data System (ADS)

    Yang, Cen; Zhang, Yong-liang

    2018-04-01

    In this paper we propose a two-buoy wave energy converter composed of a heaving semi-submerged cylindrical buoy, a fixed submerged cylindrical buoy and a power take-off (PTO) system, and investigate the effect of the fixed submerged buoy on the hydrodynamics of the heaving semi-submerged buoy based on the three-dimensional potential theory. And the dynamic response of the semi-submerged buoy and the wave energy conversion efficiency of the converter are analyzed. The difference of the hydrodynamics and the wave energy conversion efficiency of a semi-submerged buoy converter with and without a fixed submerged buoy is discussed. It is revealed that the influence of the fixed submerged buoy on the exciting wave force, the added mass, the radiation damping coefficient and the wave energy conversion efficiency can be significant with a considerable variation, depending on the vertical distance between the heaving semi-submerged buoy and the fixed submerged buoy, the diameter ratio of the fixed submerged buoy to the heaving semi-submerged buoy and the water depth.

  3. A multiview boosting approach to tissue segmentation

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Xu, Sheng; Pinto, Peter A.; Turkbey, Baris; Bernardo, Marcelino; Choyke, Peter L.; Wood, Bradford J.

    2014-04-01

    Digitized histopathology images have a great potential for improving or facilitating current assessment tools in cancer pathology. In order to develop accurate and robust automated methods, the precise segmentation of histologic objects such epithelium, stroma, and nucleus is necessary, in the hopes of information extraction not otherwise obvious to the subjective eye. Here, we propose a multivew boosting approach to segment histology objects of prostate tissue. Tissue specimen images are first represented at different scales using a Gaussian kernel and converted into several forms such HSV and La*b*. Intensity- and texture-based features are extracted from the converted images. Adopting multiview boosting approach, we effectively learn a classifier to predict the histologic class of a pixel in a prostate tissue specimen. The method attempts to integrate the information from multiple scales (or views). 18 prostate tissue specimens from 4 patients were employed to evaluate the new method. The method was trained on 11 tissue specimens including 75,832 epithelial and 103,453 stroma pixels and tested on 55,319 epithelial and 74,945 stroma pixels from 7 tissue specimens. The technique showed 96.7% accuracy, and as summarized into a receiver operating characteristic (ROC) plot, the area under the ROC curve (AUC) of 0.983 (95% CI: 0.983-0.984) was achieved.

  4. A novel power converter for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  5. A nonlinear control scheme based on dynamic evolution path theory for improved dynamic performance of boost PFC converter working on nonlinear features.

    PubMed

    Mohanty, Pratap Ranjan; Panda, Anup Kumar

    2016-11-01

    This paper is concerned to performance improvement of boost PFC converter under large random load fluctuation, ensuring unity power factor (UPF) at source end and regulated voltage at load side. To obtain such performance, a nonlinear controller based on dynamic evolution path theory is designed and its robustness is examined under both heavy and light loading condition. In this paper, %THD and zero-cross-over dead-zone of input current is significantly reduced. Also, very less response time of input current and output voltage to that of load and reference variation is remarked. A simulation model of proposed system is designed and it is realized using dSPACE 1104 signal processor for a 390V DC , 500W prototype. The relevant experimental and simulation waveforms are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Study of Simple MPPT Converter Topologies for Grid Integration of Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zakis, Janis; Vinnikov, Dmitri

    2011-01-01

    This paper presents a study of two simple MPPT converter topologies for grid integration of photovoltaic (PV) systems. A general description and a steady state analysis of the discussed converters are presented. Main operating modes of the converters are explained. Calculations of main circuit element parameters are provided. Experimental setups of the MPPT converters with the power of 800 W were developed and verified by means of main operation waveforms. Also, experimental and theoretical boost properties of the studied topologies are compared. Finally, the integration possibilities of the presented MPPT converters with a grid side inverter are discussed and verified by simulations.

  7. Highly-Efficient and Modular Medium-Voltage Converters

    DTIC Science & Technology

    2015-09-28

    HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.

  8. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  9. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  10. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  11. High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping

    2017-07-01

    In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.

  12. A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yu; Fan, Yu-Wei; Shu, Ting; Yuan, Cheng-wei; Zhang, Qiang

    2017-03-01

    The tunable high power microwave source (HPM's) is considered to be an important research direction. However, the corresponding mode converter has been researched little. In this paper, a high-efficiency tunable mode converter (HETMC) is investigated for high-power microwave applications. The HETMC that is consisted of coaxial inner and outer conductors, with four metal plates arranged radially, at 90° in the coaxial gap, and matching rods can transform coaxial transverse electromagnetic (TEM) mode to TE11 coaxial waveguide mode. The results show that adjusting the length of the downstream plate, and the distance between the rods installed upstream and the closest edges of the plates, can improve the conversion efficiency and bandwidth remarkably. Moreover, when the frequency ranges from 1.63 GHz to 2.12 GHz, the conversion efficiency is above 95% between 1.63 GHz and 2.12 GHz with a bandwidth of 26.1%. Besides, the unwished reflection and transmission can be eliminated effectively in the HETMC.

  13. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  14. Microminiature thermionic converters

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2001-09-25

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  15. Bidirectional converter for high-efficiency fuel cell powertrain

    NASA Astrophysics Data System (ADS)

    Fardoun, Abbas A.; Ismail, Esam H.; Sabzali, Ahmad J.; Al-Saffar, Mustafa A.

    2014-03-01

    In this paper, a new wide conversion ratio step-up and step-down converter is presented. The proposed converter is derived from the conventional Single Ended Primary Inductor Converter (SEPIC) topology and it is integrated with a capacitor-diode voltage multiplier, which offers a simple structure, reduced electromagnetic interference (EMI), and reduced semiconductors' voltage stresses. Other advantages include: continuous input and output current, extended step-up and step-down voltage conversion ratio without extreme low or high duty-cycle, simple control circuitry, and near-zero input and output ripple currents compared to other converter topologies. The low charging/discharging current ripple and wide gain features result in a longer life-span and lower cost of the energy storage battery system. In addition, the "near-zero" ripple capability improves the fuel cell durability. Theoretical analysis results obtained with the proposed structure are compared with other bi-direction converter topologies. Simulation and experimental results are presented to verify the performance of the proposed bi-directional converter.

  16. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  17. Absorption of solar radiation by alkali vapors. [for efficient high temperature energy converters

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1978-01-01

    A theoretical study of the direct absorption of solar radiation by the working fluid of high temperature, high efficiency energy converters has been carried out. Alkali vapors and potassium vapor in particular were found to be very effective solar absorbers and suitable thermodynamically for practical high temperature cycles. Energy loss via reradiation from a solar boiler was shown to reduce the overall efficiency of radiation-heated energy converters, although a simple model of radiation transfer in a potassium vapor solar boiler revealed that self-trapping of the reradiation may reduce this loss considerably. A study was also made of the requirements for a radiation boiler window. It was found that for sapphire, one of the best solar transmitting materials, the severe environment in conjunction with high radiation densities will require some form of window protection. An aerodynamic shield is particularly advantageous in this capacity, separating the window from the absorbing vapor to prevent condensation and window corrosion and to reduce the radiation density at the window.

  18. Self-powered microthermionic converter

    DOEpatents

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  19. Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F. (Inventor); Brush, Andy (Inventor)

    1997-01-01

    The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.

  20. Degree of coupling and efficiency of energy converters far-from-equilibrium

    NASA Astrophysics Data System (ADS)

    Vroylandt, Hadrien; Lacoste, David; Verley, Gatien

    2018-02-01

    In this paper, we introduce a real symmetric and positive semi-definite matrix, which we call the non-equilibrium conductance matrix, and which generalizes the Onsager response matrix for a system in a non-equilibrium stationary state. We then express the thermodynamic efficiency in terms of the coefficients of this matrix using a parametrization similar to the one used near equilibrium. This framework, then valid arbitrarily far from equilibrium allows to set bounds on the thermodynamic efficiency by a universal function depending only on the degree of coupling between input and output currents. It also leads to new general power-efficiency trade-offs valid for macroscopic machines that are compared to trade-offs previously obtained from uncertainty relations. We illustrate our results on an unicycle heat to heat converter and on a discrete model of a molecular motor.

  1. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    PubMed

    Zheng, Qi; Grice, Elizabeth A

    2016-10-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  2. Highly efficient all-nitride phosphor-converted white light emitting diode

    NASA Astrophysics Data System (ADS)

    Mueller-Mach, Regina; Mueller, Gerd; Krames, Michael R.; Höppe, Henning A.; Stadler, Florian; Schnick, Wolfgang; Juestel, Thomas; Schmidt, Peter

    2005-07-01

    The development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials, both of which are doped with Eu2+. For color conversion of the primary blue the nitridosilicates M2Si5N8 (orange-red) and MSi2O2N2 (yellow-green), with M = alkaline earth, were employed, thus achieving a high luminous efficiency (25 lumen/W at 1 W input), excellent color quality (correlated color temperature CCT = 3200 K, general color rendering index Ra > 90) and the highest proven color stability of any pc-LED obtained so far. Thus, these novel all-nitride LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources.

  3. Boosting Manufacturing through Modular Chemical Process Intensification

    ScienceCinema

    None

    2018-06-12

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  4. Boosting Manufacturing through Modular Chemical Process Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-12-09

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  5. A miniature high-efficiency fully digital adaptive voltage scaling buck converter

    NASA Astrophysics Data System (ADS)

    Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji

    2015-09-01

    A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.

  6. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  7. Comparison of converter topologies for charging capacitors used in pulsed load applications

    NASA Technical Reports Server (NTRS)

    Nelms, R. M.; Schatz, J. E.; Pollard, Barry

    1991-01-01

    The authors present a qualitative comparison of different power converter topologies which may be utilized for charging capacitors in pulsed power applications requiring voltages greater than 1 kV. The operation of the converters in capacitor charging applications is described, and relevant advantages are presented. All of the converters except one may be classified in the high-frequency switching category. One of the benefits from high-frequency operation is a reduction in size and weight. The other converter discussed is a member of the command resonant changing category. The authors first describe a boost circuit which functions as a command resonant charging circuit and utilizes a single pulse of current to charge the capacitor. The discussion of high-frequency converters begins with the flyback and Ward converters. Then, the series, parallel, and series/parallel resonant converters are examined.

  8. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  9. Back-gated graphene anode for more efficient thermionic energy converters

    DOE PAGES

    Yuan, Hongyuan; Riley, Daniel C.; Shen, Zhi-Xun; ...

    2016-12-15

    Thermionic energy converters (TECs) are a direct heat-to-electricity conversion technology with great potential for high efficiency and scalability. However, space charge barrier in the inter-electrode gap and high anode work function are major obstacles toward realizing high efficiency. Here, we demonstrate for the first time a prototype TEC using a back-gated graphene anode, a barium dispenser cathode, and a controllable inter-electrode gap as small as 17 µm, which simultaneously addresses these two obstacles. This leads to an electronic conversion efficiency of 9.8% at cathode temperature of 1000 °C, the highest reported by far. We first demonstrate that electrostatic gating ofmore » graphene by a 20 nm HfO 2 dielectric layer changes the graphene anode work function by 0.63 eV, as observed from the current-voltage characteristics of the TEC. Next, we show that the efficiency increases by a factor of 30.6 by reducing the gap from 1 mm down to 17 µm, after a mono-layer of Ba is deposited on graphene by the dispenser cathode. Lastlu, we show that electrostatic gating of graphene further reduces the graphene work function from 1.85 to 1.69 eV, leading to an additional 67% enhancement in TEC efficiency. Note that the overall efficiency using the back-gated graphene anode is 6.7 times higher compared with that of a TEC with a tungsten anode and the same inter-electrode gap.« less

  10. Back-gated graphene anode for more efficient thermionic energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Hongyuan; Riley, Daniel C.; Shen, Zhi-Xun

    Thermionic energy converters (TECs) are a direct heat-to-electricity conversion technology with great potential for high efficiency and scalability. However, space charge barrier in the inter-electrode gap and high anode work function are major obstacles toward realizing high efficiency. Here, we demonstrate for the first time a prototype TEC using a back-gated graphene anode, a barium dispenser cathode, and a controllable inter-electrode gap as small as 17 µm, which simultaneously addresses these two obstacles. This leads to an electronic conversion efficiency of 9.8% at cathode temperature of 1000 °C, the highest reported by far. We first demonstrate that electrostatic gating ofmore » graphene by a 20 nm HfO 2 dielectric layer changes the graphene anode work function by 0.63 eV, as observed from the current-voltage characteristics of the TEC. Next, we show that the efficiency increases by a factor of 30.6 by reducing the gap from 1 mm down to 17 µm, after a mono-layer of Ba is deposited on graphene by the dispenser cathode. Lastlu, we show that electrostatic gating of graphene further reduces the graphene work function from 1.85 to 1.69 eV, leading to an additional 67% enhancement in TEC efficiency. Note that the overall efficiency using the back-gated graphene anode is 6.7 times higher compared with that of a TEC with a tungsten anode and the same inter-electrode gap.« less

  11. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework

    PubMed Central

    Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155

  12. Isolated and soft-switched power converter

    DOEpatents

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  13. New generation of one-dimensional photonic crystal cavities as robust high-efficient frequency converter

    NASA Astrophysics Data System (ADS)

    Parvini, T. S.; Tehranchi, M. M.; Hamidi, S. M.

    2017-07-01

    An effective method is proposed to design finite one-dimensional photonic crystal cavities (PhCCs) as robust high-efficient frequency converter. For this purpose, we consider two groups of PhCCs which are constructed by stacking m nonlinear (LiNbO3) and n linear (air) layers with variable thicknesses. In the first group, the number of linear layers is less than the nonlinear layers by one and in the second group by two. The conversion efficiency is calculated as a function of the arrangement and thicknesses of the linear and nonlinear layers by benefiting from nonlinear transfer matrix method. Our numerical simulations show that for each group of PhCCs, there is a structural formula by which the configurations with the highest efficiency can be constructed for any values of m and n (i.e. any number of layers). The efficient configurations are equivalent to Fabry-Pérot cavities that depend on the relationship between m and n and the mirrors in two sides of these cavities can be periodic or nonperiodic. The conversion efficiencies of these designed PhCCs are more than 5 orders of magnitude higher than the perfect ones which satisfy photonic bandgap edge and quasi-phase matching. Moreover, the results reveal that conversion efficiencies of Fabry-Pérot cavities with non-periodic mirrors are one order of magnitude higher than those with periodic mirrors. The major physical mechanisms of the enhancement are quasi-phase matching effect, cavity effect induced by dispersive mirrors, and double resonance for the pump and the harmonic fields in defect state. We believe that this method is very beneficial to the design of high-efficient compact optical frequency converters.

  14. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  15. Online boosting for vehicle detection.

    PubMed

    Chang, Wen-Chung; Cho, Chih-Wei

    2010-06-01

    This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.

  16. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  17. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  18. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    PubMed

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  19. High power density dc-to-dc converters for aerospace applications

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.

  20. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  1. Centrifugal compressor design for electrically assisted boost

    NASA Astrophysics Data System (ADS)

    Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.

    2013-12-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.

  2. Tracking down hyper-boosted top quarks

    DOE PAGES

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  3. A miniature transformer/dc-dc converter for implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mohammed, Osama A.; Jones, W. Kinzy

    1988-11-01

    This paper presents a new technique for the design of a miniature dc-dc converter used in energy producing implantable devices such as defibrillators and advanced pacemakers. This converter is inserted in such a device and is used to boost the voltage from a low voltage implanted battery to high voltage energy storage capacitors in a short period of time. The stored energy is then delivered, when needed, through an energy delivery circuit in order to stimulate or defibrillate the heart. The converter takes the form of a flyback topology which includes a miniature transformer and a specialized control circuit. The transformer was designed using a new numerical synthesis method which utilizes finite elements and dynamic programming for predicting the geometries of the transformer's magnetic circuit. The final transformer design satisfied the performance criteria and provided means for selecting the converter components. The obtained performance results for the transformer and the dc-dc converter were in excellent agreement with laboratory performance tests.

  4. Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.

    PubMed

    Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael

    2006-05-01

    In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to

  5. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  6. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  7. Efficient magneto-optical mode converter on glass

    NASA Astrophysics Data System (ADS)

    Garayt, Jean Philippe; Parsy, François; Jamon, Damien; Neveu, Sophie; Royer, François; Ghibaudo, Elise; Broquin, Jean-Emmanuel

    2014-03-01

    The integration of magneto-optical materials to realize non-reciprocal functions is still a difficult problem, because classical magneto-optical materials require an annealing temperature as high as 700°C. In this framework, this study shows how it is possible to realize efficient magneto-optical mode converter using the association of a magnetic nanoparticles silica/zirconia composite with an ion-exchanged glass waveguide. Using a sol gel process, a silica/zirconia matrix is doped by magnetic nanoparticles (CoFe2O4) and coated on a glass substrate containing straight channel waveguides made by a silver/sodium ion exchange. The extremities of the guides were previously buried using electric field-assisted burial in order to facilitate light injection. Soft annealing (90°C) and UV treatment, both compatible with the ion exchange process, have been implemented to finalize the magneto-optical film. Depending on the amount of nanoparticles in the composite, on the spatial distribution of the field in the guide and on the modal birefringence of the hybrid structure, the TE-TM conversion varies from several degrees to several tens of degrees.

