East Peak Fire Burn Scar, Colorado [annotated
2017-12-08
On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Lightning ignited the blaze on June 19, 2013. By June 25, it had burned nearly 13,500 acres (5,500 hectares). NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland. Instrument: Landsat 8 - OLI More images from this event: 1.usa.gov/14DesQC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
East Peak Fire Burn Scar, Colorado [high res
2017-12-08
On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Lightning ignited the blaze on June 19, 2013. By June 25, it had burned nearly 13,500 acres (5,500 hectares). NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland. Instrument: Landsat 8 - OLI More images from this event: 1.usa.gov/14DesQC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data
Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin
2014-01-01
Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563
Antisense Oligodeoxynucleotide Inhibition of HIV Gene Expression
1989-03-20
synthesis using trimethoxybenzyl side chain protection for Gln, the highly efficient benzotriazolyloxy tris(dimethylamino) phosphonium hexafluorophosphate ...0 - P - 0 -0 - O - - OH + Li OLi OLi OLi R 0 Fig. 11. Fai.t atom bombardment ma.ss spectroscopy of the lithium salt of 5’-trityl-CUAA, sputtered from
Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity
NASA Astrophysics Data System (ADS)
Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.
2018-02-01
Nowadays Earth observation satellites, in particular Landsat, provide a valuable help to forest managers in post-fire operations; being the base of post-fire damage maps that enable to analyze fire impacts and to develop vegetation recovery plans. Sentinel-2A MultiSpectral Instrument (MSI) records data in similar spectral wavelengths that Landsat 8 Operational Land Imager (OLI), and has higher spatial and temporal resolutions. This work compares two types of satellite-based maps for evaluating fire damage in a large wildfire (around 8000 ha) located in Sierra de Gata (central-western Spain) on 6-11 August 2015. 1) burn severity maps based exclusively on Landsat data; specifically, on differenced Normalized Burn Ratio (dNBR) and on its relative versions (Relative dNBR, RdNBR, and Relativized Burn Ratio, RBR) and 2) burn severity maps based on the same indexes but combining pre-fire data from Landsat 8 OLI with post-fire data from Sentinel-2A MSI data. Combination of both Landsat and Sentinel-2 data might reduce the time elapsed since forest fire to the availability of an initial fire damage map. Interpretation of ortho-photograph Pléiades 1 B data (1:10,000) provided us the ground reference data to measure the accuracy of both burn severity maps. Results showed that Landsat based burn severity maps presented an adequate assessment of the damage grade (κ statistic = 0.80) and its spatial distribution in wildfire emergency response. Further using both Landsat and Sentinel-2 MSI data the accuracy of burn severity maps, though slightly lower (κ statistic = 0.70) showed an adequate level for be used by forest managers.
NASA Astrophysics Data System (ADS)
Teodoro, A. C.; Amaral, A.
2017-10-01
Portugal is one of the most affected countries in Europe by forest fires. Every year in the summer, hundreds of hectares burn, destroying goods and forests at an alarming rate. The objective of this work was to analyze the forest areas burned in Portugal in 2016 (summer) using different satellite data with different spatial resolution (Sentinel-2A MSI and Landsat 8 OLI) in two affected areas. Data from spring from 2016 and 2017 were chosen (pre-fire event and post-fire event) in order to maximize the Normalized Difference Vegetation Index (NDVI) values. The QGIS software's plugin - Semi- Automatic Classification Plugin- which allowed to obtain NDVI values for the Landsat 8 OLI and Sentinel- 2A was used. The results showed that the NDVI decreased considerably in Arouca and Vila Nova de Cerveira after de fire event, meaning a marked drop in vegetation level. In Sintra municipality this change was not verified because non forest fire was registered in this area during the study period. The results from the Sentinel-2A and Landsat 8 OLI data analysis are in agreement, however the Sentinel-2A satellite gives results more accurate than Landsat-8 OLI since it has best spatial resolution. This study could help the experts to understand both the causes and consequences of spatial variability of post-fire effects. Other vegetation spectral indices related with fire and burnt areas could also be calculated in order to discriminate burnt areas. Added to the best spatial resolution of Sentinel-2A (10 m), the temporal resolution of Sentinel- 2A (10 days) was increased with the launch of the twin Sentinel-2B (very recently) and therefore the frequency of the combined constellation revisit will be 5 days. However, for historical studies, the Landsat program remains the best option.
NASA Astrophysics Data System (ADS)
Pepe, Antonio; Azar, Ramin; Calò, Fabiana; Stroppiana, Daniela; Brivio, Pietro Alessandro; Imperatore, Pasquale
2016-04-01
Fires widely affect Mediterranean regions, causing severe threats to human lives and damages to natural environments. The socio-economic impacts of fires on the affected local communities are significant, indeed, the activation of prevention measures and the extinguishment of fires and reclamation of the pre-fire conditions are very expensive. Moreover, fires have also global impacts: they affect global warming and climate changes due to gas and aerosol emissions to atmosphere. In such a context, fire scars mapping and monitoring are fundamental tasks for a sustainable management of natural resources and for the prevention/mitigation of fire risk. With this respect, remotely sensed data offer the opportunity for a regional-up-to-global scale monitoring of areas prone to fires, on a cost-effective and regular basis. In this work, the potential of a joint use of Sentinel-1A (C-band) Synthetic Aperture Radar (SAR) and Landsat-8 Operational Land Imager (OLI) data for detecting burned areas is investigated. The experimental analyses are conducted by focusing on Sardinia Island, which is one of the Italian regions most affected by fire events during summer. Our analysis shows that the capability of monitoring burned areas in the Mediterranean environment can be improved by exploiting information embedded in OLI multispectral bands in conjunction with multi-temporal dual-polarized SAR data. Indeed, limitations experienced in analyses based on the use of only optical data (e.g., cloud cover, spectral overlap/confusion of burned areas with dark soils, water surfaces and shaded regions) may be overcome by using SAR data, owing to the insensitiveness to sunlight-illumination conditions and the cloud-penetrating capability of microwave radiation. Results prove the effectiveness of an integrated approach based on the combination of optical and microwave imagery for the monitoring and mapping of burned areas in vegetated regions.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2017-12-01
Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.
Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules
NASA Astrophysics Data System (ADS)
Panigrahi, P.; Naqvi, S. R.; Hankel, M.; Ahuja, R.; Hussain, T.
2018-06-01
In a quest to find optimum materials for efficient storage of clean energy, we have performed first principles calculations to study the structural and energy storage properties of one-dimensional carbon nanotubes (CNTs) functionalized with polylithiated molecules (PLMs). Van der Waals corrected calculations disclosed that various PLMs like CLi, CLi2, CLi3, OLi, OLi2, OLi3, bind strongly to CNTs even at high doping concentrations ensuring a uniform distribution of dopants without forming clusters. Bader charge analysis reveals that each Li in all the PLMs attains a partial positive charge and transform into Li+ cations. This situation allows multiple H2 molecules adsorbed with each Li+ through the polarization of incident H2 molecules via electrostatic and van der Waals type of interaction. With a maximum doping concentration, that is 3CLi2/3CLi3 and 3OLi2/3OLi3 a maximum of 36 H2 molecules could be adsorbed that corresponds to a reasonably high H2 storage capacity with the adsorption energies in the range of -0.33 to -0.15 eV/H2. This suits the ambient condition applications.
Hot Spot Detection System Using Landsat 8/OLI Data
NASA Astrophysics Data System (ADS)
Kato, S.; Nakamura, R.; Oda, A.; Iijima, A.; Kouyama, T.; Iwata, T.
2015-12-01
We developed a simple algorithm and a Web-based visualizing system to detect hot spots using Landsat 8 OLI multispectral data as one of the applications of the real-time processing of Landsat 8 data. An empirical equation and radiometric and reflective thresholds were derived to detect hot spots using the OLI data at band 5 (0.865 μm) and band 7 (2.200 μm) based on the increase in spectral radiance at shortwave infrared (SWIR) region due to the emission from objects with high surface temperature. We surveyed typical patterns of surface spectra using the ASTER spectral library to delineate a threshold to distinguish hot spots from background surfaces. To adjust the empirical coefficients of our detection algorithm, we visually inspected the detected hot spots using 6593 Landsat 8 scenes, which cover eastern part of East Asia, taken from January 1, 2014 to December 31, 2014, displayed on a dedicated Web GIS system. Eventually we determined threshold equations which can theoretically detect hot spots at temperatures above 230 °C over isothermal pixels and hot spots as small as 1 m2 at temperatures of 1000 °C as the lowest temperature and the smallest subpixel coverage, respectively, for daytime scenes. The algorithm detected hot spots including wildfires, volcanos, open burnings and factories. 30-m spatial resolution of Landsat 8 enabled to detect wild fires and open burnings accompanied by clearer shapes of fire front lines than MODIS and VIIRS fire products. Although the 16-day revisit cycle of Landsat 8 is too long to effectively find unexpected wildfire or outbreak of eruption, the revisit cycle is enough to monitor temporally stable heat sources, such as continually erupting volcanos and factories. False detection was found over building rooftops, which have relatively smooth surfaces at longer wavelengths, when specular reflection occurred at the satellite overpass.
2017-12-08
Eight major wildfires burned through forests and grasslands in the Pacific Northwest in late-July 2013, threatening homes and forcing road closings and evacuations. Many parts of Washington and Oregon faced extreme fire threats, as strong thunderstorms lined up to hit parched forests and grasslands with lightning. On July 28, 2013, the Operational Land Imager (OLI) on Landsat 8 captured these images of the Mile Marker 28 fire in the Simcoe Mountains northeast of Goldendale, Washington. Smoke blew east toward Kennewick, Pasco, and Richland. The lower image shows a closer view of smoke billowing up from the most active part of the fire. Ignited on July 24, 2013, the fire charred more than 22,000 acres (8,900 hectares) by July 30, when more than 1,000 firefighters achieved 40 percent containment. The blaze forced the evacuation of dozens of homes and the closure of US Highway 97. Through July 25, 450 wildfires had burned 10,220 acres (4,136 hectares) in Washington, while Oregon saw 603 fires that burned 63,135 acres (25,549 hectares). In all, 2.3 million acres burned across the United States by late-July, below the national average. Over the past ten years, an average of 4.2 million acres had burned in the United States by the end of each July. While coastal and western Washington receive heavy rain throughout the year, the rain shadow caused by the Cascades leaves central Washington quite dry. The mountains force moist air from the Pacific to rise, causing it to cool and condense into rain or snow on the windward side of the Cascades. So little moisture is left by the time air passes over the Cascades, that the area around Mile Marker 28 typically receives just 8 inches (20 centimeters) of precipitation per year. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland Instrument: Landsat 8 - OLI More info: earthobservatory.nasa.gov/IOTD/view.php?id=81738 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Greek National Observatory of Forest Fires (NOFFi)
NASA Astrophysics Data System (ADS)
Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.
2016-08-01
Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS (PPGIS) tool.
NASA Astrophysics Data System (ADS)
McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.
2015-12-01
Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately calculating carbonaceous emissions and emissions that negatively impact air quality.
A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data
NASA Astrophysics Data System (ADS)
Shan, T.
2017-12-01
Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.
Fire Regime and Land Abandonment in European Russia: Case Study of Smolensk Oblast
NASA Astrophysics Data System (ADS)
Krylov, A.; McCarty, J. L.; Potapov, P.; Turubanova, S.; Prishchepov, A. V.; Manisha, A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P.; Hansen, M.
2014-12-01
Fires in anthropogenically-dominated landscapes are generally attributed to ecosystem management, agriculture, and policy drivers. In European Russia, fire mainly occurring on agricultural lands, wetlands, and abandoned lands. In the agricultural practice in Russia prescribed fires are believed to increase pasture and hay productivity, suppress trees and shrub expansion, and reduce fire hazards, with fire frequency fire dependent on land use and agricultural practices. The large-scale socio-economic transition since the fall of the Soviet Union has led to changes in land use and land management, including land abandonment and changing agricultural practices. In June 2014, an extensive field campaign was completed in the Smolensk Oblast, located approximately two hundred kilometers west of Moscow on the border with Belarus. Our field sampling was based on circa 1985 Landsat-based forest cover map (Potapov et al., 2014). Points were randomly selected from the non-forested class of the 1985 classification, prior to the collapse of the Soviet Union. Of total field collects, 55% points were sampled on land in either early or late stage of abandonment, 15% from actively cropped fields, and 30% from hay or pasture. Fire frequency was calculated for the 108 field points using 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) active fire data for years 2000-2014. Also we calculated percent of points burned in spring 2014 using 30 m Landsat 8 Operational Land Imager (OLI) data to derive burn scars. Actively cropped fields had lowest burn frequency while abandoned lands - early and late stage abandonment - had highest frequency. Fire frequency was significantly higher on wet soils than dry soils, with no relationship between fire frequency and tree canopy cover. We hypothesize, higher fire frequency on abandoned lands was likely due to greater fuel loads and because of traditional belief in rural Russia that fire is efficient way to suppress tree and shrub expansion.
NASA Astrophysics Data System (ADS)
Zhang, Min; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Liu, Ke
2016-01-01
Mapping vegetation abundance by using remote sensing data is an efficient means for detecting changes of an eco-environment. With Landsat-8 operational land imager (OLI) imagery acquired on July 31, 2013, both linear spectral mixture analysis (LSMA) and multinomial logit model (MNLM) methods were applied to estimate and assess the vegetation abundance in the Wild Duck Lake Wetland in Beijing, China. To improve mapping vegetation abundance and increase the number of endmembers in spectral mixture analysis, normalized difference vegetation index was extracted from OLI imagery along with the seven reflective bands of OLI data for estimating the vegetation abundance. Five endmembers were selected, which include terrestrial plants, aquatic plants, bare soil, high albedo, and low albedo. The vegetation abundance mapping results from Landsat OLI data were finally evaluated by utilizing a WorldView-2 multispectral imagery. Similar spatial patterns of vegetation abundance produced by both fully constrained LSMA algorithm and MNLM methods were observed: higher vegetation abundance levels were distributed in agricultural and riparian areas while lower levels in urban/built-up areas. The experimental results also indicate that the MNLM model outperformed the LSMA algorithm with smaller root mean square error (0.0152 versus 0.0252) and higher coefficient of determination (0.7856 versus 0.7214) as the MNLM model could handle the nonlinear reflection phenomenon better than the LSMA with mixed pixels.
The Landsat Data Continuity Mission Operational Land Imager: Radiometric Performance
NASA Technical Reports Server (NTRS)
Markham, Brian; Dabney, Philip; Pedelty, Jeffrey
2011-01-01
The Operational Land Imager (OLI) is one of two instruments to fly on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in December 2012 to become the 8th in the series of Landsat satellites. The OLI images in the solar reflective part of the spectrum, with bands similar to bands 1-5, 7 and the panchromatic band on the Landsat-7 ETM+ instrument. In addition, it has a 20 nm bandpass spectral band at 443 nm for coastal and aerosol studies and a 30 nm band at 1375 nm to aid in cirrus cloud detection. Like ETM+, spatial resolution is 30 m in the all but the panchromatic band, which is 15 meters. OLI is a pushbroom radiometer with approximately 6000 detectors per 30 meter band as opposed to the 16 detectors per band on the whiskbroom ETM+. Data are quantized to 12 bits on OLI as opposed to 8 bits on ETM+ to take advantage of the improved signal to noise ratio provided by the pushbroom design. The saturation radiances are higher on OLI than ETM+ to effectively eliminate saturation issues over bright Earth targets. OLI includes dual solar diffusers for on-orbit absolute and relative (detector to detector) radiometric calibration. Additionally, OLI has 3 sets of on-board lamps that illuminate the OLI focal plane through the full optical system, providing additional checks on the OLI's response[l]. OLI has been designed and built by Ball Aerospace & Technology Corp. (BATC) and is currently undergoing testing and calibration in preparation for delivery in Spring 2011. Final pre-launch performance results should be available in time for presentation at the conference. Preliminary results will be presented below. These results are based on the performance of the Engineering Development Unit (EDU) that was radiometrically tested at the integrated instrument level in 2010 and assembly level measurements made on the flight unit. Signal-to-Noise (SNR) performance: One of the advantages of a pushbroom system is the increased dwell time of the detectors allowing for significantly higher SNR than equivalent aperture whiskbroom systems. OLI performance based on the EDU at the "typical" radiance level as specified in the OLI requirements document are about 10 times better than ETM+ performance and 2-3 times better than the requirements for OLI (Table 1).
Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data
NASA Technical Reports Server (NTRS)
Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Roman, Miguel O.
2016-01-01
Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (less than 100 m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high-burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500 m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems.
Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data
Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Román, Miguel O.
2018-01-01
Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems. PMID:29769751
Wang, Zhuosen; Erb, Angela M; Schaaf, Crystal B; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A; Román, Miguel O
2016-11-01
Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems.
NASA Astrophysics Data System (ADS)
Emiyati; Manoppo, Anneke K. S.; Budhiman, Syarif
2017-01-01
Total Suspended Matter (TSM) are fine materials which suspended and floated in water column. Water column could be turbid due to TSM that reduces the depth of light penetration and causes low productivity in coastal waters. The objective of this study was to estimate TSM concentration using Landsat 8 OLI data in Lombok coastal waters Indonesia by using empirical and analytic approach between three visible bands of Landsat 8 OLI subsurface reflectance (OLI 2, OLI 3 and OLI 4) and field data. The accuracy of model was tested using error estimation and statistical analysis. Colour of waters, transparency and reflectance values showed, the clear water has high transparency and low reflectance while the turbid waters have low transparency and high reflectance. The estimation of TSM concentrations in Lombok coastal waters are 0.39 to 20.7 mg/l. TSM concentrations becoming high when it is on coast and low when it is far from the coast. The statistical analysis showed that TSM model from Landsat 8 OLI data could describe TSM from field measurement with correlation 91.8% and RMSE value 0.52. The t-test and f-test showed that the TSM derived from Landsat 8 OLI and TSM measured in field were not significantly different.
NASA Technical Reports Server (NTRS)
Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff
2011-01-01
Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Bassani, Cristiana
2016-04-01
This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.
Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou
2018-01-01
Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Jenstrom, Del; Masek, Jeffrey G.; Dabney, Phil; Pedelty, Jeffrey A.; Barsi, Julia A.; Montanaro, Matthew
2016-01-01
The Landsat 9 mission, currently under development and proceeding towards a targeted launch in late 2020, will be very similar to the Landsat 8 mission, launched in 2013. Like Landsat 8, Landsat 9 is a joint effort between NASA and USGS with two sensors, the Operational Land Imager 2 (OLI-2), essentially a copy of the OLI on Landsat 8 and the Thermal Infrared Sensor 2 (TIRS-2), very similar to the TIRS on Landsat 8. The OLI-2, like OLI, provides 14-bit image data, though for Landsat 9, all 14 bits will be retained and transmitted to the ground. The focal plane modules to be used for OLI-2 were flight spares for OLI and are currently being retested by Ball Aerospace. Results indicate radiometric performance comparable to OLI. The TIRS was a class C instrument, with a 3-year design lifetime, and therefore had limited redundancy. TIRS-2 will be a class B instrument, with a 5-year design lifetime, like OLI (and OLI-2), necessitating design changes to increase redundancy. The stray light and Scene Select Mechanism (SSM) encoder problems observed on orbit with TIRS have also instigated a few design changes to TIRS-2. Stray light analysis and testing have indicated that additional baffles in the TIRS-2 optical system will suppress the out-of-field response. The SSM encoder problems have not been definitively traced to a route cause, though conductive anodic filament growth in the circuit boards is suspected. Improved designs for the encoder are being considered for TIRS-2. The spare Focal Plane Array (FPA) from TIRS is planned for use in TIRS-2; FPA spectral and radiometric performance testing is scheduled for September of this year at NASA's Goddard Space Flight Center.
The Landsat Data Continuity Mission Operational Land Imager: Pre-Launch Performance
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Knight, Edward J.; Canova, Brent; Donley, Eric; Kvaran, Geir; Lee, Kenton
2011-01-01
The Operational Land Imager(OLI) will be the main instrument on Landsat-8 when it launches in 2012. OLI represents a generational change from heritage Landsat instruments in its design but must maintain data continuity with the 30+ year Landsat data archive. As a result, OLI has undergone a stringent calibration and characterization campaign to ensure its characteristics are understood and consistent with past instruments. This paper presents an overview of the OLI design, its major differences from previous Landsat instruments, and a summary of its expected performance.
Evaluating Radiometric Sensitivity of LandSat 8 Over Coastal-Inland Waters
NASA Technical Reports Server (NTRS)
Pahlevan, Nima; Wei, Jian-Wei; Shaaf, Crystal B.; Schott, John R.
2014-01-01
The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends its potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at top-of-atmosphere (TOA) and whether the changes are resolvable at TOA (focal plane) relative to OLI's overall noise.
Landsat 9 OLI 2 focal plane subsystem: design, performance, and status
NASA Astrophysics Data System (ADS)
Malone, Kevin J.; Schrein, Ronald J.; Bradley, M. Scott; Irwin, Ronda; Berdanier, Barry; Donley, Eric
2017-09-01
The Landsat 9 mission will continue the legacy of Earth remote sensing that started in 1972. The Operational Land Imager 2 (OLI 2) is one of two instruments on the Landsat 9 satellite. The OLI 2 instrument is essentially a copy of the OLI instrument flying on Landsat 8. A key element of the OLI 2 instrument is the focal plane subsystem, or FPS, which consists of the focal plane array (FPA), the focal plane electronics (FPE) box, and low-thermal conductivity cables. This paper presents design details of the OLI 2 FPS. The FPA contains 14 critically-aligned focal plane modules (FPM). Each module contains 6 visible/near-IR (VNIR) detector arrays and three short-wave infrared (SWIR) arrays. A complex multi-spectral optical filter is contained in each module. Redundant pixels for each array provide exceptional operability. Spare detector modules from OLI were recharacterized after six years of storage. Radiometric test results are presented and compared with data recorded in 2010. Thermal, optical, mechanical and structural features of the FPA will be described. Special attention is paid to the thermal design of the FPA since thermal stability is crucial to ensuring low-noise and low-drift operation of the detectors which operate at -63°C. The OLI 2 FPE provides power, timing, and control to the focal plane modules. It also digitizes the video data and formats it for the solid-state recorder. Design improvements to the FPA-FPE cables will be discussed and characterization data will be presented. The paper will conclude with the status of the flight hardware assembly and testing.
Machine vision systems using machine learning for industrial product inspection
NASA Astrophysics Data System (ADS)
Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony
2002-02-01
Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.
ERIC Educational Resources Information Center
Lovett, Marsha; Meyer, Oded; Thille, Candace
2008-01-01
The Open Learning Initiative (OLI) is an open educational resources project at Carnegie Mellon University that began in 2002 with a grant from The William and Flora Hewlett Foundation. OLI creates web-based courses that are designed so that students can learn effectively without an instructor. In addition, the courses are often used by instructors…
Landsat 8 thermal infrared sensor geometric characterization and calibration
Storey, James C.; Choate, Michael J.; Moe, Donald
2014-01-01
The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.
Zu, Yuangang; Zhao, Qi; Zhao, Xiuhua; Zu, Shuchong; Meng, Li
2011-01-01
Oligomycin-A (Oli-A), an anticancer drug, was loaded to the folate (FA)-conjugated chitosan as a tumor-targeted drug delivery system for the purpose of overcoming the nonspecific targeting characteristics and the hydrophobicity of the compound. The two-level factorial design (2-LFD) was applied to modeling the preparation process, which was composed of five independent variables, namely FA-conjugated chitosan (FA-CS) concentration, Oli-A concentration, sodium tripolyphosphate (TPP) concentration, the mass ratio of FA-CS to TPP, and crosslinking time. The mean particle size (MPS) and the drug loading rate (DLR) of the resulting Oli-loaded FA-CS nanoparticles (FA-Oli-CSNPs) were used as response variables. The interactive effects of the five independent variables on the response variables were studied. The characteristics of the nanoparticles, such as amount of FA conjugation, drug entrapment rate (DER), DLR, surface morphology, and release kinetics properties in vitro were investigated. The FA-Oli-CSNPs with MPS of 182.6 nm, DER of 17.3%, DLR of 58.5%, and zeta potential (ZP) of 24.6 mV were obtained under optimum conditions. The amount of FA conjugation was 45.9 mg/g chitosan. The FA-Oli-CSNPs showed sustained-release characteristics for 576 hours in vitro. The results indicated that FA-Oli-CSNPs obtained as a targeted drug delivery system could be effective in the therapy of leukemia in the future.
Landsat-8 Operational Land Imager On-Orbit Radiometric Calibration
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Barsi, Julia A.
2017-01-01
The Operational Land Imager (OLI), the VIS/NIR/SWIR sensor on the Landsat-8 has been successfully acquiring Earth Imagery for more than four years. The OLI incorporates two on-board radiometric calibration systems, one diffuser based and one lamp based, each with multiple sources. For each system one source is treated as primary and used frequently and the other source(s) are used less frequently to assist in tracking any degradation in the primary sources. In addition, via a spacecraft maneuver, the OLI instrument views the moon once a lunar cycle (approx. 29 days). The integrated lunar irradiances from these acquisitions are compared to the output of a lunar irradiance model. The results from all these techniques, combined with cross calibrations with other sensors and ground based vicarious measurements are used to monitor the OLI's stability and correct for any changes observed. To date, the various techniques have other detected significant changes in the shortest wavelength OLI band centered at 443 nm and these are currently being adjusted in the operational processing.
NASA Astrophysics Data System (ADS)
Stavros, E. N.; Seidel, F.; Cable, M. L.; Green, R. O.; Freeman, A.
2017-12-01
While, imaging spectrometers offer additional information that provide value added products for applications that are otherwise underserved, there is need to demonstrate their ability to augment the multi-spectral (e.g., Landsat) optical record by both providing more frequent temporal revisit and lengthening the existing record. Here we test the hypothesis that imaging spectroscopic optical data is compatible with multi-spectral data to within ±5% radiometric accuracy, as desirable to continue the long-term Landsat data record. We use a coincident Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flight with over-passing Operational Land Imager (OLI) data on Landsat 8 to document a procedure for simulating OLI multi-spectral bands from AVIRIS, evaluate influencing factors on the observed radiance, and assess AVIRIS radiometric accuracy compared to OLI. The procedure for simulating OLI data includes spectral convolution, accounting for atmospheric effects introduced by different sensor altitude and viewing geometries, and spatial resampling. After accounting for these influences, we expect the remaining differences between the simulated and the real OLI data result from differences in sensor calibration, surface bi-directional reflectance, from the different viewing geometries, and spatial sampling. The median radiometric percent difference for each band in the data used range from 0.6% to 8.3%. After bias-correction to minimize potential calibration discrepancies, we find no more than 1.2% radiometric percent difference for any OLI band. This analysis therefore successfully demonstrates that imaging spectrometer data can not only address novel applications, but also contribute to the Landsat-type or other multi-spectral data records to sustain legacy applications.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo
2015-03-01
Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.
Landsat 8 Remote Sensing Reflectance (Rrs) Products: Evaluations, Intercomparisons, and Enhancements
NASA Technical Reports Server (NTRS)
Pahlevan, Nima; Schott, John R.; Franz, Bryan A.; Zibordi, Giuseppe; Markham, Brian; Bailey, Sean; Schaaf, Crystal B.; Ondrusek, Michael; Greb, Steven; Strait, Christopher M.
2017-01-01
The Operational Land Imager (OLI) onboard Landsat-8 is generating high-quality aquatic science products, the most critical of which is the remote sensing reflectance (Rrs), defined as the ratio of water-leaving radiance to the total downwelling irradiance just above water. The quality of the Rrs products has not, however, been extensively assessed. This manuscript provides a comprehensive evaluation of Level-1B, i.e., top of atmosphere reflectance, and Rrs products available from OLI imagery under near-ideal atmospheric conditions in moderately turbid waters. The procedure includes a) evaluations of the Rrs products at sites included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC), b) intercomparisons and cross-calibrations against other ocean color products, and c) optimizations of vicarious calibration gains across the entire OLI observing swath. Results indicate that the near-infrared and shortwave infrared (NIR-SWIR) band combinations yield the most robust and stable Rrs retrievals in moderately turbid waters. Intercomparisons against products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODISA) indicate slight across-track non-uniformities (<1%) associated with OLI scenes in the blue bands. In both product domains (TOA and Rrs), on average, the OLI products were found larger in radiometric responses in the blue channels. Following the implementation of updated vicarious calibration gains and accounting for across-track non-uniformities, matchup analyses using independent in-situ validation data confirmed improvements in Rrs products. These findings further support high-fidelity OLI-derived aquatic science products in terms of both demonstrating a robust atmospheric correction method and providing consistent products across OLI's imaging swath.
Ocean Color Measurements from Landsat-8 OLI using SeaDAS
NASA Technical Reports Server (NTRS)
Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy
2014-01-01
The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.
From Landsat through SLI: Ball Aerospace Instrument Architecture for Earth Surface Monitoring
NASA Astrophysics Data System (ADS)
Wamsley, P. R.; Gilmore, A. S.; Malone, K. J.; Kampe, T. U.; Good, W. S.
2017-12-01
The Landsat legacy spans more than forty years of moderate resolution, multi-spectral imaging of the Earth's surface. Applications for Landsat data include global environmental change, disaster planning and recovery, crop and natural resource management, and glaciology. In recent years, coastal water science has been greatly enhanced by the outstanding on-orbit performance of Landsat 8. Ball Aerospace designed and built the Operational Land Imager (OLI) instrument on Landsat 8, and is in the process of building OLI 2 for Landsat 9. Both of these instruments have the same design however improved performance is expected from OLI 2 due to greater image bit depth (14 bit on OLI 2 vs 12 bit on OLI). Ball Aerospace is currently working on two novel instrument architectures applicable to Sustainable Land Imaging for Landsat 10 and beyond. With increased budget constraints probable for future missions, technological improvements must be included in future instrument architectures to enable increased capabilities at lower cost. Ball presents the instrument architectures and associated capabilities enabling new science in past, current, and future Landsat missions.