  8. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone

  9. GaN Microwave DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ramos Franco, Ignacio

    Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any

  10. Derivation of linearized transfer functions for switching-mode regulations. Phase A: Current step-up and voltage step-up converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Small-signal models are derived for the power stage of the voltage step-up (boost) and the current step-up (buck) converters. The modeling covers operation in both the continuous-mmf mode and the discontinuous-mmf mode. The power stage in the regulated current step-up converter on board the Dynamics Explorer Satellite is used as an example to illustrate the procedures in obtaining the small-signal functions characterizing a regulated converter.

  11. Thermionic converter

    DOEpatents

    Fitzpatrick, G.O.

    1987-05-19

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  12. A Mechanistic Understanding of a Binary Additive System to Synergistically Boost Efficiency in All-Polymer Solar Cells

    PubMed Central

    Kim, Yu Jin; Ahn, Sunyong; Wang, Dong Hwan; Park, Chan Eon

    2015-01-01

    All-polymer solar cells are herein presented utilizing the PBDTTT-CT donor and the P(NDI2OD-T2) acceptor with 1,8-diiodooctane (DIO) and 1-chloronaphthalene (CN) binary solvent additives. A systematic study of the polymer/polymer bulk heterojunction photovoltaic cells processed from the binary additives revealed that the microstructures and photophysics were quite different from those of a pristine system. The combination of DIO and CN with a DIO/CN ratio of 3:1 (3 vol% DIO, 1 vol% CN and 96 vol% o-DCB) led to suitable penetrating polymer networks, efficient charge generation and balanced charge transport, which were all beneficial to improving the efficiency. This improvement is attributed to increase in power conversion efficiency from 2.81% for a device without additives to 4.39% for a device with the binary processing additives. A detailed investigation indicates that the changes in the polymer:polymer interactions resulted in the formation of a percolating nasnoscale morphology upon processing with the binary additives. Depth profile measurements with a two-dimensional grazing incidence wide-angle X-ray scattering confirm this optimum phase feature. Furthermore impedance spectroscopy also finds evidence for synergistically boosting the device performance. PMID:26658472

  13. Bidirectional dc-to-dc Power Converter

    NASA Technical Reports Server (NTRS)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  14. Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali

    DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.

  15. Thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.

    1987-05-19

    A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.

  16. Energy distribution analysis in boosted HCCI-like / LTGC engines – Understanding the trade-offs to maximize the thermal efficiency

    DOE PAGES

    Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng

    2015-04-14

    A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less

  17. Indirect current control with separate IZ drop compensation for voltage source converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanetkar, V.R.; Dawande, M.S.; Dubey, G.K.

    1995-12-31

    Indirect Current Control (ICC) of boost type Voltage Source Converters (VSCs) using separate compensation of line IZ voltage drop is presented. A separate bi-directional VSC is used to produce the compensation voltage. This simplifies the ICC regulator scheme as the power flow is controlled through single modulation index. Experimental verification is provided for bi-directional control of the power flow.

  18. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  19. Study on a discal TEM-TE{sub 11} mode converter loaded high-efficiency magnetically insulated transmission line oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Yuan, Chengwei; Li, Yangmei

    2015-12-15

    An integrative high power microwave device is proposed, which consists of a high-efficiency L-band Magnetically Insulated Transmission Line Oscillator (MILO) and a discal TEM–TE{sub 11} mode converter. The MILO with a shrunken load composed of a step-like cathode and a ladder-like beam collector can generate a 1.58 GHz, 5.7 GW microwave with the efficiency of 20.8% at the diode voltage of 560 kV in simulation. The discal converter utilizes a pair of sectorial two-double radial waveguides and a pair of sectorial cross section waveguides to adjust the phase-difference and realizes the mode conversion in a length of less than halfmore » wavelength at 1.58 GHz. In the preliminary experiment, the proposed device generates over 2 GW, 1.575 GHz microwave with the pulse duration of over 50 ns in a 420 kV diode voltage; the corresponding efficiency is 14.9%; the radiation pattern is the ideal TE{sub 11} mode.« less

  20. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  1. Experimental Research in Boost Driver with EDLCs

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hirokazu

    The supply used in servo systems tends to have a high voltage in order to reduce loss and improve the response of motor drives. We propose a new boost motor driver that comprises EDLCs. The proposed driver has a simple structure, wherein the EDLCs are connected in series to the supply, and comprises a charge circuit to charge the EDLCs. The proposed driver has three advantages over conventional boost drivers. The first advantage is that the driver can easily attain the stable boost voltage. The second advantage is that the driver can reduce input power peaks. In a servo system, the input power peaks become greater than the rated power in order to accelerate the motor rapidly. This implies that the equipments that supply power to servo systems must have sufficient power capacity to satisfy the power peaks. The proposed driver can suppress the increase of the power capacity of supply facilities. The third advantage is that the driver can store almost all of the regenerative energy. Conventional drivers have a braking resistor to suppress the increase in the DC link voltage. This causes a considerable reduction in the efficiency. The proposed driver is more efficient than conventional drivers. In this study, the experimental results confirmed the effectiveness of the proposed driver and showed that the drive performance of the proposed driver is the same as that of a conventional driver. Furthermore, it was confirmed that the results of the simulation of a model of the EDLC module, whose capacitance is dependent on the frequency, correspond well with the experimental results.

  2. Boosting bonsai trees for handwritten/printed text discrimination

    NASA Astrophysics Data System (ADS)

    Ricquebourg, Yann; Raymond, Christian; Poirriez, Baptiste; Lemaitre, Aurélie; Coüasnon, Bertrand

    2013-12-01

    Boosting over decision-stumps proved its efficiency in Natural Language Processing essentially with symbolic features, and its good properties (fast, few and not critical parameters, not sensitive to over-fitting) could be of great interest in the numeric world of pixel images. In this article we investigated the use of boosting over small decision trees, in image classification processing, for the discrimination of handwritten/printed text. Then, we conducted experiments to compare it to usual SVM-based classification revealing convincing results with very close performance, but with faster predictions and behaving far less as a black-box. Those promising results tend to make use of this classifier in more complex recognition tasks like multiclass problems.

  3. Robust boosting via convex optimization

    NASA Astrophysics Data System (ADS)

    Rätsch, Gunnar

    2001-12-01

    In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems

  4. Observer-Pattern Modeling and Slow-Scale Bifurcation Analysis of Two-Stage Boost Inverters

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Wan, Xiaojin; Li, Weijie; Ding, Honghui; Yi, Chuanzhi

    2017-06-01

    This paper deals with modeling and bifurcation analysis of two-stage Boost inverters. Since the effect of the nonlinear interactions between source-stage converter and load-stage inverter causes the “hidden” second-harmonic current at the input of the downstream H-bridge inverter, an observer-pattern modeling method is proposed by removing time variance originating from both fundamental frequency and hidden second harmonics in the derived averaged equations. Based on the proposed observer-pattern model, the underlying mechanism of slow-scale instability behavior is uncovered with the help of eigenvalue analysis method. Then eigenvalue sensitivity analysis is used to select some key system parameters of two-stage Boost inverter, and some behavior boundaries are given to provide some design-oriented information for optimizing the circuit. Finally, these theoretical results are verified by numerical simulations and circuit experiment.

  5. Reverse matrix converter control method for PMSM drives using DPC

    NASA Astrophysics Data System (ADS)

    Bak, Yeongsu; Lee, Kyo-Beum

    2018-05-01

    This paper proposes a control method for a reverse matrix converter (RMC) that drives a three-phase permanent magnet synchronous motor (PMSM). In this proposed method, direct power control (DPC) is used to control the voltage source rectifier of the RMC. The RMC is an indirect matrix converter operating in the boost mode, in which the power-flow directions of the input and output are switched. It has a minimum voltage transfer ratio of 1/0.866 in a linear-modulation region. In this paper, a control method that uses DPC as an additional control method is proposed in order to control the RMC driving a PMSM in the output stage. Simulations and experimental results verify the effectiveness of the proposed control method.

  6. Can you boost your metabolism?

    MedlinePlus

    Weight-loss boost metabolism; Obesity - boost metabolism; Overweight - boost metabolism ... Cowley MA, Brown WA, Considine RV. Obesity. In: Jameson JL, De Groot ... and Pediatric . 7th ed. Philadelphia, PA: Elsevier Saunders; ...

  7. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.

    PubMed

    van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A

    2007-07-15

    To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.

  8. Comparison of control structures for a bidirectional high-frequency dc-dc converter

    NASA Astrophysics Data System (ADS)

    Himmelstoss, Felix A.; Kolar, Johann W.; Zach, Franz C.

    1989-08-01

    A system for dc-dc power conversion based on a buck-boost converter topology is presented. It makes power flow in both directions possible. The possibility of bidirectional power flow is useful for certain applications, such as uninterruptable power supplies. Starting from a structural diagram the transfer function of the system is derived. The controller for the converter is then designed. It is made up of a simple voltage controller, a voltage controller with an inner loop current controller (cascade control) and with two kinds of state space control. The transfer functions of the different system parts are derived and dimensioning guidelines for the controller sections are presented. The closed loop behavior of the bidirectional converter for the different control structures is analyzed based on simulation using duty cycle averaging. Bodediagrams and step responses are shown.

  9. Direct-current converter for gas-discharge lamps

    NASA Technical Reports Server (NTRS)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  10. Experimental verification of internal parameter in magnetically coupled boost used as PV optimizer in parallel association

    NASA Astrophysics Data System (ADS)

    Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel

    2017-02-01

    This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.

  11. A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Li, Jiefang; Viehland, D.; Zhuang, X.

    2018-07-01

    Over the past two decades, magnetoelectric (ME) composites and their devices have been an important topic of research. Potential applications ranging from low-power sensing to high-power converters have been investigated. This review, first begins with a summary of multiferroic materials that work at room temperature. Such ME materials are usually in composites, and their ME effect generated as a product property of magnetostrictive and piezoelectric composite layers. After that, mechanisms, working principles, and applications of ME composites from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters will be discussed. First, the development of ME sensors in terms of materials and structures to enhance their sensitivities and to reduce noise level is reviewed and discussed. Second, the structure of ME-based energy harvesters is discussed and summarized. Third, the development of ME gyrators is summarized for power applications, including current/voltage conversion, power efficiency, power density and figures of merit. Results demonstrate that our ME gyrator has the ability to satisfy the needs of power conversion with superior efficiency (>90%), offering potential uses in power electronic applications.

  12. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  13. Isolated step-down DC -DC converter for electric vehicles

    NASA Astrophysics Data System (ADS)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  14. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  15. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  16. Thermoelectric converters for alternating current standards

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Taschuk, D. D.

    2012-06-01

    Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.

  17. A PWM Buck Converter With Load-Adaptive Power Transistor Scaling Scheme Using Analog-Digital Hybrid Control for High Energy Efficiency in Implantable Biomedical Systems.

    PubMed

    Park, Sung-Yun; Cho, Jihyun; Lee, Kyuseok; Yoon, Euisik

    2015-12-01

    We report a pulse width modulation (PWM) buck converter that is able to achieve a power conversion efficiency (PCE) of > 80% in light loads 100 μA) for implantable biomedical systems. In order to achieve a high PCE for the given light loads, the buck converter adaptively reconfigures the size of power PMOS and NMOS transistors and their gate drivers in accordance with load currents, while operating at a fixed frequency of 1 MHz. The buck converter employs the analog-digital hybrid control scheme for coarse/fine adjustment of power transistors. The coarse digital control generates an approximate duty cycle necessary for driving a given load and selects an appropriate width of power transistors to minimize redundant power dissipation. The fine analog control provides the final tuning of the duty cycle to compensate for the error from the coarse digital control. The mode switching between the analog and digital controls is accomplished by a mode arbiter which estimates the average of duty cycles for the given load condition from limit cycle oscillations (LCO) induced by coarse adjustment. The fabricated buck converter achieved a peak efficiency of 86.3% at 1.4 mA and > 80% efficiency for a wide range of load conditions from 45 μA to 4.1 mA, while generating 1 V output from 2.5-3.3 V supply. The converter occupies 0.375 mm(2) in 0.18 μm CMOS processes and requires two external components: 1.2 μF capacitor and 6.8 μH inductor.

  18. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites.

    PubMed

    Kumar, Sudhir; Jagielski, Jakub; Yakunin, Sergii; Rice, Peter; Chiu, Yu-Cheng; Wang, Mingchao; Nedelcu, Georgian; Kim, Yeongin; Lin, Shangchao; Santos, Elton J G; Kovalenko, Maksym V; Shih, Chih-Jen

    2016-10-03

    Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

  19. Towards radiation hard converter material for SiC-based fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection

  20. Milne boost from Galilean gauge theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2018-03-01

    Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.

  1. Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines

    PubMed Central

    Zhang, Min; Herrero, Miguel A.; Acosta, Francisco J.; Tsuji, Moriya

    2018-01-01

    Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model. PMID:29329308

  2. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2017-12-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  3. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, Stephen

    2017-10-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  4. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  5. Multiview boosting digital pathology analysis of prostate cancer.

    PubMed

    Kwak, Jin Tae; Hewitt, Stephen M

    2017-04-01

    Various digital pathology tools have been developed to aid in analyzing tissues and improving cancer pathology. The multi-resolution nature of cancer pathology, however, has not been fully analyzed and utilized. Here, we develop an automated, cooperative, and multi-resolution method for improving prostate cancer diagnosis. Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The TMAs include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples (TMA2), 70 benign and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), and 72 benign and 86 cancer samples (TMA5). The tissue specimen images are segmented using intensity- and texture-based features. Using the segmentation results, a number of morphological features from lumens and epithelial nuclei are computed to characterize tissues at different resolutions. Applying a multiview boosting algorithm, tissue characteristics, obtained from differing resolutions, are cooperatively combined to achieve accurate cancer detection. In segmenting prostate tissues, the multiview boosting method achieved≥ 0.97 AUC using TMA1. For detecting cancers, the multiview boosting method achieved an AUC of 0.98 (95% CI: 0.97-0.99) as trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed method was superior to single-view approaches, utilizing features from a single resolution or merging features from all the resolutions. Moreover, the performance of the proposed method was insensitive to the choice of the training dataset. Trained on TMA3, TMA4, and TMA5, the proposed method obtained an AUC of 0.97 (95% CI: 0.96-0.98), 0.98 (95% CI: 0.96-0.99), and 0.97 (95% CI: 0.96-0.98), respectively. The multiview boosting method is capable of integrating information from multiple resolutions in an effective and efficient fashion and identifying cancers with high accuracy. The multiview boosting method holds a great potential for improving digital pathology tools and research

  6. How to Boost Power House Efficiency

    ERIC Educational Resources Information Center

    Gardner, John C.

    1977-01-01

    A study of a university power plant and its efficiency determined the total available steam generating capacity of the existing boilers and the physical conditions that were limiting that capacity. (Author/MLF)

  7. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, B; Barkley, A; Cole, Z

    2014-05-01

    This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and themore » system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.« less

  8. Atom-efficient route for converting incineration ashes into heavy metal sorbents.

    PubMed

    Chiang, Yi Wai; Santos, Rafael M; Vanduyfhuys, Kenneth; Meesschaert, Boudewijn; Martens, Johan A

    2014-01-01

    Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of self-oscillating dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burger, P.

    1974-01-01

    The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.

  10. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE PAGES

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    2017-11-26

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  11. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  12. Thermionic energy converter investigations

    NASA Technical Reports Server (NTRS)

    Goodale, D. B.; Lee, C.; Lieb, D.; Oettinger, P. E.

    1979-01-01

    This paper presents evaluation of a variety of thermionic converter configurations to obtain improved efficiency. A variable-spacing diode using an iridium emitter gave emission properties comparable to platinum, but the power output from a sintered LaB6 collector diode was not consistent with its work function. Reflectivities above 0.5 were measured at thermal energies on oxygenated-cesiated surfaces using a field emission retarding potential gun. Performance of converters with structured electrodes and the characteristics of a pulsed triode were studied as a function of emitter, collector, cesium reservoir, interelectrode spacing, xenon pressure, and pulsing parameters.

  13. Graphene-based vdW heterostructure Induced High-efficiency Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Liang, Shijun; Ang, Lay Kee

    Thermoelectric material (TE) can convert the heat into electricity to provide green energy source and its performance is characterized by a figure of merit (ZT) parameter. Traditional TE materials only give ZT equal to around 1 at room temperature. But, it is believed that materials with ZT >3 will find wide applications at this low temperature range. Prior studies have implied that the interrelation between electric conductivity and lattice thermal conductivity renders the goal of engineering ZT of bulk materials to reach ZT >3. In this work, we propose a high-efficiency van del Waals (vdW) heterostructure-based thermionic device with graphene electrodes, which is able to harvest wasted heat (around 400K) based on the newly established thermionic emission law of graphene electrodes instead of Seebeck effect, to boost the efficiency of power generation over 10% around room temperature. The efficiency can be above 20% if the Schottky barrier height and cross-plane lattice thermal conductivity of transition metal dichacogenides (TMD) materials can be fine-engineered. As a refrigerator at 260 K, the efficiency is 50% to 80% of Carnot efficiency. Finally, we identify two TMD materials as the ideal candidates of graphene/TMD/graphene devices based on the state-of-art technology.