Spatio-temporal pattern of eco-environmental parameters in Jharia coalfield, India
NASA Astrophysics Data System (ADS)
Saini, V.; Gupta, R. P.; Arora, M. K.
2015-10-01
Jharia coal-field holds unequivocal importance in the Indian context as it is the only source of prime coking coal in the country. The coalfield is also known for its infamous coal mine fires which have been burning since last more than a century. Haphazard mining over a century has led to eco-environmental changes to a large extent such as changes in vegetation distribution and widespread development of surface and subsurface fires. This article includes the spatiotemporal study of remote sensing derived eco-environmental parameters like vegetation index (NDVI), tasseled cap transformation (TCT) and temperature distribution in fire areas. In order to have an estimate of the temporal variations of NDVI over the years, a study has been carried out on two subsets of the Jharia coalfield using Landsat images of 1972 (MSS), 1992 (TM), 1999 (ETM+) and 2013 (OLI). To assess the changes in brightness and greenness over the year s, difference images have been calculated using the 1992 (TM) and 2013 (OLI) images. Radiance images derived from thermal bands have been used to calculate at-sensor brightness temperature over a 23 year period from 1991 to 2013. It has been observed that during the years 1972 to 2013, moderate to dense vegetation has decreased drastically due to the intense mining going on in the area. TCT images show the areas that have undergone changes in both brightness and greenness from 1992 to 2013. Surface temperature data obtained shows a constant increase from 1991 to 2013 apparently due to coal fires. The utility of remote sensing data in such EIA studies has been emphasized.
| 303-384-7398 Dan Olis is a mechanical engineer with experience in mechanical and systems design, plant for the U.S. Department of Defense, Department of the Interior, National Park Service, and the
Potentials and limitations of remote fire monitoring in protected areas.
Dos Santos, João Flávio Costa; Romeiro, Joyce Machado Nunes; de Assis, José Batuíra; Torres, Fillipe Tamiozzo Pereira; Gleriani, José Marinaldo
2018-03-01
Protected areas (PAs) play an important role in maintaining the biodiversity and ecological processes of the site. One of the greatest challenges for the PA management in several biomes in the world is wildfires. The objective of this work was to evaluate the potentialities and limitations of the use of data obtained by orbital remote sensing in the monitoring fire occurrence in PAs. Fire Occurrence Records (FORs) were analyzed in Serra do Brigadeiro State Park, Minas Gerais, Brazil, from 2007 to 2015, using photo interpreted data from TM, ETM + and OLI sensors of the Landsat series and the Hot Spot Database (HSD) from the Brazilian Institute of Space Research - INPE. It was also observed the time of permanence of the scar left by fire on the landscape, through the multitemporal analysis of the behavior of NDVI (Normalized Difference Vegetation Index) and NBR (Normalized Burn Ratio) indexes, before and after the occurrence. The greatest limitation found for the orbital remote monitoring was the presence of clouds in the passage of the sensor in dates close to the occurrence of the fires. The burned area identified by photo interpretation was 54.9% less than the area contained in the FOR. Although the HSD reported fire occurrences in the buffer zone (up to 10km from the Park), no FORs were found at a distance greater than 1100m from the boundaries of the PA. As the main potential of remote sensing, the possibility of identifying burned areas throughout the park and surroundings is highlighted, with low costs and greater accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.
Coruzzi, G; Trembath, M K; Tzagoloff, A
1978-12-01
Two mutants of Saccharomyces cerevisiae which show a loss of mitochondrial rutamycin-sensitive ATPase activity are described. Although phenotypically similar to mutants of the mitochondrial locus pho1 [F. Foury and A. Tzagoloff (1976) Eur. J. Biochem. 68, 113-119], these mutants define a second ATPase locus on the mitochondrial DNA (designated pho2), which is genetically unlinked to pho1. Analysis of recombination in crosses involving multiple antibiotic resistance markers indicates that the locus is in the segment of the genome between ery1 and oli2, very close to oli1. In fact it is proposed that the oli1 and pho2 mutations are in the same gene. Supporting evidence for this proposal includes: 1. The analysis of marker retention in petite mutants shows that the oli1 and pho2 loci were either retained or lost together in all cases. 2. Recombination frequencies of 0.05% or less are observed in crosses between the oli1 and pho2 loci. 3. When rho+ revertants are isolated from the pho2 mutants they frequently are oligomycin resistant. 4. pho2 mutants have an altered subunit 9 of the ATPase complex.
Landsat 8 operational land imager on-orbit geometric calibration and performance
Storey, James C.; Choate, Michael J.; Lee, Kenton
2014-01-01
The Landsat 8 spacecraft was launched on 11 February 2013 carrying the Operational Land Imager (OLI) payload for moderate resolution imaging in the visible, near infrared (NIR), and short-wave infrared (SWIR) spectral bands. During the 90-day commissioning period following launch, several on-orbit geometric calibration activities were performed to refine the prelaunch calibration parameters. The results of these calibration activities were subsequently used to measure geometric performance characteristics in order to verify the OLI geometric requirements. Three types of geometric calibrations were performed including: (1) updating the OLI-to-spacecraft alignment knowledge; (2) refining the alignment of the sub-images from the multiple OLI sensor chips; and (3) refining the alignment of the OLI spectral bands. The aspects of geometric performance that were measured and verified included: (1) geolocation accuracy with terrain correction, but without ground control (L1Gt); (2) Level 1 product accuracy with terrain correction and ground control (L1T); (3) band-to-band registration accuracy; and (4) multi-temporal image-to-image registration accuracy. Using the results of the on-orbit calibration update, all aspects of geometric performance were shown to meet or exceed system requirements.
Development of the Landsat Data Continuity Mission Cloud Cover Assessment Algorithms
Scaramuzza, Pat; Bouchard, M.A.; Dwyer, John L.
2012-01-01
The upcoming launch of the Operational Land Imager (OLI) will start the next era of the Landsat program. However, the Automated Cloud-Cover Assessment (CCA) (ACCA) algorithm used on Landsat 7 requires a thermal band and is thus not suited for OLI. There will be a thermal instrument on the Landsat Data Continuity Mission (LDCM)-the Thermal Infrared Sensor-which may not be available during all OLI collections. This illustrates a need for CCA for LDCM in the absence of thermal data. To research possibilities for full-resolution OLI cloud assessment, a global data set of 207 Landsat 7 scenes with manually generated cloud masks was created. It was used to evaluate the ACCA algorithm, showing that the algorithm correctly classified 79.9% of a standard test subset of 3.95 109 pixels. The data set was also used to develop and validate two successor algorithms for use with OLI data-one derived from an off-the-shelf machine learning package and one based on ACCA but enhanced by a simple neural network. These comprehensive CCA algorithms were shown to correctly classify pixels as cloudy or clear 88.5% and 89.7% of the time, respectively.
Liu, Mingyue; Du, Baojia; Zhang, Bai
2018-01-01
Soil salinity and sodicity can significantly reduce the value and the productivity of affected lands, posing degradation, and threats to sustainable development of natural resources on earth. This research attempted to map soil salinity/sodicity via disentangling the relationships between Landsat 8 Operational Land Imager (OLI) imagery and in-situ measurements (EC, pH) over the west Jilin of China. We established the retrieval models for soil salinity and sodicity using Partial Least Square Regression (PLSR). Spatial distribution of the soils that were subjected to hybridized salinity and sodicity (HSS) was obtained by overlay analysis using maps of soil salinity and sodicity in geographical information system (GIS) environment. We analyzed the severity and occurring sizes of soil salinity, sodicity, and HSS with regard to specified soil types and land cover. Results indicated that the models’ accuracy was improved by combining the reflectance bands and spectral indices that were mathematically transformed. Therefore, our results stipulated that the OLI imagery and PLSR method applied to mapping soil salinity and sodicity in the region. The mapping results revealed that the areas of soil salinity, sodicity, and HSS were 1.61 × 106 hm2, 1.46 × 106 hm2, and 1.36 × 106 hm2, respectively. Also, the occurring area of moderate and intensive sodicity was larger than that of salinity. This research may underpin efficiently mapping regional salinity/sodicity occurrences, understanding the linkages between spectral reflectance and ground measurements of soil salinity and sodicity, and provide tools for soil salinity monitoring and the sustainable utilization of land resources. PMID:29614727
The mitochondrial COB region in yeast codes for apocytochrome b and is mosaic.
Haid, A; Schweyen, R J; Bechmann, H; Kaudewitz, F; Solioz, M; Schatz, G
1979-03-01
Mitochondrial mutants of Saccharomyces cerevisiae defective in cytochrome b were analyzed genetically and biochemically in order to elucidate the role of the mitochondrial genetic system in the biosynthesis of this cytochrome. The mutants mapped between OLI1 and OLI2 on mitochondrial DNA in a region called COB. A fine structure map of the COB region was constructed by rho- deletion mapping and recombination analysis. The combined genetic and biochemical data indicate that the COB region is mosaic and contains at least five distinct clusters of mutants, A-E, with A being closest to OLI2 and E being closest to OLI1. Clusters A, C and E are probably coding regions for apocytochrome b, whereas clusters B and D seem to be involved in as yet unknown functions. These conclusions rest on the following evidence. 1. Most mutants in clusters A, C and E have specifically lost cytochrome b. Many of them accumulate smaller mitochondrial translation products; some of these were identified as fragments of apocytochrome b by proteolytic fingerprinting. The molecular weight of these fragments depends on the map position of the mutant, increasing in the direction OLI2 leads to OLI1. The mutant closest to OLI1 accumulates an apocytochrome b which is slightly larger than that of wild type. 2. A mutant in cluster C exhibits a spectral absorption band of cytochrome b that is shifted 1.5 nm to the red. 3. Mutants in clusters B and D are pleiotropic. A majority of them are conditional and lack the absorption bands of both cytochrome b and cytochrome aa3; these mutants also fail to accumulate apocytochrome b and subunit I of cytochrome c oxidase and instead form a large number of abnormal translation products whose nature is unknown. 4. Zygotic complementation tests reveal at least two complementation groups: The first group includes all mutants in cluster B and the second group includes mutants in clusters (A + C + D + E).
Lin, Qianxin; Mendelssohn, Irving A; Carney, Kenneth; Miles, Scott M; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of spilled oil, which receives considerable attention in marine conditions, could be an effective way to cleanup wetland oil spills. An experimental in-situ burn was conducted to study the effects of oil type, marsh type, and water depth on oil chemistry and oil removal efficiency from the water surface and sediment. In-situ burning decreased the totaltargeted alkanes and total targeted polycyclic aromatic hydrocarbons (PAHs) in the burn residues as compared to the pre-burn diesel and crude oils. Removal was even more effective for short-chain alkanes and low ring-number PAHs. Removal efficiencies for alkanes and PAHs were >98% in terms of mass balance although concentrations of some long-chain alkanes and high ring-number PAHs increased in the burn residue as compared to the pre-burn oils. Thus, in-situ burning potentially prevents floating oil from drifting into and contaminating adjacent habitats and penetrating the sediment. In addition, in-situ burning significantly removed diesel oil that had penetrated the sediment for all water depths. Furthermore, in-situ burning at a water depth 2 cm below the soil surface significantly removed crude oil that had penetrated the sediment. As a result, in-situ burning may reduce the long-term impacts of oil on benthic organisms.
Mishra, Nischal; Haque, Md. Obaidul; Leigh, Larry; Aaron, David; Helder, Dennis; Markham, Brian L
2014-01-01
This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29–30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration site (PICS) (+28.55°N, +23.39°E). Analyses from these approaches show that the reflectance calibration of OLI is generally within ±3% of the ETM+ radiance calibration for all the reflective bands from visible to short wave infrared regions when the ChKur solar spectrum is used to convert the ETM+ radiance to reflectance. Similar results are obtained comparing the OLI radiance calibration directly with the ETM+ radiance calibration and the results in these two different physical units (radiance and reflectance) agree to within ±2% for all the analogous bands. These results will also be useful to tie all the Landsat heritage sensors from Landsat 1 MultiSpectral Scanner (MSS) through Landsat-8 OLI to a consistent radiometric scale.
Targeting Hydrothermal Alterations Utilizing LANDSAT-8 Andaster Data in Shahr-E Iran
NASA Astrophysics Data System (ADS)
Safari, M.; Pour, A. B.; Maghsoudi, A.; Hashim, M.
2017-10-01
Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh-Dokhtar (Sahand-Bazman) magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.
Brown, Dana R. N.; Jorgenson, M. Torre; Kielland, Knut; Verbyla, David L.; Prakash, Anupma; Koch, Joshua C.
2016-01-01
Climate change coupled with an intensifying wildfire regime is becoming an important driver of permafrost loss and ecosystem change in the northern boreal forest. There is a growing need to understand the effects of fire on the spatial distribution of permafrost and its associated ecological consequences. We focus on the effects of fire a decade after disturbance in a rocky upland landscape in the interior Alaskan boreal forest. Our main objectives were to (1) map near-surface permafrost distribution and drainage classes and (2) analyze the controls over landscape-scale patterns of post-fire permafrost degradation. Relationships among remote sensing variables and field-based data on soil properties (temperature, moisture, organic layer thickness) and vegetation (plant community composition) were analyzed using correlation, regression, and ordination analyses. The remote sensing data we considered included spectral indices from optical datasets (Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)), the principal components of a time series of radar backscatter (Advanced Land Observing Satellite—Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR)), and topographic variables from a Light Detection and Ranging (LiDAR)-derived digital elevation model (DEM). We found strong empirical relationships between the normalized difference infrared index (NDII) and post-fire vegetation, soil moisture, and soil temperature, enabling us to indirectly map permafrost status and drainage class using regression-based models. The thickness of the insulating surface organic layer after fire, a measure of burn severity, was an important control over the extent of permafrost degradation. According to our classifications, 90% of the area considered to have experienced high severity burn (using the difference normalized burn ratio (dNBR)) lacked permafrost after fire. Permafrost thaw, in turn, likely increased drainage and resulted in drier surface soils. Burn severity also influenced plant community composition, which was tightly linked to soil temperature and moisture. Overall, interactions between burn severity, topography, and vegetation appear to control the distribution of near-surface permafrost and associated drainage conditions after disturbance.
Exploring Capabilities of SENTINEL-2 for Vegetation Mapping Using Random Forest
NASA Astrophysics Data System (ADS)
Saini, R.; Ghosh, S. K.
2018-04-01
Accurate vegetation mapping is essential for monitoring crop and sustainable agricultural practice. This study aims to explore the capabilities of Sentinel-2 data over Landsat-8 Operational Land Imager (OLI) data for vegetation mapping. Two combination of Sentinel-2 dataset have been considered, first combination is 4-band dataset at 10m resolution which consists of NIR, R, G and B bands, while second combination is generated by stacking 4 bands having 10 m resolution along with other six sharpened bands using Gram-Schmidt algorithm. For Landsat-8 OLI dataset, six multispectral bands have been pan-sharpened to have a spatial resolution of 15 m using Gram-Schmidt algorithm. Random Forest (RF) and Maximum Likelihood classifier (MLC) have been selected for classification of images. It is found that, overall accuracy achieved by RF for 4-band, 10-band dataset of Sentinel-2 and Landsat-8 OLI are 88.38 %, 90.05 % and 86.68 % respectively. While, MLC give an overall accuracy of 85.12 %, 87.14 % and 83.56 % for 4-band, 10-band Sentinel and Landsat-8 OLI respectively. Results shown that 10-band Sentinel-2 dataset gives highest accuracy and shows a rise of 3.37 % for RF and 3.58 % for MLC compared to Landsat-8 OLI. However, all the classes show significant improvement in accuracy but a major rise in accuracy is observed for Sugarcane, Wheat and Fodder for Sentinel 10-band imagery. This study substantiates the fact that Sentinel-2 data can be utilized for mapping of vegetation with a good degree of accuracy when compared to Landsat-8 OLI specifically when objective is to map a sub class of vegetation.
Lee, Darren S; Elsegood, Mark R J; Redshaw, Carl; Zhan, Shuzhong
2009-08-01
The crystal structures of acetonitrile solvates of two related lithium calixarene complexes have been determined by low-temperature single-crystal X-ray diffraction using synchrotron radiation. Bis(mu-5,11,17,23-tetra-tert-butyl-26,28-dihydroxy-25-methoxy-27-oxidocalix[4]arene)dilithium(I) acetonitrile tetrasolvate, [Li2(C45H57O4)2].4C2H3N or [p-tert-butylcalix[4]arene(OMe)(OH)2(OLi)](2).4MeCN, (I), crystallizes with the complex across a centre of symmetry and with four molecules of unbound acetonitrile of crystallization per complex. Tetraacetonitrilebis(mu-5,11,17,23-tetra-tert-butyl-26,28-dihydroxy-25,27-dioxidocalix[4]arene)tetralithium(I) acetonitrile octasolvate, [Li4(C44H54O4)2(C2H3N)4].8C2H3N or {p-tert-butylcalix[4]arene(OH)2(OLi)[OLi(NCMe)2]}(2).8MeCN, (II), also crystallizes with the complex lying across a centre of symmetry and contains eight molecules of unbound acetonitrile per complex plus four more directly bound to two of the lithium ions, two on each ion. The cores of both complexes are partially supported by O-H...O hydrogen bonds. The methoxy methyl groups in (I) prevent the binding of any more than two Li+ ions, while the corresponding two O-atom sites in (II) bind an extra Li(+) ion each, making four in total. The calixarene cone adopts an undistorted cone conformation in (I), but an elliptical one in (II).
Landsat 8 OLI radiometric calibration performance after three years (Conference Presentation)
NASA Astrophysics Data System (ADS)
Morfitt, Ron A.
2016-09-01
The Landsat 8 Operational Land Imager (OLI) impressed science users soon after launch in early 2013 with both its radiometric and geometric performance. After three years on-orbit, OLI continues to exceed expectations with its high signal-to-noise ratio, low striping, and stable response. The few artifacts that do exist, such as ghosting, continue to be minimal and show no signs of increasing. The on-board calibration sources showed a small decrease in response during the first six months of operations in the coastal aerosol band, but that decrease has stabilized to less than a half percent per year since that time. The other eight bands exhibit very little change over the past three years and have remained well within a half percent of their initial response to all on-board calibration sources. Analysis of lunar acquisitions also agree with the on-board calibrators. Overall, the OLI on-board the Landsat 8 spacecraft continues to provide exceptional measurements of the Earth's surface to continue the long tradition of Landsat.
Kuhnen, Shirley; Stibuski, Rudinei Butka; Honorato, Luciana Aparecida; Pinheiro Machado Filho, Luiz Carlos
2015-01-01
Simple Summary This study provides the characteristics of the conventional high input (C-HI), conventional low input (C-LI), and organic low input (O-LI) pasture-based production systems used in Southern Brazil, and its consequences on production and milk quality. C-HI farms had larger farms and herds, annual pasture with higher inputs and milk yield, whereas O-LI had smaller farms and herds, perennial pastures with lowest input and milk yields; C-LI was in between. O-LI farms may contribute to eco-system services, but low milk yield is a major concern. Hygienic and microbiological milk quality was poor for all farms and needs to be improved. Abstract Pasture-based dairy production is used widely on family dairy farms in Southern Brazil. This study investigates conventional high input (C-HI), conventional low input (C-LI), and organic low input (O-LI) pasture-based systems and their effects on quantity and quality of the milk produced. We conducted technical site visits and interviews monthly over one year on 24 family farms (n = 8 per type). C-HI farms had the greatest total area (28.9 ha), greatest percentage of area with annual pasture (38.7%), largest number of lactating animals (26.2) and greatest milk yield per cow (22.8 kg·day−1). O-LI farms had the largest perennial pasture area (52.3%), with the greatest botanical richness during all seasons. Area of perennial pasture was positively correlated with number of species consumed by the animals (R2 = 0.74). Milk from O-LI farms had higher levels of fat and total solids only during the winter. Hygienic and microbiological quality of the milk was poor for all farms and need to be improved. C-HI farms had high milk yield related to high input, C-LI had intermediate characteristics and O-LI utilized a year round perennial pasture as a strategy to diminish the use of supplements in animal diets, which is an important aspect in ensuring production sustainability. PMID:26479369
NASA Astrophysics Data System (ADS)
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping
2015-07-01
Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping
2015-07-01
Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms ( R 2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.
NASA Astrophysics Data System (ADS)
Matongera, Trylee Nyasha; Mutanga, Onisimo; Dube, Timothy; Sibanda, Mbulisi
2017-05-01
Bracken fern is an invasive plant that presents serious environmental, ecological and economic problems around the world. An understanding of the spatial distribution of bracken fern weeds is therefore essential for providing appropriate management strategies at both local and regional scales. The aim of this study was to assess the utility of the freely available medium resolution Landsat 8 OLI sensor in the detection and mapping of bracken fern at the Cathedral Peak, South Africa. To achieve this objective, the results obtained from Landsat 8 OLI were compared with those derived using the costly, high spatial resolution WorldView-2 imagery. Since previous studies have already successfully mapped bracken fern using high spatial resolution WorldView-2 image, the comparison was done to investigate the magnitude of difference in accuracy between the two sensors in relation to their acquisition costs. To evaluate the performance of Landsat 8 OLI in discriminating bracken fern compared to that of Worldview-2, we tested the utility of (i) spectral bands; (ii) derived vegetation indices as well as (iii) the combination of spectral bands and vegetation indices based on discriminant analysis classification algorithm. After resampling the training and testing data and reclassifying several times (n = 100) based on the combined data sets, the overall accuracies for both Landsat 8 and WorldView-2 were tested for significant differences based on Mann-Whitney U test. The results showed that the integration of the spectral bands and derived vegetation indices yielded the best overall classification accuracy (80.08% and 87.80% for Landsat 8 OLI and WorldView-2 respectively). Additionally, the use of derived vegetation indices as a standalone data set produced the weakest overall accuracy results of 62.14% and 82.11% for both the Landsat 8 OLI and WorldView-2 images. There were significant differences {U (100) = 569.5, z = -10.8242, p < 0.01} between the classification accuracies derived based on Landsat OLI 8 and those derived using WorldView-2 sensor. Although there were significant differences between Landsat and WorldView-2 accuracies, the magnitude of variation (9%) between the two sensors was within an acceptable range. Therefore, the findings of this study demonstrated that the recently launched Landsat 8 OLI multispectral sensor provides valuable information that could aid in the long term continuous monitoring and formulation of effective bracken fern management with acceptable accuracies that are comparable to those obtained from the high resolution WorldView-2 commercial sensor.
Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E
2014-12-15
In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.
Nursing research on a first aid model of double personnel for major burn patients.
Wu, Weiwei; Shi, Kai; Jin, Zhenghua; Liu, Shuang; Cai, Duo; Zhao, Jingchun; Chi, Cheng; Yu, Jiaao
2015-03-01
This study explored the effect of a first aid model employing two nurses on the efficient rescue operation time and the efficient resuscitation time for major burn patients. A two-nurse model of first aid was designed for major burn patients. The model includes a division of labor between the first aid nurses and the re-organization of emergency carts. The clinical effectiveness of the process was examined in a retrospective chart review of 156 cases of major burn patients, experiencing shock and low blood volume, who were admitted to the intensive care unit of the department of burn surgery between November 2009 and June 2013. Of the 156 major burn cases, 87 patients who received first aid using the double personnel model were assigned to the test group and the 69 patients who received first aid using the standard first aid model were assigned to the control group. The efficient rescue operation time and the efficient resuscitation time for the patients were compared between the two groups. Student's t tests were used to the compare the mean difference between the groups. Statistically significant differences between the two groups were found on both measures (P's < 0.05), with the test group having lower times than the control group. The efficient rescue operation time was 14.90 ± 3.31 min in the test group and 30.42 ± 5.65 min in the control group. The efficient resuscitation time was 7.4 ± 3.2 h in the test group and 9.5 ± 2.7 h in the control group. A two-nurse first aid model based on scientifically validated procedures and a reasonable division of labor can shorten the efficient rescue operation time and the efficient resuscitation time for major burn patients. Given these findings, the model appears to be worthy of clinical application.
Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager
In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allo...
Differential Fee: From Conceptualisation to Implementation.
ERIC Educational Resources Information Center
Ng, Todd C. Y.; Wong, Andrew L. S.
A differential fee policy was adopted at the Open Learning Institute (OLI) of Hong Kong after a process of conceptualization, planning, proposal, approval and implementation. Under the differential fee policy different tuition rates were charged for different courses. The differential fee policy was conceptualized at OLI based on economics,…
Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Markham, Brian; Irons, James; Dabney, Philip
2011-01-01
The Landsat Data Continuity Mission (LDCM) is currently under development and is on schedule to launch the 8th satellite in the Landsat series in December of 2012. LDCM is a joint project between the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS). NASA is responsible for developing and launching the flight hardware and on-orbit commissioning and USGS is responsible for developing the ground system and operating the system onorbit after commissioning. Key components of the flight hardware are the Operational Land Imager (OLI), nearing completion by Ball Aerospace & Technologies Corp in Boulder, CO, the Thermal Infrared Sensor (TIRS), being built by NASA's Goddard Space Flight Center and the spacecraft, undergoing integration at Orbital Sciences Corp in Gilbert, Arizona. The launch vehicle will be an Atlas-5 with launch services provided by NASA's Kennedy Space Center. Key ground systems elements are the Mission Operations Element, being developed by the Hammers Corporation, and the Collection Activity Planning Element, Ground Network Element, and Data Processing and Archive System, being developed internally by the USGS Earth Resources Observations and Science (EROS) Center. The primary measurement goal of LDCM is to continue the global coverage of moderate spatial resolution imagery providing continuity with the existing Landsat record. The science goal for this imagery is to monitor land use and land cover, particularly as it relates to global climate change. Together the OLI and TIRS instruments on LDCM replace the ETM+ instrument on Landsat-7 with significant enhancements. The OLI is a pushbroom design instrument where the scanning mechanism of the ETM+ is effectively replaced by a long line of detectors. The OLI has 9 spectral bands with similar spatial resolution to ETM+: 7 of them similar to the reflective spectral bands on ETM+ and two new bands. The two new bands cover (1) the shorter wavelength blue part of the spectrum to help with coastal studies and aerosol analyses/atmospheric correction and (2) an atmospheric water absorption band, where the Earth surface is generally not visible, but Cirrus clouds are, to aid in cloud detection and screening. The radiometry of OLI benefits from improved SNR, dynamic range and quantization. OLI is undergoing system testing with a delivery scheduled for Spring 2011. The TIRS is also a pushbroom design and used QWIPS detectors that require cooling to 43K using a cryocooler. It.has two spectral bands, effectively splitting the ETM+ band 6 in half, that can be used as a split window to aid in atmospheric correction. It has nominally 100 m spatial resolution as opposed to the 60 m of Landsat-7 ETM+: TIRS has commenced integration and test, with a delivery to the spacecraft vendor scheduled for Winter 2011-2012. The Orbital spacecraft currently being integrated for LDCM will have improved capabilities for pointing over previous missions. These capabilities will allow the OLI and TIRS instruments to point off-nadir the equivalent of one WRS-2 path to increase the chances of coverage for high priority targets, particularly in the event of natural disasters. Also, the pointing capability will allow the calibration of the OLI using the sun (roughly weekly), the moon (monthly), stars (during commissioning) and the Earth (at 90 deg from normal orientation, a.k.a., side slither) quarterly. The solar calibration will be used for OLI absolute and relative calibration, the moon for trending the stability of the OLI response, the stars will be used for Line of Sight determination and the side slither will be an alternate OLI and relative gain determination methodology. The spacecraft is scheduled to begin integration with the OLI instrument in Summer 2011. The LDCM data processing and archive system (DPAS), located at USGS EROS, generates the products for distribution to users. Like Landsat-7 this includes an image assessment system for characrizing instrument performance and updating calibration parameters. Products will be generated that include the spectral bands from both instruments, terrain corrected and registered to the geoid. Also, like Landsat-7, data products will be distributed at no charge to the user. The current status and plans of the space and ground segments of the LDCM project will be presented along with performance predictions as available. More detailed information on the two instruments is intended to be presented in separate papers.
Fold or hold: experimental evolution in vitro
Collins, S; Rambaut, A; Bridgett, S J
2013-01-01
We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change. PMID:24003997
Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.
1990-01-01
Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.
Nogami, M; Takatsu, A; Endo, N; Ishiyama, I
1999-01-01
The immediately early gene product c-fos is known to be induced in neurons under noxious stimuli. Therefore, the immunohistochemistry of c-fos expression in human brains might offer information on the localization of stimulated neurons. In this study, the immunohistochemical localization of c-fos was studied in the neurons of the hypoglossal nucleus (XII), the dorsal motor nucleus of the vagal nerve (X), the nucleus solitarius (Sol), the accessory cuneate nucleus (Cun), the spinal trigeminal nucleus (V) and the inferior olive (Oli) of the human medulla oblongata from forensic autopsy cases. The neurons in the X nucleus showed the highest percentage of positive reactions for c-fos, followed in descending order by the Cun, V, Oli, XII and Sol. The c-fos immunoreactivity in the Cun and X was statistically significantly higher than in the Sol, XII and Oli. Although neurons in the Sol are known to be involved in respiration, there was no statistically significant difference in the c-fos immunoreactivity in the neurons in the Sol between asphyxia and non-asphyxia cases. On the other hand, the percentage of neurons positive for the c-fos immunoreactivity was statistically significantly higher in the Oli of asphyxia cases than of non-asphyxia cases. Our results indicate the difference in the immunoreactivity of c-fos among the nuclei of the human medulla oblongata and that the c-fos immunoreactivity in the Oli might assist the diagnosis of asphyxia.