  14. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    NASA Astrophysics Data System (ADS)

    Berger, Joshua; Cui, Yanou; Zhao, Yue

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  15. Solar energy enhancement using down-converting particles: A rigorous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Ze’ev R.; Niv, Avi; Zhang, Xiang

    2011-06-01

    The efficiency of a single band-gap solar cell is specified by the Shockley-Queisser limit, which defines the maximal output power as a function of the solar cell’s band-gap. One way to overcome this limit is by using a down-conversion process whereupon a high energy photon is split into two lower energy photons, thereby increasing the current of the cell. Here, we provide a full analysis of the possible efficiency increase when placing a down-converting material on top of a pre-existing solar cell. We show that a total 7% efficiency improvement is possible for a perfectly efficient down-converting material. Our analysismore » covers both lossless and lossy theoretical limits, as well as a thermodynamic evaluation. Finally, we describe the advantages of nanoparticles as a possible choice for a down-converting material.« less

  16. Developments in Turbo-Brayton Power Converters

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; Crowley, Christopher J.; Swift, Walter L.

    2003-01-01

    Design studies show that a Brayton cycle power unit is an extremely attractive option for thermal-to-electric power conversion on long-duration, space missions. At low power levels (50 to 100 We), a Brayton system should achieve a conversion efficiency between 20% and 40% depending on the radiative heat sink temperature. The expected mass of the converter for these power levels is about 3 kg. The mass of the complete system consisting of the converter, the electronics, a radiator, and a single general purpose heat source should be about 6 kg. The system is modular and the technology is readily scalable to higher power levels (to greater than 10 kWe) where conversion efficiencies of between 28% and 45% are expected, the exact value depending on sink temperature and power level. During a recently completed project, key physical features of the converter were determined, and key operating characteristics were demonstrated for a system of this size. The key technologies in these converters are derived from those which have been developed and successfully implemented in miniature turbo-Brayton cryogenic refrigerators for space applications. These refrigerators and their components have been demonstrated to meet rigorous requirements for vibration emittance and susceptibility, acoustic susceptibility, electromagnetic interference and susceptibility, environmental cycling, and endurance. Our progress in extending the underlying turbo-Brayton cryocooler technologies to thermal-to-electric power converters is the subject of this paper.

  17. Recombinant BCG prime and PPE protein boost provides potent protection against acute Mycobacterium tuberculosis infection in mice.

    PubMed

    Yang, Enzhuo; Gu, Jin; Wang, Feifei; Wang, Honghai; Shen, Hongbo; Chen, Zheng W

    2016-04-01

    Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  19. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  20. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  1. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    A new physical principle has emerged to produce record voltages and efficiencies in photovoltaic cells, 'luminescence extraction.' This is exemplified by the mantra 'a good solar cell should also be a good LED.' Luminescence extraction is the escape of internal photons out of the front surface of a solar cell. Basic thermodynamics says that the voltage boost should be related to concentration ratio, C, of a resource by ..delta..V=(kT/q)ln{C}. In light trapping, (i.e. when the solar cell is textured and has a perfect back mirror) the concentration ratio of photons C={4n2}, so one would expect a voltage boost of ..delta..V=kTmore » ln{4n2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open circuit voltage boost of ..delta..V=(kT/q)ln{n2}, ..delta..V=(kT/q)ln{2n2}, or ..delta..V=(kT/q)ln{4n2}? What is responsible for this voltage ambiguity ..delta..V=(kT/q)ln{4}=36mVolts? We show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness the voltage boost falls in between; ln{n2}q..delta..V/kT)<;ln{4n2}.« less

  2. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  3. Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases

    DTIC Science & Technology

    2006-08-01

    of these cells by boosting. DNA vaccines are good priming agents since they are internalised by antigen presenting cells and can induce antigen...presentation via both MHC class I and class II, thereby inducing both cytotoxic T lymphocytes and type 1-helper T lymphocytes. Successful boosting agents ...assessing prime-boost vaccine combinations for protection against infectious agents . • In a number of prime - boost studies, the inclusion of growth

  4. Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less

  5. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Joshua; Cui, Yanou; Zhao, Yue, E-mail: jberger@slac.stanford.edu, E-mail: ycui@perimeterinstitute.ca, E-mail: zhaoyue@stanford.edu

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we proposemore » a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.« less

  6. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  7. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  8. Riemann curvature of a boosted spacetime geometry

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco

    2016-10-01

    The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.

  9. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  10. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  11. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  12. Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less

  13. An Advanced Photovoltaic Array Regulator Module

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1996-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  14. Boosting Learning Algorithm for Stock Price Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhang; Bai, Xiaoming

    2018-03-01

    To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.

  15. Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging

    NASA Astrophysics Data System (ADS)

    Salam, Gavin P.; Schunk, Lais; Soyez, Gregory

    2017-03-01

    N-subjettiness ratios are in wide use for tagging heavy boosted objects, in particular the ratio of 2-subjettiness to 1-subjettiness for tagging boosted electroweak bosons. In this article we introduce a new, dichroic ratio, which uses different regions of a jet to determine the two subjettiness measures, emphasising the hard substructure for the 1-subjettiness and the full colour radiation pattern for the 2-subjettiness. Relative to existing N -subjettiness ratios, the dichroic extension, combined with SoftDrop (pre-)grooming, makes it possible to increase the ultimate signal significance by about 25% (for 2 TeV jets), or to reduce non-perturbative effects by a factor of 2-3 at 50% signal efficiency while maintaining comparable background rejection. We motivate the dichroic approach through the study of Lund diagrams, supplemented with resummed analytical calculations.

  16. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes.

    PubMed

    Murugan, Kadarkarai; Benelli, Giovanni; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Jeyalalitha, Tirupathi; Dinesh, Devakumar; Nicoletti, Marcello; Hwang, Jiang-Shiou; Suresh, Udaiyan; Madhiyazhagan, Pari

    2015-06-01

    Plant-borne compounds can be employed to synthesize mosquitocidal nanoparticles that are effective at low doses. However, how they affect the activity of mosquito predators in the aquatic environment is unknown. In this study, we synthesized gold nanoparticles (AuN) using the leaf extract of Cymbopogon citratus, which acted as a reducing and capping agent. AuN were characterized by a variety of biophysical methods and sorted for size in order to confirm structural integrity. C. citratus extract and biosynthesized AuN were tested against larvae and pupae of the malaria vector Anopheles stephensi and the dengue vector Aedes aegypti. LC₅₀ of C. citratus extract ranged from 219.32 ppm to 471.36 ppm. LC₅₀ of AuN ranged from 18.80 ppm to 41.52 ppm. In laboratory, the predatory efficiency of the cyclopoid crustacean Mesocyclops aspericornis against A. stephensi larvae was 26.8% (larva I) and 17% (larva II), while against A. aegypti was 56% (I) and 35.1% (II). Predation against late-instar larvae was minimal. In AuN-contaminated environment,predation efficiency against A. stephensi was 45.6% (I) and 26.7% (II), while against A. aegypti was 77.3% (I) and 51.6% (II). Overall, low doses of AuN may help to boost the control of Anopheles and Aedes larval populations in copepod-based control programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Boosted one dimensional fermionic superfluids on a lattice

    NASA Astrophysics Data System (ADS)

    Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.

    2017-09-01

    We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.

  18. Full wave dc-to-dc converter using energy storage transformers

    NASA Technical Reports Server (NTRS)

    Moore, E. T.; Wilson, T. G.

    1969-01-01

    Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.

  19. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  20. Waveguide mode converter and method using same

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A waveguide mode converter converts electromagnetic power being transmitted in a TE.sub.0n or a TM.sub.0n mode, where n is an integer, to an HE.sub.11 mode. The conversion process occurs in a single stage without requiring the power to pass through any intermediate modes. The converter comprises a length of circular corrugated waveguide formed in a multiperiod periodic curve. The period of the curve is selected to couple the desired modes and decouple undesired modes. The corrugation depth is selected to control the phase propagation constant, or wavenumbers, of the input and output modes, thereby preventing coherent coupling to competing modes. In one embodiment, both the period and amplitude of the curve may be selectively adjusted, thereby allowing the converter to be tuned to maximize the conversion efficiency.

  1. Resolving boosted jets with XCone

    DOE PAGES

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies $-$ dijet resonances,more » Higgs decays to bottom quarks, and all-hadronic top pairs$-$ that demonstrate the physics applications of XCone over a wide kinematic range.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module andmore » system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.« less

  3. Performance monitoring can boost turboexpander efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, R.

    1982-07-05

    Focuses on the turboexpander/refrigeration system's radial expander and radial compressor. Explains that radial expander efficiency depends on mass flow rate, inlet pressure, inlet temperature, discharge pressure, gas composition, and shaft speed. Discusses quantifying the performance of the separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. Emphasizes antisurge control and modifying Q/N (flow rate/ shaft speed).

  4. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    PubMed

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  5. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO3 waveguides.

    PubMed

    Tehranchi, Amirhossein; Kashyap, Raman

    2009-10-12

    A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.

  6. Accelerating atomistic simulations through self-learning bond-boost hyperdynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Danny; Voter, Arthur F

    2008-01-01

    By altering the potential energy landscape on which molecular dynamics are carried out, the hyperdynamics method of Voter enables one to significantly accelerate the simulation state-to-state dynamics of physical systems. While very powerful, successful application of the method entails solving the subtle problem of the parametrization of the so-called bias potential. In this study, we first clarify the constraints that must be obeyed by the bias potential and demonstrate that fast sampling of the biased landscape is key to the obtention of proper kinetics. We then propose an approach by which the bond boost potential of Miron and Fichthorn canmore » be safely parametrized based on data acquired in the course of a molecular dynamics simulation. Finally, we introduce a procedure, the Self-Learning Bond Boost method, in which the parametrization is step efficiently carried out on-the-fly for each new state that is visited during the simulation by safely ramping up the strength of the bias potential up to its optimal value. The stability and accuracy of the method are demonstrated.« less

  7. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  8. Boosting multi-state models.

    PubMed

    Reulen, Holger; Kneib, Thomas

    2016-04-01

    One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.

  9. Nuclear thermionic converter. [tungsten-thorium oxide rods

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Mondt, J. F. (Inventor)

    1977-01-01

    Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.

  10. Online Bagging and Boosting

    NASA Technical Reports Server (NTRS)

    Oza, Nikunji C.

    2005-01-01

    Bagging and boosting are two of the most well-known ensemble learning methods due to their theoretical performance guarantees and strong experimental results. However, these algorithms have been used mainly in batch mode, i.e., they require the entire training set to be available at once and, in some cases, require random access to the data. In this paper, we present online versions of bagging and boosting that require only one pass through the training data. We build on previously presented work by presenting some theoretical results. We also compare the online and batch algorithms experimentally in terms of accuracy and running time.

  11. Blue light hazard performance comparison of phosphor-converted LED sources with red quantum dots and red phosphor

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Liu, Shishen; Yu, Zhihua; Liu, Li; Jin, Xing

    2017-07-01

    In this study, the blue light hazard performances of phosphor converted-light-emitting diodes (pc-LEDs) with red phosphor and red quantum dots (QDs) were compared and analyzed by spectral optimization, which boosts the minimum attainable blue light hazard efficiency of radiation (BLHER) at high values of color rendering index (CRI) and luminous efficacy of radiation (LER) when the correlated color temperature (CCT) value changes from 1800 to 7800 K. It is found that the minimal BLHER value increases with the increase in the CCT value, and the minimal BLHER values of the two spectral models are nearly the same. Note that the QDs' model has advantages at CCT coverage under the same constraints of CRI and LER. Then, the relationships between minimal BLHER, CRI, CCT, and LER of pc-LEDs with QDs' model were analyzed. It is found that the minimal BLHER values are nearly the same when the CRI value changes from 50 to 90. Therefore, the influence of CRI on minimal BLHER is insignificant. Minimal BLHER increases with the increase in the LER value from 240 to 360 lm/W.

  12. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  13. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  14. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE PAGES

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    2016-07-01

    Over the past few years, the application of the physical principle, i.e., 'luminescence extraction,' has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra 'a good solar cell should also be a good LED.' Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by ΔV = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n 2}; therefore, one would expect a voltage boost of ΔV = (kT/q) ln{4n 2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of ΔV = (kT/q) ln{n 2}, ΔV = (kT/q) ln{2 n 2}, or ΔV = (kT/q) ln{4 n 2}? What is responsible for this voltage ambiguity ΔV = (kT/q) ln{4}more » $${\\asymp}$$ 36 mV? Finally, we show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n 2} < (qΔV/kT) < ln{4n 2}.« less

  15. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    Over the past few years, the application of the physical principle, i.e., 'luminescence extraction,' has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra 'a good solar cell should also be a good LED.' Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by ΔV = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n 2}; therefore, one would expect a voltage boost of ΔV = (kT/q) ln{4n 2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of ΔV = (kT/q) ln{n 2}, ΔV = (kT/q) ln{2 n 2}, or ΔV = (kT/q) ln{4 n 2}? What is responsible for this voltage ambiguity ΔV = (kT/q) ln{4}more » $${\\asymp}$$ 36 mV? Finally, we show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n 2} < (qΔV/kT) < ln{4n 2}.« less

  16. Laser Boost of a Small Interstellar Ram Jet to Obtain Operational Velocity. Implications for the DM Rocket/Ram Jet Model

    NASA Astrophysics Data System (ADS)

    Walcott Beckwith, Andrew

    2010-05-01

    In other conference research papers, Beckwith obtained a maximum DM mass/energy value of up to 5 TeV, as opposed to 400 GeV for DM, which may mean more convertible power for a dark matter ram jet. The consequences are from assuming that axions are CDM, and KK gravitons are for WDM, then ρWarm-Dark-Matter would dominate not only structure formation in early universe formation, but would also influence the viability of the DM ram jet applications for interstellar travel. The increase in convertible DM mass makes the ram jet a conceivable option. This paper in addition to describing the scientific issues leading to that 5 TeV mass for DM also what are necessary and sufficient laser boost systems which would permit a ram net to become operational.

  17. Theoretical and Empirical Analysis of a Spatial EA Parallel Boosting Algorithm.

    PubMed

    Kamath, Uday; Domeniconi, Carlotta; De Jong, Kenneth

    2018-01-01

    Many real-world problems involve massive amounts of data. Under these circumstances learning algorithms often become prohibitively expensive, making scalability a pressing issue to be addressed. A common approach is to perform sampling to reduce the size of the dataset and enable efficient learning. Alternatively, one customizes learning algorithms to achieve scalability. In either case, the key challenge is to obtain algorithmic efficiency without compromising the quality of the results. In this article we discuss a meta-learning algorithm (PSBML) that combines concepts from spatially structured evolutionary algorithms (SSEAs) with concepts from ensemble and boosting methodologies to achieve the desired scalability property. We present both theoretical and empirical analyses which show that PSBML preserves a critical property of boosting, specifically, convergence to a distribution centered around the margin. We then present additional empirical analyses showing that this meta-level algorithm provides a general and effective framework that can be used in combination with a variety of learning classifiers. We perform extensive experiments to investigate the trade-off achieved between scalability and accuracy, and robustness to noise, on both synthetic and real-world data. These empirical results corroborate our theoretical analysis, and demonstrate the potential of PSBML in achieving scalability without sacrificing accuracy.

  18. Solar fed DC-DC single ended primary inductance converter for low power applications

    NASA Astrophysics Data System (ADS)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  19. Conditional Random Field (CRF)-Boosting: Constructing a Robust Online Hybrid Boosting Multiple Object Tracker Facilitated by CRF Learning

    PubMed Central

    Yang, Ehwa; Gwak, Jeonghwan; Jeon, Moongu

    2017-01-01

    Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable. PMID:28304366

  20. Real-time detection with AdaBoost-svm combination in various face orientation

    NASA Astrophysics Data System (ADS)

    Fhonna, R. P.; Nasution, M. K. M.; Tulus

    2018-03-01

    Most of the research has used algorithm AdaBoost-SVM for face detection. However, to our knowledge so far there is no research has been facing detection on real-time data with various orientations using the combination of AdaBoost and Support Vector Machine (SVM). Characteristics of complex and diverse face variations and real-time data in various orientations, and with a very complex application will slow down the performance of the face detection system this becomes a challenge in this research. Face orientation performed on the detection system, that is 900, 450, 00, -450, and -900. This combination method is expected to be an effective and efficient solution in various face orientations. The results showed that the highest average detection rate is on the face detection oriented 00 and the lowest detection rate is in the face orientation 900.

  1. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    NASA Astrophysics Data System (ADS)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  2. All-fiber mode converter based on superimposed long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Xue, Yan-ru; Bi, Wei-hong; Jin, Wa; Tian, Peng-fei; Jiang, Peng; Liu, Qiang; Jin, Yun

    2018-03-01

    In this paper, a novel broadband all-fiber mode converter is proposed and experimentally demonstrated. Through writing a pair of superimposed long period fiber gratings (SLPFGs) in tow-mode fiber (TMF) with a CO2 laser, the mode converter can realize the conversion from LP01 to LP11 owing to the phase matching condition. Numerical and experimental results show that the bandwidth of this mode converter is 3 times broader than that of a single grating converter. The converter has low loss, high coupling efficiency, small size and is easy to fabricate, so it can be widely used in mode-division multiplexing.

  3. The radiation gas detectors with novel nanoporous converter for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Zarei, H.; Saramad, S.

    2018-02-01

    For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.

  4. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  5. Inelastic Boosted Dark Matter at direct detection experiments

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-05-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  6. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  7. Loss analysis and optimum design of a highly efficient and compact CMOS DC–DC converter with novel transistor layout using 60 nm multipillar-type vertical body channel MOSFET

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuki; Endoh, Tetsuo

    2018-04-01

    In this paper, we present a novel transistor layout of multi pillar-type vertical body-channel (BC) MOSFET for cascode power switches for improving the efficiency and compactness of CMOS DC–DC converters. The proposed layout features a stacked and multifingered layout to suppress the loss due to parasitic components such as diffusion resistance and contact resistance. In addition, the loss of each MOSFET, which configures cascode power switches, is analyzed, and it is revealed that the total optimum gate width and loss with the high-side (HS) n-type MOSFET topology are 27 and 16% smaller than those with the HS p-type MOSFET topology, respectively. Moreover, a circuit simulation of 2.0 to 0.8 V, 100 MHz CMOS DC–DC converters with the proposed layout is carried out by using experimentally extracted models of BSIM4 60 nm vertical BC MOSFETs. The peak efficiency of the HS n-type MOSFET converter with the proposed layout is 90.1%, which is 6.0% higher than that with the conventional layout.