Landsat Data Continuity Mission Calibration and Validation
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Dabney, Philip W.; Storey, James C.; Morfitt, Ron; Knight, Ed; Kvaran, Geir; Lee, Kenton
2008-01-01
The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.
Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.
Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang
2016-07-12
Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size.
NASA Astrophysics Data System (ADS)
Micijevic, E.; Haque, M. O.
2016-12-01
With its forty-four year continuous data record, the Landsat image archive provides an invaluable source of information for essential climate variables, global land change studies and a variety of other applications. The latest in the series, Landsat 8, carries the Operational Land Imager (OLI), the sensor with an improved design compared to its predecessors, but with similar radiometric, spatial and spectral characteristics, to provide image data continuity. Sentinel 2A (S2A), launched in June 2015, carries the Multispectral Imager (MSI) that has a number of bands with spectral and radiometric characteristics similar to L8 OLI. As such, it offers an opportunity to augment the Landsat data record through increased frequency of acquisitions, when combined with OLI. In this study, we compared Top-of-Atmosphere (TOA) reflectance of matching spectral bands in MSI and OLI products. Comparison between S2A MSI and L8 OLI sensors was performed using image data acquired near simultaneously primarily over Pseudo Invariant Calibration Site (PICS) Libya 4, but also over other calibration test sites. Spectral differences between the two sensors were accounted for using their spectral filter profiles and a spectral signature of the site derived from EO1 Hyperion hyperspectral imagery. Temporal stability was also assessed through temporal trending of Top-of-Atmosphere (TOA) reflectance measured by the two sensors over PICS. The performed analysis suggests good agreement between the two sensors, within 5% for the costal aerosol band and better than 3% for other matching bands. It is important to note that whenever data from different sensors are used together in a study, the special attention need to be paid to the spectral band differences between the sensors because the necessary spectral difference adjustment is target dependent and may vary a lot from target to target.
Zhang, Hanjun; Kulkarni, Sunil; Wunder, Stephanie L
2007-04-12
Solid polymer electrolyte blends were prepared with POSS-PEO(n=4)8 (3K), poly(ethylene oxide) (PEO(600K)), and LiClO4 at different salt concentrations (O/Li = 8/1, 12/1, and 16/1). POSS-PEO(n=4)8/LiClO4 is amorphous at all O/Li investigated, whereas PEO(600K) is amorphous only for O/Li = 8/1 and semicrystalline for O/Li = 12/1 and 16/1. The tendency of PEO(600K) to crystallize limited the amount of POSS-PEO(n=4)(8) that could be incorporated into the blends, so that the greatest incorporation of POSS-PEO(n=4)(8) occurred for O/Li = 8/1. Blends of POSS-PEO(n=4)(8)/PEO(600K)/LiClO4 (O/Li = 8/1 and 12/1) microphase separated into two amorphous phases, a low T(g) phase of composition 85% POSS-PEO(n=4)(8)/15% PEO(600K) and a high T(g) phase of composition 29% POSS-PEO(n=4)(8)/71% PEO(600K). For O/Li = 16/1, the blends contained crystalline (pure PEO(600K)), and two amorphous phases, one rich in POSS-PEO(n=4)(8) and one rich in PEO(600K). Microphase, rather than macrophase separation was believed to occur as a result of Li(+)/ether oxygen cross-link sites. The conductivity of the blends depended on their composition. As expected, crystallinity decreased the conductivity of the blends. For the amorphous blends, when the low T(g) (80/20) phase was the continuous phase, the conductivity was intermediate between that of pure PEO(600K) and POSS-PEO(n=4)(8). When the high T(g) (70/30, 50/50, 30/70, and 20/80) phase was the continuous phase, the conductivity of the blend and PEO(600K) were identical, and lower than that for the POSS-PEO(n=4)(8) over the whole temperature range (10-90 degrees C). This suggests that the motions of the POSS-PEO(n=4)(8) were slowed down by the dynamics of the long chain PEO(600K) and that the minor, low Tg phase was not interconnected and thus did not contribute to enhanced conductivity. At temperatures above T(m) of PEO(600K), addition of the POSS-PEO(n=4)(8) did not result in conductivity improvement. The highest RT conductivity, 8 x 10(-6) S/cm, was obtained for a 60% POSS-PEO(n=4)(8)/40% PEO(600K)/LiClO4 (O/Li = 12/1) blend.
van Gelderen, Laurens; Fritt-Rasmussen, Janne; Jomaas, Grunde
2017-02-15
The average herded slick thickness, surface distribution and burning efficiency of a light crude oil were studied in ice-infested water to determine the effectiveness of a chemical herder in facilitating the in-situ burning of oil. Experiments were performed in a small scale (1.0m 2 ) and an intermediate scale (19m 2 ) setup with open water and 3/10, 5/10 and 7/10 brash ice coverages. The herded slick thicknesses (3-8mm) were ignitable in each experiment. The presence of ice caused fracturing of the oil during the herding process, which reduced the size of the herded slicks and, as a consequence, their ignitability, which in turn decreased the burning efficiency. Burning efficiencies relative to the ignited fraction of the oil were in the expected range (42-86%). This shows that the herder will be an effective tool for in-situ burning of oil when the ignitability issues due to fracturing of the oil are resolved. Copyright © 2016 Elsevier Ltd. All rights reserved.
The OLI Radiometric Scale Realization Round Robin Measurement Campaign
NASA Technical Reports Server (NTRS)
Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart
2011-01-01
A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.
Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less
Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning
Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han
2017-01-01
We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...
NASA Astrophysics Data System (ADS)
Hoang, Nguyen Tien; Koike, Katsuaki
2018-03-01
Hyperspectral remote sensing generally provides more detailed spectral information and greater accuracy than multispectral remote sensing for identification of surface materials. However, there have been no hyperspectral imagers that cover the entire Earth surface. This lack points to a need for producing pseudo-hyperspectral imagery by hyperspectral transformation from multispectral images. We have recently developed such a method, a Pseudo-Hyperspectral Image Transformation Algorithm (PHITA), which transforms Landsat 7 ETM+ images into pseudo-EO-1 Hyperion images using multiple linear regression models of ETM+ and Hyperion band reflectance data. This study extends the PHITA to transform TM, OLI, and EO-1 ALI sensor images into pseudo-Hyperion images. By choosing a part of the Fish Lake Valley geothermal prospect area in the western United States for study, the pseudo-Hyperion images produced from the TM, ETM+, OLI, and ALI images by PHITA were confirmed to be applicable to mineral mapping. Using a reference map as the truth, three main minerals (muscovite and chlorite mixture, opal, and calcite) were identified with high overall accuracies from the pseudo-images (> 95% and > 42% for excluding and including unclassified pixels, respectively). The highest accuracy was obtained from the ALI image, followed by ETM+, TM, and OLI images in descending order. The TM, OLI, and ALI images can be alternatives to ETM+ imagery for the hyperspectral transformation that aids the production of pseudo-Hyperion images for areas without high-quality ETM+ images because of scan line corrector failure, and for long-term global monitoring of land surfaces.
NASA Astrophysics Data System (ADS)
Alcantara, E.; Bernardo, N.
2016-12-01
Colored dissolved organic matter (CDOM) is the most abundant dissolved organic matter (DOM) in many natural waters and can affect the water quality, such as the light penetration and the thermal properties of water system. So the objective of this letter was to estimate the colored dissolved organic matter (CDOM) absorption coefficient at 440 nm, aCDOM(440), in Barra Bonita Reservoir (São Paulo State, Brazil) using OLI/Landsat-8 images. For this two field campaigns were conducted in May and October 2014. During the field campaigns remote sensing reflectance (Rrs) were measured using a TriOS hyperspectral radiometer. Water samples were collected and analyzed to obtain the aCDOM(440). To predict the aCDOM(440) from Rrs at two key wavelengths (650 and 480 nm) were regressed against laboratory derived aCDOM(440) values. The validation using in situ data of aCDOM(440) algorithm indicated a goodness of fit, R2 = 0.70, with a root-mean-square error (RMSE) of 10.65%. The developed algorithm was applied to the OLI/Lansat-8 images. Distribution maps were created with OLI/Landsat-8 images based on the adjusted algorithm.
Radiometric calibration and stability of the Landsat-8 Operational Land Imager (OLI)
NASA Astrophysics Data System (ADS)
Markham, Brian L.; Barsi, Julia A.; Kaita, Edward; Ong, Lawrence; Morfitt, Ron A.; Haque, Md. O.
2015-09-01
Landsat-8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 1/2 years. The OLI radiometric calibration, which is monitored using on-board lamps, on-board solar diffusers, the moon and vicarious calibration techniques has been stable to within 1% over this period of time. The Coastal Aerosol band, band 1, shows the largest change at about 1% over the period; all other bands have shown no significant trend. OLI bands 1- 4 show small discontinuities in response (+0.1% to 0.2%) beginning about 7 months after launch and continuing for about 1 month associated with a power cycling of the instrument, though the origin of the recovery is unclear. To date these small changes have not been compensated for, but this will change with a reprocessing campaign that is currently scheduled for Fall 2015. The calibration parameter files (each typically covering a 3 month period) will be updated for these observed gain changes. A fitted response to an adjusted average of the lamps, solar and lunar results will represent the trend, sampled at the rate of one value per CPF.
Radiometric Calibration and Stability of the Landsat-8 Operational Land Imager (OLI)
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Barsi, Julia A.; Kaita, Edward; Ong, Lawrence; Morfitt, Ron; Haque, Md Obaidul
2015-01-01
Landsat-8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 1/2 years. The OLI radiometric calibration, which is monitored using on-board lamps, on-board solar diffusers, the moon and vicarious calibration techniques has been stable to within 1% over this period of time. The Coastal Aerosol band, band 1, shows the largest change at about 1% over the period; all other bands have shown no significant trend. OLI bands 1- 4 show small discontinuities in response (+0.1% to 0.2%) beginning about 7 months after launch and continuing for about 1 month associated with a power cycling of the instrument, though the origin of the recovery is unclear. To date these small changes have not been compensated for, but this will change with a reprocessing campaign that is currently scheduled for Fall 2015. The calibration parameter files (each typically covering a 3 month period) will be updated for these observed gain changes. A fitted response to an adjusted average of the lamps, solar and lunar results will represent the trend, sampled at the rate of one value per CPF.
ERIC Educational Resources Information Center
Makaiau, Amber Strong
2015-01-01
In 1918, the author's great great aunt, Sophie Judd Cooke founded a small progressive school in Honolulu. Her brother Henry named it Hanahau'oli School, which means joyful work school. In this essay the author's mother, Linda Summers Strong and the author reflect on the impact of Hanahau'oli School's Deweyan approach to education on the…
a Preliminary Investigation on Comparison and Transformation of SENTINEL-2 MSI and Landsat 8 Oli
NASA Astrophysics Data System (ADS)
Chen, F.; Lou, S.; Fan, Q.; Li, J.; Wang, C.; Claverie, M.
2018-05-01
A PRELIMINARY INVESTIGATION ON COMPARISON AND TRANSFORMATION OF SENTINEL-2 MSI AND LANDSAT 8 OLI Timely and accurate earth observation with short revisit interval is usually necessary, especially for emergency response. Currently, several new generation sensors provided with similar channel characteristics have been operated onboard different satellite platforms, including Sentinel-2 and Landsat 8. Joint use of the observations by different sensors offers an opportunity to meet the demands for emergency requirements. For example, through the combination of Landsat and Sentinel-2 data, the land can be observed every 2-3 days at medium spatial resolution. However, differences are expected in radiometric values (e.g., channel reflectance) of the corresponding channels between two sensors. Spectral response function (SRF) is taken as an important aspect of sensor settings. Accordingly, between-sensor differences due to SRFs variation need to be quantified and compensated. The comparison of SRFs shows difference (more or less) in channel settings between Sentinel-2 Multi-Spectral Instrument (MSI) and Landsat 8 Operational Land Imager (OLI). Effect of the difference in SRF on corresponding values between MSI and OLI was investigated, mainly in terms of channel reflectance and several derived spectral indices. Spectra samples from ASTER Spectral Library Version 2.0 and Hyperion data archives were used in obtaining channel reflectance simulation of MSI and OLI. Preliminary results show that MSI and OLI are well comparable in several channels with small relative discrepancy (< 5 %), including the Costal Aerosol channel, a NIR (855-875 nm) channel, the SWIR channels, and the Cirrus channel. Meanwhile, for channels covering Blue, Green, Red, and NIR (785-900 nm), the between-sensor differences are significantly presented. Compared with the difference in reflectance of each individual channel, the difference in derived spectral index is more significant. In addition, effectiveness of linear transformation model is not ensured when the target belongs to another spectra collection. If an improper transformation model is selected, the between-sensor discrepancy will even largely increase. In conclusion, improvement in between-sensor consistency is possibly a challenge, through linear transformation based on model(s) generated from other spectra collections.
NASA Astrophysics Data System (ADS)
Micijevic, E.; Haque, M. O.
2015-12-01
In satellite remote sensing, Landsat sensors are recognized for providing well calibrated satellite images for over four decades. This image data set provides an important contribution to detection and temporal analysis of land changes. Landsat 8 (L8), the latest satellite of the Landsat series, was designed to continue its legacy as well as to embrace advanced technology and satisfy the demand of the broader scientific community. Sentinel 2A (S2A), a European satellite launched in June 2015, is designed to keep data continuity of Landsat and SPOT like satellites. The S2A MSI sensor is equipped with spectral bands similar to L8 OLI and includes some additional ones. Compared to L8 OLI, green and near infrared MSI bands have narrower bandwidths, whereas coastal-aerosol (CA) and cirrus have larger bandwidths. The blue and red MSI bands cover higher wavelengths than the matching OLI bands. Although the spectral band differences are not large, their combination with the spectral signature of a studied target can largely affect the Top Of Atmosphere (TOA) reflectance seen by the sensors. This study investigates the effect of spectral band differences between S2A MSI and L8 OLI sensors. The differences in spectral bands between sensors can be assessed by calculating Spectral Band Adjustment Factors (SBAF). For radiometric calibration purposes, the SBAFs for the calibration test site are used to bring the two sensors to the same radiometric scale. However, the SBAFs are target dependent and different sensors calibrated to the same radiometric scale will (correctly!) measure different reflectance for the same target. Thus, when multiple sensors are used to study a given target, the sensor responses need to be adjusted using SBAFs specific to that target. Comparison of the SBAFs for S2A MSI and L8 OLI based on various vegetation spectral profiles revealed variations in radiometric responses as high as 15%. Depending on target under study, these differences could be even higher.
A multicharge ion source (Supernanogan) for the OLIS facility at ISAC/TRIUMF.
Jayamanna, K; Wight, G; Gallop, D; Dube, R; Jovicic, V; Laforge, C; Marchetto, M; Leross, M; Louie, D; Laplante, R; Laxdal, R; McDonald, M; Wiebe, G J; Wang, V; Yan, F
2010-02-01
The Off-Line Ion Source (OLIS) [K. Jayamanna, D. Yuan, T. Kuo, M. MacDonald, P. Schmor, and G. Dutto, Rev. Sci. Instrum. 67, 1061 (1996); K. Jayamanna, Rev. Sci. Instrum. 79, 02711 (2008)] facility consists of a high voltage terminal containing a microwave cusp ion source, either a surface ion source or a hybrid surface-arc discharge ion source [K. Jayamanna and C. Vockenhuber, Rev. Sci. Instrum. 79, 02C712 (2008)], and an electrostatic switch that allows the selection of any one of the sources without mechanical intervention. These sources provide a variety of +1 beams up to mass 30 for Isotope Separator and ACcelerator (ISAC) [R. E. Laxdal, Nucl. Instrum. Methods Phys. Res. B 204, 400 (2003)] experiments, commissioning the accelerators, setting up the radioactive experiments, and for tuning the beam lines. The radio frequency quadrupole (RFQ) [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] injector accelerator is a constant velocity machine designed to accept only 2 keV/u and the source extraction energy is limited to 60 kV. Further stripping is then needed downstream of the RFQ to inject the beam into the drift tube linac [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] accelerator that requires A/q up to 6. Base on this constraints a multicharge ion source capable to deliver beams above mass 30 with A/q up to 6 was needed in order to reach full capability of the ISAC facility. A Supernanogan [C. Bieth et al., Nucleonika 48, S93 (2003)] multicharge ion source was then purchased from Pantechnik and was installed in the OLIS terminal. Commissioning and performance of the Supernanogan with some results such as emittance dependence of the charge states as well as charge state efficiencies are presented.
NASA Astrophysics Data System (ADS)
Wang, Hongyan; Li, Qiangzi; Du, Xin; Zhao, Longcai
2017-12-01
In the karst regions of southwest China, rocky desertification is one of the most serious problems in land degradation. The bedrock exposure rate is an important index to assess the degree of rocky desertification in karst regions. Because of the inherent merits of macro-scale, frequency, efficiency, and synthesis, remote sensing is a promising method to monitor and assess karst rocky desertification on a large scale. However, actual measurement of the bedrock exposure rate is difficult and existing remote-sensing methods cannot directly be exploited to extract the bedrock exposure rate owing to the high complexity and heterogeneity of karst environments. Therefore, using unmanned aerial vehicle (UAV) and Landsat-8 Operational Land Imager (OLI) data for Xingren County, Guizhou Province, quantitative extraction of the bedrock exposure rate based on multi-scale remote-sensing data was developed. Firstly, we used an object-oriented method to carry out accurate classification of UAVimages. From the results of rock extraction, the bedrock exposure rate was calculated at the 30 m grid scale. Parts of the calculated samples were used as training data; other data were used for model validation. Secondly, in each grid the band reflectivity of Landsat-8 OLI data was extracted and a variety of rock and vegetation indexes (e.g., NDVI and SAVI) were calculated. Finally, a network model was established to extract the bedrock exposure rate. The correlation coefficient of the network model was 0.855, that of the validation model was 0.677 and the root mean square error of the validation model was 0.073. This method is valuable for wide-scale estimation of bedrock exposure rate in karst environments. Using the quantitative inversion model, a distribution map of the bedrock exposure rate in Xingren County was obtained.
Improvements to the Ontology-based Metadata Portal for Unified Semantics (OlyMPUS)
NASA Astrophysics Data System (ADS)
Linsinbigler, M. A.; Gleason, J. L.; Huffer, E.
2016-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support Earth Science data consumers and data providers, enabling the latter to register data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS complements the ODISEES' data discovery system with an intelligent tool to enable data producers to auto-generate semantically enhanced metadata and upload it to the metadata repository that drives ODISEES. Like ODISEES, the OlyMPUS metadata provisioning tool leverages robust semantics, a NoSQL database and query engine, an automated reasoning engine that performs first- and second-order deductive inferencing, and uses a controlled vocabulary to support data interoperability and automated analytics. The ODISEES data discovery portal leverages this metadata to provide a seamless data discovery and access experience for data consumers who are interested in comparing and contrasting the multiple Earth science data products available across NASA data centers. Olympus will support scientists' services and tools for performing complex analyses and identifying correlations and non-obvious relationships across all types of Earth System phenomena using the full spectrum of NASA Earth Science data available. By providing an intelligent discovery portal that supplies users - both human users and machines - with detailed information about data products, their contents and their structure, ODISEES will reduce the level of effort required to identify and prepare large volumes of data for analysis. This poster will explain how OlyMPUS leverages deductive reasoning and other technologies to create an integrated environment for generating and exploiting semantically rich metadata.
Enhancement of laser power-efficiency by control of spatial hole burning interactions
NASA Astrophysics Data System (ADS)
Ge, Li; Malik, Omer; Türeci, Hakan E.
2014-11-01
The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.
Simulating Oil Spill Burns to Improve Clean Up and Protect Air Quality
EPA experts are joining the U.S. Department of Interior’s Bureau of Safety and Environmental Enforcement (BSEE) to investigate ways to improve oil burn procedures that can lead to more efficient burning and, thus, less emissions and residue.
Installation Summaries From the FY 2001 Survey of Threatened and Endangered Species on Army Lands
2002-08-01
lepard frog Amphibian PT Rhinichthys cobitis Loach minnow Fish T Sarracenia oreophilia Green pitcher-plant Plant E Sarracenia rubra alabamensis...Alabama canebrake pitcher-plant Plant E Sarracenia rubra spp. Jonesii Moutain sweet pitcher-plant Plant E Schiedea adamantis Ma`oli`oli Plant E...Isotria medeoloides Small whorled pogonia Onsite T Plant No Sarracenia oreophilia Green pitcher-plant Onsite E Plant No A-11 MACOM
NASA Astrophysics Data System (ADS)
Li, J.; Wu, Z.; Wei, X.; Zhang, Y.; Feng, F.; Guo, F.
2018-04-01
Cross-calibration has the advantages of high precision, low resource requirements and simple implementation. It has been widely used in recent years. The four wide-field-of-view (WFV) cameras on-board Gaofen-1 satellite provide high spatial resolution and wide combined coverage (4 × 200 km) without onboard calibration. In this paper, the four-band radiometric cross-calibration coefficients of WFV1 camera were obtained based on radiation and geometry matching taking Landsat 8 OLI (Operational Land Imager) sensor as reference. Scale Invariant Feature Transform (SIFT) feature detection method and distance and included angle weighting method were introduced to correct misregistration of WFV-OLI image pair. The radiative transfer model was used to eliminate difference between OLI sensor and WFV1 camera through the spectral match factor (SMF). The near-infrared band of WFV1 camera encompasses water vapor absorption bands, thus a Look Up Table (LUT) for SMF varies from water vapor amount is established to estimate the water vapor effects. The surface synchronization experiment was designed to verify the reliability of the cross-calibration coefficients, which seem to perform better than the official coefficients claimed by the China Centre for Resources Satellite Data and Application (CCRSDA).
NASA Astrophysics Data System (ADS)
El Harti, Abderrazak; Lhissou, Rachid; Chokmani, Karem; Ouzemou, Jamal-eddine; Hassouna, Mohamed; Bachaoui, El Mostafa; El Ghmari, Abderrahmene
2016-08-01
Soil salinization is major environmental issue in irrigated agricultural production. Conventional methods for salinization monitoring are time and money consuming and limited by the high spatiotemporal variability of this phenomenon. This work aims to propose a spatiotemporal monitoring method of soil salinization in the Tadla plain in central Morocco using spectral indices derived from Thematic Mapper (TM) and Operational Land Imager (OLI) data. Six Landsat TM/OLI satellite images acquired during 13 years period (2000-2013) coupled with in-situ electrical conductivity (EC) measurements were used to develop the proposed method. After radiometric and atmospheric correction of TM/OLI images, a new soil salinity index (OLI-SI) is proposed for soil EC estimation. Validation shows that this index allowed a satisfactory EC estimation in the Tadla irrigated perimeter with coefficient of determination R2 varying from 0.55 to 0.77 and a Root Mean Square Error (RMSE) ranging between 1.02 dS/m and 2.35 dS/m. The times-series of salinity maps produced over the Tadla plain using the proposed method show that salinity is decreasing in intensity and progressively increasing in spatial extent, over the 2000-2013 period. This trend resulted in a decrease in agricultural activities in the southwestern part of the perimeter, located in the hydraulic downstream.
Next-generation pushbroom filter radiometers for remote sensing
NASA Astrophysics Data System (ADS)
Tarde, Richard W.; Dittman, Michael G.; Kvaran, Geir E.
2012-09-01
Individual focal plane size, yield, and quality continue to improve, as does the technology required to combine these into large tiled formats. As a result, next-generation pushbroom imagers are replacing traditional scanning technologies in remote sensing applications. Pushbroom architecture has inherently better radiometric sensitivity and significantly reduced payload mass, power, and volume than previous generation scanning technologies. However, the architecture creates challenges achieving the required radiometric accuracy performance. Achieving good radiometric accuracy, including image spectral and spatial uniformity, requires creative optical design, high quality focal planes and filters, careful consideration of on-board calibration sources, and state-of-the-art ground test facilities. Ball Aerospace built the Landsat Data Continuity Mission (LDCM) next-generation Operational Landsat Imager (OLI) payload. Scheduled to launch in 2013, OLI provides imagery consistent with the historical Landsat spectral, spatial, radiometric, and geometric data record and completes the generational technology upgrade from the Enhanced Thematic Mapper (ETM+) whiskbroom technology to modern pushbroom technology afforded by advanced focal planes. We explain how Ball's capabilities allowed producing the innovative next-generational OLI pushbroom filter radiometer that meets challenging radiometric accuracy or calibration requirements. OLI will improve the multi-decadal land surface observation dataset dating back to the 1972 launch of ERTS-1 or Landsat 1.
NASA Astrophysics Data System (ADS)
Pahlevan, Nima; Schott, John R.; Zibordi, Giuseppe
2016-10-01
With the successful launch of Landsat-8 in 2013 followed by a very recent launch of Sentinel-2A, we are entering a new area where frequent moderate resolution water quality products over coastal/inland waters will be available to scientists and operational agencies. Although designed for land observations, the Operational Land Imager (OLI) has proven to provide high-fidelity products in these aquatic systems where coarse-resolution ocean color imagers fail to provide valid observations. High-quality, multi-scale ocean color products can give insights into the biogeochemical/physical processes from the upstream in watersheds, into near-shore regions, and further out in ocean basins. In this research, we describe a robust cross-calibration approach, which facilitates seamless ocean color products at multi scales. The top-of-atmosphere (TOA) OLI imagery is cross-calibrated against near-simultaneous MODIS and VIIRS ocean color observations in high-latitude regions. This allows for not only examining the overall relative performance of OLI but also for characterizing non-uniformity (i.e., banding) across its swath. The uncertainty of this approach is, on average, found to be less than 0.5% in the blue channels. The adjustments made for OLI TOA reflectance products are then validated against in-situ measurements of remote sensing reflectance collected in research cruises or at the AERONET-OC.
NASA Astrophysics Data System (ADS)
Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan
2016-09-01
Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.
40 CFR 761.71 - High efficiency boilers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not fed...
40 CFR 761.71 - High efficiency boilers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not fed...
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; Harti, Abderrazak El; Jellouli, Amine; Maacha, Lhou; Bachaoui, El Mostafa
2016-01-01
Lithological mapping is a fundamental step in various mineral prospecting studies because it forms the basis of the interpretation and validation of retrieved results. Therefore, this study exploited the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 8 Operational Land Imager (OLI) data in order to map lithological units in the Bas Drâa inlier, at the Moroccan Anti Atlas. This task was completed by using principal component analysis (PCA), band ratios (BR), and support vector machine (SVM) classification. Overall accuracy and the kappa coefficient of SVM based on ground truth in addition to the results of PCA and BR show an excellent correlation with the existing geological map of the study area. Consequently, the methodology proposed demonstrates a high potential of ASTER and Landsat 8 OLI data in lithological units discrimination.
Finlay, V; Phillips, M; Allison, G T; Wood, F M; Ching, D; Wicaksono, D; Plowman, S; Hendrie, D; Edgar, D W
2015-11-01
As minor burn patients constitute the vast majority of a developed nation case-mix, streamlining care for this group can promote efficiency from a service-wide perspective. This study tested the hypothesis that a predictive nomogram model that estimates likelihood of good long-term quality of life (QoL) post-burn is a valid way to optimise patient selection and risk management when applying a streamlined model of care. A sample of 224 burn patients managed by the Burn Service of Western Australia who provided both short and long-term outcomes was used to estimate the probability of achieving a good QoL defined as 150 out of a possible 160 points on the Burn Specific Health Scale-Brief (BSHS-B) at least six months from injury. A multivariate logistic regression analysis produced a predictive model provisioned as a nomogram for clinical application. A second, independent cohort of consecutive patients (n=106) was used to validate the predictive merit of the nomogram. Male gender (p=0.02), conservative management (p=0.03), upper limb burn (p=0.04) and high BSHS-B score within one month of burn (p<0.001) were significant predictors of good outcome at six months and beyond. A Receiver Operating Curve (ROC) analysis demonstrated excellent (90%) accuracy overall. At 80% probability of good outcome, the false positive risk was 14%. The nomogram was validated by running a second ROC analysis of the model in an independent cohort. The analysis confirmed high (86%) overall accuracy of the model, the risk of false positive was reduced to 10% at a lower (70%) probability. This affirms the stability of the nomogram model in different patient groups over time. An investigation of the effect of missing data on sample selection determined that a greater proportion of younger patients with smaller TBSA burns were excluded due to loss to follow up. For clinicians managing comparable burn populations, the BSWA burns nomogram is an effective tool to assist the selection of patients to a streamlined care pathway with the aim of improving efficiency of service delivery. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Aisyah Fadhillah Hafni, Dinda; Syaufina, Lailan; Puspaningsih, Nining; Prasasti, Indah
2018-05-01
The study was conducted in three land cover conditions (secondary peat forest, shrub land, and palm plantation) that were burned in the Siak District, Riau Province, Indonesia year 2015. Measurement and calculation carbon emission from soil and vegetation of peatland should be done accurately to be implemented on climate change mitigation or greenhouse gases mitigation. The objective of the study was to estimate the carbon emission caused peatland fires in the Siak District, Riau Province, Indonesia year 2015. Estimated carbon emissions were performed using visual method and digital method. The visual method was a method that uses on-screen digitization assisted by hotspot data, the presence of smoke, and fire suppression data. The digital method was a method that uses the Normalized Burn Ratio (NBR) index. The estimated carbon emissions were calculated using the equation that was developed from IPCC 2006 in Verified Carbon Standard 2015. The results showed that the estimation of carbon emissions from fires from above the peat soil surface were higher than the carbon emissions from the peat soil. Carbon emissions above the peat soil surface of 1376.51 ton C/ha were obtained by visual method while 3984.33 ton C/ha were obtained by digital method. Peatland carbon emissions of 6.6 x 10-4 ton C/ha were obtained by visual method, whereas 2.84 x 10-3 ton C/ha was obtained by digital method. Visual method and digital method using remote sensing must be combined and developed in order to carbon emission values will be more accurate.
Radiometric calibration updates to the Landsat collection
Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal
2016-01-01
The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.