  8. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    NASA Astrophysics Data System (ADS)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  9. An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2014-01-01

    This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.

  10. Neural control and transient analysis of the LCL-type resonant converter

    NASA Astrophysics Data System (ADS)

    Zouggar, S.; Nait Charif, H.; Azizi, M.

    2000-07-01

    This paper proposes a generalised inverse learning structure to control the LCL converter. A feedforward neural network is trained to act as an inverse model of the LCL converter then both are cascaded such that the composed system results in an identity mapping between desired response and the LCL output voltage. Using the large signal model, we analyse the transient output response of the controlled LCL converter in the case of large variation of the load. The simulation results show the efficiency of using neural networks to regulate the LCL converter.

  11. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  12. Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler

    NASA Technical Reports Server (NTRS)

    Nast, T. C.; Hsu, I. C.

    1984-01-01

    Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.

  13. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  14. Hypersonic Boost Glider

    NASA Image and Video Library

    1957-04-15

    Hypersonic Boost Glider in 11 Inch Hypersonic Tunnel L57-1681 In 1957 Langley tested its HYWARDS design in the 11 Inch Hypersonic Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 369.

  15. Non-isolated high gain DC-DC converter for smart grid- A review

    NASA Astrophysics Data System (ADS)

    Divya Navamani, J.; Vijayakumar, K.; Lavanya, A.; Mano Raj, A. Jason

    2018-04-01

    Smart grids are becoming the most interesting and promising alternative for an electric grid system. Power conditioning units and control over the distribution of power is the essential feature for the smart grid system. In this paper, we reviewed several non-isolated high gain topologies derived from boost converter for providing required voltage to the grid tie inverter from renewable energy sources. Steady state analysis of all the topologies is analyzed to compare the performance of the topologies. Simulation is carried out in nL5 simulator and the results are compared and validated with the theoretical results. This paper is a guide to the researchers to choose the best topology for the smart grid application.

  16. Boosted Schwarzschild metrics from a Kerr–Schild perspective

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas; Winicour, Jeffrey

    2018-02-01

    The Kerr–Schild version of the Schwarzschild metric contains a Minkowski background which provides a definition of a boosted black hole. There are two Kerr–Schild versions corresponding to ingoing or outgoing principle null directions. We show that the two corresponding Minkowski backgrounds and their associated boosts have an unexpected difference. We analyze this difference and discuss the implications in the nonlinear regime for the gravitational memory effect resulting from the ejection of massive particles from an isolated system. We show that the nonlinear effect agrees with the linearized result based upon the retarded Green function only if the velocity of the ejected particle corresponds to a boost symmetry of the ingoing Minkowski background. A boost with respect to the outgoing Minkowski background is inconsistent with the absence of ingoing radiation from past null infinity.

  17. Global Dirac bispinor entanglement under Lorentz boosts

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2018-03-01

    The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.

  18. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  19. New Tools to Convert PDF Math Contents into Accessible e-Books Efficiently.

    PubMed

    Suzuki, Masakazu; Terada, Yugo; Kanahori, Toshihiro; Yamaguchi, Katsuhito

    2015-01-01

    New features in our math-OCR software to convert PDF math contents into accessible e-books are shown. A method for recognizing PDF is thoroughly improved. In addition, contents in any selected area including math formulas in a PDF file can be cut and pasted into a document in various accessible formats, which is automatically recognized and converted into texts and accessible math formulas through this process. Combining it with our authoring tool for a technical document, one can easily produce accessible e-books in various formats such as DAISY, accessible EPUB3, DAISY-like HTML5, Microsoft Word with math objects and so on. Those contents are useful for various print-disabled students ranging from the blind to the dyslexic.

  20. A study of DC-DC converters with MCT's for arcjet power supplies

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  1. Symmetry boost of the fidelity of Shor factoring

    NASA Astrophysics Data System (ADS)

    Nam, Y. S.; Blümel, R.

    2018-05-01

    In Shor's algorithm quantum subroutines occur with the structure F U F-1 , where F is a unitary transform and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F-1 can be implemented symmetrically when executing Shor's algorithm on actual, imperfect quantum hardware, such that F and F-1 have the same hardware errors, a symmetry boost in the fidelity of the combined F U F-1 quantum operation results when compared to the case in which the errors in F and F-1 are independently random. Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over- and under-rotation of controlled rotation gates, in the numerically accessible case of Shor's algorithm with a small number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing general off-diagonal SU (N ) errors (N =2 ,4 ,8 ), that the boost factor scales like a Lorentzian in δ /σ , where σ and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU (N ) errors, respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ , it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry boost persists in the practically interesting case of a large number of qubits. We illustrate this result

  2. Low Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit

    1997-01-01

    The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.

  3. An Update on Statistical Boosting in Biomedicine.

    PubMed

    Mayr, Andreas; Hofner, Benjamin; Waldmann, Elisabeth; Hepp, Tobias; Meyer, Sebastian; Gefeller, Olaf

    2017-01-01

    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.

  4. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  5. RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality.

    PubMed

    Borrel, Alexandre; Fourches, Denis

    2017-12-01

    There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  7. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  8. Scaling Studies of Efficient Raman Converters.

    DTIC Science & Technology

    1983-07-01

    allowed without deleterious effects due to competing processes. These processes include amplified spontaneous emission (Raman superfluorescence...tively introducing noise injection that could potentially degrade conversion efficiency and/or beam quality. The conditions under which these competing ...good beam qual- ity. Section 5.1 discusses Stokes injection level requirements in terms of suppressing competing effects which can reduce conversion

  9. System solution to improve energy efficiency of HVAC systems

    NASA Astrophysics Data System (ADS)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  10. A new method to distinguish hadronically decaying boosted Z bosons from W bosons using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-05-01

    The distribution of particles inside hadronic jets produced in the decay of boosted W and Z bosons can be used to discriminate such jets from the continuum background. Given that a jet has been identified as likely resulting from the hadronic decay of a boosted W or Z boson, this paper presents a technique for further differentiating Z bosons from W bosons. The variables used are jet mass, jet charge, and a b-tagging discriminant. A likelihood tagger is constructed from these variables and tested in the simulation of W'→ WZ for bosons in the transverse momentum range 200 GeV efficiencies of ɛ _Z=90, 50, and 10 %, one can achieve W^+-boson tagging rejection factors (1/ɛ _{W^+}) of 1.7, 8.3 and 1000, respectively. It is not possible to measure these efficiencies in the data due to the lack of a pure sample of high p_ {T}, hadronically decaying Z bosons. However, the modelling of the tagger inputs for boosted W bosons is studied in data using a tbar{t}-enriched sample of events in 20.3 fb{}^{-1} of data at √{s}=8 TeV. The inputs are well modelled within uncertainties, which builds confidence in the expected tagger performance.

  11. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  12. Power converters for the 120 V bus supply control

    NASA Astrophysics Data System (ADS)

    Elisabelar, Christian

    1993-03-01

    Power converters for the 120 V bus supply control in such projects as Columbus and Hermes are addressed. Because of the power levels involved and the existing state of the art, several converter modules need to be connected in parallel to supply a single bus. To simplify the study, the power of each converter is set at around 1 kW. Many converter structures which satisfy requirement specifications and several solutions, with or without galvanic insulation, are proposed. The choice and sizing of the converter structure are considered. Stress factors and available technology are selection criteria in determining the most suitable structures. The dimensions of each structure, taking into account the rules of space design enable efficiency to be analytically estimated and it is subsequently verified experimentally. The converter command and its functional performance are then addressed. Numerical simulations with SUCCESS software are run to observe the actual operation of the power part of the converter and to develop the command law with its regulation parameters. The converter is simulated in its entirety and different transients are studied like load variation, no load operating point, short circuit. The response time, stability and behavior under disturbed conditions are thus known. A comparison of the various structures studied enabled the optimal converter to be chosen for some 120 V regulated bus applications.

  13. Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings.

    PubMed

    Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman

    2011-11-07

    High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.

  14. Series resonant converter with auxiliary winding turns: analysis, design and implementation

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-05-01

    Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.

  15. Performance monitoring can boost turboexpander efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, R.

    1982-07-05

    This paper discusses ways of improving the productivity of the turboexpander/refrigeration system's radial expander and radial compressor through systematic review of component performance. It reviews several techniques to determine the performance of an expander and compressor. It suggests that any performance improvement program requires quantifying the performance of separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. The model is used to quantify the economic benefits of any change in the system, eithermore » a change in operating procedures or a hardware modification. Topics include proper ways of using antisurge control valves and modifying flow rate/shaft speed (Q/N). It is noted that compressor efficiency depends on the incidence angle of blade at the rotor leading edge and the angle of the incoming gas stream.« less

  16. Tests Of A Stirling-Engine Power Converter

    NASA Technical Reports Server (NTRS)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  17. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  18. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  19. A 25-kW Series-Resonant Power Converter

    NASA Technical Reports Server (NTRS)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  20. A high efficiency 3 kW switchmode battery charger

    NASA Technical Reports Server (NTRS)

    Latos, T. S.; Bosack, D. J.

    1982-01-01

    This paper discusses the design approach and status of a high-efficiency switchmode battery charger designed to charge a 108 V battery from the 115 Vac line. The charger contains a transformer isolated boost chopper operating at 20 kHz. The boost inductor current is programmed to follow the ac line voltage such that high power factor operation and low line distortion are obtained.

  1. A prime-boost vaccination strategy using attenuated Salmonella typhimurium and a replication-deficient recombinant adenovirus vector elicits protective immunity against human respiratory syncytial virus.

    PubMed

    Fu, Yuan-Hui; He, Jin-Sheng; Wang, Xiao-Bo; Zheng, Xian-Xian; Wu, Qiang; Xie, Can; Zhang, Mei; Wei, Wei; Tang, Qian; Song, Jing-Dong; Qu, Jian-Guo; Hong, Tao

    2010-04-23

    Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 2010 Elsevier Inc. All rights reserved.

  2. Boosted regression tree, table, and figure data

    EPA Pesticide Factsheets

    Spreadsheets are included here to support the manuscript Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition. This dataset is associated with the following publication:Golden , H., C. Lane , A. Prues, and E. D'Amico. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition. JAWRA. American Water Resources Association, Middleburg, VA, USA, 52(5): 1251-1274, (2016).

  3. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  4. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  5. Design and implementation of current fed DC-DC converter for PHEV application using renewable source

    NASA Astrophysics Data System (ADS)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.

  6. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  7. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    PubMed Central

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  8. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  9. Low-temperature operation of a Buck DC/DC converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.

  10. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro.

    PubMed

    Lian, Gewei; Wang, Chengyan; Teng, Chunbo; Zhang, Cong; Du, Liying; Zhong, Qian; Miao, Chenglin; Ding, Mingxiao; Deng, Hongkui

    2006-03-01

    Whether bone marrow (BM) hematopoietic stem/progenitor cells can directly differentiate into nonhematopoietic cells remains controversial. The aim of this study is to further investigate the potentiality of BM hematopoietic progenitor cells to convert into hepatocytes in vitro. Different subsets of BM cells from C57/BL6 mice were isolated using markers of hematopoietic stem cells by magnetic cell sorting and by flow cytometry. These cells were induced to transdifferentiate to hepatocytes in vitro in the presence of various cytokines or of hepatocytes (or tissue) from damaged liver, which have been reported to stimulate the conversion. Hepatic gene markers in freshly isolated or cultured BM cells were determined by reverse transcriptase polymerase chain reaction and immunofluorescence. Freshly isolated hematopoietic progenitor cells (HPC) expressed a low level of messenger RNAs of hepatic cell-specific markers including albumin and alpha-fetoprotein (AFP), but did not significantly upregulate expression of these markers, even in the presence of cytokines or cocultured hepatocytes (or tissue). HPCs induced in vitro did not express the message of alpha-anti-trypsin-a mature hepatocyte marker. At protein level, the specific staining of AFP was not detected in the HPCs, either freshly isolated or in vitro induced. Albumin protein was detected in freshly isolated albumin mRNA-positive and -negative BM cell subpopulations. Albumin-stained BM cells disappeared after being induced for 5 days, but restained if mouse serum was supplemented in medium for a 24-hour extended culture, suggesting that albumin was absorbed by BM cells instead of de novo expression. HPCs expressed mRNAs of hepatic cell markers, but could not efficiently convert into hepatocytes in vitro under our experimental conditions. Our observation raises a cautionary note in determining whether in vitro transdifferentiation of BM cells to hepatocytes can actually take place.

  11. Design of Excess 3 to BCD code converter using electro-optic effect of Mach-Zehnder Interferometers for efficient data transmission

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Chanderkanta; Amphawan, Angela

    2016-04-01

    Excess 3 code is one of the most important codes used for efficient data storage and transmission. It is a non-weighted code and also known as self complimenting code. In this paper, a four bit optical Excess 3 to BCD code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  12. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  13. Boosted Kaluza-Klein magnetic monopole

    NASA Astrophysics Data System (ADS)

    Hashemi, S. Sedigheh; Riazi, Nematollah

    2018-06-01

    We consider a Kaluza-Klein vacuum solution which is closely related to the Gross-Perry-Sorkin (GPS) magnetic monopole. The solution can be obtained from the Euclidean Taub-NUT solution with an extra compact fifth spatial dimension within the formalism of Kaluza-Klein reduction. We study its physical properties as appearing in (3 + 1) spacetime dimensions, which turns out to be a static magnetic monopole. We then boost the GPS magnetic monopole along the extra dimension, and perform the Kaluza-Klein reduction. The resulting four-dimensional spacetime is a rotating stationary system, with both electric and magnetic fields. In fact, after the boost the magnetic monopole turns into a string connected to a dyon.

  14. Economic feasibility of converting center pivot irrigation to subsurface drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Advancements in irrigation technology have increased water use efficiency. However, producers can be reluctant to convert to a more efficient irrigation system when the initial investment costs are high. This study examines the economic feasibility of replacing low energy precision application (LEPA...

  15. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.

    PubMed

    Yang, Jian; Wang, Su; Lu, Zhibo; Yang, Jian; Lou, Shanjie

    2009-08-30

    A mixture of converter slag and coal cinder as adsorbent for the removal of phosphorous and other pollutants was studied in the paper. The maximum P adsorption capacity, pH of solution, contact time and initial phosphate concentration were evaluated in batch experiments for the two materials firstly. The data of P sorption were best fitted to Langumir equation, and the maximum adsorption capacities of converter slag and coal cinder were 2.417 and 0.398 mg P/g, respectively. The pH of solutions with converter slag and coal cinder changed dramatically with time and closed to 8 in 8h, and the influence of initial pH on phosphate removal by coal cinder was more significant than by converter slag. Phosphate removal rate by converter slag decreased with increase of initial phosphate concentrations. Subsequently, two flow-through columns (Column 1#, V(converter slag):V(coal cinder)=1:5; Column 2#, V(converter slag):V(coal cinder)=1:3) were operated for the removal of phosphorous and other pollutants from the effluents of a vermifilter for nearly eleven months. Results indicated the average removal efficiency of total phosphorus, dissolved phosphorus, COD and NH(4)(+)-N by Column 1# were 44%, 56%, 31% and 67%, and by Column 2# were 42%, 54%, 24% and 57%, respectively. Column 1# had higher removal efficiency for P and other pollutants.