Deutsch, Eliza S; Alameddine, Ibrahim; El-Fadel, Mutasem
2018-02-15
The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R 2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R 2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.
Trace gas emissions from burning Florida wetlands
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross
1990-01-01
Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.
Automated Sargassum Detection for Landsat Imagery
NASA Astrophysics Data System (ADS)
McCarthy, S.; Gallegos, S. C.; Armstrong, D.
2016-02-01
We implemented a system to automatically detect Sargassum, a floating seaweed, in 30-meter LANDSAT-8 Operational Land Imager (OLI) imagery. Our algorithm for Sargassum detection is an extended form of Hu's approach to derive a floating algae index (FAI) [1]. Hu's algorithm was developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data, but we extended it for use with the OLI bands centered at 655, 865, and 1609 nm, which are comparable to the MODIS bands located at 645, 859, and 1640 nm. We also developed a high resolution true color product to mask cloud pixels in the OLI scene by applying a threshold to top of the atmosphere (TOA) radiances in the red (655 nm), green (561 nm), and blue (443 nm) wavelengths, as well as a method for removing false positive identifications of Sargassum in the imagery. Hu's algorithm derives a FAI for each Sargassum identified pixel. Our algorithm is currently set to only flag the presence of Sargassum in an OLI pixel by classifying any pixel with a FAI > 0.0 as Sargassum. Additionally, our system geo-locates the flagged Sargassum pixels identified in the OLI imagery into the U.S. Navy Global HYCOM model grid. One element of the model grid covers an area 0.125 degrees of latitude by 0.125 degrees of longitude. To resolve the differences in spatial coverage between Landsat and HYCOM, a scheme was developed to calculate the percentage of pixels flagged within the grid element and if above a threshold, it will be flagged as Sargassum. This work is a part of a larger system, sponsored by NASA/Applied Science and Technology Project at J.C. Stennis Space Center, to forecast when and where Sargassum will land on shore. The focus area of this work is currently the Texas coast. Plans call for extending our efforts into the Caribbean. References: [1] Hu, Chuanmin. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 113 (2009) 2118-2129.
NASA Astrophysics Data System (ADS)
Kganyago, Mahlatse; Odindi, John; Adjorlolo, Clement; Mhangara, Paidamoyo
2018-05-01
Globally, there is paucity of accurate information on the spatial distribution and patch sizes of Invasive Alien Plants (IAPs) species. Such information is needed to aid optimisation of control mechanisms to prevent further spread of IAPs and minimize their impacts. Recent studies have shown the capability of very high spatial (<1 m) and spectral resolution (<10 nm) data for discriminating vegetation species. However, very high spatial resolution may introduce significant intra-species spectral variability and result in reduced mapping accuracy, while higher spectral resolution data are commonly limited to smaller areas, are costly and computationally expensive. Alternatively, medium and high spatial resolution data are available at low or no cost and have limitedly been evaluated for their potential in determining invasion patterns relevant for invasion ecology and aiding effective IAPs management. In this study medium and high resolution datasets from Landsat Operational Land Imager (OLI) and SPOT 6 sensors respectively, were evaluated for mapping the distribution and patch sizes of IAP, Parthenium hysterophorus in the savannah landscapes of KwaZulu-Natal, South Africa. Support Vector Machines (SVM) classifier was used for classification of both datasets. Results indicated that SPOT 6 had a higher overall accuracy (86%) than OLI (83%) in mapping P. hysterophorus. The study found larger distributions and patch sizes in OLI than in SPOT 6 as a result of possible P. hysterophorus expansion due to temporal differences between images and coarser pixels were insufficient to delineate gaps inside larger patches. On the other hand, SPOT 6 showed better capabilities of delineating gaps and boundaries of patches, hence had better estimates of distribution and patch sizes. Overall, the study showed that OLI may be suitable for mapping well-established patches for the purpose of large scale monitoring, while SPOT 6 can be used for mapping small patches and prioritising them for eradication to prevent further spread at a landscape scale.
Tzagoloff, A; Foury, F; Akai, A
1976-11-24
1. Fourteen cytoplasmic mutants of Saccharomyces cerevisiae with a specific deficiency of cytochrome b have been studied. The mutations have been shown to occur in two separate genetic loci, COB 1 and COB 2. These loci can be distinguished by mit- X mit- crosses. Pairwise crosses of cytochrome b mutants belonging to different loci yield 4-6% wild type recombinants corresponding to recombinational frequencies of 8-12%. In intra-locus crosses, the recombinational frequencies range from 1% to less than 0.01%. The two loci can also be distinguished by mit- X rho- crosses. Twenty rho- testers have been isolated of which ten preferentially restore mutations in COB 1 and ten others in COB 2. 2. The COB 1 and COB 2 loci have been localized on mitochondrial DNA between the two antibiotic resistance loci OLI 1 and OLI 2 in the order OLI 2-COB 2-COB 1-OLI 1. The results of mit- X mit- and mit- X rho- crosses have also been used to map the cytochrome b mutations relative to each other. The maps obtained by the two independent methods are in good agreement. 3. Mutations in COB 1 have been found to be linked to the OLI1 locus in some but not in other strains of S. cervisiae. This evidence suggests that there may be a spacer region between the two loci whose length varies from strain to strain. 4. Two mutations in COB 2 have been found to cause a loss of a mitochondrial translation product corresponding to the cytochrome b apoprotein. Instead of the wild type protein the mutants have a new low-molecular weight product which is probably a fragment of cytochrome b. The fact that the mutations revert suggests that they are nonsense mutations in the structural gene of cytochrome b.
Operational Land Imager relative radiometric calibration
NASA Astrophysics Data System (ADS)
Barsi, Julia A.; Markham, Brian L.
2015-09-01
The Operational Land Imager (OLI), on board the Landsat-8 satellite, is a pushbroom sensor with nearly 7000 detectors per band, divided between 14 separate modules. While rigorously characterized prior to launch, the shear number of individual detectors presents a challenge to maintaining the on-orbit relative calibration, such that stripes, bands and other artifacts are minimized in the final image products. On-orbit relative calibration of the OLI is primarily monitored and corrected by observing an on-board primary solar diffuser panel. The panel is the most uniform target available to the OLI, though as observed but the OLI, it has a slope across the field of view due to view angle effects. Just after launch, parameters were derived using the solar diffuser data, to correct for the angular effects across the 14 modules. The residual discontinuities between arrays and the detector-to-detector uniformity continue to be monitored on a weekly basis. The observed variations in the responses to the diffuser panel since launch are thought to be due to real instrument changes. Since launch, the Coastal/Aerosol (CA) and Blue bands have shown the most variation in relative calibration of the VNIR bands, with as much as 0.14% change (3-sigma) between consecutive relative gain estimates. The other VNIR bands (Green, Red and NIR) initially had detectors showing a slow drift of about 0.2% per year, though this stopped after an instrument power cycle about seven months after launch. The SWIR bands also exhibit variability between collects (0.11% 3-sigma) but the larger changes have been where individual detectors' responses change suddenly by as much as 1.5%. The mechanisms behind these changes are not well understood but in order to minimize impact to the users, the OLI relative calibration is updated on a quarterly basis in order to capture changes over time.
Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo
2010-02-05
The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant bitumite coal. As a small scale application, villagers may make fluorine-fixing coalballs or briquettes by themselves, achieving the optimum fluorine-fixing efficiency and reducing indoor air pollutants providing environmental and social benefits.
Theresa Jain; Molly Juillerat; Jonathan Sandquist; Mike Ford; Brad Sauer; Robert Mitchell; Scott McAvoy; Justin Hanley; Jon David
2007-01-01
This photograph handbook describes characteristics and burn severity of a dry forested and grassland mosaic that burned within the last decade. We show photographs of different burned and unburned sites to help compare fire occurrence in similar stands. The handbook provides local land managers with a quick, inexpensive, and efficient way to evaluate effects of...
Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?
Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S
2016-01-01
Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessing the potential of Landsat 8 OLI for retrieving salinity in the hypersaline Arabian Gulf
NASA Astrophysics Data System (ADS)
Zhao, Jun; Temimi, Marouane
2016-04-01
The Arabian Gulf, located in an arid region in the Middle East, has high salinity that can exceed 43 practical salinity units (psu) due to its special conditions, such as high evaporation, low precipitation, and desalination discharge. In this study, a regional algorithm was developed to retrieve salinity using in situ measurements conducted between June 2013 and November 2014 along the western coast of Abu Dhabi, United Arab Emirates (UAE). A multivariate linear regression model using the visible bands of Operational Land Imager (OLI) was proposed and indicated good performance with a determination coefficient (R2) of 0.7. The algorithm was then applied to an OLI scene, which revealed the spatial distribution of salinity over the study area. The findings are favorable for better interpretation of the complex water mass exchange between the Arabian Gulf and the Sea of Oman through the Strait of Hormuz, validating salinity from numerical models, studying the effects of anthropogenic activities and climate change on ecosystem in the hypersaline Arabian Gulf, etc.
Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit
Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly
2015-01-01
Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.
NASA Astrophysics Data System (ADS)
Czapla-Myers, Jeffrey; McCorkel, Joel; Anderson, Nikolaus; Biggar, Stuart
2018-01-01
This paper describes the current ground-based calibration results of Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi National Polar orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2A Multispectral Instrument (MSI), using an automated suite of instruments located at Railroad Valley, Nevada, USA. The period of this study is 2012 to 2016 for MODIS, VIIRS, and ETM+, 2013 to 2016 for OLI, and 2015 to 2016 for MSI. The current results show that all sensors agree with the Radiometric Calibration Test Site (RadCaTS) to within ±5% in the solar-reflective regime, except for one band on VIIRS that is within ±6%. In the case of ETM+ and OLI, the agreement is within ±3%, and, in the case of MODIS, the agreement is within ±3.5%. MSI agrees with RadCaTS to within ±4.5% in all applicable bands.
Kopanja, Lazar; Kovacevic, Zorana; Tadic, Marin; Žužek, Monika Cecilija; Vrecl, Milka; Frangež, Robert
2018-04-23
Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.
[REVIEW OF 30 YEARS OF RESEARCH AND DEVELOPMENT OF AN ENZYMATIC DEBRIDEMENT AGENT FOR BURNS].
Krieger, Yuval; Shoham, Yaron; Bogdanov-Berezovsky, Alexander; Silberstein, Eldad; Sagi, Amiram; Levy, Avraham; Rosenberg, Nir; Rubin, Guy; Egozi, Dana; Ullman, Yehuda; Haik, Josef; Rosenberg, Lior
2016-05-01
Early removal of burn eschar is a cornerstone of burn care. The most commonly practiced eschar removal technique for deep burns in modern burn care is surgical debridement but this technique is associated with surgical burden and leads to unnecessary excision of viable tissue. To review 30 years of research and development of an enzymatic debridement agent for burns. Studies performed during the last 30 years are reviewed in this manuscript. Patients who underwent enzymatic debridement had a significantly shorter time to complete debridement, the surgical burden was significantly lower, hand burns did not necessitate escharotomy, and the long term results were favorable. Early enzymatic debridement leads to an efficient debridement, preservation of viable tissue, a reduction in surgical burden and favorable long term results. We believe early enzymatic debridement will lead to better care for burn victims and perhaps, even to a paradigm shift in the treatment of burns.
Grazing and Burning Impacts on Deer Diets on Lousiana Pine-Bluestem Range
Ronald E. Thill; Alton Martin; Hershel F. Morris; E. Donice McCune
1987-01-01
Diets of 3-5 tame white-tailed deer (Odocoileus virginianus) on adjacent ungrazed and continuously grazed (35% herbage removal by late CM) forested pastures were compared for forage-class use, botanical similarities, foraging selectivity and efficiency, and diet quality. Both pastures were divided into 3 burning subunits and burned in late February on a 3-year...
The measurement of trace emissions and combustion characteristics for a mass fire [Chapter 32
Ronald A. Susott; Darold E. Ward; Ronald E. Babbitt; Don J. Latham
1991-01-01
Concerns increase about the effects of emissions from biomass burning on global climate. While the burning of biomass constitutes a large fraction of world emissions, there are insufficient data on the combustion efficiency, emission factors, and trace gases produced in these fires, and on how these factors depend on the highly variable chemistry and burning condition...
Operating efficiency of an emergency Burns theatre: An eight month analysis.
Mohan, Arvind; Lutterodt, Christopher; Leon-Villapalos, Jorge
2017-11-01
The efficient use of operating theatres is important to insure optimum cost-benefit for the hospital. We used the emergency Burns theatre as a model to assess theatre efficiency at our institution. Data was collected retrospectively on every operation performed in the Burns theatre between 01/04/15 and 30/11/15. Each component of the operating theatre process was considered and integrated to calculate values for surgical/anaesthetic time, changeover time and ultimately theatre efficiency. A total of 426 operations were carried out over 887h of allocated theatre time (ATT). Actual operating time represented 67.7%, anaesthetic time 8.8% and changeover time 14.2% of ATT. The average changeover time between patients was 30.1min. Lists started on average 27.7min late each day. There were a total of 5.8h of overruns and 9.6h of no useful activity. Operating theatre efficiency was 69.3% for the 8 month period. Our study highlights areas where theatre efficiency can be improved. We suggest various strategies to improve this that may be applied universally. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
The determination of total burn surface area: How much difference?
Giretzlehner, M; Dirnberger, J; Owen, R; Haller, H L; Lumenta, D B; Kamolz, L-P
2013-09-01
Burn depth and burn size are crucial determinants for assessing patients suffering from burns. Therefore, a correct evaluation of these factors is optimal for adapting the appropriate treatment in modern burn care. Burn surface assessment is subject to considerable differences among clinicians. This work investigated the accuracy among experts based on conventional surface estimation methods (e.g. "Rule of Palm", "Rule of Nines" or "Lund-Browder Chart"). The estimation results were compared to a computer-based evaluation method. Survey data was collected during one national and one international burn conference. The poll confirmed deviations of burn depth/size estimates of up to 62% in relation to the mean value of all participants. In comparison to the computer-based method, overestimation of up to 161% was found. We suggest introducing improved methods for burn depth/size assessment in clinical routine in order to efficiently allocate and distribute the available resources for practicing burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Assesment of PM2.5 emission from corn stover burning determining in chamber combustion
NASA Astrophysics Data System (ADS)
Hafidawati; Lestari, P.; Sofyan, A.
2018-04-01
Chamber measurement were conducted to determine Particulate Matter (PM2.5) emission from open burning of corn straw at Garut District, West Java. The of this study is to estimate the concentration of PM2.5 for two types of corn (corncobs and cornstover) for five varieties (Bisma, P29, NK, Bisma, NW). Corn residues were collected and then burned in the chamber combustion. The chamber was designed to simulate the burning in the field, which was observed in the field experiment that meteorological condition was calm wind. The samples were collected using a minivol air sampler. The assessment results of PM2.5 concentrations (mg/m3) from open burning experiment in the chamber for five varieties of corn cobs (Bisma, P29, NK, Bisi, NW) was 9.187; 2.843; 7.409; 3.781; 1.895 respectively. Concentration for corn stover burn was 2.060; 5.283; 4.048; 5.306 and 5.697 respectively. Fluctuations in the value of concentration among these varieties reflect variations in combustion conditions (combustion efficiency) and other parameters including water content, biomass conditions and the meteorological conditions. The combustion efficiency (MCE) of the combustion chamber simulation of corncobs ia lower than the MCE of corn stover, that the concentration PM2.5 more emitted from the burning of corn stover. The results of this study presented provide useful information for the development of local emission factors for PM2.5 from open burning of corn stover in Indonesia.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo; Sibanda, Mbulisi; Bangamwabo, Victor; Shoko, Cletah
2017-08-01
The remote sensing of freshwater resources is increasingly becoming important, due to increased patterns of water use and the current or projected impacts of climate change and the rapid invasion by lethal water weeds. This study therefore sought to explore the potential of the recently-launched Landsat 8 OLI/TIRS sensor in mapping invasive species in inland lakes. Specifically, the study compares the performance of the newly-launched Landsat 8 sensor, with more advanced sensor design and image acquisition approach to the traditional Landsat-7 ETM+ in detecting and mapping the water hyacinth (Eichhornia crassipes) invasive species across Lake Chivero, in Zimbabwe. The analysis of variance test was used to identify windows of spectral separability between water hyacinth and other land cover types. The results showed that portions of the visible (B3), NIR (B4), as well as the shortwave bands (Band 8, 9 and 10) of both Landsat 8 OLI and Landsat 7 ETM, exhibited windows of separability between water hyacinth and other land cover types. It was also observed that on the use of Landsat 8 OLI produced high overall classification accuracy of 72%, when compared Landsat 7 ETM, which yielded lower accuracy of 57%. Water hyacinth had optimal accuracies (i.e. 92%), when compared to other land cover types, based on Landsat 8 OLI data. However, when using Landsat 7 ETM data, classification accuracies of water hyacinth were relatively lower (i.e. 67%), when compared to other land cover types (i.e. water with accuracy of 100%). Spectral curves of the old, intermediate and the young water hyacinth in Lake Chivero based on: (a) Landsat 8 OLI, and (b) Landsat 7 ETM were derived. Overall, the findings of this study underscores the relevance of the new generation multispectral sensors in providing primary data-source required for mapping the spatial distribution, and even configuration of water weeds at lower or no cost over time and space.
Zhang, Meiguang; Li, Zhiqing; Wang, Jiahan; Wu, Qi; Wen, Huangding
2014-04-01
To evaluate the therapeutic effects of VSD combined with irrigation of oxygen loaded fluid on chronic wounds in diabetic patients. Twenty-six diabetic patients hospitalized in Nanfang Hospital of Southern Medical University from September 2010 to June 2013, with chronic ulcers on lower extremities conforming to the inclusive criteria, were divided into group VSD (n = 8), VSD + irrigation control group (VSD + IC, n = 9), VSD + oxygen loaded fluid irrigation group (VSD OLI, n = 9) according to the random number table. After gross observation was conducted and wound secretion was sent for bacterial culturing right after admission, debridement was performed. During the debridement, granulation tissue of wound center was harvested for determination of the activity of lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) with ELISA. After debridement, the patients in group VSD were treated with VSD (negative pressure from -30 to -25 kPa, the same below); the patients in group VSD + IC were treated with VSD combining irrigation of normal saline; the patients in group VSD + OLI were treated with VSD combining normal saline loaded with oxygen (flow of 1 L/min ) irrigation. Drainage tube blockage was recorded and its incidence rate was recorded during the treatment. On post treatment day (PTD) 7, tissue exudates were collected and analyzed with blood gas analyzer for determining the partial pressure of oxygen of the exudate. After the VSD was terminated, bacterial culture was conducted as before, and the bacterial clearance rate was calculated. After the calculation of granulation tissue coverage rate, the granulation tissue in the center of the wound was harvested for histopathological observation with HE staining; morphological characteristics and density of mitochondria were observed with transmission electron microscopy; the activity of LDH and SDH was estimated as before; microvascular density (MVD) was counted after CD31 antibody immunohistochemical staining. Then the second stage operation was performed. The method of second stage operation was recorded and survival rate of grafted skin or flap was calculated. Data were processed with one-way analysis of variance, LSD- t test, rank sum test, or Fisher's exact test. (1) The gross observation showed that before debridement there was only necrotic tissue without granulation tissue in the wounds of patients in all the 3 groups. On PTD 7, granulation tissue was found in the wounds of patients in all the 3 groups. HE staining showed that there were more abundant newborn microvessels and regularly arranged fibroblasts in the wounds of group VSD + OLI; less newborn microvessels and relatively sparsely fibroblasts were observed in the wounds of group VSD + IC. There were only sparse newborn microvessels and fibroblasts in the wounds of group VSD. (2) Rates of drainage tube blockage, granulation tissue coverage, and bacterial clearance showed significant differences among the 3 groups (with F values from 10.98 to 770.24, P values below 0.01). The drainage tube blockage rate was significantly lower in groups VSD + IC and VSD + OLI [(2.0 ± 0.4)% and (1.9 ± 0.6)%] than in group VSD [(16.0 ± 1.3)%, with t values respectively 28.77 and 29.20, P values below 0.01]. (3) On PTD 7, the partial pressure values of oxygen of the exudate in groups VSD + IC, VSD + OLI, and VSD were respectively (111 ± 4), (43 ± 4), and (40 ± 4) mmHg (1 mmHg = 0.133 kPa, F = 882.76, P < 0.01). (4) The density of mitochondria in group VSD + OLI was obviously higher than that of the other 2 groups, full in shape, with complete outer membrane and no vacuolization. (5) During debridement, the activity of LDH and SDH in 3 groups showed no significant differences (with F values respectively 0.08 and 1.03, P values above 0.05). On PTD 7, the activity of LDH was lower in group VSD + OLI [(103 ± 15) U/L] than in group VSD + IC [(136 ± 16) U/L, t = 4.49, P < 0.01], while it was higher in group VSD [(155 ± 16) U/L] than in group VSD + IC (t = 2.47, P < 0.05). The activity of SDH was higher in group VSD + OLI [(2.93 ± 0.27) U/L] than that in group VSD + IC [(1.77 ± 0.22) U/L] or group VSD [(1.61 ± 0.19) U/L, with t values respectively 10.21 and 11.65, P values below 0.01]. (6) On PTD 7, there was more positive expression of CD31 in group VSD + OLI than in the other 2 groups. The MVD of groups VSD, VSD + IC, and VSD + OLI were respectively (109 ± 5), (124 ± 5), (141 ± 6) per 400 times visual field (F = 68.78, P < 0.01). (7) The patients in 3 groups mainly received skin or flap grafting as the second stage operation. The survival rates of skin and flap in group VSD + OLI were higher than those of groups VSD + IC and VSD (with t values from 3.32 to 8.26, P < 0.05 or P < 0.01), and the rates were higher in group VSD + IC than in group VSD (with t values respectively 2.67 and 3.18, P values below 0.05). VSD + OLI is effective in reducing drainage tube blockage, removing necrotic tissue and bacteria, ameliorating ischemia and hypoxia of wound tissue, providing fresh wound bed for wound healing, and improving skin or flap graft survival rates.
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej
2016-01-01
This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.
On-orbit performance of the Landsat 8 Operational Land Imager
Micijevic, Esad; Vanderwerff, Kelly; Scaramuzza, Pat; Morfitt, Ron; Barsi, Julia A.; Levy, Raviv
2014-01-01
The Landsat 8 satellite was launched on February 11, 2013, to systematically collect multispectral images for detection and quantitative analysis of changes on the Earth’s surface. The collected data are stored at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and continue the longest archive of medium resolution Earth images. There are two imaging instruments onboard the satellite: the Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). This paper summarizes radiometric performance of the OLI including the bias stability, the system noise, saturation and other artifacts observed in its data during the first 1.5 years on orbit. Detector noise levels remain low and Signal-To-Noise Ratio high, largely exceeding the requirements. Impulse noise and saturation are present in imagery, but have negligible effect on Landsat 8 products. Oversaturation happens occasionally, but the affected detectors quickly restore their nominal responsivity. Overall, the OLI performs very well on orbit and provides high quality products to the user community. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
NASA Astrophysics Data System (ADS)
Li, S.; Ganguly, S.; Dungan, J. L.; Zhang, G.; Ju, J.; Claverie, M.
2015-12-01
The European Space Agency's Sentinel-2 mission successfully launched the first of two satellites in June, 2015. Sentinel 2A's MSI instrument is now providing optical data similar to Landsat 8's OLI imagery and, with its global repeat of 10 days, has the potential to increase the availability of 30m resolution high level products such as leaf area index (LAI). Prior to the launch of S-2A, we simulated MSI imagery using EO-1 Hyperion data and estimated green LAI using an algorithm based on canopy spectral invariants theory. Comparison of the resulting LAI maps resulting from the simulated MSI and corresponding maps derived from OLI data showed a RMSE of 0.1875. Uncertainty bounds on actual MSI data promise to be narrower because of the superior signal-to-noise ratio of MSI. A workflow for the production of LAI and other high level products including data ingest, BRDF correction, cloud masking and atmospheric correction is being developed using the NASA Earth Exchange (NEX) and will improve the capability to examine seasonal changes in canopy LAI.
EVALUATION OF EFFECTIVENESS IN A NOVEL WOUND HEALING OINTMENT-CROCODILE OIL BURN OINTMENT
Li, Hua-Liang; Deng, Yi-Tao; Zhang, Zi-Ran; Fu, Qi-Rui; Zheng, Ya-Hui; Cao, Xing-Mei; Nie, Jing; Fu, Li-Wen; Chen, Li-Ping; Xiong, You-Xiong; Shen, Dong-Yan; Chen, Qing-Xi
2017-01-01
Background: Crocodile oil and its products are used as ointments for burns and scalds in traditional medicines. A new ointment formulation - crocodile oil burn ointment (COBO) was developed to provide more efficient wound healing activity. The purpose of the study was to evaluate the burn healing efficacy of this new formulation by employing deep second-degree burns in a Wistar rat model. The analgesic and anti-inflammatory activities of COBO were also studied to provide some evidences for its further use. Materials and methods: The wound healing potential of this formulation was evaluated by employing a deep second-degree burn rat model and the efficiency was comparatively assessed against a reference ointment - (1% wt/wt) silver sulfadiazine (SSD). After 28 days, the animals were euthanized and the wounds were removed for transversal and longitudinal histological studies. Acetic acid-induced writhing in mice was used to evaluate the analgesic activity and its anti-inflammatory activity was observed in xylene -induced edema in mice. Results: COBO enhanced the burn wound healing (20.5±1.3 d) as indicated by significant decrease in wound closure time compared with the burn control (25.0±2.16 d) (P<0.01). Hair follicles played an importance role in the physiological functions of the skin, and their growth in the wound could be revealed for the skin regeneration situation. Histological results showed that the hair follicles were well-distributed in the post-burn skin of COBO treatment group, and the amounts of total, active, primary and secondary hair follicles in post-burn 28-day skin of COBO treatment groups were more than those in burn control and SSD groups. On the other hand, the analgesic and anti-inflammatory activity of COBO were much better than those of control group, while they were very close to those of moist exposed burn ointment (MEBO). Conclusions: COBO accelerated wound closure, reduced inflammation, and had analgesic effects compared with SSD in deep second degree rat burn model. These findings suggest that COBO would be a potential therapy for treating human burns. Abbreviations: COBO, crocodile oil burn ointment; SSD, silver sulfadiazine; MEBO, moist exposed burn ointment; TCM, traditional Chinese medicine; CHM, Chinese herbal medicine; GC-MS, gas chromatography-mass spectrometry. PMID:28480384
EVALUATION OF EFFECTIVENESS IN A NOVEL WOUND HEALING OINTMENT-CROCODILE OIL BURN OINTMENT.
Li, Hua-Liang; Deng, Yi-Tao; Zhang, Zi-Ran; Fu, Qi-Rui; Zheng, Ya-Hui; Cao, Xing-Mei; Nie, Jing; Fu, Li-Wen; Chen, Li-Ping; Xiong, You-Xiong; Shen, Dong-Yan; Chen, Qing-Xi
2017-01-01
Crocodile oil and its products are used as ointments for burns and scalds in traditional medicines. A new ointment formulation - crocodile oil burn ointment (COBO) was developed to provide more efficient wound healing activity. The purpose of the study was to evaluate the burn healing efficacy of this new formulation by employing deep second-degree burns in a Wistar rat model. The analgesic and anti-inflammatory activities of COBO were also studied to provide some evidences for its further use. The wound healing potential of this formulation was evaluated by employing a deep second-degree burn rat model and the efficiency was comparatively assessed against a reference ointment - (1% wt/wt) silver sulfadiazine (SSD). After 28 days, the animals were euthanized and the wounds were removed for transversal and longitudinal histological studies. Acetic acid-induced writhing in mice was used to evaluate the analgesic activity and its anti-inflammatory activity was observed in xylene -induced edema in mice. COBO enhanced the burn wound healing (20.5±1.3 d) as indicated by significant decrease in wound closure time compared with the burn control (25.0±2.16 d) ( P <0.01). Hair follicles played an importance role in the physiological functions of the skin, and their growth in the wound could be revealed for the skin regeneration situation. Histological results showed that the hair follicles were well-distributed in the post-burn skin of COBO treatment group, and the amounts of total, active, primary and secondary hair follicles in post-burn 28-day skin of COBO treatment groups were more than those in burn control and SSD groups. On the other hand, the analgesic and anti-inflammatory activity of COBO were much better than those of control group, while they were very close to those of moist exposed burn ointment (MEBO). COBO accelerated wound closure, reduced inflammation, and had analgesic effects compared with SSD in deep second degree rat burn model. These findings suggest that COBO would be a potential therapy for treating human burns. Abbreviations: COBO, crocodile oil burn ointment; SSD, silver sulfadiazine; MEBO, moist exposed burn ointment; TCM, traditional Chinese medicine; CHM, Chinese herbal medicine; GC-MS, gas chromatography-mass spectrometry.
Factors associated with mortality and length of stay in the Oporto burn unit (2006-2009).
Bartosch, Isabel; Bartosch, Carla; Egipto, Paula; Silva, Alvaro
2013-05-01
Retrospective studies are essential to evaluate and improve the efficiency of care of burned patients. This study analyses the work done in the burn unit of Hospital de S. João in the north of Portugal. A retrospective review was performed in patients admitted from 2006 to 2009. The study population was characterised regarding patient demographics, admissions profile, burn aetiology, burn site, extension and treatment. Multiple linear and logistic regression models were done in order to elucidate which of these factors influenced the mortality and length of stay. The characteristics before and after the creation of the burn unit, as well as the similarities and differences with the published data of other national and international burn units, are analysed. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
Trace gas emissions from burning Florida wetlands
NASA Astrophysics Data System (ADS)
Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross
1990-02-01
Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.
Holmes, James H
2008-01-01
Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.