  16. SU-F-T-328: Real-Time in Vivo Dosimetry of Prostate SBRT Boost Treatments Using MOSkin Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legge, K; O’Connor, D J; Cutajar, D

    Purpose: To provide in vivo measurements of dose to the anterior rectal wall during prostate SBRT boost treatments using MOSFET detectors. Methods: Dual MOSkin detectors were attached to a Rectafix rectal sparing device and inserted into patients during SBRT boost treatments. Patients received two boost fractions, each of 9.5–10 Gy and delivered using 2 VMAT arcs. Measurements were acquired for 12 patients. MOSFET voltages were read out at 1 Hz during delivery and converted to dose. MV images were acquired at known frequency during treatment so that the position of the gantry at each point in time was known. Themore » cumulative dose at the MOSFET location was extracted from the treatment planning system at in 5.2° increments (FF beams) or at 5 points during each delivered arc (FFF beams). The MOSFET dose and planning system dose throughout the entirety of each arc were then compared using root mean square error normalised to the final planned dose for each arc. Results: The average difference between MOSFET measured and planning system doses determined over the entire course of treatment was 9.7% with a standard deviation of 3.6%. MOSFETs measured below the planned dose in 66% of arcs measured. Uncertainty in the position of the MOSFET detector and verification point are major sources of discrepancy, as the detector is placed in a high dose gradient region during treatment. Conclusion: MOSkin detectors were able to provide real time in vivo measurements of anterior rectal wall dose during prostate SBRT boost treatments. This method could be used to verify Rectafix positioning and treatment delivery. Further developments could enable this method to be used during high dose treatments to monitor dose to the rectal wall to ensure it remains at safe levels. Funding has been provided by the University of Newcastle. Kimberley Legge is the recipient of an Australian Postgraduate Award.« less

  17. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    PubMed Central

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  18. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  19. A new method to distinguish hadronically decaying boosted Z bosons from W bosons using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-04-28

    The distribution of particles inside hadronic jets produced in the decay of boosted W and Z bosons can be used to discriminate such jets from the continuum background. Given that a jet has been identified as likely resulting from the hadronic decay of a boosted W or Z boson, this paper presents a technique for further differentiating Z bosons from W bosons. The variables used are jet mass, jet charge, and a b-tagging discriminant. A likelihood tagger is constructed from these variables and tested in the simulation of W' → WZ for bosons in the transverse momentum range 200 GeV  efficiencies of ϵ Z = 90 , 50, and 10 % , one can achieve W + -boson tagging rejection factors (1 / ϵ W+ ) of 1.7, 8.3 and 1000, respectively. It is not possible to measure these efficiencies in the data due to the lack of a pure sample of high p T , hadronically decaying Z bosons. However, the modelling of the tagger inputs for boosted W bosons is studied in data using a tt¯ -enriched sample of events in 20.3 fb - 1 of data at √s= 8 TeV. The inputs are well modelled within uncertainties, which builds confidence in the expected tagger performance.« less

  20. A new method to distinguish hadronically decaying boosted Z bosons from W bosons using the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    2016-01-01

    The distribution of particles inside hadronic jets produced in the decay of boosted W and Z bosons can be used to discriminate such jets from the continuum background. Given that a jet has been identified as likely resulting from the hadronic decay of a boosted W or Z boson, this paper presents a technique for further differentiating Z bosons from W bosons. The variables used are jet mass, jet charge, and a b -tagging discriminant. A likelihood tagger is constructed from these variables and tested in the simulation of [Formula: see text] for bosons in the transverse momentum range 200 GeV [Formula: see text] 400 GeV in [Formula: see text] TeV pp collisions with the ATLAS detector at the LHC. For Z -boson tagging efficiencies of [Formula: see text], 50, and [Formula: see text], one can achieve [Formula: see text]-boson tagging rejection factors ([Formula: see text]) of 1.7, 8.3 and 1000, respectively. It is not possible to measure these efficiencies in the data due to the lack of a pure sample of high [Formula: see text], hadronically decaying Z bosons. However, the modelling of the tagger inputs for boosted W bosons is studied in data using a [Formula: see text]-enriched sample of events in 20.3 fb[Formula: see text] of data at [Formula: see text] TeV. The inputs are well modelled within uncertainties, which builds confidence in the expected tagger performance.

  1. Q-Boosted Optomechanical Resonators

    DTIC Science & Technology

    2015-11-18

    Devices ( ORCHID ) Lead Organization: University of California at Berkeley Project Title: Q-Boosted Optomechanical Resonators Technical...be a PDF. Please do not password protect or secure the PDF . The maximum file size for the Report Document is 50MB. 150915 UCB Nguyen ORCHID

  2. The Score-Boosting Game.

    ERIC Educational Resources Information Center

    Popham, W. James

    2000-01-01

    Teachers everywhere are playing the score-boosting game to raise scores on mandated standardized achievement tests, although five nationally recognized assessments compare student performance instead of measuring classroom learning. Since curriculum standards are often vague and misaligned with assessments, teachers sprinkle instruction with…

  3. Low Cost Embedded Controlled Full Bridge LC Parallel Resonant Converter

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, P.; Reddy, S.

    2009-01-01

    In this paper the converter requirements for an optimum control of an electrolyser linked with a DC bus are analyzed and discussed. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The hydrogen generating device is part of a complex system constituted by a supplying photovoltaic plant, the grid and a fuel cell battery. The characterization in several operative conditions of an actual industrial electrolyser is carried out in order to design and optimize the DC/DC converter. A dedicated zero voltage switching DC/DC converter is presented and simulated inside the context of the distributed energy production and storage system. The proposed supplying converter gives a stable output voltage and high circuit efficiency in all the proposed simulated scenarios. The adopted DC/DC converter is realized in a full-bridge topology technique in order to achieve zero voltage switching for the power switches and to regulate the output voltage. This converter has advantages like high power density, low EMI and reduced switching stresses. The simulation results are verified with the experimental results.

  4. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  5. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  6. Solid state radioisotopic energy converter for space nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.M.

    1993-01-10

    Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, bettermore » efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.« less

  7. Boosted Multivariate Trees for Longitudinal Data

    PubMed Central

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  8. Centaur liquid oxygen boost pump vibration test

    NASA Technical Reports Server (NTRS)

    Tang, H. M.

    1975-01-01

    The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.

  9. A novel optical waveguide LP01/LP02 mode converter

    NASA Astrophysics Data System (ADS)

    Shen, Dongya; Wang, Changhui; Ma, Chuan; Mellah, Hakim; Zhang, Xiupu; Yuan, Hong; Ren, Wenping

    2018-07-01

    A novel optical waveguide LP01 /LP02 mode converter is proposed using combination of bicone structure based on the coupled-mode theory. It is composed of a cladding, a tapered core and combined bicone structure. It is found that this mode converter can have operating bandwidth of 1350-1700 nm, i.e. 350 nm, with a conversion efficiency of ∼90% (∼0.5 dB) and low crosstalk from other modes

  10. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  11. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  12. Tumour bed boost radiotherapy for women after breast-conserving surgery.

    PubMed

    Kindts, Isabelle; Laenen, Annouschka; Depuydt, Tom; Weltens, Caroline

    2017-11-06

    Breast-conserving therapy, involving breast-conserving surgery followed by whole-breast irradiation and optionally a boost to the tumour bed, is a standard therapeutic option for women with early-stage breast cancer. A boost to the tumour bed means that an extra dose of radiation is applied that covers the initial tumour site. The rationale for a boost of radiotherapy to the tumour bed is that (i) local recurrence occurs mostly at the site of the primary tumour because remaining microscopic tumour cells are most likely situated there; and (ii) radiation can eliminate these causative microscopic tumour cells. The boost continues to be used in women at high risk of local recurrence, but is less widely accepted for women at lower risk. Reasons for questioning the boost are twofold. Firstly, the boost brings higher treatment costs. Secondly, the potential adverse events are not negligible. In this Cochrane Review, we investigated the effect of the tumour bed boost on local control and side effects. To assess the effects of tumour bed boost radiotherapy after breast-conserving surgery and whole-breast irradiation for the treatment of breast cancer. We searched the Cochrane Breast Cancer Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (January 1966 to 1 March 2017), Embase (1980 to 1 March 2017), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov on 1 March 2017. We also searched the European Society of Radiotherapy and Oncology Annual Meeting, the St Gallen Oncology Conferences, and the American Society for Radiation Oncology Annual Meeting for abstracts. Randomised controlled trials comparing the addition and the omission of breast cancer tumour bed boost radiotherapy. Two review authors (IK and CW) performed data extraction and assessed risk of bias using Cochrane's 'Risk of bias' tool, resolving any disagreements through discussion. We entered data into Review Manager 5 for

  13. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  14. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  15. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  16. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  17. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  18. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  19. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  20. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  1. P/N In(Al) GaAs multijunction laser power converters

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Parados, Themis; Walker, Gilbert

    1994-01-01

    Eight In(AI)GaAs PN junctions grown epitaxially on the semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4V photovoltage per typical In(Al)GaAs junction to over 3 volts for the 1 sq cm laser power converted (LPC) chip. Advantages of multijunction LCP designs include the need for less circuitry for power reconditioning and the potential for lower I(sup 2)R power loss. As an example, these LPC's have a responsivity of approximately 1 amp/watt. With a single junction LPC, 100 watts/sq cm incident power would lead to about 100 A/sq cm short-circuit current at approximately 0.4V open-cicuit voltage. One disadvantage is the large current would lead to a large I(sup 2)R loss which would lower the fill factor so that 40 watts/sq cm output would not be obtained. Another is that few circuits are designed to work at 0.4 volts, so DC-DC power conversion circuitry would be necessary to raise the voltage to a reasonable level. The multijunction LPC being developed in this program is a step toward solving these problems. In the above example, an eight-junction LPC would have eight times the voltage, approximately 3V, so that DC-DC power conversion may not be needed in many instances. In addition, the multijunction LPC would have 1/8 the current of a single-junction LPC, for only 1/64 the I(sup 2)R loss if the series resistance is the same. Working monolithic multijunction laser power converters (LPC's) were made in two different compositions of the In(x)Al(y)Ga(1-x-y)As semiconductor alloy, In(0.53)Ga(0.47)As (0.74 eV) and In(0.5)Al(0.1)Ga(0.4)As (0.87 eV). The final 0.8 sq cm LPC's had output voltages of about 3 volts and output currents up to about one-half amp. Maximum 1.3 micron power conversion efficiencies were approximately 22 percent. One key advantage of multijunction LPC's is that they have higher output voltages, so that less DC-DC power conversion circuitry is needed in applications.

  2. Device model for pixelless infrared image up-converters based on polycrystalline graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Shur, M. S.; Ryzhii, M.; Karasik, V. E.; Otsuji, T.

    2018-01-01

    We developed a device model for pixelless converters of far/mid-infrared radiation (FIR/MIR) images into near-infrared/visible (NIR/VIR) images. These converters use polycrystalline graphene layers (PGLs) immersed in the van der Waals materials integrated with a light emitting diode (LED). The PGL serves as an element of the PGL infrared photodetector (PGLIP) sensitive to the incoming FIR/MIR due to the interband absorption. The spatially non-uniform photocurrent generated in the PGLIP repeats (mimics) the non-uniform distribution (image) created by the incident FIR/MIR. The injection of the nonuniform photocurrent into the LED active layer results in the nonuniform NIR/VIR image reproducing the FIR/MIR image. The PGL and the entire layer structure are not deliberately partitioned into pixels. We analyze the characteristics of such pixelless PGLIP-LED up-converters and show that their image contrast transfer function and the up-conversion efficiency depend on the PGL lateral resistivity. The up-converter exhibits high photoconductive gain and conversion efficiency when the lateral resistivity is sufficiently high. Several teams have successfully demonstrated the large area PGLs with the resistivities varying in a wide range. Such layers can be used in the pixelless PGLIP-LED image up-converters. The PGLIP-LED image up-converters can substantially surpass the image up-converters based on the quantum-well infrared photodetector integrated with the LED. These advantages are due to the use of the interband FIR/NIR absorption and a high photoconductive gain in the GLIPs.

  3. Alternative Fuels Data Center: Electric Trolley Boosts Business in

    Science.gov Websites

    Bakersfield, CaliforniaA> Electric Trolley Boosts Business in Bakersfield, California to someone Business in Bakersfield, California Discover how Bakersfield's electric trolley is giving a green boost to downtown businesses. For information about this project, contact San Joaquin Valley Clean Cities. Download

  4. Nudging and Boosting: Steering or Empowering Good Decisions.

    PubMed

    Hertwig, Ralph; Grüne-Yanoff, Till

    2017-11-01

    In recent years, policy makers worldwide have begun to acknowledge the potential value of insights from psychology and behavioral economics into how people make decisions. These insights can inform the design of nonregulatory and nonmonetary policy interventions-as well as more traditional fiscal and coercive measures. To date, much of the discussion of behaviorally informed approaches has emphasized "nudges," that is, interventions designed to steer people in a particular direction while preserving their freedom of choice. Yet behavioral science also provides support for a distinct kind of nonfiscal and noncoercive intervention, namely, "boosts." The objective of boosts is to foster people's competence to make their own choices-that is, to exercise their own agency. Building on this distinction, we further elaborate on how boosts are conceptually distinct from nudges: The two kinds of interventions differ with respect to (a) their immediate intervention targets, (b) their roots in different research programs, (c) the causal pathways through which they affect behavior, (d) their assumptions about human cognitive architecture, (e) the reversibility of their effects, (f) their programmatic ambitions, and (g) their normative implications. We discuss each of these dimensions, provide an initial taxonomy of boosts, and address some possible misconceptions.

  5. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  6. Boost breaking in the EFT of inflation

    DOE PAGES

    Delacrétaz, Luca V.; Noumi, Toshifumi; Senatore, Leonardo

    2017-02-17

    If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. Here in this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to √2H in themore » vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.« less

  7. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    PubMed

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants.

    PubMed

    Bandyopadhyay, Saurav; Mercier, Patrick P; Lysaght, Andrew C; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2014-12-01

    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8 to 1.1 V) usable by CMOS circuits in the sensor. A pW Charge Pump circuit is used to minimize the leakage in the boost converter. Further, ultra-low-power control circuits consisting of digital implementations of input impedance adjustment circuits and Zero Current Switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself and a duty-cyled ultra-low power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18µm CMOS process.

  9. Top tagging: a method for identifying boosted hadronically decaying top quarks.

    PubMed

    Kaplan, David E; Rehermann, Keith; Schwartz, Matthew D; Tweedie, Brock

    2008-10-03

    A method is introduced for distinguishing top jets (boosted, hadronically decaying top quarks) from light-quark and gluon jets using jet substructure. The procedure involves parsing the jet cluster to resolve its subjets and then imposing kinematic constraints. With this method, light-quark or gluon jets with p{T} approximately 1 TeV can be rejected with an efficiency of around 99% while retaining up to 40% of top jets. This reduces the dijet background to heavy tt[over ] resonances by a factor of approximately 10 000, thereby allowing resonance searches in tt[over ] to be extended into the all-hadronic channel. In addition, top tagging can be used in tt[over ] events when one of the top quarks decays semileptonically, in events with missing energy, and in studies of b-tagging efficiency at high p{T}.

  10. Boosted dibosons from mixed heavy top squarks

    NASA Astrophysics Data System (ADS)

    Ghosh, Diptimoy

    2013-12-01

    The lighter mass eigenstate (t˜1) of the two top squarks, the scalar superpartners of the top quark, is extremely difficult to discover if it is almost degenerate with the lightest neutralino (χ˜10), the lightest stable supersymmetric particle in the R-parity conserving supersymmetry. The current experimental bound on t˜1 mass in this scenario stands only around 200 GeV. For such a light t˜1, the heavier top squark (t˜2) can also be around the TeV scale. Moreover, the high value of the Higgs (h) mass prefers the left- and right-handed top squarks to be highly mixed, allowing the possibility of a considerable branching ratio for t˜2→t˜1h and t˜2→t˜1Z. In this paper, we explore the above possibility together with the pair production of t˜2 t˜2*, giving rise to the spectacular diboson+missing transverse energy final state. For an approximately 1 TeV t˜2 and a few hundred GeV t˜1 the final state particles can be moderately boosted, which encourages us to propose a novel search strategy employing the jet substructure technique to tag the boosted h and Z. The reconstruction of the h and Z momenta also allows us to construct the stransverse mass MT2, providing an additional efficient handle to fight the backgrounds. We show that a 4-5σ signal can be observed at the 14 TeV LHC for ˜1TeV t˜2 with 100fb-1 integrated luminosity.

  11. The Lateral Decubitus Breast Boost: Description, Rationale, and Efficacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Michelle S., E-mail: mludwig@mdanderson.or; McNeese, Marsha D.; Buchholz, Thomas A.

    2010-01-15

    Purpose: To describe and evaluate the modified lateral decubitus boost, a breast irradiation technique. Patients are repositioned and resimulated for electron boost to minimize the necessary depth for the electron beam and optimize target volume coverage. Methods and Materials: A total of 2,606 patients were treated with post-lumpectomy radiation at our institution between January 1, 2000, and February 1, 2008. Of these, 231 patients underwent resimulation in the lateral decubitus position with electron boost. Distance from skin to the maximal depth of target volume was measured in both the original and boost plans. Age, body mass index (BMI), boost electronmore » energy, and skin reaction were evaluated. Results: Resimulation in the lateral decubitus position reduced the distance from skin to maximal target volume depth in all patients. Average depth reduction by repositioning was 2.12 cm, allowing for an average electron energy reduction of approximately 7 MeV. Mean skin entrance dose was reduced from about 90% to about 85% (p < 0.001). Only 14 patients (6%) experienced moist desquamation in the boost field at the end of treatment. Average BMI of these patients was 30.4 (range, 17.8-50.7). BMI greater than 30 was associated with more depth reduction by repositioning and increased risk of moist desquamation. Conclusions: The lateral decubitus position allows for a decrease in the distance from the skin to the target volume depth, improving electron coverage of the tumor bed while reducing skin entrance dose. This is a well-tolerated regimen for a patient population with a high BMI or deep tumor location.« less

  12. Investigation of a metallic photonic crystal high power microwave mode converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less

  13. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost

  14. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    PubMed

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (<1 sun). This scalable sheet-like material was used to obtain pure drinkable water from both seawater and sewage water under ambient conditions. Our results demonstrate a competent monolithic material platform providing a paradigm change in water purification by using a simple, point of use, reusable, and low-cost solar thermal water purification system for a variety of environmental conditions.

  15. PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters

    DOE PAGES

    Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...

    2015-08-25

    As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less

  16. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE PAGES

    Dec, John E.; Yang, Yi; Ji, Chunsheng; ...

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  17. A soft switching with reduced voltage stress ZVT-PWM full-bridge converter

    NASA Astrophysics Data System (ADS)

    Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih

    2018-04-01

    This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.

  18. Retroperitoneal sarcoma (RPS) high risk gross tumor volume boost (HR GTV boost) contour delineation agreement among NRG sarcoma radiation and surgical oncologists.

    PubMed

    Baldini, Elizabeth H; Bosch, Walter; Kane, John M; Abrams, Ross A; Salerno, Kilian E; Deville, Curtiland; Raut, Chandrajit P; Petersen, Ivy A; Chen, Yen-Lin; Mullen, John T; Millikan, Keith W; Karakousis, Giorgos; Kendrick, Michael L; DeLaney, Thomas F; Wang, Dian

    2015-09-01

    Curative intent management of retroperitoneal sarcoma (RPS) requires gross total resection. Preoperative radiotherapy (RT) often is used as an adjuvant to surgery, but recurrence rates remain high. To enhance RT efficacy with acceptable tolerance, there is interest in delivering "boost doses" of RT to high-risk areas of gross tumor volume (HR GTV) judged to be at risk for positive resection margins. We sought to evaluate variability in HR GTV boost target volume delineation among collaborating sarcoma radiation and surgical oncologist teams. Radiation planning CT scans for three cases of RPS were distributed to seven paired radiation and surgical oncologist teams at six institutions. Teams contoured HR GTV boost volumes for each case. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. HRGTV boost volume contour agreement between the seven teams was "substantial" or "moderate" for all cases. Agreement was best on the torso wall posteriorly (abutting posterior chest abdominal wall) and medially (abutting ipsilateral para-vertebral space and great vessels). Contours varied more significantly abutting visceral organs due to differing surgical opinions regarding planned partial organ resection. Agreement of RPS HRGTV boost volumes between sarcoma radiation and surgical oncologist teams was substantial to moderate. Differences were most striking in regions abutting visceral organs, highlighting the importance of collaboration between the radiation and surgical oncologist for "individualized" target delineation on the basis of areas deemed at risk and planned resection.

  19. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  20. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.

    PubMed

    Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong

    2017-09-10

    The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Kachulis, C.; Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Okajima, Y.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Okumura, K.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Elnimr, M.; Kropp, W. R.; Mine, S.; Locke, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hill, J.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hayashino, T.; Hiraki, T.; Hirota, S.; Huang, K.; Jiang, M.; Nakamura, KE.; Nakaya, T.; Quilain, B.; Patel, N. D.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Murase, M.; Muto, F.; Mijakowski, P.; Frankiewicz, K.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Ito, S.; Fukuda, D.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; Minamino, A.; Super-Kamiokande Collaboration

    2018-06-01

    A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.

  2. Experimental verification of Space Platform battery discharger design optimization

    NASA Astrophysics Data System (ADS)

    Sable, Dan M.; Deuty, Scott; Lee, Fred C.; Cho, Bo H.

    The detailed design of two candidate topologies for the Space Platform battery discharger, a four module boost converter (FMBC) and a voltage-fed push-pull autotransformer (VFPPAT), is presented. Each has unique problems. The FMBC requires careful design and analysis in order to obtain good dynamic performance. This is due to the presence of a right-half-plane (RHP) zero in the control-to-output transfer function. The VFPPAT presents a challenging power stage design in order to yield high efficiency and light component weight. The authors describe the design of each of these converters and compare their efficiency, weight, and dynamic characteristics.

  3. Experimental verification of Space Platform battery discharger design optimization

    NASA Technical Reports Server (NTRS)

    Sable, Dan M.; Deuty, Scott; Lee, Fred C.; Cho, Bo H.

    1991-01-01

    The detailed design of two candidate topologies for the Space Platform battery discharger, a four module boost converter (FMBC) and a voltage-fed push-pull autotransformer (VFPPAT), is presented. Each has unique problems. The FMBC requires careful design and analysis in order to obtain good dynamic performance. This is due to the presence of a right-half-plane (RHP) zero in the control-to-output transfer function. The VFPPAT presents a challenging power stage design in order to yield high efficiency and light component weight. The authors describe the design of each of these converters and compare their efficiency, weight, and dynamic characteristics.

  4. Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Wha; Kim, Yong; Choi, Han Ho

    2017-11-01

    This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.

  5. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for ultraviolet to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs - Te photocathodes, and P-11 phosphors on fiber optic output windows.

  6. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for UV to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs-Te photocathodes and P-11 phosphors on fiber optic output windows.

  7. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  8. Kill: boosting HIV-specific immune responses.

    PubMed

    Trautmann, Lydie

    2016-07-01

    Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.

  9. Kill: Boosting HIV-specific immune responses

    PubMed Central

    Trautmann, Lydie

    2016-01-01

    Purpose of review Increasing evidences suggest that purging the latent HIV reservoir in virally-suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV infected cells (“Shock and Kill” strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent findings Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in vivo and in silico models to accelerate the design of new clinical trials. Summary New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment. PMID:27054280

  10. A collimator-converter system for IEC propulsion

    NASA Astrophysics Data System (ADS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D-3He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D-3He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MWf fusion power and converting it to 150 MWc electricity. Its size is 150 m(length)×6.6 m(diameter) in size and 185 tons in weight. .

  11. Brachytherapy Boost Utilization and Survival in Unfavorable-risk Prostate Cancer.

    PubMed

    Johnson, Skyler B; Lester-Coll, Nataniel H; Kelly, Jacqueline R; Kann, Benjamin H; Yu, James B; Nath, Sameer K

    2017-11-01

    There are limited comparative survival data for prostate cancer (PCa) patients managed with a low-dose rate brachytherapy (LDR-B) boost and dose-escalated external-beam radiotherapy (DE-EBRT) alone. To compare overall survival (OS) for men with unfavorable PCa between LDR-B and DE-EBRT groups. Using the National Cancer Data Base, we identified men with unfavorable PCa treated between 2004 and 2012 with androgen suppression (AS) and either EBRT followed by LDR-B or DE-EBRT (75.6-86.4Gy). Treatment selection was evaluated using logistic regression and annual percentage proportions. OS was analyzed using the Kaplan-Meier method, log-rank test, Cox proportional hazards, and propensity score matching. We identified 25038 men between 2004 and 2012, during which LDR-B boost utilization decreased from 29% to 14%. LDR-B was associated with better OS on univariate (7-yr OS: 82% vs 73%; p<0.001) and multivariate analyses (hazard ratio [HR] 0.70, 95% confidence interval [CI] 0.64-0.77). Propensity score matching verified an OS benefit associated with LDR-B boost (HR 0.74, 95% CI 0.66-0.89). The OS benefit of LDR-B boost persisted when limited to men aged <60 yr with no comorbidities. On subset analysis, there was no interaction between treatment and age, risk group, or radiation dose. Limitations include the retrospective design, nonrandomized selection bias, and the absence of treatment toxicity, hormone duration, and cancer-specific outcomes. Between 2004 and 2012, LDR-B boost utilization declined and was associated with better OS compared to DE-EBRT alone. LDR-B boost is probably the ideal treatment option for men with unfavorable PCa, pending long-term results of randomized trials. We compared radiotherapy utilization and survival for prostate cancer (PCa) patients using a national database. We found that low-dose rate brachytherapy (LDR-B) boost, a method being used less frequently, was associated with better overall survival when compared to dose-escalated external

  12. Radiotherapy Breast Boost With Reduced Whole-Breast Dose Is Associated With Improved Cosmesis: The Results of a Comprehensive Assessment From the St. George and Wollongong Randomized Breast Boost Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Eric, E-mail: helloerico@yahoo.com; Browne, Lois H.; Khanna, Sam

    Purpose: To evaluate comprehensively the effect of a radiotherapy boost on breast cosmetic outcomes after 5 years in patients treated with breast-conserving surgery. Methods: The St. George and Wollongong trial (NCT00138814) randomized 688 patients with histologically proven Tis-2, N 0-1, M0 carcinoma to the control arm of 50 Gy in 25 fractions (342 patients) and the boost arm of 45 Gy in 25 fractions to the whole breast followed by a 16 Gy in 8 fraction electron boost (346 patients). Five-year cosmetic outcomes were assessed by a panel subjectively in 385 patients and objectively using pBRA (relative breast retraction assessment).more » A subset of patients also had absolute BRA measurements. Clinician assessment and patient self-assessment of overall cosmetic and specific items as well as computer BCCT.core analysis were also performed. Results: The boost arm had improved cosmetic overall outcomes as scored by the panel and BCCT.core software with 79% (p = 0.016) and 81% (p = 0.004) excellent/good cosmesis respectively compared with 68% in no-boost arm. The boost arm also had lower pBRA and BRA values with a mean difference of 0.60 and 1.82 mm, respectively, but was not statistically significant. There was a very high proportion of overall excellent/good cosmetic outcome in 95% and 93% in the boost and no-boost arms using patient self-assessment. However, no difference in overall and specific items scored by clinician assessment and patient self-assessment was found. Conclusion: The results show the negative cosmetic effect of a 16-Gy boost is offset by a lower whole-breast dose of 45 Gy.« less

  13. Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande.

    PubMed

    Kachulis, C; Abe, K; Bronner, C; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kato, Y; Kishimoto, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Okajima, Y; Orii, A; Pronost, G; Sekiya, H; Shiozawa, M; Sonoda, Y; Takeda, A; Takenaka, A; Tanaka, H; Tasaka, S; Tomura, T; Akutsu, R; Kajita, T; Kaneyuki, K; Nishimura, Y; Okumura, K; Tsui, K M; Labarga, L; Fernandez, P; Blaszczyk, F D M; Gustafson, J; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tobayama, S; Goldhaber, M; Elnimr, M; Kropp, W R; Mine, S; Locke, S; Weatherly, P; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hill, J; Kim, J Y; Lim, I T; Park, R G; Himmel, A; Li, Z; O'Sullivan, E; Scholberg, K; Walter, C W; Ishizuka, T; Nakamura, T; Jang, J S; Choi, K; Learned, J G; Matsuno, S; Smith, S N; Amey, J; Litchfield, R P; Ma, W Y; Uchida, Y; Wascko, M O; Cao, S; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Abe, K E; Hasegawa, M; Suzuki, A T; Takeuchi, Y; Yano, T; Hayashino, T; Hiraki, T; Hirota, S; Huang, K; Jiang, M; Nakamura, K E; Nakaya, T; Quilain, B; Patel, N D; Wendell, R A; Anthony, L H V; McCauley, N; Pritchard, A; Fukuda, Y; Itow, Y; Murase, M; Muto, F; Mijakowski, P; Frankiewicz, K; Jung, C K; Li, X; Palomino, J L; Santucci, G; Vilela, C; Wilking, M J; Yanagisawa, C; Ito, S; Fukuda, D; Ishino, H; Kibayashi, A; Koshio, Y; Nagata, H; Sakuda, M; Xu, C; Kuno, Y; Wark, D; Di Lodovico, F; Richards, B; Tacik, R; Kim, S B; Cole, A; Thompson, L; Okazawa, H; Choi, Y; Ito, K; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Calland, R G; Hartz, M; Martens, K; Simpson, C; Suzuki, Y; Vagins, M R; Hamabe, D; Kuze, M; Yoshida, T; Ishitsuka, M; Martin, J F; Nantais, C M; Tanaka, H A; Konaka, A; Chen, S; Wan, L; Zhang, Y; Wilkes, R J; Minamino, A

    2018-06-01

    A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.

  14. Comparison of composite prostate radiotherapy plan doses with dependent and independent boost phases.

    PubMed

    Narayanasamy, Ganesh; Avila, Gabrielle; Mavroidis, Panayiotis; Papanikolaou, Niko; Gutierrez, Alonso; Baacke, Diana; Shi, Zheng; Stathakis, Sotirios

    2016-09-01

    Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.

  15. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model

    PubMed Central

    Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2018-01-01

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205

  16. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    PubMed

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Status of NASA's Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  18. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    /Finite Difference solver. This scheme also requires a current correction and filtering which require FFTs. However, we show that in this case the FFTs can be done locally on each parallel partition. We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher order finite difference/second order finite difference methods permit combining the Lorentz boosted frame simulation technique with another "speed up" technique, called the quasi-3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D algorithm the fields and currents are defined on an r--z PIC grid and expanded in azimuthal harmonics. The expansion is truncated with only a few modes so it has similar computational needs of a 2D r--z PIC code. We show that NCI has similar properties in r--z as in z-x slab geometry and show that the same strategies for eliminating the NCI in Cartesian geometry can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed up. We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT) solver. The new code includes implementation of a moving antenna that can launch lasers in the boosted frame. We also describe how the new hybrid algorithms were implemented into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and OSIRIS are given, including the comparisons against the lab frame results. We also describe how to efficiently obtain the boosted frame simulations data that are needed to generate the transformed lab frame data, as well as how to use a moving window in the boosted frame. The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds are colliding against each other. We show that the strategies for eliminating the NCI developed in this dissertation are enabling such simulations being run for much longer simulation times, which should open a

  19. The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets.

    PubMed

    González-Recio, O; Jiménez-Montero, J A; Alenda, R

    2013-01-01

    In the next few years, with the advent of high-density single nucleotide polymorphism (SNP) arrays and genome sequencing, genomic evaluation methods will need to deal with a large number of genetic variants and an increasing sample size. The boosting algorithm is a machine-learning technique that may alleviate the drawbacks of dealing with such large data sets. This algorithm combines different predictors in a sequential manner with some shrinkage on them; each predictor is applied consecutively to the residuals from the committee formed by the previous ones to form a final prediction based on a subset of covariates. Here, a detailed description is provided and examples using a toy data set are included. A modification of the algorithm called "random boosting" was proposed to increase predictive ability and decrease computation time of genome-assisted evaluation in large data sets. Random boosting uses a random selection of markers to add a subsequent weak learner to the predictive model. These modifications were applied to a real data set composed of 1,797 bulls genotyped for 39,714 SNP. Deregressed proofs of 4 yield traits and 1 type trait from January 2009 routine evaluations were used as dependent variables. A 2-fold cross-validation scenario was implemented. Sires born before 2005 were used as a training sample (1,576 and 1,562 for production and type traits, respectively), whereas younger sires were used as a testing sample to evaluate predictive ability of the algorithm on yet-to-be-observed phenotypes. Comparison with the original algorithm was provided. The predictive ability of the algorithm was measured as Pearson correlations between observed and predicted responses. Further, estimated bias was computed as the average difference between observed and predicted phenotypes. The results showed that the modification of the original boosting algorithm could be run in 1% of the time used with the original algorithm and with negligible differences in accuracy

  20. Intensity modulated radiotherapy with simultaneous integrated boost vs. conventional radiotherapy with sequential boost for breast cancer - A preliminary result.

    PubMed

    Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen

    2015-10-01

    This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Electromechanical converters for electric vehicles

    NASA Astrophysics Data System (ADS)

    Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.

    2018-01-01

    The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.

  2. Phasor Domain Steady-State Modeling and Design of the DC–DC Modular Multilevel Converter

    DOE PAGES

    Yang, Heng; Qin, Jiangchao; Debnath, Suman; ...

    2016-01-06

    The DC-DC Modular Multilevel Converter (MMC), which originated from the AC-DC MMC, is an attractive converter topology for interconnection of medium-/high-voltage DC grids. This paper presents design considerations for the DC-DC MMC to achieve high efficiency and reduced component sizes. A steady-state mathematical model of the DC-DC MMC in the phasor-domain is developed. Based on the developed model, a design approach is proposed to size the components and to select the operating frequency of the converter to satisfy a set of design constraints while achieving high efficiency. The design approach includes sizing of the arm inductor, Sub-Module (SM) capacitor, andmore » phase filtering inductor along with the selection of AC operating frequency of the converter. The accuracy of the developed model and the effectiveness of the design approach are validated based on the simulation studies in the PSCAD/EMTDC software environment. The analysis and developments of this paper can be used as a guideline for design of the DC-DC MMC.« less

  3. Genetic and Psychosocial Predictors of Aggression: Variable Selection and Model Building With Component-Wise Gradient Boosting.

    PubMed

    Suchting, Robert; Gowin, Joshua L; Green, Charles E; Walss-Bass, Consuelo; Lane, Scott D

    2018-01-01

    Rationale : Given datasets with a large or diverse set of predictors of aggression, machine learning (ML) provides efficient tools for identifying the most salient variables and building a parsimonious statistical model. ML techniques permit efficient exploration of data, have not been widely used in aggression research, and may have utility for those seeking prediction of aggressive behavior. Objectives : The present study examined predictors of aggression and constructed an optimized model using ML techniques. Predictors were derived from a dataset that included demographic, psychometric and genetic predictors, specifically FK506 binding protein 5 (FKBP5) polymorphisms, which have been shown to alter response to threatening stimuli, but have not been tested as predictors of aggressive behavior in adults. Methods : The data analysis approach utilized component-wise gradient boosting and model reduction via backward elimination to: (a) select variables from an initial set of 20 to build a model of trait aggression; and then (b) reduce that model to maximize parsimony and generalizability. Results : From a dataset of N = 47 participants, component-wise gradient boosting selected 8 of 20 possible predictors to model Buss-Perry Aggression Questionnaire (BPAQ) total score, with R 2 = 0.66. This model was simplified using backward elimination, retaining six predictors: smoking status, psychopathy (interpersonal manipulation and callous affect), childhood trauma (physical abuse and neglect), and the FKBP5_13 gene (rs1360780). The six-factor model approximated the initial eight-factor model at 99.4% of R 2 . Conclusions : Using an inductive data science approach, the gradient boosting model identified predictors consistent with previous experimental work in aggression; specifically psychopathy and trauma exposure. Additionally, allelic variants in FKBP5 were identified for the first time, but the relatively small sample size limits generality of results and calls for

  4. Automatic control in multidrive electrotechnical complexes with semiconductor converters

    NASA Astrophysics Data System (ADS)

    Vasilev, B. U.; Mardashov, D. V.