Acting Administrator Lightfoot Visits Ball Aerospace
2017-04-06
Leanne Presley, Operational Land Imager-2 (OLI-2) program manager at Ball Aerospace, left, speaks with acting NASA Deputy Administrator Lesa Roe, center, and acting NASA Administrator Robert Lightfoot in front of a thermal vacuum chamber used to test satellite optics, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. The Operation Land Imager-2 (OLI-2) is being build for Landsat 9, a collaboration between NASA and the U.S. Geological Survey that will continue the Landsat Program's 40-year data record of monitoring the Earth's landscapes from space. Photo Credit: (NASA/Joel Kowsky)
NASA Technical Reports Server (NTRS)
Roy, D. P.; Kovalskyy, V.; Zhang, H. K.; Vermote, E. F.; Yan, L.; Kumar, S. S.; Egorov, A.
2016-01-01
At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences between the two Landsat sensors depend also on the surface reflectance and atmospheric state which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat- 8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscatter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximately balanced between the two sensors when large amounts of time series data are considered. Taking advantage of this configuration a total of 59 million 30m corresponding sensor observations extracted from 6,317 Landsat-7 ETM+ and Landsat-8 OLI images acquired over three winter and three summer months for all the conterminous United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater than the ETM+ TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the shortwave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for vegetated soil and vegetation surfaces (0 = NDVI = 1), the OLI NDVI is greater than the ETM+ NDVI. Statistical functions to transform between the comparable sensor bands and sensor NDVI values are presented so that the user community may apply them in their own research to improve temporal continuity between the Landsat-7 ETM+ and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary least squares (OLS) regression and were fit quite reliably (r2 values is greater than 0.7 for the reflectance data and greater than 0.9 for the NDVI data, p-values less than 0.0001).
Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity
NASA Astrophysics Data System (ADS)
Herwig, Falk
2004-04-01
The evolution of intermediate-mass stars at very low metallicity during their final thermal pulse asymptotic giant branch (AGB) phase is studied in detail. As representative examples, models with initial masses of 4 and 5Msolar and with a metallicity of Z=0.0001 ([Fe/H]~-2.3) are discussed. The one-dimensional stellar structure and evolution model includes time- and depth-dependent overshooting motivated by hydrodynamic simulations, as well as a full nuclear network and time-dependent mixing. Particular attention is given to high time and space resolution to avoid numerical artifacts related to third dredge-up and hot bottom burning predictions. The model calculations predict very efficient third dredge-up that mixes the envelope with the entire intershell layer or a large fraction thereof and in some cases penetrates into the C/O core below the He shell. In all cases primary oxygen is mixed into the envelope. The models predict efficient envelope burning during the interpulse phase. Depending on the envelope-burning temperature, oxygen is destroyed to varying degrees. The combined effect of dredge-up and envelope burning does not lead to any significant oxygen depletion in any of the cases considered in this study. The large dredge-up efficiency in our model is closely related to the particular properties of the H shell during the dredge-up phase in low-metallicity very metal-poor stars, which is followed here over many thermal pulses. During the dredge-up phase, the temperature just below the convective boundary is large enough for protons to burn vigorously when they are brought into the C-rich environment below the convection boundary by the time- and depth-dependent overshooting. H-burning luminosities of 105 to ~2×106Lsolar are generated. C, and to lesser degree O, is transformed into N in this dredge-up overshooting layer and enters the envelope. The global effect on the CNO abundance is similar to that of hot bottom burning. If the overshoot efficiency is larger, then dredge-up H burning causes a further increase in the dredge-up efficiency. After some thermal pulses, the dredge-up proceeds through the He shell and into the CO core beneath. Then neutrons may not be released from 13C in radiative conditions during the interpulse phase because of the scarcity of α-particles for the 13C(α,n)16O reactions. Conditions for the s-process are discussed qualitatively. The abundance evolution of H, He, C, N, O, and Na is described. Finally, the model predictions for sodium and oxygen are compared with observed abundances. The notion that massive AGB stars are the origin of the O-Na abundance anticorrelation in globular cluster giants is not consistent with the model predictions of this study. The abundance of the C-rich extremely metal-poor binaries LP 625-44, CS 29497-030, and HE 0024-2523 is discussed.
TRIAL BURN RESULTS AND FUTURE ACTIVITES OF THE EPA MOBILE INCINERATOR
The EPA Mobile Incinerator has demonstrated its ability to successfully destroy dioxin. A trial burn conducted in 1987 demonstrated the incinerator's ability to destroy a wide variety of compounds. The destruction and removal efficiency (DRE) of carbon tetrachloride, hexachloro...
ISBI Practice Guidelines for Burn Care.
2016-08-01
Practice guidelines (PGs) are recommendations for diagnosis and treatment of diseases and injuries, and are designed to define optimal evaluation and management. The first PGs for burn care addressed the issues encountered in developed countries, lacking consideration for circumstances in resource-limited settings (RLS). Thus, the mission of the 2014-2016 committee established by the International Society for Burn Injury (ISBI) was to create PGs for burn care to improve the care of burn patients in both RLS and resource-abundant settings. An important component of this effort is to communicate a consensus opinion on recommendations for burn care for different aspects of burn management. An additional goal is to reduce costs by outlining effective and efficient recommendations for management of medical problems specific to burn care. These recommendations are supported by the best research evidence, as well as by expert opinion. Although our vision was the creation of clinical guidelines that could be applicable in RLS, the ISBI PGs for Burn Care have been written to address the needs of burn specialists everywhere in the world. Copyright © 2016. Published by Elsevier Ltd.
The s-process in massive stars: the Shell C-burning contribution
NASA Astrophysics Data System (ADS)
Pignatari, Marco; Gallino, R.; Baldovin, C.; Wiescher, M.; Herwig, F.; Heger, A.; Heil, M.; Käppeler, F.
In massive stars the s¡ process (slow neutron capture process) is activated at different tempera- tures, during He¡ burning and during convective shell C¡ burning. At solar metallicity, the neu- tron capture process in the convective C¡ shell adds a substantial contribution to the s¡ process yields made by the previous core He¡ burning, and the final results carry the signature of both processes. With decreasing metallicity, the contribution of the C¡ burning shell to the weak s¡ process rapidly decreases, because of the effect of the primary neutron poisons. On the other hand, also the s¡ process efficiency in the He core decreases with metallicity.
G. L Achtemeier; S. L. Goodrick; Y. Liu
2012-01-01
Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into âsub-plumesâ or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of...
NASA Technical Reports Server (NTRS)
Prentice, J. L.
1972-01-01
A two-year study of the combustion efficiency of single beryllium droplets burning in a variety of oxidizers (primarily mixtures of oxygen/argon and oxygen/nitrogen) is summarized. An advanced laser heating technique was used to acquire systematic quantitative data on the burning of single beryllium droplets at atmospheric pressure. The research confirmed the sensitivity of beryllium droplet combustion to the chemistry of environmental species and provides experimental documentation for the nitrogen-induced droplet fragmentation of burning beryllium droplets.
Bass, Michael J; Phillips, Linda G
2008-07-01
Sustaining a burn injury sets in motion a cycle of pain, disfigurement, and a search for survival. In pediatric burns, the injury extends to the parents where fear, ignorance, and helplessness forever change their lives. Pediatric burn injuries are caused by fire, hot liquids, clothing irons, hair curlers, caustic substances like drain cleaner, the grounding of an electrical source, and exposure to radiation. Efficiency in the delivery of pediatric burn care is critical. Maximizing resource utilization means continual self-evaluation and economic analysis of therapeutic modalities. Griffiths et al found that most childhood burns are due to scalds, which can be treated for $1061 per percent burn. Paddock et al reduced the cost of treating superficial pediatric burns and reduced the length of stay in hospital using silver-impregnated gauze over traditional methods. Barrett et al found improved cosmesis of skin grafts using cultured epithelial autografts but at a substantially increased cost. Corpron et al showed that pediatric burn units that treat burns >10% total body surface area and operative treatment of pediatric burns regardless of size generate positive revenue. There is a paucity of evidentiary pediatric burn economic data. More research is needed to address areas of pediatric burn care inefficiency. Improving knowledge of cost in all health care endeavors will create competition and drive down expenditures.
Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping
2016-01-01
Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region. PMID:27688742
Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping
2016-04-01
Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.
A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance
NASA Technical Reports Server (NTRS)
Bowe, Aisha Ruth; Santiago, Confesor
2012-01-01
Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.
Schulz, A; Perbix, W; Shoham, Y; Daali, S; Charalampaki, C; Fuchs, P C; Schiefer, J
2017-03-01
Excisional surgical debridement (SD) is still the gold standard in the treatment of deeply burned hands, though the intricate anatomy is easily damaged. Previous studies demonstrated that enzymatic debridement with the bromelain debriding agent NexoBrid ® (EDNX) is more selective and thus can preserve viable tissue with excellent outcome results. So far no method paper has been published presenting different treatment algorithms in this new field. Therefore our aim was to close this gap by presenting our detailed learning curve in EDNX of deeply burned hands. We conducted a single-center prospective observational clinical trial treating 20 patients with deeply burned hands with EDNX. Different anaesthetic procedures, debridement and wound treatment algorithms were compared and main pitfalls described. EDNX was efficient in 90% of the treatments though correct wound bed evaluation was challenging and found unusual compared to SD. Post EDNX surprisingly the majority of the burn surface area was found overestimated (18 wounds). Finally we simplified our process and reduced treatment costs by following a modified treatment algorithm and treating under plexus anaesthesia bedside through a single nurse and one burn surgeon solely. Suprathel ® could be shown to be an appropriate dressing for wound treatment after EDNX. Complete healing (less 5% rest defect) was achieved at an average of day 28. EDNX in deep burned hands is promising regarding handling and duration of the treatment, efficiency and selectivity of debridement, healing potential and early rehabilitation. Following our treatment algorithm EDNX can be performed easily and even without special knowledge in burn wound depth evaluation. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Does prescribed burning affect leaf secondary metabolites in pine stands?
Lavoir, A V; Ormeño, E; Pasqualini, V; Ferrat, L; Greff, S; Lecareux, C; Vila, B; Mévy, J P; Fernandez, C
2013-03-01
Prescribed burning (PB) is gaining popularity as a low-cost forest protection measure that efficiently reduces fuel build-up, but its effects on tree health and growth are poorly understood. Here, we evaluated the impact of PB on plant defenses in Mediterranean pine forests (Pinus halepensis and P. nigra ssp. laricio). These chemical defenses were estimated based on needle secondary metabolites (terpenes and phenolics including flavonoids) and discussed in terms of chlorophyll fluorescence and soil nutrients. Three treatments were applied: absence of burning (control plots); single burns (plots burned once); and repeated burns (plots burned twice). For single burns, we also explored changes over time. In P. laricio, PB tended to trigger only minor modifications consisting exclusively of short-lived increases (observed within 3 months after PB) in flavonoid index, possibly due to the leaf temperature increase during PB. In P. halepensis, PB had detrimental effects on physiological performance, consisting of (i) significant decreases in actual PSII efficiency (ΦPSII) in light-adapted conditions after repeated PB, and (ii) short-lived decreases in variable-to-maximum fluorescence ratio (Fv/Fm) after single PB, indicating that PB actually stressed P. halepensis trees. Repeated PB also promoted terpene-like metabolite production, which increased 2 to 3-fold compared to control trees. Correlations between terpene metabolites and soil chemistry were found. These results suggest that PB impacts needle secondary metabolism both directly (via a temperature impact) and indirectly (via soil nutrients), and that these impacts vary according to species/site location, frequency and time elapsed since last fire. Our findings are discussed with regard to the use of PB as a forest management technique and its consequences on plant investment in chemical defenses.
NASA Astrophysics Data System (ADS)
Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying
2018-04-01
Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct accuracy exceeding 80%, approximately 5% of the areas were wrongly identified, and approximately 10% of the cloud shadow areas were missing. The accuracy of this method is obviously higher than the recognition accuracy of Fmask, which has correct accuracy lower than 60%, and the missing recognition is approximately 40%.
NASA Astrophysics Data System (ADS)
Sánchez Gácita, Madeleine; Longo, Karla M.; Freitas, Saulo R.; Martin, Scot T.
2015-04-01
The biomass burning activity constitutes an important source of aerosols and trace gases to the atmosphere globally. In South America, during the dry season, aerosols prevenient from biomass burning are typically transported to long distances from its sources before being removed though contributing significantly to the aerosol budget on a continental scale. The uncertainties in the magnitude of the impacts on the hydrological cycle, the radiation budget and the biogeochemical cycles on a continental scale are still noteworthy. The still unknowns on the efficiency of biomass burning aerosol to act as cloud condensation nuclei (CCN) and the effectiveness of the nucleation and impaction scavenging mechanisms in removing them from the atmosphere contribute to such uncertainties. In the present work, the explicit modelling of the early stages of cloud development using a parcel model for the typical conditions of the dry season and dry-to-wet transition periods in Amazonia allowed an estimation of the efficiency of nucleation scavenging process and the ability of South American biomass burning aerosol to act as CCN. Additionally, the impaction scavenging was simulated for the same aerosol population following a method based on the widely used concept of the efficiency of collision between a raindrop and an aerosol particle. DMPS and H-TDMA data available in the literature for biomass burning aerosol population in the region indicated the presence of a nearly hydrophobic fraction (on average, with specific hygroscopic parameter κ=0.04, and relative abundance of 73 %) and nearly hygroscopic fraction (κ=0.13, 27 %), externally mixed. The hygroscopic parameters and relative abundances of each hygroscopic group, as well as the weighted average specific hygroscopic parameter for the entire population κ=0.06, were used in calculations of aerosol activation and population mass and number concentration scavenged by nucleation. Results from both groups of simulations are presented and discussed. This work provides an insight on the importance of the inclusion of these processes in regional/global models. The authors thank the Sao Paulo Research Foundation FAPESP for supporting this work through the projects DR 2012/09934-3 and BEPE-DR 2013/02101-9.
Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.
Hawley, B; Volckens, J
2013-02-01
Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.
Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William
2017-04-01
In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines
NASA Technical Reports Server (NTRS)
Schweitzer, P H; Deluca, Frank, Jr
1942-01-01
A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.
Picotte, Joshua J.; Coan, Michael; Howard, Stephen M.
2014-01-01
The effort to utilize satellite-based MODIS, AVHRR, and GOES fire detections from the Hazard Monitoring System (HMS) to identify undocumented fires in Florida and improve the Monitoring Trends in Burn Severity (MTBS) mapping process has yielded promising results. This method was augmented using regression tree models to identify burned/not-burned pixels (BnB) in every Landsat scene (1984–2012) in Worldwide Referencing System 2 Path/Rows 16/40, 17/39, and 1839. The burned area delineations were combined with the HMS detections to create burned area polygons attributed with their date of fire detection. Within our study area, we processed 88,000 HMS points (2003–2012) and 1,800 Landsat scenes to identify approximately 300,000 burned area polygons. Six percent of these burned area polygons were larger than the 500-acre MTBS minimum size threshold. From this study, we conclude that the process can significantly improve understanding of fire occurrence and improve the efficiency and timeliness of assessing its impacts upon the landscape.
Using a 3D tool to document and determine graft loss: A mini-review and case report.
Benjamin, Nicole C; Wurzer, Paul; Voigt, Charles D; Benjamin, Debra A; Herndon, David N
2016-06-01
In severe burns, accurate determination of burn wound size and areas of debridement and graft loss is challenging. In this case report, we describe the use of 3D wound measurement software (BurnCase 3D, RISC Software GmbH, Hagenberg, Austria) in a 29-year-old patient with burns covering 92% of the total body surface area. BurnCase 3D was used to assess burn and monitor all surgical interventions. The software allowed us to calculate areas of graft loss and graft take throughout the acute hospitalization (until 90% of the wounds were covered with homografts). It also enabled preoperative planning for wound coverage and blood loss. Thus, BurnCase 3D appears to be a useful tool for accurate determination of burn wound areas and preoperative planning. However, whether the benefit of more efficient preoperative planning overcomes the disadvantage of the additional time needed to document the wound using the software needs to be evaluated further. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Characteristics Of Cenospheres
NASA Technical Reports Server (NTRS)
Clayton, Richard M.; Back, Lloyd H.
1989-01-01
Studies conducted to determine structure and composition of cenospheres. Burn more slowly than original fuel, contribute to deposits, high-temperature corrosion, emissions of particles, and reduced efficiency of combustion in oil-fired furnaces and boilers, accounting 3 percent of original fuel in droplets. Contributes to efforts to burn fuel oil more completely to avoid deleterious effects of incomplete combustion.
Spectrometer Sensitivity Investigations on the Spectrometric Oil Analysis Program.
1983-04-22
31 H. ACID DISSOLUTION METHOD (ADM) ........... 90 31 I. ANALYSIS OF SAMPLES............................ 31 jJ. PARTICLE TRANSPORT EFFICIENCY OF...THE ROTATING *DISK.................................... 32 I .K. A/E35U-3 ACID DISSOLUTION METHOD.................. 32 L. BURN TIME... ACID DISSOLUTION METHOD ......... ,...,....... 95 3. EFFECT OF BURN TIME ............ 95 4. DIRECT SAMPLE INTRODUCTION .......................... 95
Rationale for seeding grass on the Stanislaus Complex Burnt
Earl C. Ruby
1989-01-01
An emergency survey of the 147,000-acre (59,491 hectare), Stanislaus Complex Burn found that large, continuous, land areas were intensely burned, resulting in strongly hydrophobic soils, with potential to yield catastrophic volumes of flood runoff. The potential cumulative effect of greatly increased runoff efficiency on contiguous watersheds threatened serious...
Enhancement of burning velocity by dissociated oxygen atoms
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2015-09-01
Green technology, such as preventing global warming, has been developed for years. Researches on plasma assisted combustion is one of the technologies and have been done for investigating more efficient combustion, more efficient use of fossil fuel with plasmas or applying electric fields. In the ignition time delay analyses with the dissociated oxygen atoms which is generated by non-equilibrium plasma had significant effect on the ignition time. In this paper, dissociated oxygen could effect on burning velocity or not has been examined using CHEMKIN. As a result, no effect can be seen with dissociation degree of lower than 10-3. But there is an effect on the enhancement of burning velocity with higher degree of 10-3. At the dissociation degree of 5×10-2, the burning velocity is enhanced at a factor of 1.24. And it is found that the distributions of each species in front of preheat zone are completely different. The combustion process is proceeded several steps in advance, and generation of H2O, CO and CO2 can be seen before combustion in higher dissociation case. This work was supported by KAKENHI (22340170).
Emissions from prescribed burning of timber slash piles in Oregon
NASA Astrophysics Data System (ADS)
Aurell, Johanna; Gullett, Brian K.; Tabor, Dennis; Yonker, Nick
2017-02-01
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount of biomass burned. The effect on emissions from covering the piles with polyethylene (PE) sheets to prevent fuel wetting versus uncovered piles was also determined. Results showed that the uncovered ("wet") piles burned with lower combustion efficiency and higher emission factors for VOCs, PM2.5, PCDD/PCDF, and PAHs. Removal of the PE prior to ignition, variation of PE size, and changing PE thickness resulted in no statistical distinction between emissions. Results suggest that dry piles, whether covered with PE or not, exhibited statistically significant lower emissions than wet piles due to better combustion efficiency.
Mercury emissions from biomass burning in China.
Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei
2011-11-01
Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling.
The influence of black carbon on the sorption and desorption of two model PAHs in natural soils.
Chi, Fung-Hwa
2014-01-01
Black carbons (BC) which result from the incomplete combustion of farm waste [man-made (burned) BC] are highly absorbent. In Taiwan, the burning of farm waste known as slash and burn is common. The BCs from the burning may present an environmental challenge. Little is known about the effect of BCs on the transport of hydrophobic organic contaminants (HOC). This study investigates the sorption of anthracene and naphthalene to BCs in soil and efficiency of the surfactants Tween 80 and Triton X-100 in their removal. Both surfactants demonstrated 2-6 times increased solubility in the soils with the addiction of BC. Column experiments were performed to imitate the transportation of these contaminants in groundwater through soils before and after adding BC produced by burning farm waste in the lab. We found significantly increased sorption of anthracene in soil added with BCs produced in the lab, suggesting that fraction of organic carbon (foc) can contribute to sorption of such HOCs. Sorption of naphthalene was increased but not significantly. Comparing the concentrations of contaminants, we found the soil containing BC from burned farm waste absorbed HOC more efficiently than the organic BC (naturally-occurring) in the original soil. Therefore, sorption capacity and influence on the transport of HOC cannot be estimated simply by the foc of the soil because the two BCs differ greatly in their sorption ability. BC from farm waste absorbs more contaminants than naturally occurring BC in the soil.
Waste burning and heat recovery characteristics of a mass burn incineration system.
Chen, Wei-Hsin
2003-02-01
An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.
Civilian blast-related burn injuries
Patel, J.N.; Tan, A.; Dziewulski, P.
2016-01-01
Summary There is limited English literature describing the experience of a civilian hospital managing blast-related burn injuries. As the largest regional burn unit, we reviewed our cases with the aim of identifying means to improve current management. A 6-year retrospective analysis of all patients coded as sustaining blast-related burns was conducted through the unit’s burns database. Medical case notes were reviewed for information on burn demographics, management and outcomes. 42 patients were identified. Male to female ratio was 37:5. Age range was 12-84 years, (mean=33 years). Total body surface area (%TBSA) burn ranged from 0.25% to 60%, (median=1%). The most common burn injury was flame (31/42, 73.8%). Gas explosions were the most common mechanism of injury (19 cases; 45.2%). 7/42 cases (16.7%) had full ATLS management pre-transfer to the burns unit. The Injury Severity Score (ISS) ranged from 0-43 (median=2). 17/42 (40.4%) patients required admission. 37/36 (88.1%) patients were managed conservatively of which 1 patient later required surgery due to deeper burns. 5/42 (11.9%) patients required surgical management at presentation and these were noted to be burns with >15% TBSA requiring resuscitation. One case required emergency escharotomies and finger amputations. All patients survived their burn injuries. Blast-related burn injuries are generally uncommon in the civilian setting. Following proper assessment, most of these cases can be deemed as minor injuries and managed conservatively. Improvement in burns management education and training at local emergency departments would provide efficient patient care and avoid unnecessary referrals to a burns unit. PMID:27857651
Barbosa, Natália Guimarães; Gonzaga, Amanda Katarinny Goes; de Sena Fernandes, Luzia Leiros; da Fonseca, Aldilane Gonçalves; Queiroz, Salomão Israel Monteiro Lourenço; Lemos, Telma Maria Araújo Moura; da Silveira, Éricka Janine Dantas; de Medeiros, Ana Miryam Costa
2018-03-03
The aim of this study was to evaluate the efficacy of low-level laser therapy (LLLT) and alpha-lipoic acid (ALA) in the treatment of burning mouth syndrome (BMS) and secondary oral burning (SOB) by unstimulated sialometry, symptom assessment, and measurement of salivary TNF-α levels. Forty-four patients were randomized into four treatment groups: BMS/laser (n = 10), BMS/ALA (n = 5), SOB/laser (n = 15), and SOB/ALA (n = 14). The control group consisted of eight healthy female subjects. Unstimulated salivary flow was measured before and after treatment, and the collected saliva was stored at - 20 °C for the analysis of TNF-α. Symptoms were evaluated before and after treatment using a pain visual analog scale. Most patients were women (81.8%) during menopause (72.2%). LLLT and ALA were efficient in increasing salivary flow only in BMS but provided symptom relief in both conditions. TNF-α levels did not differ between patients with BMS and SOB or between those patients and the control group. No differences were observed in posttreatment TNF-α levels in either condition. The results of this study suggest that LLLT and ALA are efficient therapies in reducing burning mouth symptoms, with LLLT being more efficient than ALA.
Strategies for Choosing Descent Flight-Path Angles for Small Jets
NASA Technical Reports Server (NTRS)
Wu, Minghong Gilbert; Green, Steven M.
2012-01-01
Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution.
Battipaglia, Giovanna; Savi, Tadeja; Ascoli, Davide; Castagneri, Daniele; Esposito, Assunta; Mayr, Stefan; Nardini, Andrea
2016-08-01
Prescribed burning (PB) is a widespread management technique for wildfire hazard abatement. Understanding PB effects on tree ecophysiology is key to defining burn prescriptions aimed at reducing fire hazard in Mediterranean pine plantations, such as Pinus pinea L. stands. We assessed physiological responses of adult P. pinea trees to PB using a combination of dendroecological, anatomical, hydraulic and isotopic analyses. Tree-ring widths, xylem cell wall thickness, lumen area, hydraulic diameter and tree-ring δ(13)C and δ(18)O were measured in trees on burned and control sites. Vulnerability curves were elaborated to assess tree hydraulic efficiency or safety. Despite the relatively intense thermal treatment (the residence time of temperatures above 50 °C at the stem surface ranged between 242 and 2239 s), burned trees did not suffer mechanical damage to stems, nor significant reduction in radial growth. Moreover, the PB did not affect xylem structure and tree hydraulics. No variations in (13)C-derived water use efficiency were recorded. This confirmed the high resistance of P. pinea to surface fire at the stem base. However, burned trees showed consistently lower δ(18)O values in the PB year, as a likely consequence of reduced competition for water and nutrients due to the understory burning, which increased both photosynthetic activity and stomatal conductance. Our multi-approach analysis offers new perspectives on post-fire survival strategies of P. pinea in an environment where fires are predicted to increase in frequency and severity during the 21st century. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cross calibration of GF-1 satellite wide field of view sensor with Landsat 8 OLI and HJ-1A HSI
NASA Astrophysics Data System (ADS)
Liu, Li; Gao, Hailiang; Pan, Zhiqiang; Gu, Xingfa; Han, Qijin; Zhang, Xuewen
2018-01-01
This paper focuses on cross calibrating the GaoFen (GF-1) satellite wide field of view (WFV) sensor using the Landsat 8 Operational Land Imager (OLI) and HuanJing-1A (HJ-1A) hyperspectral imager (HSI) as reference sensors. Two methods are proposed to calculate the spectral band adjustment factor (SBAF). One is based on the HJ-1A HSI image and the other is based on ground-measured reflectance. However, the HSI image and ground-measured reflectance were measured at different dates, as the WFV and OLI imagers passed overhead. Three groups of regions of interest (ROIs) were chosen for cross calibration, based on different selection criteria. Cross-calibration gains with nonzero and zero offsets were both calculated. The results confirmed that the gains with zero offset were better, as they were more consistent over different groups of ROIs and SBAF calculation methods. The uncertainty of this cross calibration was analyzed, and the influence of SBAF was calculated based on different HSI images and ground reflectance spectra. The results showed that the uncertainty of SBAF was <3% for bands 1 to 3. Two other large uncertainties in this cross calibration were variation of atmosphere and low ground reflectance.
Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager
Keith, Darryl; Rover, Jennifer; Green, Jason; Zalewsky, Brian; Charpentier, Mike; Hursby, Glen; Bishop, Joseph
2018-01-01
In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance product and field-collected chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl-aconcentrations using spectral data. We found that using the three band reflectance approach with a combination of OLI spectral bands 1, 3, and 5 produced the most promising results for accurately estimating chl-a concentrations in lakes (R2 value of 0.66; root mean square error value of 8.9 µg l−1). Using this model, we forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.
The Sentinel-2 MSI Can Increase the Temporal Resolution of 30m Satellite-Derived LAI Estimates
NASA Astrophysics Data System (ADS)
Dungan, J. L.; Li, S.; Ganguly, S.; Wang, W.; Nemani, R. R.; Ju, J.; Claverie, M.; Masek, J. G.
2016-12-01
The successful launch of the European Space Agency (ESA) Sentinel-2A (S2-A) on 23 June 2015 with its MultiSpectral Instrument (MSI) provides an important means to augment Earth-observation capabilities following the legacy of Landsat. After the three-month satellite commissioning campaign, the MSI onboard S-2A is performing very well (ESA, 2015). By 3 December 2015, the sensor data records have achieved provisional maturity status and have been accessed in level-1C Top-Of-Atmosphere (TOA) reflectance by the remote sensing community worldwide. Near-nadir observations by the MSI onboard S-2A and the Operational Land Imager (OLI) onboard Landsat 8 were collected during Simultaneous Nadir Overpasses as well as nearly coincident overpasses. This paper presents a processing chain using harmonized S-2A MSI and Landsat 8 OLI sensors to obtain increased temporal resolution in Leaf Area Index (LAI) estimates using the red-edge band B8A of MSI to replace the NIR band B08. Results demonstrate that LAI estimates from the MSI and OLI are comparable, and, given sufficient preprocessing for atmospheric correction and geometric rectification, can be used interchangeably to improve the frequency with which low LAI canopies can be monitored.
Cheng, R.K.
1998-04-07
A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.
Cheng, Robert K.
1998-01-01
A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.
Stellar evolution with turbulent diffusion. I. A new formalism of mixing.
NASA Astrophysics Data System (ADS)
Deng, L.; Bressan, A.; Chiosi, C.
1996-09-01
In this paper we present a new formulation of diffusive mixing in stellar interiors aimed at casting light on the kind of mixing that should take place in the so-called overshoot regions surrounding fully convective zones. Key points of the analysis are the inclusion the concept of scale length most effective for mixing, by means of which the diffusion coefficient is formulated, and the inclusion of intermittence and stirring, two properties of turbulence known from laboratory fluid dynamics. The formalism is applied to follow the evolution of a 20Msun_ star with composition Z=0.008 and Y=0.25. Depending on the value of the diffusion coefficient holding in the overshoot region, the evolutionary behaviour of the test stars goes from the case of virtually no mixing (semiconvective like structures) to that of full mixing over there (standard overshoot models). Indeed, the efficiency of mixing in this region drives the extension of the intermediate fully convective shell developing at the onset of the the shell H-burning, and in turn the path in the HR Diagram (HRD). Models with low efficiency of mixing burn helium in the core at high effective temperatures, models with intermediate efficiency perform extended loops in the HRD, finally models with high efficiency spend the whole core He-burning phase at low effective temperatures. In order to cast light on this important point of stellar structure, we test whether or not in the regions of the H-burning shell a convective layer can develop. More precisely, we examine whether the Schwarzschild or the Ledoux criterion ought to be adopted in this region. Furthermore, we test the response of stellar models to the kind of mixing supposed to occur in the H-burning shell regions. Finally, comparing the time scale of thermal dissipation to the evolutionary time scale, we get the conclusion that no mixing in this region should occur. The models with intermediate efficiency of mixing and no mixing at all in the shell H-burning regions are of particular interest as they possess at the same time evolutionary characteristics that are separately typical of models calculated with different schemes of mixing. In other words, the new models share the same properties of models with standard overshoot, namely a wider main sequence band, higher luminosity, and longer lifetimes than classical models, but they also possess extended loops that are the main signature of the classical (semiconvective) description of convection at the border of the core.
OlyMPUS - The Ontology-based Metadata Portal for Unified Semantics
NASA Astrophysics Data System (ADS)
Huffer, E.; Gleason, J. L.
2015-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support data consumers and data providers, enabling the latter to register their data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS leverages the semantics and reasoning capabilities of ODISEES to provide data producers with a semi-automated interface for producing the semantically rich metadata needed to support ODISEES' data discovery and access services. It integrates the ODISEES metadata search system with multiple NASA data delivery tools to enable data consumers to create customized data sets for download to their computers, or for NASA Advanced Supercomputing (NAS) facility registered users, directly to NAS storage resources for access by applications running on NAS supercomputers. A core function of NASA's Earth Science Division is research and analysis that uses the full spectrum of data products available in NASA archives. Scientists need to perform complex analyses that identify correlations and non-obvious relationships across all types of Earth System phenomena. Comprehensive analytics are hindered, however, by the fact that many Earth science data products are disparate and hard to synthesize. Variations in how data are collected, processed, gridded, and stored, create challenges for data interoperability and synthesis, which are exacerbated by the sheer volume of available data. Robust, semantically rich metadata can support tools for data discovery and facilitate machine-to-machine transactions with services such as data subsetting, regridding, and reformatting. Such capabilities are critical to enabling the research activities integral to NASA's strategic plans. However, as metadata requirements increase and competing standards emerge, metadata provisioning becomes increasingly burdensome to data producers. The OlyMPUS system helps data providers produce semantically rich metadata, making their data more accessible to data consumers, and helps data consumers quickly discover and download the right data for their research.
NASA Astrophysics Data System (ADS)
Taylor, A. H.; Belmecheri, S.; Harris, L. B.
2016-12-01
We identified variation on water use efficiency interpreted from carbon 13 in tree ring cellulose in dense ponderosa pines forests in Washington and Arizona. Historically, these forests burned every decade until fires were suppressed beginning in the early twentieth century. The reduction in fire caused large increases in forest density and forest biomass and potential for intense fire. Forests with hazardous fuels are common in the western United States and these types of forests are treated with mechanical thinning and mechanical thinning and burning to reduce hazardous fuels and fire intensity. At each site we extracted tree ring samples from five trees in each treatment type and a control to identify the effects of fuel treatment of concentration of carbon 13 in tree ring cellulose. Water use efficiency as measured by carbon 13 increased after fuel treatments. Treatment effects were larger for the mechanical plus burn treatment than for the mechanical treatment in each study area compared to the control stands Our results suggest that fuel treatments reduce sensitivity of tree growth to climate and increase water use efficiency. Since tree ring carbon 13 is related to plant productivity, carbon 13 in tree rings can be used as a metric of change in ecosystem function for evaluating fuel treatments.
Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.
Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A
2010-04-01
Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.
Schiefer, Jennifer Lynn; Arens, Elena; Grigutsch, Daniel; Rath, Rebekka; Hoffmann, Alexandra; Fuchs, Paul Christian; Schulz, Alexandra
2017-05-01
An ever-increasing number of commercially available dressings have been applied to treat superficial burns with the aim to reduce pain and inflammation and lead to a fast wound healing and scar reduction. Nevertheless the search for cheap and effective wound dressing proceeds. Dressilk ® consisting of silkworm silk showed good results for wound healing in regards to scarring, biocompatibility and reduction of inflammation and pain. Therefore it seemed to be an interesting product for the treatment of superficial burns. In a prospective intra-individual study the healing of superficial burns was evaluated after the treatment with Dressilk ® and Biobrane ® in 30 patients with burns of the hand and face. During wound healing pain, active bleeding, exudation, dressing change and inflammation were evaluated using the Verbal Rating Scale 1-10. Three months later scar appearance was assessed by VSS (Vancouver Scar Scale) and POSAS (Patient and Observer Scar Scale). With regard to re-epithelialization, pain, inflammation and acute bleeding both dressings were equivalent. High subjective satisfaction rates were reported for both Dressilk ® and Biobrane ® dressings in regard to comfort and mobility of the face. Biobrane ® , applied as a glove was subjectively preferred for burns of the hand. Regarding their cost efficiency Dressilk ® was clearly superior to Biobrane ® . Long-term results were similar. The "ideal" wound dressing maximizes patients' comfort while reducing pain and promoting wound healing. Dressilk ® and Biobrane ® both provided an effective and safe healing environment, showing low overall complication rates with respect to infection and exudation on superficial burns of the hand and face. Therefore Dressilk ® , being clearly superior to Biobrane ® in cost efficiency is an interesting alternative especially for the treatment of superficial burns of faces. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries.
Santos, Moises Oliveira Dos; Latrive, Anne; De Castro, Pedro Arthur Augusto; De Rossi, Wagner; Zorn, Telma Maria Tenorio; Samad, Ricardo Elgul; Freitas, Anderson Zanardi; Cesar, Carlos Lenz; Junior, Nilson Dias Vieira; Zezell, Denise Maria
2017-03-01
Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were non-invasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.
A ranking system for prescribed burn prioritization in Table Mountain National Park, South Africa.
Cowell, Carly Ruth; Cheney, Chad
2017-04-01
To aid prescribed burn decision making in Table Mountain National Park, in South Africa a priority ranking system was tested. Historically a wildfire suppression strategy was adopted due to wildfires threatening urban areas close to the park, with few prescribed burns conducted. A large percentage of vegetation across the park exceeded the ecological threshold of 15 years. We held a multidisciplinary workshop, to prioritize areas for prescribed burning. Fire Management Blocks were mapped and assessed using the following seven categories: (1) ecological, (2) management, (3) tourism, (4) infrastructure, (5) invasive alien vegetation, (6) wildland-urban interface and (7) heritage. A priority ranking system was used to score each block. The oldest or most threatened vegetation types were not necessarily the top priority blocks. Selected blocks were burnt and burning fewer large blocks proved more effective economically, ecologically and practically due to the limited burning days permitted. The prioritization process was efficient as it could be updated annually following prescribed burns and wildfire incidents. Integration of prescribed burn planning and wildfire suppression strategies resulted in a reduction in operational costs. We recommend protected areas make use of a priority ranking system developed with expert knowledge and stakeholder engagement to determine objective prescribed burn plans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1981-01-01
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1985-02-12
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1980-01-01
To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.
A regional estimate of convective transport of CO from biomass burning
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Scala, John R.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne
1992-01-01
A regional-scale estimate of the fraction of biomass burning emissions that are transported to the free troposphere by deep convection is presented. The focus is on CO and the study region is a part of Brazil that underwent intensive deforestation in the 1980s. The method of calculation is stepwise, scaling up from a prototype convective event, the dynamics of which are well-characterized, to the vertical mass flux of carbon monoxide over the region. Given uncertainties in CO emissions from biomass burning and the representativeness of the prototype event, it is estimated that 10-40 percent of CO emissions from the burning region may be rapidly transported to the free troposphere over the burning region. These relatively fresh emissions will produce O3 efficiently in the free troposphere where O3 has a longer lifetime than in the boundary layer.
An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor.
Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R
2017-09-01
A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'″-di(2-octyldodecyl)-2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC 71 BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC 71 BM devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Lin, Cherng-Yuan; Chen, Wei-Cheng
2004-01-01
A marine furnace made of stainless steel. combined with an automatic small-size oil-fired burner, was used to experimentally investigate the influences of calcium oxide content in fuel oil on the combustion and emission characteristics under varying temperatures and humidity of the inlet air. Marine fuel oil generally contains various extents of metallic oxides such as CaO, Fe2O3, V2O5, etc which might affect its burning properties. In this study, an air-conditioner was used to adjust the humidity and temperatures of the inlet air to preset values prior to entering the burner. The adjusted inlet air atomized the marine diesel oil A containing a calcium oxide compound, to form a heterogeneous reactant mixture. The reactant mixture was thereafter ignited by a high-voltage electrode in the burner and burned within the marine furnace. The probes of a gas analyzer, H2S analyzer and a K-type thermocouple were inserted into the radial positions of the furnace through the eight rectangular slots which were cut in the upper side of the furnace. The experimental results showed that an increase of either humidity or temperature of the inlet air caused the promotion of the reaction rate of the fuel. The existence of calcium oxide compound in the diesel fuel also facilitated the oxidation reaction in the combustion chamber. The addition of CaO in the diesel fuel under the conditions of higher temperature or higher relative humidity of the inlet air produced the following: higher concentrations of CO2, SO2, and H2S emissions, an increased burning efficiency, a lowered O2 level, production of excess air and NOx emissions as well as a lower thermal loss and a lower burning gas temperature, as compared with the conditions of a lower temperature or a lower humidity of the inlet air. In addition, the burning of diesel fuel with added CaO compound caused a large variation in the burning efficiency, thermal loss, plus CO2, O2, and excess air emissions between the conditions of higher temperature/higher humidity and lower temperature/lower humidity inlet air compared with no CaO addition in the fuel. Moreover, the burning efficiency and the concentrations of excess air and O2 emissions increased, while the thermal loss, burning gas temperature and H2S, SO2, NOx, and CO2 emissions decreased with the increase of the axial distance from the measured location to the burner nozzle.
Addition agents effects on hydrocarbon fuels burning
NASA Astrophysics Data System (ADS)
Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.
2016-01-01
Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.
Quantification of holmium:YAG optical tip degradation
NASA Astrophysics Data System (ADS)
Mues, Adam C.; Teichman, Joel M. H.; Knudsen, Bodo E.
2009-02-01
The holmium:yttrium aluminum garnet (YAG) laser is the gold standard laser for intracorporeal lithotripsy. Optical fibers are utilized to transmit laser energy to the surface of a stone for fragmentation. During lithotripsy, fiber tip degradation (burn back) can occur. The exact mechanism for tip degradation and related factors are not completely understood, and have not been investigated. This characteristic is important because fiber burn back may affect diminish fragmentation efficiency, increase operative time, and increase cost due to the need for fiber replacement. We hypothesize that fiber tip degradation (burn back) varies amongst different commercially available holmium:YAG laser fibers.
Continuous Calibration Improvement in Solar Reflective Bands: Landsat 5 Through Landsat 8
NASA Technical Reports Server (NTRS)
Mishra, Nischal; Helder, Dennis; Barsi, Julia; Markham, Brian
2016-01-01
Launched in February 2013, the Operational Land Imager (OLI) on-board Landsat 8 continues to perform exceedingly well and provides high science quality data globally. Several design enhancements have been made in the OLI instrument relative to prior Landsat instruments: pushbroom imaging which provides substantially improved Signal-to-Noise Ratio (SNR), spectral bandpasses refinement to avoid atmospheric absorption features, 12 bit data resolution to provide a larger dynamic range that limits the saturation level, a set of well-designed onboard calibrators to monitor the stability of the sensor. Some of these changes such as refinements in spectral bandpasses compared to earlier Landsats and well-designed on-board calibrator have a direct impact on the improved radiometric calibration performance of the instrument from both the stability of the response and the ability to track the changes. The on-board calibrator lamps and diffusers indicate that the instrument drift is generally less than 0.1% per year across the bands. The refined bandpasses of the OLI indicate that temporal uncertainty of better than 0.5% is possible when the instrument is trended over vicarious targets such as Pseudo Invariant Calibration Sites (PICS), a level of precision that was never achieved with the earlier Landsat instruments. The stability measurements indicated by on-board calibrators and PICS agree much better compared to the earlier Landsats, which is very encouraging and bodes well for the future Landsat missions too.
NASA Astrophysics Data System (ADS)
Yang, Huijin; Pan, Bin; Wu, Wenfu; Tai, Jianhao
2018-07-01
Rice is one of the most important cereals in the world. With the change of agricultural land, it is urgently necessary to update information about rice planting areas. This study aims to map rice planting areas with a field-based approach through the integration of multi-temporal Sentinel-1A and Landsat-8 OLI data in Wuhua County of South China where has many basins and mountains. This paper, using multi-temporal SAR and optical images, proposes a methodology for the identification of rice-planting areas. This methodology mainly consists of SSM applied to time series SAR images for the calculation of a similarity measure, image segmentation process applied to the pan-sharpened optical image for the searching of homogenous objects, and the integration of SAR and optical data for the elimination of some speckles. The study compares the per-pixel approach with the per-field approach and the results show that the highest accuracy (91.38%) based on the field-based approach is 1.18% slightly higher than that based on the pixel-based approach for VH polarization, which is brought by eliminating speckle noise through comparing the rice maps of these two approaches. Therefore, the integration of Sentinel-1A and Landsat-8 OLI images with a field-based approach has great potential for mapping rice or other crops' areas.
CONTINUOUS CALIBRATION IMPROVEMENT: LANDSAT 5 THROUGH LANDSAT 8
Mishra, Nischal; Helder, Dennis; Barsi, Julia; Markham, Brian
2018-01-01
Launched in February 2013, the Operational Land Imager (OLI) on-board Landsat 8 continues to perform exceedingly well and provides high science quality data globally. Several design enhancements have been made in the OLI instrument relative to prior Landsat instruments: pushbroom imaging which provides substantially improved Signal-to-Noise Ratio (SNR), spectral bandpasses refinement to avoid atmospheric absorption features, 12 bit data resolution to provide a larger dynamic range that limits the saturation level, a set of well-designed onboard calibrators to monitor the stability of the sensor. Some of these changes such as refinements in spectral bandpasses compared to earlier Landsats and well-designed on-board calibrator have a direct impact on the improved radiometric calibration performance of the instrument from both the stability of the response and the ability to track the changes. The on-board calibrator lamps and diffusers indicate that the instrument drift is generally less than 0.1% per year across the bands. The refined bandpasses of the OLI indicate that temporal uncertainty of better than 0.5% is possible when the instrument is trended over vicarious targets such as Pseudo Invariant Calibration Sites (PICS), a level of precision that was never achieved with the earlier Landsat instruments. The stability measurements indicated by on-board calibrators and PICS agree much better compared to the earlier Landsats, which is very encouraging and bodes well for the future Landsat missions too. PMID:29449747
NASA Astrophysics Data System (ADS)
Saputra, A. N.; Danoedoro, P.; Kamal, M.
2017-12-01
Remote sensing has a potential for observing, mapping and monitoring the quality of lake water. Riam Kanan is a reservoir which has a water resource from Riam Kanan River with the area width of its watershed about 1043 km2. The accumulation of nutrient in this reservoir simultaneously deteriorates the condition of waters, which can cause an increasingly growth of harm micro algae or Harmful Algal Blooms (HABs). This research applied Carlson’s trophic status index (CTSI) at Riam Kanan Reservoir using Landsat-8 OLI satellite image. The Landsat 8 OLI image was recorded on 14 August 2016 and was used in this research based on its surface reflectance values. The result of correlation test shows that band 3 of the image as coefficient of chlorophyll-a parameter, channel 2 as coefficient of phosphate, and band ratio of SDT as coefficient of SDT. Based on the result of modelling using CTSI, the majority scale of CTSI score at Riam Kanan Reservoir is between 60 to70 in medium eutrophic class. The class of medium eutrophic at Riam Kanan Reservoir potentially emerges the threat both of the improvement of water fertility and the reduction of water quality. Improvement of the fertility is apprehensive since it can trigger an explosion of micro algae which will endanger the ecological condition at the area of Riam Kanan Reservoir.
NASA Astrophysics Data System (ADS)
Guelachvili, G.
This document is part of Subvolume B `Linear Triatomic Molecules', Part 9, of Volume 20 `Molecular Constants mostly from Infrared Spectroscopy' of Landolt-Börnstein Group II `Molecules and Radicals'.
NASA Astrophysics Data System (ADS)
Inomata, Satoshi; Tanimoto, Hiroshi; Pan, Xiaole; Taketani, Fumikazu; Komazaki, Yuichi; Miyakawa, Takuma; Kanaya, Yugo; Wang, Zifa
2015-05-01
The emission factors (EFs) of nonmethane volatile organic compounds (NMVOCs) emitted during the burning of Chinese crop residue were investigated as a function of modified combustion efficiency in laboratory experiments. NMVOCs, including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons, were monitored by proton-transfer-reaction mass spectrometry. Rape plant was burned in dry conditions and wheat straw was burned in both wet and dry conditions to simulate the possible burning of damp crop residue in regions of high temperature and humidity. We compared the present data to field data reported by Kudo et al. (2014). Good agreement between field and laboratory data was obtained for aromatics under relatively more smoldering combustion of dry samples, but laboratory data were slightly overestimated compared to field data for oxygenated VOC (OVOC). When EFs from the burning of wet samples were investigated, the consistency between the field and laboratory data for OVOCs was stronger than for dry samples. This may be caused by residual moisture in crop residue that has been stockpiled in humid regions. Comparison of the wet laboratory data with field data suggests that Kudo et al. (2014) observed the biomass burning plumes under relatively more smoldering conditions in which approximately a few tens of percentages of burned fuel materials were wet.
Emission from open burning of municipal solid waste in India.
Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh
2017-07-27
Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.
NASA Astrophysics Data System (ADS)
Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay
2000-01-01
Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.
The immersion freezing behavior of ash particles from wood and brown coal burning
NASA Astrophysics Data System (ADS)
Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike
2016-11-01
It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.
Boiler MACT Technical Assistance (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-03-01
Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less
Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.
2017-01-01
The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984
Burned area detection based on Landsat time series in savannas of southern Burkina Faso
NASA Astrophysics Data System (ADS)
Liu, Jinxiu; Heiskanen, Janne; Maeda, Eduardo Eiji; Pellikka, Petri K. E.
2018-02-01
West African savannas are subject to regular fires, which have impacts on vegetation structure, biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with seasonal fires can greatly benefit decision making in land management. Since coarse resolution burned area products cannot meet the accuracy needed for fire management and climate modelling at local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In this study, we developed an algorithm for continuous monitoring of annual burned areas using Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting with Landsat time series and breakpoint identification in the time series data. This approach was tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission errors. This represents a significant improvement in comparison with MODIS burned area product (67.6%), which had more omission errors than commission errors, indicating underestimation of the total burned area. By observing the spatial distribution of burned areas, we found that the Landsat based method misclassified cropland and cloud shadows as burned areas due to the similar spectral response, and MODIS burned area product omitted small and fragmented burned areas. The proposed algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 missing lines, therefore having a high potential for being applied in other landscapes in future studies.
Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation
NASA Astrophysics Data System (ADS)
Milcarek, Ryan J.; Ahn, Jeongmin
2018-03-01
Micro-tubular flame-assisted fuel cells (mT-FFC) were recently proposed as a modified version of the direct flame fuel cell (DFFC) operating in a dual chamber configuration. In this work, a rich-burn, quick-mix, lean-burn (RQL) combustor is combined with a micro-tubular solid oxide fuel cell (mT-SOFC) stack to create a rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation system. The system is tested for rapid startup and achieves peak power densities after only 35 min of testing. The mT-FFC power density and voltage are affected by changes in the fuel-lean and fuel-rich combustion equivalence ratio. Optimal mT-FFC performance favors high fuel-rich equivalence ratios and a fuel-lean combustion equivalence ratio around 0.80. The electrical efficiency increases by 150% by using an intermediate temperature cathode material and improving the insulation. The RFQL combustor and power generation system achieves rapid startup, a simplified balance of plant and may have applications for reduced NOx formation and combined heat and power.
LOW EMISSION AND HIGH EFFICIENCY RESIDENTIAL PELLET-FIRED HEATERS
The paper gives results of air emissions testing and efficiency testing on new commercially available under-feed and top-feed residential heaters burning hardwood- and softwood-based pellets. The results were compared with data from earlier models. Reductions in air emissions w...
NASA Astrophysics Data System (ADS)
Polen, M.; Jahl, L.; Jahn, L.; Somers, J.; Sullivan, R. C.
2017-12-01
Recent laboratory and field studies have found that biomass burning can produce ice nucleating particles (INP) with varying efficiencies depending on fuel and burn conditions. Few studies have examined the ice nucleating potential of bottom ash, which has the potential to be lofted during intense burning events. To date, no publications have examined the impact of atmospheric aging or lofted soil particles on INP emitted from biomass burning. This study investigated each of these aspects through laboratory biomass fuel combustion studies. We burned a number of grasses from different locations, and collected filter samples of fresh and photochemically aged biomass burning aerosol, as well as bottom ash collected after the burn. Some burns included soil that the grasses grew in to test for the importance of soil dust to INP emissions lofting during intense fires. The composition and mixing state of the aerosol was determined using a suite of online and offline single-particle techniques. Our findings suggest that bottom ash is a relatively weak INP, but all samples froze consistently at -20 °C < T < -25 °C. We also found that oxidation of the biomass burning aerosol typically enhances ice nucleating activity over fresh, unaged particles, increasing the ice active site surface density by up to a factor of 3 at T = -25 °C. Lastly, the presence of soil dust can greatly enhance INP concentrations for biomass burning events with an increase in the freezing temperature spectrum by > 3 °C. Detailed analysis of these samples aims to provide a clearer understanding of what components of biomass burning increase the ambient concentrations of ice nucleation active particles, and how their ice nucleation properties evolve during atmospheric aging.
Karunamoorthi, Kaliyaperumal; Mulelam, Adane; Wassie, Fentahun
2008-08-01
Laboratory study was carried out to evaluate the repellent efficiency of most commonly known four traditional insect/mosquito repellent plants Wogert [vernacular name (local native language, Amharic); Silene macroserene], Kebercho [vernacular name (local native language, Amharic); Echinops sp.], Tinjut [vernacular name (local native language, Amharic); Ostostegia integrifolia], and Woira[vernacular name (local native language, Amharic); Olea europaea] against Anopheles arabiensis under the laboratory conditions. One hundred (4-5 days old) female A. arabiensis were introduced into the both 'control' and 'test' repellent chamber through the hole on top. Traditional charcoal stoves were used for direct burning. The experiment was conducted by applying the smoke into the repellent "test" mosquito cage by direct burning of 25 gm of dried plant materials (leaves and roots) until plant materials completely burned. The number of mosquitoes driving away from the "test" and "control" cage was recorded for every 5 min. In the present investigation, the results clearly revealed that the roots of S. macroserene has potent repellent efficiency (93.61%) and was the most effective. The leaves of Echinops sp. (92.47%), leaves of O. integrifolia (90.10%) and O. europaea (79.78%) were also effective. Roots of S. macroserene exhibited the highest repellent efficiency by direct burning. The present study identified these four traditional indigenous insect/mosquito repellent plant materials are very promising and can be used as safer alternative to modern synthetic chemical repellents against mosquito vectors of disease. Since people have been using these plants for some medicinal purposes, no side effects have been found.
NASA Astrophysics Data System (ADS)
Burdette, David A., Jr.
Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3-point stencil, the morphing wing burned 2.53% less fuel than its optimized non-morphing counterpart. Expanding further to a 7-point stencil, the morphing wing used 5.04% less fuel. Additional studies demonstrate that the size of the morphing device can be reduced without sizable performance reductions, and that as aircraft wings' aspect ratios increase, the effectiveness of morphing trailing edge devices increases. The final set of studies in this thesis consider mission analy- sis, including climb, multi-altitude cruise, and descent. These mission analyses were performed with a number of surrogate models, trained with O(100) optimizations. These optimizations demonstrated fuel burn reductions as large as 5% at off-design conditions. The fuel burn predicted by the mission analysis was up to 2.7% lower for the morphing wing compared to the conventional configuration.
Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles
Seyedehsan Hosseini; Qi Li; Manish Shrivastava; David R. Weise; David R. Cocker; J. Wayne Miller; Heejung S Jung
2014-01-01
Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activitiesâactivities associated with development and care of forestsâdry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (
NASA Astrophysics Data System (ADS)
Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Whybrew, Lauren E.; Hadley, Odelle; McNair, Fran; Gao, Honglian; Jaffe, Daniel A.; Thornton, Joel A.
2016-08-01
We present on-line molecular composition measurements of wintertime particulate matter (PM) during 2014 using an iodide-adduct high-resolution, time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO). These measurements were part of an intensive effort to characterize PM in the region with a focus on ultrafine particle sources. The technique was used to detect and quantify different classes of wood burning tracers, including levoglucosan, methoxyphenols, and nitrocatechols, among other compounds in near real-time. During the campaign, particulate mass concentrations of compounds with the same molecular composition as levoglucosan ranged from 0.002 to 19 μg/m3 with a median mass concentration of 0.9 μg/m3. Wood burning markers, in general, showed a strong diurnal pattern peaking at night and in the early morning. This diurnal profile combined with cold, stagnant conditions, wind directions from predominantly residential areas, and observations of lower combustion efficiency at night support residential wood burning as a dominant source of wintertime PM in Port Angeles. This finding has implications for improving wintertime air quality in the region by encouraging the use of high efficiency wood-burning stoves or other cleaner home heating options throughout the relevant domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, N.; Davis, D.C.; Hyde, G.M.
1983-12-01
In this study the solid waste (pomace) from grape and apple juice processing was chemically analyzed to determine high heating value. Grape pomace combustion was simulated at several excess air levels and combustion products were analyzed. Then grape pomace was actually burned in a concentric vortex furnace at several levels of excess air to determine combustion efficiency and to confirm flue gas pollutant characteristics. The results show that apple and grape pomace are chemically similar to wood from the combustion standpoint and that furnace slagging is not a problem because the ash fusion temperatures are considerably higher than combustion temperatures.more » The grape pomace burned at efficiencies of 44 to 61 percent with only low pollution hazard.« less
The Evolution of Landsat Data Systems and Science Products
NASA Astrophysics Data System (ADS)
Dwyer, J. L.
2011-12-01
The series of Landsat satellite missions have collected observations of the Earth's surface since 1972, resulting in the richest archive of remotely sensed data covering the global land masses at scales from which natural and human-induced changes can be distinguished. This observational record will continue to be extended with the launch of the Landsat Data Continuity Mission, or Landsat 8, in December of 2012 carrying the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments. The data streams from these instruments will be significantly enhanced yet compatible with data acquired by heritage Landsat instruments. The radiometry and geometry of the OLI and TIRS data will be calibrated and combined into single, multi-band Level-1 terrain-corrected image products. Coefficients will be included in the product metadata to convert OLI to at-sensor radiance or reflectance and to convert TIRS data to at-aperture radiances. A quality assurance band will contain pixel-based information regarding the presences or clouds, shadows, and terrain occlusion. The raw data as well as the Level-1 products will be stored online and made freely accessible through web coverage services. Rescaled Level-1 OLI and TIRS images will be made available via web mapping services to enable inventory searches and for ready use in geospatial applications. The architecture of the Landsat science data processing systems is scalable to accommodate additional processing and storage nodes in response to archive growth and increased demands on processing and distribution. The data collected by the various Landsat instruments have been inter-calibrated to enable the generation of higher level science data products that are of consistent quality through time and from which geophysical and biophysical parameters of the land surface can be derived for use in process models and decision support systems. Data access and delivery services have evolved in response to increasing demand for Landsat data in a broad range of applications, and the demand for additional processing capabilities and services is expected to grow in the future to meet the needs for climate data records and essential climate variables.
NASA Astrophysics Data System (ADS)
Czapla-Myers, J.
2013-12-01
Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at-sensor spectral radiance and the top-of-atmosphere reflectance, both of which are standard products available from the US Geological Survey.
NASA Astrophysics Data System (ADS)
Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.
2016-12-01
The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).
NASA Technical Reports Server (NTRS)
Pahlevan, Nima; Sarkar, Sudipta; Devadiga, Sadashiva; Wolfe, Robert E.; Roman, Miguel; Vermote, Eric; Lin, Guoqing; Xiong, Xiaoxiong
2016-01-01
With the increasing need to construct long-term climate-quality data records to understand, monitor, and predict climate variability and change, it is vital to continue systematic satellite measurements along with the development of new technology for more quantitative and accurate observations. The Suomi National Polar-orbiting Partnership mission provides continuity in monitoring the Earths surface and its atmosphere in a similar fashion as the heritage MODIS instruments onboard the National Aeronautics and Space Administrations Terra and Aqua satellites. In this paper, we aim at quantifying the consistency of Aqua MODIS and Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Reflectance (LSR) and NDVI products as related to their inherent spatial sampling characteristics. To avoid interferences from sources of measurement and/or processing errors other than spatial sampling, including calibration, atmospheric correction, and the effects of the bidirectional reflectance distribution function, the MODIS and VIIRSLSR products were simulated using the Landsat-8s Operational Land Imager (OLI) LSR products. The simulations were performed using the instruments point spread functions on a daily basis for various OLI scenes over a 16-day orbit cycle. It was found that the daily mean differences due to discrepancies in spatial sampling remain below 0.0015 (1) in absolute surface reflectance at subgranule scale (i.e., OLI scene size).We also found that the MODISVIIRS product intercomparisons appear to be minimally impacted when differences in the corresponding view zenith angles (VZAs) are within the range of -15deg to -35deg (VZA(sub v) - VZA(sub m)), where VIIRS and MODIS footprints resemble in size. In general, depending on the spatial heterogeneity of the OLI scene contents, per-grid-cell differences can reach up to 20.Further spatial analysis of the simulated NDVI and LSR products revealed that, depending on the user accuracy requirements for product intercomparisons, spatial aggregations may be used. It was found that if per-grid-cell differences on the order of 10(in LSR or NDVI) are tolerated, the product intercomparisons are expected to be immune from differences in spatial sampling.