    2017-01-01

    The frequency convertor and the automatic control system, which can be used in the multi-drive electromechanical system with a few induction motions, are considered. The paper presents the structure of existing modern multi-drive electric drives inverters, namely, electric drives with a total frequency converter and few electric motions, and an electric drive, in which the converter is used for power supply and control of the independent frequency. It was shown that such technical solutions of frequency converters possess a number of drawbacks. The drawbacks are given. It was shown that the control of technological processes using the electric drive of this structure may be provided under very limited conditions, as the energy efficiency and the level of electromagnetic compatibility of electric drives is low. The authors proposed using a multi-inverter structure with an active rectifier in multidrive electric drives with induction motors frequency converters. The application of such frequency converter may solve the problem of electromagnetic compatibility, namely, consumption of sinusoidal currents from the network and the maintenance of a sinusoidal voltage and energy compatibility, namely, consumption of practically active energy from the network. Also, the paper proposes the use of the automatic control system, which by means of a multi-inverter frequency converter provides separate control of drive machines and flexible regulation of technological processes. The authors present oscillograms, which confirm the described characteristics of the developed electrical drive. The possible subsequent ways to improve the multi-motor drives are also described.

  5. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    PubMed

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Baochun; Huang, Cheng; Zhou, Shoujun

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic

  7. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    PubMed

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver

  8. A methodology for boost-glide transport technology planning

    NASA Technical Reports Server (NTRS)

    Repic, E. M.; Olson, G. A.; Milliken, R. J.

    1974-01-01

    A systematic procedure is presented by which the relative economic value of technology factors affecting design, configuration, and operation of boost-glide transport can be evaluated. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific boost-glide system.

  9. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  10. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  11. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    PubMed

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.

  12. Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.

    PubMed

    Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin

    2006-01-01

    This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.

  13. Notch-Boosted Domain Wall Propagation in Magnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Yuan, Hauiyang

    Magnetic domain wall (DW) motion along a nanowire underpins many proposals of spintronic devices. High DW propagation velocity is obviously important because it determines the device speed. Thus it is interesting to search for effective control knobs of DW dynamics. We report a counter-intuitive finding that notches in an otherwise homogeneous magnetic nanowire can boost current-induced domain wall (DW) propagation. DW motion in notch-modulated wires can be classified into three phases: 1) A DW is pinned around a notch when the current density is below the depinning current density. 2) DW propagation velocity above the depinning current density is boosted by notches when non-adiabatic spin-transfer torque strength is smaller than the Gilbert damping constant. The boost can be many-fold. 3) DW propagation velocity is hindered when non-adiabatic spin-transfer torque strength is larger than the Gilbert damping constant. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 605413) and the Grant from NNSF of China (No. 11374249).

  14. Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.

    PubMed

    Zhang, Baochang; Yang, Yun; Chen, Chen; Yang, Linlin; Han, Jungong; Shao, Ling

    2017-10-01

    Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art.

  15. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  16. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  17. Engineering report: Oxygen boost compressor study

    NASA Technical Reports Server (NTRS)

    Tera, L. S.

    1974-01-01

    An oxygen boost compressor is described which supports a self-contained life support system. A preliminary analysis of the compressor is presented along with performance test results, and recommendations for follow-on efforts.

  18. Low current plasmatron fuel converter having enlarged volume discharges

    DOEpatents

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  19. Low current plasmatron fuel converter having enlarged volume discharges

    DOEpatents

    Rabinovich, Alexander [Swampscott, MA; Alexeev, Nikolai [Moscow, RU; Bromberg, Leslie [Sharon, MA; Cohn, Daniel R [Chestnut Hill, MA; Samokhin, Andrei [Moscow, RU

    2009-10-06

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  20. Effect of Mechanical Activation Treatment on the Recovery of Vanadium from Converter Slag

    NASA Astrophysics Data System (ADS)

    Xiang, Junyi; Huang, Qingyun; Lv, Xuewei; Bai, Chenguang

    2017-10-01

    The high roasting temperature and low leaching efficiency of vanadium from vanadium-bearing converter slag are regarded as the main factors significantly influencing the application of calcification roasting-acid leaching processes in the cleaner production of vanadium. In this study, a mechanical activation treatment was performed to enhance the extraction of vanadium from converter slag. The enhancement effects obtained from mechanical activation were comprehensively evaluated through indices such as the roasting temperature and leaching efficiency. The effects of mechanical activation time, roasting temperature, leaching temperature, solid to liquid ratio, particle size, and acid concentration on the leaching efficiency were investigated. Microstructure morphology and elemental analyses of the raw materials and leaching residue were also investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results demonstrated that the mechanical activation significantly decreased the optimum roasting temperature from 1173 K to 1073 K (900 °C to 800 °C) and increased the leaching efficiency from 86.0 to 90.9 pct.

  1. Complexified boost invariance and holographic heavy ion collisions

    DOE PAGES

    Gubser, Steven S.; van der Schee, Wilke

    2015-01-08

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. Finally, one of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  2. Link prediction boosted psychiatry disorder classification for functional connectivity network

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  3. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  4. Electrical performance characteristics of high power converters for space power applications

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1989-01-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice.

  5. Low work function silicon collector for thermionic converters

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  6. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants

    PubMed Central

    Mercier, Patrick P.; Lysaght, Andrew C.; Stankovic, Konstantina M.; Chandrakasan, Anantha P.

    2015-01-01

    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70–100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited to 1.1–6.25 nW. A nW boost converter is used to increase the input voltage (30–55 mV) to a higher voltage (0.8 to 1.1 V) usable by CMOS circuits in the sensor. A pW Charge Pump circuit is used to minimize the leakage in the boost converter. Further, ultra-low-power control circuits consisting of digital implementations of input impedance adjustment circuits and Zero Current Switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself and a duty-cyled ultra-low power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18µm CMOS process. PMID:25983340

  7. InGaAs concentrator cells for laser power converters and tandem cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, S.; Vernon, S.; Gagnon, E.

    1993-01-01

    In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.

  8. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  9. Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)

    NASA Astrophysics Data System (ADS)

    Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli

    2017-06-01

    The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.

  10. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  11. A study on thermal characteristics analysis model of high frequency switching transformer

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyung; Jung, Tae-Uk

    2015-05-01

    Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.

  12. A targeted boost-and-sort immunization strategy using Escherichia coli BamA identifies rare growth inhibitory antibodies.

    PubMed

    Vij, Rajesh; Lin, Zhonghua; Chiang, Nancy; Vernes, Jean-Michel; Storek, Kelly M; Park, Summer; Chan, Joyce; Meng, Y Gloria; Comps-Agrar, Laetitia; Luan, Peng; Lee, Sophia; Schneider, Kellen; Bevers, Jack; Zilberleyb, Inna; Tam, Christine; Koth, Christopher M; Xu, Min; Gill, Avinash; Auerbach, Marcy R; Smith, Peter A; Rutherford, Steven T; Nakamura, Gerald; Seshasayee, Dhaya; Payandeh, Jian; Koerber, James T

    2018-05-08

    Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP β-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of β-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.

  13. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  14. CMOS-Compatible SOI MESFETS for Radiation-Hardened DC-to-DC Converters

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2013-01-01

    A radiation-tolerant transistor switch has been developed that can operate between 196 and +150 C for DC-to-DC power conversion applications. A prototype buck regulator component was demonstrated to be performing well after a total ionizing dose of 300 krad(Si). The prototype buck converters showed good efficiencies at ultra-high switching speeds in the range of 1 to 10 MHz. Such high switching frequency will enable smaller, lighter buck converters to be developed as part of the next project. Switching regulators are widely used in commercial applications including portable consumer electronics.

  15. Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Radman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.

    1980-01-01

    The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified.

  16. Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication

    MedlinePlus

    ... Boost from Existing Medication Spotlight on Research Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication By Colleen Labbe, M.S. | March 1, 2013 A mouse hanging on a wire during a test of muscle strength. Mice with a mutant dystrophin gene, which ...

  17. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  18. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  19. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  20. Feed conversion efficiency in aquaculture: do we measure it correctly?

    NASA Astrophysics Data System (ADS)

    Fry, Jillian P.; Mailloux, Nicholas A.; Love, David C.; Milli, Michael C.; Cao, Ling

    2018-02-01

    Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the ‘feed conversion ratio’ (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified ‘nutrient retention’, which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production

  1. QCA Gray Code Converter Circuits Using LTEx Methodology

    NASA Astrophysics Data System (ADS)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-07-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  2. QCA Gray Code Converter Circuits Using LTEx Methodology

    NASA Astrophysics Data System (ADS)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-04-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  3. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  4. Photocapacitive image converter

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)

    1982-01-01

    An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.

  5. Modeling, Development and Control of Multilevel Converters for Power System Application =

    NASA Astrophysics Data System (ADS)

    Vahedi, Hani

    The main goal of this project is to develop a multilevel converter topology to be useful in power system applications. Although many topologies are introduced rapidly using a bunch of switches and isolated dc sources, having a single-dc-source multilevel inverter is still a matter of controversy. In fact, each isolated dc source means a bulky transformer and a rectifier that have their own losses and costs forcing the industries to avoid entering in this topic conveniently. On the other hand, multilevel inverters topologies with single-dc-source require associated controllers to regulate the dc capacitors voltages in order to have multilevel voltage waveform at the output. Thus, a complex controller would not interest investors properly. Consequently, developing a single-dc-source multilevel inverter topology along with a light and reliable voltage control is still a challenging topic to replace the 2-level inverters in the market effectively. The first effort in this project was devoted to the PUC7 inverter to design a simple and yet efficient controller. A new modelling is performed on the PUC7 inverter and it has been simplified to first order system. Afterwards, a nonlinear cascaded controller is designed and applied to regulate the capacitor voltage at 1/3 of the DC source amplitude and to generate 7 identical voltage levels at the output supplying different type of loads such as RL or rectifier harmonic ones. In next work, the PUC5 topology is proposed as a remedy to the PUC7 that requires a complicated controller to operate properly. The capacitor voltage is regulated at half of dc source amplitude to generate 5 voltage levels at the output. Although the 7-level voltage waveform is replaced by a 5-level one in PUC5 topology, it is shown that the PUC5 needs a very simple and reliable voltage balancing technique due to having some redundant switching states. Moreover, a sensor-less voltage balancing technique is designed and implemented on the PUC5 inverter

  6. Combustor design tool for a gas fired thermophotovoltaic energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindler, K.W.; Harper, M.J.

    1995-12-31

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The U. S. Naval Academy has been taskedmore » with the development of a small emitter (with a high emissivity) that can be maintained at 1756 K (2700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.« less

  7. Design and experiment of a cross-shaped mode converter for high-power microwave applications.

    PubMed

    Peng, Shengren; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei

    2013-12-01

    A compact mode converter, which is capable of converting a TM01 mode into a circularly polarized TE11 mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  8. Interleaved power converter

    DOEpatents

    Zhu, Lizhi

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  9. Modelling and simulation of current fed dc to dc converter for PHEV applications using renewable source

    NASA Astrophysics Data System (ADS)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.

  10. Breast conserving treatment for breast cancer: dosimetric comparison of sequential versus simultaneous integrated photon boost.

    PubMed

    Van Parijs, Hilde; Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark

    2014-01-01

    Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine.

  11. Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance

    DTIC Science & Technology

    2003-07-21

    Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance Vincent A. Cicirello CMU-RI-TR-03-27 Submitted in partial fulfillment...AND SUBTITLE Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...lead to the development of a search control framework, called QD-BEACON that uses online -generated statistical models of search performance to

  12. Conversion of NO to NO(2) in air by a micro electric NO(x) converter based on a corona discharge process.

    PubMed

    Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun

    2010-06-01

    A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter.

  13. Progress update of NASA's free-piston Stirling space power converter technology project

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  14. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  15. A 190 mV start-up and 59.2% efficiency CMOS gate boosting voltage doubler charge pump in 0.18 µm standard CMOS process for energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoshida, Minori; Miyaji, Kousuke

    2018-04-01

    A start-up charge pump circuit for an extremely low input voltage (V IN) is proposed and demonstrated. The proposed circuit uses an inverter level shifter to generate a 2V IN voltage swing to the gate of both main NMOS and PMOS power transistors in a charge pump to reduce the channel resistance. The proposed circuit is fully implemented in a standard 0.18 µm CMOS process, and the measurement result shows that a minimum input voltage of 190 mV is achieved and output power increases by 181% compared with the conventional forward-body-bias scheme at a 300 mV input voltage. The proposed scheme achieves a maximum efficiency of 59.2% when the input voltage is 390 mV and the output current is 320 nA. The proposed circuit is suitable as a start-up circuit in ultralow power energy harvesting power management applications to boost-up from below threshold voltage.

  16. Commercial Buck Converters and Custom Coil Development for the ATLAS Inner Detector Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, S.; Lanni, F.; Baker, O.

    2010-04-01

    A new generation of higher gain commercial buck converters built using advanced short channel CMOS processes has the potential to operate in the Atlas Inner Detector at the Super Large Hadron Collider (sLHC). This approach would inherently be more efficient than the existing practice of locating the power conversion external to the detector. The converters must operate in a large magnetic field and be able to survive both high doses of ionizing radiation and large neutron fluences. The presence of a large magnetic field necessitates the use of an air core inductor which is developed and discussed here. Noise measurementsmore » will be made to investigate the effect of the high frequency switching of the buck converter on the sensitive front end electronics. Radiation hardness of selected buck converters and mosfets will also be reported.« less

  17. Thermionic/AMTEC cascade converter concept for high-efficiency space power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.

    1996-12-31

    This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less

  18. Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branz, Howard M.; Regan, William; Gerst, Kacy J.

    Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide. However, PV is unlikely to economically supply much more than 10% of the world's electricity unless there is a dramatic reduction in the cost of electricity storage. There is an important scientific and technological opportunity to address the storage challenge by developing inexpensive hybrid solar converters that collect solar heat at temperatures between about 200 and 600 °C and also incorporate PV. Since heat can be stored and converted to electricity at relatively low cost, collection of high exergy content (high temperature) solarmore » heat can provide energy that is dispatchable on demand to meet loads that are not well matched to solar insolation. However, PV cells can collect and convert much of the solar spectrum to electricity more efficiently and inexpensively than solar thermal systems. Advances in spectrum-splitting optics, high-temperature PV cells, thermal management and system design are needed for transformational hybrid converters. We propose that maximizing the exergy output from the solar converters while minimizing the cost of exergy can help propel solar energy toward a higher contribution to carbon-free electricity in the long term than the prevailing paradigm of maximizing the energy output while minimizing the cost of energy« less

  19. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  20. A zero-voltage-switched three-phase interleaved buck converter

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen

    2018-04-01

    This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.

  1. Early boost and slow consolidation in motor skill learning.

    PubMed

    Hotermans, Christophe; Peigneux, Philippe; Maertens de Noordhout, Alain; Moonen, Gustave; Maquet, Pierre

    2006-01-01

    Motorskill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as 5-30 min after training but no longer observed 4 h later. This early boost is predictive of the performance achieved 48 h later, suggesting its functional relevance for memory processes.

  2. Breast Conserving Treatment for Breast Cancer: Dosimetric Comparison of Sequential versus Simultaneous Integrated Photon Boost

    PubMed Central

    Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark

    2014-01-01

    Background. Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. Methods. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. Results. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. Conclusions. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine. PMID:25162031

  3. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  4. Boosted dark matter signals uplifted with self-interaction

    DOE PAGES

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul

    2015-04-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themore » assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.« less

  5. Boosted dark matter signals uplifted with self-interaction

    NASA Astrophysics Data System (ADS)

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul

    2015-04-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  6. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  7. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgiamore » Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.« less

  8. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  9. High frequency capacitor-diode voltage multiplier dc-dc converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  10. Analytic boosted boson discrimination

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-20

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  11. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  12. TiConverter: A training image converting tool for multiple-point geostatistics

    NASA Astrophysics Data System (ADS)

    Fadlelmula F., Mohamed M.; Killough, John; Fraim, Michael

    2016-11-01

    TiConverter is a tool developed to ease the application of multiple-point geostatistics whether by the open source Stanford Geostatistical Modeling Software (SGeMS) or other available commercial software. TiConverter has a user-friendly interface and it allows the conversion of 2D training images into numerical representations in four different file formats without the need for additional code writing. These are the ASCII (.txt), the geostatistical software library (GSLIB) (.txt), the Isatis (.dat), and the VTK formats. It performs the conversion based on the RGB color system. In addition, TiConverter offers several useful tools including image resizing, smoothing, and segmenting tools. The purpose of this study is to introduce the TiConverter, and to demonstrate its application and advantages with several examples from the literature.

  13. Unity-Efficiency Parametric Down-Conversion via Amplitude Amplification.

    PubMed

    Niu, Murphy Yuezhen; Sanders, Barry C; Wong, Franco N C; Shapiro, Jeffrey H

    2017-03-24

    We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n-photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1≤n≤5, after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.

  14. Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.

    PubMed

    Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun

    2018-01-01

    Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lorentz-boosted evanescent waves

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.

    2018-06-01

    Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.

  16. Development and Testing of an Ultra Low Power System-On-Chip (SOC) Platform for Marine Mammal Tags and Passive Acoustic Signal Processing

    DTIC Science & Technology

    2014-09-30

    current (3-5mA). The system can harvest 16 power from a DC input source like a thermoelectric generator (TEG) or photovoltaic cell (PV). The boost...results from components to report. Designed for thermoelectric energy harvesting in 130nm CMOS, the boost converter reduces the achievable input...harvesting. The boost converter further incorporates maximum power point tracking for harvesting from both thermoelectric generators (TEGs) and solar

  17. Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft

    NASA Astrophysics Data System (ADS)

    Diab-Marzouk, Ahmad

    A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.