Report on Hybrid Rocket Cold Flow Experiments
NASA Technical Reports Server (NTRS)
Haapanen, Siina
2004-01-01
The discovery of paraffin based fuels has lead to renewed interest in hybrid rocket research. Experiments have shown that they burn 3-5 times faster than conventional hybrid fuels. High thrust level that would have required a multi-port design in the past can now be achieved with a single-port motor. While tests performed in Stanford and NASA Ames have demonstrated the paraffin hybrids to be a promising technology, one of the major challenges has been the relatively low efficiency. The c* efficiency has ranged between 80% and 90% in experiments conducted at the Ames Hybrid Combustion Facility (HCF). The test motor in these experiments had a 45 inch long fuel grain with the initial port diameter ranging between 3 and 5_inches. The c* efficiency is defined as the ratio of measured and theoretical characteristic velocities and is related to how completely the fuel and oxidizer are converted to combustion products. A low efficiency means that the reactants burn incompletely, and the reaction does not release the maximum possible amount of energy.
The Betelgeuse Project II: Asteroseismology
NASA Astrophysics Data System (ADS)
Nance, S.; Sullivan, J. M.; Diaz, M.; Wheeler, J. Craig
2018-06-01
We explore the question of whether the interior state of massive red supergiant supernova progenitors can be effectively probed with asteroseismology. We have computed a suite of ten models with ZAMS masses from 15 to 25 M⊙ in intervals of 1 M⊙ including the effects of rotation, with the stellar evolutionary code MESA. We estimate characteristic frequencies and convective luminosities of convective zones at two illustrative stages, core helium burning and off-center convective carbon burning. We also estimate the power that might be delivered to the surface to modulate the luminous output considering various efficiencies and dissipation mechanisms. The inner convective regions should generate waves with characteristic periods of ˜ 20 days in core helium burning, ˜10 days in helium shell burning, and 0.1 to 1 day in shell carbon burning. Acoustic waves may avoid both shock and diffusive dissipation relatively early in core helium burning throughout most of the structure. In shell carbon burning, years before explosion, the signal generated in the helium shell might in some circumstances be weak enough to avoid shock dissipation, but is subject to strong thermal dissipation in the hydrogen envelope. Signals from a convective carbon-burning shell are very likely to be even more severely damped by within the envelope. In the most optimistic case, early in core helium burning, waves arriving close to the surface could represent luminosity fluctuations of a few millimagnitudes, but the conditions in the very outer reaches of the envelope suggest severe thermal damping there.
Cultured allogenic keratinocytes for extensive burns: a retrospective study over 15 years.
Auxenfans, Celine; Shipkov, Hristo; Bach, Christine; Catherine, Zulma; Lacroix, Pierre; Bertin-Maghit, Marc; Damour, Odile; Braye, Fabienne
2014-02-01
The aim was to review the use and indications of cultured allogenic keratinocytes (CAlloK) in extensive burns and their efficiency. This retrospective study comprised 15 years (1997-2012). all patients who received CAlloK. patients who died before complete healing. Evaluation criteria were clinical. Time and success of wound healing after CAlloK use were evaluated. The CAlloK were used for 2 indications - STSG donor sites and deep 2nd degree burns in extensively burned patients. A total of 70 patients were included with severity Baux score of 99.2 (from 51 to 144) and mean percentage of TBSA of 63.49% (from 21 to 96%). Fifty nine patients received CAlloK for STSG donor sites with a mean number of applications of 4 and mean surface of 3800 cm(2) per patient. Treated donor sites were re-harvested 2.5 times. The mean time of complete epithelialization was 7 days. In 11 patients, CAlloK were used for deep 2nd degree burns. The mean percentage of burned surface was 73.7%. The mean surface of CAlloK per patient was 2545 cm(2). Complete healing was achieved in 6.4 days. The CAlloK allow rapid healing of STSG donor-sites and deep 2nd second degree burns in extensively burned patients. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Hammond, Adrienne A; Miller, Kyle G; Kruczek, Cassandra J; Dertien, Janet; Colmer-Hamood, Jane A; Griswold, John A; Horswill, Alexander R; Hamood, Abdul N
2011-03-01
Topical treatment of burn wounds is essential as reduced blood supply in the burned tissues restricts the effect of systemic antibiotics. On the burn surface, microorganisms exist within a complex structure termed a biofilm, which enhances bacterial resistance to antimicrobial agents significantly. Since bacteria differ in their ability to develop biofilms, the susceptibility of these biofilms to topically applied antibiotics varies, making it essential to identify which topical antibiotics efficiently disrupt or prevent biofilms produced by these pathogens. Yet, a simple in vitro assay to compare the susceptibility of biofilms produced by burn wound isolates to different topical antibiotics has not been reported. Biofilms were developed by inoculating cellulose disks on agar plates with burn wound isolates and incubating for 24h. The biofilms were then covered for 24h with untreated gauze or gauze coated with antibiotic ointment and remaining microorganisms were quantified and visualized microscopically. Mupirocin and triple antibiotic ointments significantly reduced biofilms produced by the Staphylococcus aureus and Pseudomonas aeruginosa burn wound isolates tested, as did gentamicin ointment, with the exception of one P. aeruginosa clinical isolate. The described assay is a practical and reproducible approach to identify topical antibiotics most effective in eliminating biofilms produced by burn wound isolates. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
Ramaswami, Anu; Baidwan, Navneet Kaur; Nagpure, Ajay Singh
2016-11-01
Open municipal solid waste (MSW)-burning is a major source of particulate matter emissions in developing world cities. Despite a legal ban, MSW-burning is observed ubiquitously in Indian cities with little being known about the factors shaping it. This study seeks to uncover social and infrastructural factors that affect MSW-burning at the neighborhood level. We couple physical assessments of the infrastructure provision and the MSW-burning incidences in three different neighborhoods of varying socio-economic status in Delhi, with an accompanying study of the social actors (interviews of waste handlers and households) to explore the extent to which, and potential reasons why, MSW-burning occurs. The observed differences in MSW-burning incidences range from 130 km -2 day -1 in low-income to 30 km -2 day -1 in the high-income areas. However, two high-income areas neighborhoods with functional infrastructure service also showed statistical differences in MSW-burning incidences. Our interviews revealed that, while the waste handlers were aware of the health risks associated with MSW-burning, it was not a high priority in the context of the other difficulties they faced. The awareness of the legal ban on MSW-burning was low among both waste handlers and households. In addition to providing infrastructure for waste pickup, informal restrictions from residents and neighborhood associations can play a significant role in restricting MSW-burning at the neighborhood scale. A more efficient management of MSW requires a combined effort that involves interplay of both social and infrastructural systems. © The Author(s) 2016.
This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...
Garcia, Mariano; Saatchi, Sassan; Casas, Angeles; Koltunov, Alexander; Ustin, Susan; Ramirez, Carlos; Garcia-Gutierrez, Jorge; Balzter, Heiko
2017-02-01
Quantifying biomass consumption and carbon release is critical to understanding the role of fires in the carbon cycle and air quality. We present a methodology to estimate the biomass consumed and the carbon released by the California Rim fire by integrating postfire airborne LiDAR and multitemporal Landsat Operational Land Imager (OLI) imagery. First, a support vector regression (SVR) model was trained to estimate the aboveground biomass (AGB) from LiDAR-derived metrics over the unburned area. The selected model estimated AGB with an R 2 of 0.82 and RMSE of 59.98 Mg/ha. Second, LiDAR-based biomass estimates were extrapolated to the entire area before and after the fire, using Landsat OLI reflectance bands, Normalized Difference Infrared Index, and the elevation derived from LiDAR data. The extrapolation was performed using SVR models that resulted in R 2 of 0.73 and 0.79 and RMSE of 87.18 (Mg/ha) and 75.43 (Mg/ha) for the postfire and prefire images, respectively. After removing bias from the AGB extrapolations using a linear relationship between estimated and observed values, we estimated the biomass consumption from postfire LiDAR and prefire Landsat maps to be 6.58 ± 0.03 Tg (10 12 g), which translate into 12.06 ± 0.06 Tg CO2 e released to the atmosphere, equivalent to the annual emissions of 2.57 million cars.
Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A
2004-10-01
After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.
Saatchi, Sassan; Casas, Angeles; Koltunov, Alexander; Ustin, Susan; Ramirez, Carlos; Garcia‐Gutierrez, Jorge; Balzter, Heiko
2017-01-01
Abstract Quantifying biomass consumption and carbon release is critical to understanding the role of fires in the carbon cycle and air quality. We present a methodology to estimate the biomass consumed and the carbon released by the California Rim fire by integrating postfire airborne LiDAR and multitemporal Landsat Operational Land Imager (OLI) imagery. First, a support vector regression (SVR) model was trained to estimate the aboveground biomass (AGB) from LiDAR‐derived metrics over the unburned area. The selected model estimated AGB with an R 2 of 0.82 and RMSE of 59.98 Mg/ha. Second, LiDAR‐based biomass estimates were extrapolated to the entire area before and after the fire, using Landsat OLI reflectance bands, Normalized Difference Infrared Index, and the elevation derived from LiDAR data. The extrapolation was performed using SVR models that resulted in R 2 of 0.73 and 0.79 and RMSE of 87.18 (Mg/ha) and 75.43 (Mg/ha) for the postfire and prefire images, respectively. After removing bias from the AGB extrapolations using a linear relationship between estimated and observed values, we estimated the biomass consumption from postfire LiDAR and prefire Landsat maps to be 6.58 ± 0.03 Tg (1012 g), which translate into 12.06 ± 0.06 Tg CO2e released to the atmosphere, equivalent to the annual emissions of 2.57 million cars. PMID:28405539
Rapid optimization of multiple-burn rocket flights.
NASA Technical Reports Server (NTRS)
Brown, K. R.; Harrold, E. F.; Johnson, G. W.
1972-01-01
Different formulations of the fuel optimization problem for multiple burn trajectories are considered. It is shown that certain customary idealizing assumptions lead to an ill-posed optimization problem for which no solution exists. Several ways are discussed for avoiding such difficulties by more realistic problem statements. An iterative solution of the boundary value problem is presented together with efficient coast arc computations, the right end conditions for various orbital missions, and some test results.
Burn Severity Based Stream Buffers for Post Wildfire Salvage Logging Erosion
NASA Astrophysics Data System (ADS)
Bone, E. D.; Robichaud, P. R.; Brooks, E. S.; Brown, R. E.
2017-12-01
Riparian buffers may be managed for timber harvest disturbances to decrease the risk of hillslope erosion entering stream channels during runoff events. After a wildfire, burned riparian buffers may become less efficient at infiltrating runoff and reducing sedimentation, requiring wider dimensions. Testing riparian buffers under post-wildfire conditions may provide managers guidance on how to manage post-fire salvage logging operations on hillslopes and protect water quality in adjacent streams. We tested burned, unlogged hillslopes at the 2015 North Star Fire and 2016 Cayuse Mountain Fire locations in Washington, USA for their ability to reduce runoff flows and sedimentation. Our objectives were to: 1) measure the travel distances of concentrated flows using three sediment-laden flow rates, 2) measure the change in sediment concentration as each flow moves downslope, 3) test hillslopes under high burn-severity, low burn-severity and unburned conditions, and 4) conduct experiments at 0, 1 and 2 years since the fire events. Mean total flow length at the North Star Fire in year 1 was 211% greater at low burn-severity sites than unburned sites, and 467% greater at high burn-severity sites than unburned sites. Results decreased for all burned sites in year 2; by 40% at the high burn-severity sites, and by 30% at the low burn-severity sites, with no significant changes at the unburned sites. We tested only high burn-severity sites at the Cayuse Mountain Fire in year 0 and 1 where the mean total flow length between year 0 and year 1 decreased by 65%. The results of sediment concentration changes tracked closely with the magnitude of changes in flow travel lengths between treatments. Results indicate that managers may need to increase the widths of burned stream buffers during post-wildfire salvage logging for water quality protection, but stream buffer widths may decrease with less severe burn severity and increasing elapsed time (years) since fire.
NASA Astrophysics Data System (ADS)
Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang
2017-11-01
The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.
Mixing enhancement in a scramjet combustor using fuel jet injection swirl
NASA Astrophysics Data System (ADS)
Flesberg, Sonja M.
The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two swirling jets would produce increased mixing and to study how the distance between the two fuel injector exits would affect mixing. Three swirl patterns were investigated: 1) the first swirl pattern as viewed by an observer looking downstream had the right fuel annular jet swirling counter clockwise and the left fuel annular jet swirling clockwise, 2) the second swirl pattern as viewed by an observer looking downstream had the right fuel jet swirling clockwise and the left fuel jet swirling counter clockwise, 3) the third swirl pattern as viewed by an observer looking downstream had both the right and left fuel jet swirling in the same clockwise direction. Each one of the swirl patterns were simulated with the distances between the center points of the fuel jets modelled 3, 4, and 5 times the fuel injector radius. The swirl pattern that produced the greatest increase in burning efficiency differed according to the fuel injector spacing. The maximum increase in burning efficiency compared to the corresponding non-swirling two jet baseline case was 24.6% and was produced by the first swirl pattern with the distance between the center points of the fuel jets being 5 times the fuel injector radius. The burning efficiency for the single jet non-swirling baseline case and the first swirl pattern with the distance between the center points of the fuel jets being 5 times the fuel injector radius was 0.70 and 0.90 respectively indicating a 29% increase due to dual fuel injection swirl.
NASA Astrophysics Data System (ADS)
Yuan, B.; Krechmer, J. E.; Warneke, C.; Coggon, M.; Koss, A.; Lim, C. Y.; Selimovic, V.; Gilman, J.; Lerner, B. M.; Stark, H.; Kang, H.; Jimenez, J. L.; Yokelson, R. J.; Liggio, J.; Roberts, J. M.; Kroll, J. H.; De Gouw, J. A.
2017-12-01
Biomass burning can emit large amounts of many different organic compounds to the atmosphere. The emission strengths of these emitted organic compounds and their subsequent atmospheric chemistry are not well known. In this study, we deployed a time-of-flight chemical ionization mass spectrometer using iodide as reagent ions (Iodide ToF-CIMS) to measure direct emissions of organic compounds during the FIREX laboratory 2016 intensive in the USDA Fire Sciences Lab in Missoula, MT. An interpretation of the I- TOF-CIMS mass spectra from biomass burning emissions will be presented. The dependence of the emissions of selected organic compounds with fuel types, combustion efficiency and fuel chemical compositions will be discussed. The I- TOF-CIMS also measured aged biomass burning smoke from a small smog chamber and an oxidative flow reactor (OFR). The I- TOF-CIMS consistently observed much higher signals of highly oxygenated organic compounds in the aged biomass burning smoke than in fresh emissions, indicative of strong secondary formation of these organic compounds in biomass burning plumes.
Patel, Dipen D; Rosenberg, Marta; Rosenberg, Laura; Foncerrada, Guillermo; Andersen, Clark R; Capek, Karel D; Leal, Jesus; Lee, Jong O; Jimenez, Carlos; Branski, Ludwik; Meyer, Walter J; Herndon, David N
2018-08-01
Children 5 and younger are at risk for sustaining serious burn injuries. The causes of burns vary depending on demographic, cultural and socioeconomic variables. At this pediatric burn center we provided medical care to children from Mexico with severe injuries. The purpose of this study was to understand the impact of demographic distribution and modifiable risk factors of burns in young children to help guide prevention. A retrospective chart review was performed with children 5 and younger from Mexico who were injured from 2000-2013. The medical records of 447 acute patients were reviewed. Frequency counts and percentages were used to identify geographic distribution and calculate incidence of burns. Microsoft Powermap software was used to create a geographical map of Mexico based on types of burns. A binomial logistic regression was used to model the incidence of flame burns as opposed to scald burns in each state with relation to population density and poverty percentage. In all statistical tests, alpha=0.05 for a 95% level of confidence. Burns were primarily caused by flame and scald injuries. Admissions from flame injuries were mainly from explosions of propane tanks and gas lines and house fires. Flame injuries were predominantly from the states of Jalisco, Chihuahua, and Distrito Federal. Scalds were attributed to falling in large containers of hot water or food on the ground, and spills of hot liquids. Scald injuries were largely from the states of Oaxaca, Distrito Federal, and Hidalgo. The odds of a patient having flame burns were significantly associated with poverty percentage (p<0.0001) and population density (p=0.0085). Increasing levels of poverty led to decrease in odds of a flame burn, but an increase in the odds of scald burns. Similarly, we found that increasing population density led to a decrease in the odds of a flame burn, but an increase in the odds of a scald burn. Burns in young children from Mexico who received medical care at this pediatric burn center were attributed to flame and scalds. Potential demographic associations have been identified. Different states in Mexico have diverse cultural and socioeconomic variables that may influence the etiology of burns in young children and this information may help efficiently tailor burn prevention campaigns for burn prevention efforts in each region. This information will be used to develop and help modify existing prevention campaigns. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
Rapolti, Mihaela; Wu, Cindy; Schuth, Olga A; Hultman, Charles Scott
2017-10-01
Chronic neuropathic pain after burn injury may have multiple causes, such as direct nerve injury, nerve compression, or neuroma formation, and can significantly impair quality of life and limit functional recovery. Management includes a team-based approach that involves close collaboration between occupational and physical therapists, plastic surgeons, and experts in chronic pain, from neurology, anesthesia, psychiatry, and physiatry. Carefully selected patients with an anatomic cause of chronic neuropathic pain unequivocally benefit from surgical intervention. Self-reflection and analysis yield improvement in both efficiency and effectiveness when managing patients with burns with chronic neuropathic pain. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.
2004-01-01
NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.
Abraham, Joji; Dowling, Kim; Florentine, Singarayer
2018-03-01
Conducting controlled burns in fire prone areas is an efficient and economic method for forest management, and provides relief from the incidence of high severity wild fires and the consequent damage to human property and ecosystems. However, similar to wild fires, controlled burns also affect many of the physical and biogeochemical properties of the forest soil and may facilitate remobilization of potentially toxic elements (PTEs) sequestered in vegetation and soil organic matter. The objective of the current study is to investigate the mobilization of PTEs, in Central Victorian forest soils in Australia after a controlled burn. Surface soil samples were collected two days before and after the controlled burn to determine the concentration of PTEs and to examine the physicochemical properties. Results show that As, Cd, Mn, Ni and Zn concentrations increased 1.1, 1.6, 1.7, 1.1 and 1.9 times respectively in the post-burn environment, whereas the concentrations of Hg, Cr and Pb decreased to 0.7, 0.9 and 0.9 times respectively, highlighting considerable PTE mobility during and after a controlled burn. Whilst these results do not identify very strong correlations between physicochemical properties of soil and PTEs in the pre- and post-burn environments, PTEs themselves demonstrated very strong and significant correlations. The mobilization of As, Hg and other toxic elements raise potential health concerns as the number of controlled burns are projected to increase in response to climate change. Due to this increased level of PTE release and remobilization, the use of any kinds of controlled burn must be carefully considered before being used as a forest management strategy in mining-affected landscapes which include areas with high PTE concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Studying the effects of fuel treatment based on burn probability on a boreal forest landscape.
Liu, Zhihua; Yang, Jian; He, Hong S
2013-01-30
Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting. Copyright © 2012 Elsevier Ltd. All rights reserved.
Basic Burns Management E-Learning: A New Teaching Tool.
Egro, Francesco M
Burns teaching is organized only in a few medical schools in the United Kingdom. An e-learning tutorial was developed with the objective of incorporating burns teaching within the medical school curriculum. A 33-webpage e-learning was created, covering topics such as local and general response to burns, assessment of burns, first aid, primary and secondary survey, and referral guidelines. Medical student satisfaction was then evaluated using a 12-question feedback survey rated based on a Likert scale from 1 (very poor) to 5 (very good). The 12-question survey was completed by a total of 18 medical students ranging from second to fourth years (second = 17%, third = 22%, fourth = 61%). While only a couple of students had received prior burns teaching, 50% of the cohort had an interest to pursue surgery as a career. The majority of students (72%) would be interested to have an e-learning module on basic burns management in their medical curriculum. The means of all domains specific to the e-learning were rated as "good" or "very good." Students' rating for ease of use was 87%, usefulness was 88%, relevance to the medical curriculum was 90%, clarity and quality of content were 78% and 83%, respectively, design was 79%, and the overall satisfaction with this e-learning was 87%. The "Basic Burns Management" e-learning tutorial can provide an efficient and effective means of information delivery to medical students and junior doctors, allowing easy and fast incorporation of burns teaching within the medical curriculum and in other medical teaching settings.
2015-05-13
ISS043E190395 (05/13/2015) --- NASA astronaut Terry Virts prepares the Multi-user Droplet Combustion Apparatus from inside the Combustion Integrated Rack for upcoming runs of the FLame Extinguishment Experiment, or FLEX-2. The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding these processes could lead to the production of a safer spacecraft as well as increased fuel efficiency for engines using liquid fuel on Earth.
[Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin
2015-03-01
Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the burned area estimates by using the ground survey data from National interagency Fire Center (NIFC), our results are more close to the ground survey data than burned area from Global Fire Emissions Database (GFED) and MODIS burned area product (MCD45), which omitted many small prescribed fires. We concluded that our model can provide more accurate burned area parameters for developing fire emission inventory, and be better for estimating emissions from biomass burning.
NASA Technical Reports Server (NTRS)
Clark, Robert; Reahard, Ross; Robin, Chad; Zeringue, Jared
2010-01-01
Biomass burning is an event that occurs globally and encompasses both human-initiated and naturally-occurring fires. It is estimated that 3 billion metric tons of biomass are burned every year worldwide (Curtis 2002). Societies have used these burning techniques for cooking and heating, clearing land for agricultural use, and removing excess biomass from grazing and croplands (Levine 1991). Our study focuses on the state of Louisiana and its commonly occurring methods of sugarcane and marsh biomass burning (LSU Ag.Center 2000; Nyman and Chabreck 1995). Over the centuries, the sugarcane industry in this state has steadily grown to surpass all other agriculture commodities. To promote efficiency within this large industry, burning excess biomass takes place throughout the harvesting period (LSU Ag.Center 2000). In addition to sugarcane, Louisiana contains 30% of the total coastal marsh of the United States (LSU Ag.Center 2000). The periodic burning of such marshes is an ecologically important management tool that is practiced throughout the Atlantic and Gulf Coasts (Nyman and Chabreck 1995). In most biomass burning instances, the leading by-product is particulate matter that is less than 10 microns in diameter (PM10). Through past research, this fine material has been shown to have negative health effects on surrounding populations (Boopathy2001). While burning guidelines have been set into place by the Louisiana Department of Agriculture and Forestry (LDAF) to reduce health effects, the guidelines are voluntary (LDAF 2000). To help quantify emission estimates, we will focus on Iberia Parish for sugarcane burning and Cameron Parish for marsh burning. Through analysis of ASTER, Landsat 5 TM, and MODIS data, our goal is to determine the amount and location of land area burned for the years 2008 and 2009 due to these practices. With emissions algorithms from Seiler and Crutzen, 1980, total acreage burned can be used to estimate emissions. This information will help to document the impact of these smoke plumes on local populations for the improvement of biomass burning policies in Louisiana.
Evaluation of the Cytosorb™ Hemoadsorptive Column in a Pig Model of Severe Smoke and Burn Injury.
Linden, Katharina; Scaravilli, Vittorio; Kreyer, Stefan F X; Belenkiy, Slava M; Stewart, Ian J; Chung, Kevin K; Cancio, Leopoldo C; Batchinsky, Andriy I
2015-11-01
Host inflammatory response to any form of tissue injury, including burn, trauma, or shock, has been well documented. After significant burns, cytokines can increase substantially within the first 24 h after injury and may contribute to subsequent organ failure. Hemoadsorption by cytokine-adsorbing columns may attenuate this maladaptive response, thereby improving outcomes. The aim of this study was to investigate the feasibility, technical safety, and efficacy of cytokine and myoglobin removal by early use of a cytokine absorbing column (CytoSorb) in a porcine model of smoke inhalation and burn injury. Anesthetized female Yorkshire pigs (n = 15) were injured by wood bark smoke inhalation and a 40% total body surface area deep burn and observed for 72 h or death. The animals were randomized to hemoadsorption treatment (n = 9) or a sham group (n = 6) before injury. A 6-h hemoadsorption or sham session was performed on days one, two, and three. Serum cytokines (IL-1b, IL-6, IL-8, IL-10, TNF-alpha) and myoglobin were measured systemically, locally in bronchoalveolar lavage fluid and also in circulating blood before and after the adsorbing column to evaluate single pass clearance by the device. Hemoadsorption caused significant removal of IL-1b, IL-6, IL-10, and myoglobin across the device mainly during the first run, ranging from 22% for IL-6 to 29% for IL-1b and 41% removal rates for myoglobin after 15 min of treatment. Systemic cytokine or myoglobin serum concentrations did not change. In a porcine model of smoke and burn injury, hemoadsorption using the CytoSorb cartridge did not result in significant systemic or pulmonary reductions in the measured cytokines or myoglobin despite efficient transmembrane reductions. Further investigations are needed to optimize the efficiency of mediator clearance to affect both circulating levels and clinically relevant outcomes.
Terrestrial Applications of the Thermal Infrared Sensor, TIRS
NASA Technical Reports Server (NTRS)
Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis
2009-01-01
Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.
On the Corrosion Performance of Monel 400 in Molten LiCl-Li2O-Li at 923 K
NASA Astrophysics Data System (ADS)
Phillips, William; Merwin, Augustus; Chidambaram, Dev
2018-06-01
The corrosion resistance of a Ni-Cu alloy, Monel 400, in molten LiCl-Li2O-Li at 923 K (650 °C) was investigated. Exposure testing of Monel 400 samples submerged in molten LiCl-2 wt pct Li2O solutions with Li concentrations between zero and 1 wt pct was performed at 923 K (650°C) for 20 hours. Post exposure surface analysis was performed using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, optical microscopy, micro-Vickers hardness testing, and X-ray photoelectron spectroscopy, while inductively coupled plasma optical emission spectroscopy was used to quantify the rate of material leaching. The extent of material degradation was observed to be strongly correlated to the concentration of metallic Li in the molten LiCl-Li2O system.
Aerial sampling of emissions from biomass pile burns in ...
Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.
Burning high-level TRU waste in fusion fission reactors
NASA Astrophysics Data System (ADS)
Shen, Yaosong
2016-09-01
Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg
The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shownmore » the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)« less
The impact of oil burning on kraft recovery furnace SO sub 2 emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Someshwar, A.V.; Pinkerton, J.E.; Caron, A.L.
1991-04-01
Auxiliary fossil fuel, either natural gas or fuel oil, is burned in kraft recovery furnaces during furnace startups and shutdowns, furnace upsets, and periods of substantially reduced rates of black liquor firing. The efficiency of sulfur capture and retention during normal operation of a kraft recovery furnace is inherently high. Consequently, not all the SO{sub 2} from occasional burning of sulfur-containing fuel oil in the furnace would be expected to end up in the stack gases. However, the extent to which such SO{sub 2} is captured by the alkali fume generation processes has not been well documented. In this paper,more » the authors examines the impact that burning oil in kraft recovery furnaces has on the SO{sub 2} emissions. The work included analyses of long-term SO{sub 2} data from a continuous emission monitoring system (CEMS) obtained for four furnaces that burned medium sulfur fuel oil as auxiliary fuel. It also included tests conducted on four furnaces in which varying amounts of oil were co-fired with black liquor.« less
Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance
Grosges, Thomas; Barchiesi, Dominique; Kessentini, Sameh; Gréhan, Gérard; de la Chapelle, Marc Lamy
2011-01-01
The optimization of the coated metallic nanoparticles and nanoshells is a current challenge for biological applications, especially for cancer photothermal therapy, considering both the continuous improvement of their fabrication and the increasing requirement of efficiency. The efficiency of the coupling between illumination with such nanostructures for burning purposes depends unevenly on their geometrical parameters (radius, thickness of the shell) and material parameters (permittivities which depend on the illumination wavelength). Through a Monte-Carlo method, we propose a numerical study of such nanodevice, to evaluate tolerances (or uncertainty) on these parameters, given a threshold of efficiency, to facilitate the design of nanoparticles. The results could help to focus on the relevant parameters of the engineering process for which the absorbed energy is the most dependant. The Monte-Carlo method confirms that the best burning efficiency are obtained for hollow nanospheres and exhibit the sensitivity of the absorbed electromagnetic energy as a function of each parameter. The proposed method is general and could be applied in design and development of new embedded coated nanomaterials used in biomedicine applications. PMID:21698021
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L.
1979-01-01
Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.
Radiometric characterization of Landsat Collection 1 products
Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal
2017-01-01
Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.