  18. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  19. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  20. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  1. DeMix Workflow for Efficient Identification of Cofragmented Peptides in High Resolution Data-dependent Tandem Mass Spectrometry*

    PubMed Central

    Zhang, Bo; Pirmoradian, Mohammad; Chernobrovkin, Alexey; Zubarev, Roman A.

    2014-01-01

    Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs. PMID:25100859

  2. Avoiding Anemia: Boost Your Red Blood Cells

    MedlinePlus

    ... Issues Subscribe January 2014 Print this issue Avoiding Anemia Boost Your Red Blood Cells En español Send ... Disease When Blood Cells Bend Wise Choices Preventing Anemia To prevent or treat iron-deficiency anemia: Eat ...

  3. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    PubMed

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  4. Efficient spot size converter for higher-order mode fiber-chip coupling.

    PubMed

    Lai, Yaxiao; Yu, Yu; Fu, Songnian; Xu, Jing; Shum, Perry Ping; Zhang, Xinliang

    2017-09-15

    We propose and demonstrate a silicon-based spot size converter (SSC), composed of two identical tapered channel waveguides and a Y-junction. The SSC is designed for first-order mode fiber-to-chip coupling on the basis of mode petal separation and the recombination method. Compared with a traditional on-chip SSC, this method is superior with reduced coupling loss when dealing with a higher-order mode. To the best of our knowledge, we present the first experimental observations of a higher-order SSC which is fully compatible with a standard fabrication process. Average coupling losses of 3 and 5.5 dB are predicted by simulation and demonstrated experimentally. A fully covered 3 dB bandwidth over a 1515-1585 nm wavelength range is experimentally observed.

  5. Pre-converted nitric oxide gas in catalytic reduction system

    DOEpatents

    Hsiao, Mark C.; Merritt, Bernard T.; Penetrante, Bernardino M.; Vogtlin, George E.

    1999-01-01

    A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO.sub.2 in the presence of O.sub.2. The second stage serves to convert NO.sub.2 to environmentally benign gases that include N2, CO2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO.sub.2 in the presence of O.sub.2 and includes platinum/alumina, e.g., Pt/Al.sub.2 O.sub.3 catalyst. A flow of hydrocarbons (C.sub.x H.sub.y) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO.sub.2 from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO.sub.2 to N2, CO2, and H.sub.2 O, and includes a gamma-alumina .gamma.-Al.sub.2 O.sub.3. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the second catalyst.

  6. Pre-converted nitric oxide gas in catalytic reduction system

    DOEpatents

    Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.

    1999-04-06

    A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO{sub 2} in the presence of O{sub 2}. The second stage serves to convert NO{sub 2} to environmentally benign gases that include N{sub 2}, CO{sub 2}, and H{sub 2}O. By preconverting NO to NO{sub 2} in the first stage, the efficiency of the second stage for NO{sub x} reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO{sub 2} in the presence of O{sub 2} and includes platinum/alumina, e.g., Pt/Al{sub 2}O{sub 3} catalyst. A flow of hydrocarbons (C{sub x}H{sub y}) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO{sub 2} from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO{sub 2} to N{sub 2}, CO{sub 2}, and H{sub 2}O, and includes a {gamma}-Al{sub 2}O{sub 3}. The hydrocarbons and NO{sub x} are simultaneously reduced while passing through the second catalyst. 9 figs.

  7. An Analysis of Offset, Gain, and Phase Corrections in Analog to Digital Converters

    NASA Astrophysics Data System (ADS)

    Cody, Devin; Ford, John

    2015-01-01

    Many high-speed analog to digital converters (ADCs) use interwoven ADCs to greatly boost their sample rate. This interwoven architecture can introduce problems if the low speed ADCs do not have identical outputs. These errors are manifested as phantom frequencies that appear in the digitized signal although they never existed in the analog domain. Through the application of offset, gain, and phase (OGP) corrections to the ADC, this problem can be reduced. Here we report on an implementation of such a correction in a high speed ADC chip used for radio astronomy. While the corrections could not be implemented in the ADCs themselves, a partial solution was devised and implemented digitally inside of a signal processing field programmable gate array (FPGA). Positive results to contrived situations are shown, and null results are presented for implementation in an ADC083000 card with minimal error. Lastly, we discuss the implications of this method as well as its mathematical basis.

  8. Efficiency of converting nutrient dry matter to milk in Holstein herds.

    PubMed

    Britt, J S; Thomas, R C; Speer, N C; Hall, M B

    2003-11-01

    Production of milk from feed dry matter intakes (DMI), called dairy or feed efficiency, is not commonly measured in dairy herds as is feed conversion to weight gain in swine, beef, and poultry; however, it has relevance to conversion of purchased input to salable product and proportion of dietary nutrients excreted. The purpose of this study was to identify some readily measured factors that affect dairy efficiency. Data were collected from 13 dairy herds visited 34 times over a 14-mo period. Variables measured included cool or warm season (high ambient temperature <21 degrees C or >21 degrees C, respectively), days in milk, DMI, milk yield, milk fat percent, herd size, dietary concentrations (DM basis) and kilograms of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and forage. Season, days in milk, CP % and forage % of diet DM, and kilograms of dietary CP affected dairy efficiency. When evaluated using a model containing the significant variables, dairy efficiency was lower in the warm season (1.31) than in the cool season (1.40). In terms of simple correlations, dairy efficiency was negatively correlated with days in milk (r = -0.529), DMI (r = -0.316), forage % (r = -0.430), NDF % (r = -0.308), and kilograms of forage (r = -0.516), NDF (r = -0.434), and ADF (r = -0.313), in the diet, respectively. Dairy efficiency was positively correlated with milk yield (r = 0.707). The same relative patterns of significance and correlation were noted for dairy efficiency calculated with 3.5% fat-corrected milk yield. Diets fed by the herds fell within such a small range of variation (mean +/- standard deviation) for CP % (16.3 +/- 0.696), NDF % (33.2 +/- 2.68), and forage % (46.9 +/- 5.56) that these would not be expected to be useful to evaluate the effect of excessive underfeeding or overfeeding of these dietary components. The negative relationships of dairy efficiency with increasing dietary fiber and forage may reflect the effect of

  9. Molecular solid-state inverter-converter system

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1973-01-01

    A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.

  10. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Merrill Skeist; Richard H.; Anthony G.P. Marini

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a seriesmore » L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in

  11. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  12. Processing precious metals in a top-blown rotary converter

    NASA Astrophysics Data System (ADS)

    Whellock, John G.; Matousek, Jan W.

    1990-09-01

    Copper-nickel/platinum-palladium flotation concentrates produced by the Stillwater Mining Company were smelted and refined in an integrated pilot plant consisting of a submerged-arc electric furnace and top-blown rotary converter. The conversion of high-iron electric furnace mattes was achieved with apparent oxygen efficiencies in excess of 100 percent. Platinum and palladium recoveries averaged 99 percent, and copper and nickel recoveries were 94 percent.

  13. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  14. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  15. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  16. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  17. Assessment of Stirling Technology Has Provided Critical Data Leading Toward Flight Readiness of the Stirling Converter

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2001-01-01

    The NASA Glenn Research Center is supporting the development of a Stirling converter with the Department of Energy (DOE, Germantown, Maryland) for an advanced Stirling Radioisotope Power System (SRPS) to provide spacecraft onboard electric power for NASA space science missions. A key technology assessment completed by Glenn and DOE has led to the SRPS being identified as a high-efficiency power source for such deep space missions as the Europa Orbiter and the Solar Probe. In addition, the Stirling system is now being considered for unmanned Mars rovers, especially where mission profiles may exclude the use of photovoltaic power systems, such as exploration at high Martian latitudes or for missions of long duration. The SRPS efficiency of over 20 percent will reduce the required amount of radioisotope by more than a factor of 3 in comparison to current radioisotope thermoelectric generators. This significantly reduces radioisotope cost, radiological inventory, and system cost, and it provides efficient use of scarce radioisotope resources. In support of this technology assessment, Glenn conducted a series of independent evaluations and tests to determine the technology readiness of a 55-We Stirling converter developed by Stirling Technology Company (Kennewick, Washington) and DOE. Key areas evaluated by Glenn included: 1) Radiation tolerance of materials; 2) Random vibration testing of the Stirling converter in Glenn's Structural Dynamics Lab to simulate operation in the launch environment; 3) Electromagnetic interference and compatibility (EMI/EMC) of the converter operating in Glenn's EMI lab; Independent failure modes, effects, and criticality analysis, and life and reliability 4. Independent failure modes, effects, and criticality analysis, and life and reliability assessment; and 5) SRPS cost estimate. The data from these evaluations were presented to NASA Headquarters and the Jet Propulsion Laboratory mission office by a joint industry/Government team

  18. Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction Projects

    PubMed Central

    2015-01-01

    Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project. PMID:26339227

  19. Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction Projects.

    PubMed

    Shin, Yoonseok

    2015-01-01

    Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.

  20. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  1. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  2. Energy Harvesting from Salinity Gradient

    NASA Astrophysics Data System (ADS)

    Muhthassim, B.; Thian, X. K.; Hasan, K. N. Md

    2018-04-01

    Abstract: Energy harvesting from salt water received attention started back in 1970s’, but due to varying interests in the field and the growing potentials of other more promising sources, more work was required to fully establish it. This paper aims at identifying existing techniques of energy harvesting and the methodology involved determining an effective technique for small scale applications of the method. Capacitive deionization technique which involves electrochemical reaction was chosen for further analysis. The experiment was conducted to analyze factors affecting its performance including the electrode and the electrolyte. Combination electrode of carbon/aluminium, copper/aluminium and carbon/copper were selected and tested with different concentration of salty water. From the experiment, copper and aluminum electrodes were found to be the most effective among the rest. A DC-DC boost converter was used to step-up the voltage. Physical implementation of the circuit was done and the circuit was tested in which an input voltage of 1.022 V was boosted to 1.255 V. The efficiency of the boost converter was 38.17 % based on input power and output power obtained.

  3. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    DTIC Science & Technology

    2013-02-14

    immunization, was severe (Grade 3), preventing daily activities . Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum...administering a drug selectively active against blood stage parasites such as chloroquine [4,5]. While the immunological mechanisms underlying the...promoter sequence activated within the host cell. Alternatively, the genes are inserted into a viral vector, which efficiently transports the DNA into

  4. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  5. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  6. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  7. Centaur boost pump turbine icing investigation

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1976-01-01

    An investigation was conducted to determine if ice formation in the Centaur vehicle liquid oxygen boost pump turbine could prevent rotation of the pump and whether or not this phenomenon could have been the failure mechanism for the Titan/Centaur vehicle TC-1. The investigation consisted of a series of tests done in the LeRC Space Power Chamber Facility to evaluate evaporative cooling behavior patterns in a turbine as a function of the quantity of water trapped in the turbine and as a function of the vehicle ascent pressure profile. It was found that evaporative freezing of water in the turbine housing, due to rapid depressurization within the turbine during vehicle ascent, could result in the formation of ice that would block the turbine and prevent rotation of the boost pump. But for such icing conditions to exist it would be necessary to have significant quantities of water in the turbine and/or its components, and the turbine housing temperature would have to be colder than 40 F at vehicle liftoff.

  8. Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  9. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  10. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter

    NASA Astrophysics Data System (ADS)

    Akimchenko, Alina; Chepurnov, Victor; Dolgopolov, Mikhail; Gurskaya, Albina; Kuznetsov, Oleg; Mashnin, Alikhan; Radenko, Vitaliy; Radenko, Alexander; Surnin, Oleg; Zanin, George

    2017-10-01

    The miniature and low-power devices with long service life in hard operating conditions like the Carbon-14 beta-decay energy converters indeed as eternal resource for integrated MEMS and NEMS are considered. Authors discuss how to create the power supply for MEMS/NEMS devices, based on porous SiC/Si structure, which are tested to be used as the beta-decay energy converters of radioactive C-14 into electrical energy. This is based on the silicon carbide obtaining by self-organizing mono 3C-SiC endotaxy on the Si substrate. The new idea is the C-14 atoms including in molecules in the silicon carbide porous structure by this technology, which will increase the efficiency of the converter due to the greater intensity of electron-hole pairs generation rate in the space charge region. The synthesis of C-14 can be also performed by using the electronically controlled magneto-optic chamber.

  11. Laser Based Phosphor Converted Solid State White Light Emitters

    NASA Astrophysics Data System (ADS)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of

  12. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  13. Optimal Design of a Resonance-Based Voltage Boosting Rectifier for Wireless Power Transmission.

    PubMed

    Lim, Jaemyung; Lee, Byunghun; Ghovanloo, Maysam

    2018-02-01

    This paper presents the design procedure for a new multi-cycle resonance-based voltage boosting rectifier (MCRR) capable of delivering a desired amount of power to the load (PDL) at a designated high voltage (HV) through a loosely-coupled inductive link. This is achieved by shorting the receiver (Rx) LC-tank for several cycles to harvest and accumulate the wireless energy in the RX inductor before boosting the voltage by breaking the loop and transferring the energy to the load in a quarter cycle. By optimizing the geometries of the transmitter (Tx) and Rx coils and the number of cycles, N , for energy harvesting, through an iterative design procedure, the MCRR can achieve the highest PDL under a given set of design constraints. Governing equations in the MCRR operation are derived to identify key specifications and the design guidelines. Using an exemplary set of specs, the optimized MCRR was able to generate 20.9 V DC across a 100 kΩ load from a 1.8 V p , 6.78 MHz sinusoid input in the ISM-band at a Tx/Rx coil separation of 1.3 cm, power transfer efficiency (PTE) of 2.2%, and N = 9 cycles. At the same coil distance and loading, coils optimized for a conventional half-wave rectifier (CHWR) were able to reach only 13.6 V DC from the same source.

  14. Noise exposure in convertible automobiles.

    PubMed

    Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N

    2011-02-01

    To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.

  15. A modular electric power system test bed for small spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Baez, Anastacio N.

    1994-01-01

    In the new climate of smaller, faster, and cheaper space science satellites, a new power system topology has been developed at the NASA Lewis Research Center. This new topology is based on a series connected boost converter (SCBC) and can greatly affect the size, weight, fault tolerance, and cost of any small spacecraft using photovoltaic solar arrays. The paper presents electric power system design factors and requirements as background information. The series connected boost converter topology is discussed and several advantages over existing technologies are illustrated. Besides being small, lightweight, and efficient, this topology has the added benefit of inherent fault tolerance. A positive ground power system test bed has been developed for the TROPIX spacecraft program. Performance of the SCBC in the test bed is described in detail. SCBC efficiencies of 95 percent to 98 percent have been measured. Finally, a modular, photovoltaic regulator 'kit' concept is presented. Two SCBC's are used to regulate solar array charging of batteries and to provide 'utilitytype' power to the user loads. The kit's modularity will allow a spacecraft electric power system to be built from off-the-shelf hardware; resulting in smaller, faster, and cheaper spacecraft.

  16. Broadband working-waveband-tunable polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Wang, Lei; Gao, Jun; Lu, Yichao; Jiang, Suhua; Zeng, Wei

    2017-03-01

    We experimentally and theoretically demonstrate an ultrathin, broadband, and highly efficient metamaterial-based polarization converter with a metasurface/insulator/metal (MIM) configuration. In such a system, the resonance undergoes a transition from a vertical Fabry-Pérot type to a transverse type as the spacer thickness decreases. By changing the spacer thickness from 1 to 15 mm, the working waveband of this device could be tuned from 10.9-12.9 to 6-8 GHz without compromising the polarization conversion efficiency. Equivalent circuit theory and the transfer matrix method are used for demonstrating the physical mechanism of our device.

  17. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  18. GeoBoost: accelerating research involving the geospatial metadata of virus GenBank records.

    PubMed

    Tahsin, Tasnia; Weissenbacher, Davy; O'Connor, Karen; Magge, Arjun; Scotch, Matthew; Gonzalez-Hernandez, Graciela

    2018-05-01

    GeoBoost is a command-line software package developed to address sparse or incomplete metadata in GenBank sequence records that relate to the location of the infected host (LOIH) of viruses. Given a set of GenBank accession numbers corresponding to virus GenBank records, GeoBoost extracts, integrates and normalizes geographic information reflecting the LOIH of the viruses using integrated information from GenBank metadata and related full-text publications. In addition, to facilitate probabilistic geospatial modeling, GeoBoost assigns probability scores for each possible LOIH. Binaries and resources required for running GeoBoost are packed into a single zipped file and freely available for download at https://tinyurl.com/geoboost. A video tutorial is included to help users quickly and easily install and run the software. The software is implemented in Java 1.8, and supported on MS Windows and Linux platforms. gragon@upenn.edu. Supplementary data are available at Bioinformatics online.

  19. Research on motion model for the hypersonic boost-glide aircraft

    NASA Astrophysics Data System (ADS)

    Xu, Shenda; Wu, Jing; Wang, Xueying

    2015-11-01

    A motion model for the hypersonic boost-glide aircraft(HBG) was proposed in this paper, which also analyzed the precision of model through simulation. Firstly the trajectory of HBG was analyzed, and a scheme which divide the trajectory into two parts then build the motion model on each part. Secondly a restrained model of boosting stage and a restrained model of J2 perturbation were established, and set up the observe model. Finally the analysis of simulation results show the feasible and high-accuracy of the model, and raise a expectation for intensive research.

  20. Identification techniques for highly boosted W bosons that decay into hadrons

    DOE PAGES

    Khachatryan, Vardan

    2014-12-02

    In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMSmore » detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb -1. The performance of W tagging in data is compared with predictions from several Monte Carlo simulators.« less