Watanabe, Fernanda Sayuri Yoshino; Alcântara, Enner; Rodrigues, Thanan Walesza Pequeno; Imai, Nilton Nobuhiro; Barbosa, Cláudio Clemente Faria; Rotta, Luiz Henrique da Silva
2015-01-01
Reservoirs are artificial environments built by humans, and the impacts of these environments are not completely known. Retention time and high nutrient availability in the water increases the eutrophic level. Eutrophication is directly correlated to primary productivity by phytoplankton. These organisms have an important role in the environment. However, high concentrations of determined species can lead to public health problems. Species of cyanobacteria produce toxins that in determined concentrations can cause serious diseases in the liver and nervous system, which could lead to death. Phytoplankton has photoactive pigments that can be used to identify these toxins. Thus, remote sensing data is a viable alternative for mapping these pigments, and consequently, the trophic. Chlorophyll-a (Chl-a) is present in all phytoplankton species. Therefore, the aim of this work was to evaluate the performance of images of the sensor Operational Land Imager (OLI) onboard the Landsat-8 satellite in determining Chl-a concentrations and estimating the trophic level in a tropical reservoir. Empirical models were fitted using data from two field surveys conducted in May and October 2014 (Austral Autumn and Austral Spring, respectively). Models were applied in a temporal series of OLI images from May 2013 to October 2014. The estimated Chl-a concentration was used to classify the trophic level from a trophic state index that adopted the concentration of this pigment-like parameter. The models of Chl-a concentration showed reasonable results, but their performance was likely impaired by the atmospheric correction. Consequently, the trophic level classification also did not obtain better results. PMID:26322489
Bias estimation for the Landsat 8 operational land imager
Morfitt, Ron; Vanderwerff, Kelly
2011-01-01
The Operational Land Imager (OLI) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM). This instrument is the latest in the line of Landsat imagers, and will continue to expand the archive of calibrated earth imagery. An important step in producing a calibrated image from instrument data is accurately accounting for the bias of the imaging detectors. Bias variability is one factor that contributes to error in bias estimation for OLI. Typically, the bias is simply estimated by averaging dark data on a per-detector basis. However, data acquired during OLI pre-launch testing exhibited bias variation that correlated well with the variation in concurrently collected data from a special set of detectors on the focal plane. These detectors are sensitive to certain electronic effects but not directly to incoming electromagnetic radiation. A method of using data from these special detectors to estimate the bias of the imaging detectors was developed, but found not to be beneficial at typical radiance levels as the detectors respond slightly when the focal plane is illuminated. In addition to bias variability, a systematic bias error is introduced by the truncation performed by the spacecraft of the 14-bit instrument data to 12-bit integers. This systematic error can be estimated and removed on average, but the per pixel quantization error remains. This paper describes the variability of the bias, the effectiveness of a new approach to estimate and compensate for it, as well as the errors due to truncation and how they are reduced.
River plumes investigation using Sentinel-2A MSI and Landsat-8 OLI data
NASA Astrophysics Data System (ADS)
Lavrova, Olga Yu.; Soloviev, Dmitry M.; Strochkov, Mikhail A.; Bocharova, Tatiana Y.; Kashnitsky, Alexandr V.
2016-10-01
We present the results of using Sentinel-2A Multispectral Imager Instrument (MSI/S2) and Landsat-8 Operational Land Imager (OLI/L8) data to monitor river plumes in the eastern Black Sea and from the Rhône River in the Mediterranean Sea. The focus is on exploring the possibility to investigate hydrodynamic processes associated with river outflows, in particular internal waves (IWs). Submesoscale IWs having wavelengths less than 50 m and generated by unstable sharp front of a river plume were revealed and their parameters were assessed. A map of surface manifestation of IW trains in the Gulf of Lions was created based on MSI/S2 images. There are different mechanisms of IW generation in river outflow zones, they are determined by a number of parameters including river discharge, bottom topography and presence of tidal currents or inertial period IWs in the shelf zone. A new phenomenon manifested as a chain of quasi circles was discovered. Inertial water motions were suggested as its prime cause, however, this hypothesis is yet to be investigated. An analysis of OLI/L8 and MSI/S2 data enabled us to consider in detail river debouchment streams. For the first time a wave pattern of such stream in the eastern Black Sea was observed in conditions of foehn winds. Usually, foehn winds are distinctly manifested in radar images. A joint analysis of quasi simultaneous ocean color MSI/S2 and Sentinel-1A SAR images demonstrated how water stream wave-like signatures differ from those of foehn winds.
Radiometric characterization of Landsat Collection 1 products
NASA Astrophysics Data System (ADS)
Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal
2017-09-01
Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.
Detection of Green up Phenomenon in Amazon Forests Using Spaceborne Solar-induced Fluorescence
NASA Astrophysics Data System (ADS)
Chen, S.; Chen, X.; Chen, J.; Cao, X.
2016-12-01
The role of Amazon forests in the global carbon budget still remains uncertain. The critical issue is whether tropical forest productivity is more limited by sunlight or rainfall. Recent studies using satellite data have challenged the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions because of the adding effects of variations in sun-sensor geometry. To reducing uncertainties in knowing the sensitivity of Amazon rainforests to dry season droughts, we evaluated a newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll for the seasonal green-up phenomenon, providing for the first time a direct measurement related to vegetation photosynthetic activity as well as unaffected by sun-sensor geometry. Moreover, NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) products (the enhanced vegetation index (EVI) and leaf area index (LAI)) and Landsat Operational Land Imager (OLI) data are also compared to evaluate this phenomenon. Here we show that the green up of Amazon forests in the study area around manas site did show in SIF of chlorophyll data in 2015 drought resulted from seasonal changes. The EVI has more apparent green up phenomenon than the NDVI data both in MODIS and OLI data, suggesting that the EVI can better reflect near-infrared (NIR) and LAI information of vegetation. The OLI data is less influenced by variations caused by bidirectional reflectance effect. In addition, SIF of chlorophyll data shows well correlation relationship with the EVI, LAI and NDVI, suggesting that the SIF of chlorophyll data present well quality to capture the characteristics of the phenology of vegetation.
Auxiliary engine digital interface unit (DIU)
NASA Technical Reports Server (NTRS)
1972-01-01
This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.
Numerical research of reburning-process of burning of coal-dust torch
NASA Astrophysics Data System (ADS)
Trinchenko, Alexey; Paramonov, Aleksandr; Kadyrov, Marsel; Koryabkin, Aleksey
2017-10-01
This work is dedicated to numerical research of ecological indicators of technological method of decrease in emissions of nitrogen oxides at combustion of solid fuel in coal-dust torch to improve the energy efficiency of steam boilers. The technology of step burning with additional input in zone of the maximum concentration of pollutant of strongly crushed fuel for formation of molecular nitrogen on surface of the burning carbon particles is considered. Results of modeling and numerical researches of technology, their analysis and comparison with the experimental data of the reconstructed boiler are given. Results of work show that input of secondary fuel allows to reduce emissions of nitrogen oxides by boiler installation without prejudice to its economic indicators.
Skin graft fixation in severe burns: use of topical negative pressure.
Kamolz, L P; Lumenta, D B; Parvizi, D; Wiedner, M; Justich, I; Keck, M; Pfurtscheller, K; Schintler, M
2014-09-30
Over the last 50 years, the evolution of burn care has led to a significant decrease in mortality. The biggest impact on survival has been the change in the approach to burn surgery. Early excision and grafting has become a standard of care for the majority of patients with deep burns; the survival of a given patient suffering from major burns is invariably linked to the take rate and survival of skin grafts. The application of topical negative pressure (TNP) therapy devices has demonstrated improved graft take in comparison to conventional dressing methods alone. The aim of this study was to analyze the impact of TNP therapy on skin graft fixation in large burns. In all patients, we applied TNP dressings covering a %TBSA of >25. The following parameters were recorded and documented using BurnCase 3D: age, gender, %TBSA, burn depth, hospital length-of-stay, Baux score, survival, as well as duration and incidence of TNP dressings. After a burn depth adapted wound debridement, coverage was simultaneously performed using split-thickness skin grafts, which were fixed with staples and covered with fatty gauzes and TNP foam. The TNP foam was again fixed with staples to prevent displacement and finally covered with the supplied transparent adhesive film. A continuous subatmospheric pressure between 75-120 mm Hg was applied (VAC®, KCI, Vienna, Austria). The first dressing change was performed on day 4. Thirty-six out of 37 patients, suffering from full thickness burns, were discharged with complete wound closure; only one patient succumbed to their injuries. The overall skin graft take rate was over 95%. In conclusion, we consider that split thickness skin graft fixation by TNP is an efficient method in major burns, notably in areas with irregular wound surfaces or subject to movement (e.g. joint proximity), and is worth considering for the treatment of aged patients.
NASA Astrophysics Data System (ADS)
Farmahini Farahani, H.; Jomaas, G.; Rangwala, A. S.
2017-12-01
In situ burning, intentional burning of discharged oil on the water surface, is a promising response method to oil spill accidents in the Arctic. However, burning of the oil adjacent to ice bodies creates a lateral cavity in the ice. As a result of the cavity formation the removal efficiency which is a key success criterion for in situ burning operation will decrease. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. These experiments have shown lateral cavities with a length of <12 cm for 5 minutes burning of crude oil in laboratory. Our previous findings indicate the existence of a direct relation between the burning rate of the oil and penetration length in the ice. In addition, on the surface of the oil and near the ice the anchoring of the flame on the oil surface creates a severe horizontal temperature gradient which in turn generates a Marangoni flow from hot to cold regions. This is found to be the dominant heat transfer mechanism that is providing the heat for the ice to melt. Here, we introduce an order of magnitude analysis on the governing equations of the ice melting problem to estimate the penetration length of a burning oil near ice. This correlation incorporates the flame heat feedback with the surface flow driven by Marangoni convection. The melting energy continuity is also included in the analysis to complete the energy transfer cycle that leads to melting of the ice. The comparison between this correlation and the existing experimental data shows a very good agreement. Therefore, this correlation can be used to estimate the penetration length for burning of an actual spill and can be applied towards improved guidelines of burning adjacent to ice bodies, so as to enhance the chances for successful implantation of in situ burning.
McWilliams, Tania; Hendricks, Joyce; Twigg, Di; Wood, Fiona; Giles, Margaret
2016-11-01
Since 2005, the Western Australian paediatric burn unit has provided a state-wide clinical consultancy and support service for the assessment and management of acute and rehabilitative burn patients via its telehealth service. Since then, the use of this telehealth service has steadily increased as it has become imbedded in the model of care for paediatric burn patients. Primarily, the service involves acute and long term patient reviews conducted by the metropolitan-located burn unit in contact with health practitioners, advising patients and their families who reside outside the metropolitan area thereby avoiding unnecessary transfers and inpatient bed days. A further benefit of the paediatric burn service using telehealth is more efficient use of tertiary level burn unit beds, with only those patients meeting clinical criteria for admission being transferred. To conduct a retrospective audit of avoided transfers and bed days in 2005/06-2012/13 as a result of the use of the paediatric Burns Telehealth Service and estimate their cost savings in 2012/13. A retrospective chart audit identified activity, avoided unnecessary acute and scar review patient transfers, inpatient bed days and their associated avoided costs to the tertiary burn unit and patient travel funding. Over the period 2005/06-2012/13 the audit identified 4,905 avoided inpatient bed days, 364 avoided acute patient transfers and 1,763 avoided follow up review transfers for a total of 1,312 paediatric burn patients as a result of this telehealth service. This paper presents the derivation of these outcomes and an estimation of their cost savings in 2012/13 of AUD 1.89million. This study demonstrates avoided patient transfers, inpatient bed days and associated costs as the result of an integrated burns telehealth service. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Quality assessment of the Harmonized Landsat and Sentinel-2 (HLS) data set
NASA Astrophysics Data System (ADS)
Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.
2017-12-01
The Harmonized Landsat and Sentinel-2 (HLS) project is a NASA initiative aiming to produce a compatible surface reflectance (SR) data set from a virtual constellation consisting of the US Landsat-8 and the European Sentinel-2 satellites. The creation of such a long-term surface reflectance data record requires the development and implementation of Quality assessment (QA) methods to evaluate the quality of the product. QA is built as an integral part of the HLS production chain. The QA includes three components: (i) the comparison of the HLS data with MODIS data, (ii) an analysis of the geometric accuracy of the Landsat-8 OLI and Sentinel-2 MSI Level-1 products, and (iii) an evaluation of the temporal consistency of the HLS products.The methodology of the cross-comparison of the HLS product with MODIS products was introduced by Claverie et al. (2015, RSE, vol. 169). It consists in comparing HLS SR (L30 products for Landsat-8 and S30 products for Sentinel-2) with MODIS SR (MOD09CMG), after adjustment of sun-view geometry and bandpass differences. The overall uncertainties and biases between MODIS and HLS SR do not exceed, depending on the band (excluding blue bands), 9% and 3%, respectively. No significant spatial or temporal patterns were identified. The most important source of uncertainty comes from the cloud detection omission on the MSI data.The HLS and Level-1 products geometric accuracy was assessed and improved using the automated registration and orthorectification package, AROP (Gao et al., 2009, SPIE JARS, vol. 3). The use of AROP reduces the geometric co-registration error in Level-1 products by about 40% and 60% during HLS processing of OLI and MSI, respectively. The final CE-90 are 6.2 m and 18.8 m, for HLS MSI (computed with 10m pixels) and OLI (30 m pixels), respectively.Finally, the time series (TS) smoothness of the data set was analyzed by computing the time series noise (Vermote et al., 2009, TGRS, vol. 47). We showed that major issue is related to the MSI cloud mask quality. After filtering TS outliers, we demonstrated that the HLS TS noise (i.e., including MSI and OLI data) do not exceed 0.006 for the visible bands and 0.014 for the NIR and SWIR bands.
NASA Astrophysics Data System (ADS)
Cui, Yu Yan; Liu, Shang; Bai, Zhixuan; Bian, Jianchun; Li, Dan; Fan, Kaiyu; McKeen, Stuart A.; Watts, Laurel A.; Ciciora, Steven J.; Gao, Ru-Shan
2018-05-01
We carried out field measurements of aerosols in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and industrialization. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 μg m-3 and the high values exceeding 50 μg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that likely represented religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at ∼500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that further studies of religious burning, a currently under-studied source, are needed in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.
CHARACTERIZATION OF PARTICULATE MATTER EMISSION FROM OPEN BURNING OF RICE STRAW
Oanh, Nguyen Thi Kim; Bich, Thuy Ly; Tipayarom, Danutawat; Manadhar, Bhai R.; Prapat, Pongkiatkul; Simpson, Christopher D.; Liu, L-J Sally
2010-01-01
Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003–2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EFs varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EFs were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20±8 g kg−1 RS) than hood spread burning (4.7±2.2 g kg−1 RS). The majority of PM emitted from the field burning was PM2.5 with EF of 5.1±0.7 g m−2 or 8.3±2.7 g kg−1 RS burned. The coarse PM fraction (PM10-2.5) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM10 (9.4±3.5 g kg−1 RS) was not significantly higher than PM2.5. PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM1.1. The most significant components in PM2.5 and PM10 include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration, an estimation of the annual RS field burning in Thailand was made using the obtained in situ field burning EFs and preliminary burning activity data. PMID:21243095
NASA Astrophysics Data System (ADS)
Dobracki, A. N.; Howell, S. G.; Freitag, S.; Smirnow, N.; Podolske, J. R.
2017-12-01
Biomass burning (BB) is one of the largest contributors of anthropogenic aerosols in the atmosphere. During BB events, organic and inorganic gases and particles are emitted into the atmosphere. Because of their abundance, particle size, and radiative properties, BB aerosols play an important role in global climate. Southern Africa produces 30% of the Earth's BB aerosol particles. Organics, Nitrates, sulfates, and refractory black carbon, along with other chemical species are lofted into the free troposphere and transported over the Southeast Atlantic Ocean. However, considerate uncertainty remains in the chemical composition of these plumes with its large variety of organic and inorganic species. As part of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 airborne field campaigns, an Aerosol Mass Spectrometer (AMS) was used to sample the chemical composition and chemical structure of the aerosol in this region. Results show constant vertical stratification within the plume over the course of the campaign (August 2017 / September 2016). Using nitrate (NO3) and organic carbon (OC) as two tracers, the structure of the September 2016 plume had a ratio of 1:8 (NO3:OC) in the upper plume (3km-5km), while the lower plume (1km-2.5km) had a ratio of 1:12 (NO3:OC). AMS measurements were supported by carbon monoxide (CO) and carbon dioxide (CO2) measurements. This data revealed a modified combustion efficiency (MCE= ΔCO2/ΔCO2 + ΔCO) of <0.97 in the upper plume, and a higher MCE > 0.97 in the lower plume. An MCE above 0.9 represents efficient burning processes. Additionally, concentrations of C2(H2O)2 (m/z60), a common chemical fragment from breaking up carbohydrates (primarily levoglucosan) emitted by burning biomass only represented <1% of total organics throughout the campaign. These low concentrations are due to efficient combustion rather than oxidation during transport. These results are consistent with earlier studies of efficient fires.
High regression rate hybrid rocket fuel grains with helical port structures
NASA Astrophysics Data System (ADS)
Walker, Sean D.
Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.
From fire whirls to blue whirls and combustion with reduced pollution.
Xiao, Huahua; Gollner, Michael J; Oran, Elaine S
2016-08-23
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a "blue whirl." A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.
Wolf-Rayet stars of type WN/WC and mixing processes during core helium burning of massive stars
NASA Technical Reports Server (NTRS)
Langer, N.
1991-01-01
Consequences of the recent finding that most WN/WC spectra probably originate from individual Wolf-Rayet stars for the internal structure of massive stars are discussed. Numerical models including the effect of slow-down or prevention of convective mixing due to molecular weight gradients are presented, in which a transition layer with a composition mixture of H- and He-burning ashes is formed above the convective He-burning core. These models are able to qualitatively account for the observed WN/WC frequency and agree quantitatively with the only WN/WC-composition determination so far. It is argued that the same transition layer may be responsible for the final blue loop which the SN 1987 A progenitor performed some 10,000 yr before explosion. These results indicate that composition barriers may be efficient in restricting convection during central helium burning, in contrast to computations relying on the Schwarzschild criterion for convection, with or without overshooting.
Aerial Sampling of Emissions from Biomass Pile Burns in ...
Abstract (already cleared). Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determines the first known in-field emission factors for burning of timber slash piles. The results also document the effect on emissions of covering the piles with polyethylene covers to reduce the moisture content of the biomass.
Landscape controls on mercury in streamwater at Acadia National Park, USA
Peckenham, J.M.; Kahl, J.S.; Nelson, S.J.; Johnson, K.B.; Haines, T.A.
2007-01-01
Fall and spring streamwater samples were analyzed for total mercury (Hg) and major ions from 47 locations on Mount Desert Island in Maine. Samples were collected in zones that were burned in a major wildfire in 1947 and in zones that were not burned. We hypothesized that Hg concentrations in streamwater would be higher from unburned sites than burned watersheds, because fire would volatilize stored Hg. The Hg concentrations, based on burn history, were not statistically distinct. However, significant statistical associations were noted between Hg and the amount of wetlands in the drainage systems and with streamwater dissolved organic carbon (DOC). An unexpected result was that wetlands mobilized more Hg by generating more DOC in total, but upland DOC was more efficient at transporting Hg because it transports more Hg per unit DOC. Mercury concentrations were higher in samples collected at lower elevations. Mercury was positively correlated with relative discharge, although this effect was not distinguished from the DOC association. In this research, sample site elevation and the presence of upstream wetlands and their associated DOC affected Hg concentrations more strongly than burn history. ?? Springer Science + Business Media B.V. 2007.
Military and Civilian Burn Injuries During Armed Conflicts
Atiyeh, B.S.; Gunn, S.W.A.; Hayek, S.N.
2007-01-01
Summary Burn injury is a ubiquitous threat in the military environment, and war burns have been described for more than 5,000 years of written history. Fire was probably utilized as a weapon long before that. With the ever-increasing destructive power and efficiency of modern weapons, casualties, both fatal and non-fatal, are reaching new highs, particularly among civilians who are becoming the major wartime targets in recent wars, accounting for most of the killed and wounded. Even though medical personnel usually believe that a knowledge of weaponry has little relevance to their ability to effectively treat injuries and that it may in some way be in conflict with their status, accorded under the Geneva and Hague treaties, it is imperative that they know how weapons are used and understand their effects on the human body. The present review explores various categories of weapons of modern warfare that are unfamiliar to most medical and paramedical personnel responsible for burn treatment. The mechanisms and patterns of injury produced by each class of weapons are examined so that a better understanding of burn management in a warfare situation may be achieved. PMID:21991098
The enhanced total body wrap--the new frontier in dressing care for burns.
Low, O-Wern; Chong, Si Jack; Tan, Bien-Keem
2013-11-01
The management of extensive burns with their associated high fluid exudate following burn excision and skin grafting has always posed a challenge in burn wound care. The ideal dressing should protect the wound from physical damage and micro-organisms; be comfortable and durable; allow high humidity at the wound; and be able to allow maximal activity for wound healing without retarding or inhibiting any stage of the process. The dressing technique described in this paper fulfils all the criteria above and at the same time provides an efficient channel to effectively clear the excessive exudate produced while keeping the wounds moist. Advantages conferred include accurate charting of wound exudate; reduced frequency of dressing changes; lower infection rates through prevention of strike-through; and securing and improving the viability of skin grafts. An enhancement to a technique previously described by us through the use of long thin strips of VAC sponges to transmit negative pressure, the enhanced Total Body Wrap aims to provide ideal conditions to promote healing in burns. Using negative pressure wound therapy (NPWT), this technique is simple and straightforward enough to be applied in majority of tertiary centres around the world. Copyright © 2013. Published by Elsevier Ltd.
Wood crib fire free burning test in ISO room
NASA Astrophysics Data System (ADS)
Qiang, Xu; Griffin, Greg; Bradbury, Glenn; Dowling, Vince
2006-04-01
In the research of application potential of water mist fire suppression system for fire fighting in train luggage carriage, a series of experiments were conducted in ISO room on wood crib fire with and without water mist actuation. The results of free burn test without water mist suppression are used as reference in evaluating the efficiency of water mist suppression system. As part of the free burn test, several tests have been done under the hood of ISO room to calibrate the size of the crib fire and these tests can also be used in analyzing the wall effect in room fire hazard. In these free burning experiments, wood cribs of four sizes under the hood were tested. The temperature of crib fire, heat flux around the fire, gas concentration in hood of ISO room were measured in the experiments and two sets of thermal imaging system were used to get the temperature distribution and the typical shape of the free burning flames. From the experiments, the radiation intensity in specific positions around the fire, the effective heat of combustion, mass loss, oxygen consumption rate for different sizes of fire, typical structure of the flame and self extinguishment time was obtained for each crib size.
Reducing indoor air pollutants with air filtration units in wood stove homes.
McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W
2017-08-15
Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.
Advanced materials for automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narula, C.K.; Allison, J.E.; Bauer, D.R.
Quite early on, manufacturers realized that lighter automobiles (with gas and diesel engines) would be more fuel efficient and produce fewer tailpipe emissions. They also realized that burning diesel fuel at elevated temperatures (1,315 C) would result in similar improvements. However, materials limitations prevent the operation of diesel vehicles at high temperatures. The fuel efficiency of gasoline-powered vehicles is currently improved by reducing the weight of the automobile and treated the emissions with a three-way catalyst. Additional improvements can be achieved with the use of advanced materials that reduce the weight of vehicles without compromising safety. The use of ceramics,more » fiber-reinforced plastics, and metal-matrix composites are discussed. The paper also discusses automotive catalysts and their components, electrically heated catalyst devices, a lean-burn NOx catalyst, and the future for materials chemistry.« less
NASA Astrophysics Data System (ADS)
Risky, Yanuar S.; Aulia, Yogi H.; Widayani, Prima
2017-12-01
Spectral indices variations support for rapid and accurate extracting information such as built-up density. However, the exact determination of spectral waves for built-up density extraction is lacking. This study explains and compares the capabilities of 5 variations of spectral indices in spatiotemporal built-up density mapping using Landsat-7 ETM+ and Landsat-8 OLI/TIRS in Surakarta City on 2002 and 2015. The spectral indices variations used are 3 mid-infrared (MIR) based indices such as the Normalized Difference Built-up Index (NDBI), Urban Index (UI) and Built-up and 2 visible based indices such as VrNIR-BI (visible red) and VgNIR-BI (visible green). Linear regression statistics between ground value samples from Google Earth image in 2002 and 2015 and spectral indices for determining built-up land density. Ground value used amounted to 27 samples for model and 7 samples for accuracy test. The classification of built-up density mapping is divided into 9 classes: unclassified, 0-12.5%, 12.5-25%, 25-37.5%, 37.5-50%, 50-62.5%, 62.5-75%, 75-87.5% and 87.5-100 %. Accuracy of built-up land density mapping in 2002 and 2015 using VrNIR-BI (81,823% and 73.235%), VgNIR-BI (78.934% and 69.028%), NDBI (34.870% and 74.365%), UI (43.273% and 64.398%) and Built-up (59.755% and 72.664%). Based all spectral indices, Surakarta City on 2000-2015 has increased of built-up land density. VgNIR-BI has better capabilities for built-up land density mapping on Landsat-7 ETM + and Landsat-8 OLI/TIRS.
Zhou, Tao; Li, Zhaofu; Pan, Jianjun
2018-01-27
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
The next Landsat satellite; the Landsat Data Continuity Mission
Irons, James R.; Dwyer, John L.; Barsi, Julia A.
2012-01-01
The National Aeronautics and Space Administration (NASA) and the Department of Interior United States Geological Survey (USGS) are developing the successor mission to Landsat 7 that is currently known as the Landsat Data Continuity Mission (LDCM). NASA is responsible for building and launching the LDCM satellite observatory. USGS is building the ground system and will assume responsibility for satellite operations and for collecting, archiving, and distributing data following launch. The observatory will consist of a spacecraft in low-Earth orbit with a two-sensor payload. One sensor, the Operational Land Imager (OLI), will collect image data for nine shortwave spectral bands over a 185 km swath with a 30 m spatial resolution for all bands except a 15 m panchromatic band. The other instrument, the Thermal Infrared Sensor (TIRS), will collect image data for two thermal bands with a 100 m resolution over a 185 km swath. Both sensors offer technical advancements over earlier Landsat instruments. OLI and TIRS will coincidently collect data and the observatory will transmit the data to the ground system where it will be archived, processed to Level 1 data products containing well calibrated and co-registered OLI and TIRS data, and made available for free distribution to the general public. The LDCM development is on schedule for a December 2012 launch. The USGS intends to rename the satellite "Landsat 8" following launch. By either name a successful mission will fulfill a mandate for Landsat data continuity. The mission will extend the almost 40-year Landsat data archive with images sufficiently consistent with data from the earlier missions to allow long-term studies of regional and global land cover change.
NASA Technical Reports Server (NTRS)
Rao, D. B.; Nelson, H. G.
1977-01-01
The sulfidation of 310 stainless steel was studied over the temperature range from 910 K to 1285 K. By adjusting the ratio of hydrogen sulfide, variations in sulfur potential were obtained. The effect of temperature on sulfidation was determined at three different sulfur potentials: 39/sqNm, 0.014/sqNm, and 0.00015/sqNm. All sulfide scales contained one or two surface layers in addition to a subscale. The second outer layer (OL-II), furthest from the alloy, contained primarily Fe-Ni-S. The first outer layer (OL-I), nearest the subscale, contained FE-Cr-S. The subscale consisted of sulfide inclusions in the metal matrix. At a given temperature and sulfur potential, the weight gain data obeyed the parabolic rate law after an initial transient period. The parabolic rate constants obtained at the sulfur potential of 39/sqNm did not show a break when the logarithm of the rate constant was plotted as a function of the inverse of absolute temperature. Sulfidation carried out at sulfur potentials below 0.02/sqNm, however, did show a break at 1145 K, which is termed as the transition temperature. This break was found to be associated with the changes which had occurred in the Fe:Cr ratio of OL-I. Below the transition temperature the activation energy was found to be approximately 125 kj/mole. Above the transition temperature the rate of sulfidation decreased with temperature but dependent on the Fe:Cr ratio in the iron-chromium-sulfide layers of the OL-I. A reaction mechanism consistent with the experimental results has been proposed.
Gated photochemical hole burning in photoadducts of polyacenes
NASA Technical Reports Server (NTRS)
Iannone, Mark; Scott, Gary W.; Brinza, David; Coulter, Daniel R.
1986-01-01
A photoadduct of anthracene and tetracene (A-T) in a polymer matrix at 1.5 K generates an absorption spectrum which exhibits two-color, photon-gated photochemical hole burning (PHB) when irradiated with narrowband exciting light into the 0-0 band of the S1-S0 absorption. The efficiency of this PHB process is found to be enhanced by simultaneous irradiation near the maximum of the Tn-T1 absorption of A-T; hole widths of less than 0.07/cm have been observed for this photochemical cleavage of A-T.
Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves
NASA Technical Reports Server (NTRS)
Guemsey, Carl S.; Mizukami, Masashi; Zenz, Zac; Pender, Adam A.
2009-01-01
A solution was developed to mitigate the potential risk of ignition failures and burn-through in aluminum primer chamber assemblies on pyrovalves. This was accomplished by changing the assembly material from aluminum to steel, and reconfiguration of flame channels to provide more direct paths from initiators to boosters. With the geometric configuration of the channels changed, energy is more efficiently transferred from the initiators to the boosters. With the alloy change to steel, the initiator flame channels do not erode upon firing, eliminating the possibility of burn-through. Flight qualification tests have been successfully passed.
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
A concept for a fuel efficient flight planning aid for general aviation
NASA Technical Reports Server (NTRS)
Collins, B. P.; Haines, A. L.; Wales, C. J.
1982-01-01
A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.
Method and apparatus for controlling fuel/air mixture in a lean burn engine
Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James
1998-04-07
The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.
NASA Astrophysics Data System (ADS)
Liu, S.; Cui, Y.; Zhixuan, B.; Bian, J.; McKeen, S. A.; Watts, L. A.; Ciciora, S. J.; Gao, R. S.
2017-12-01
Measurements of aerosols in the Tibetan Plateau are scant due to the high altitude and harsh climate. To bridge this gap, we carried out the first field measurements of aerosol size distributions in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and reduced air quality. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 µg m-3 and the high values exceeding 50 µg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that is likely induced by religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at 500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that more attention should be paid to religious burning, a currently under-studied source, in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.
The impact of infield biomass burning on PM levels and its chemical composition.
Dambruoso, P; de Gennaro, G; Di Gilio, A; Palmisani, J; Tutino, M
2014-12-01
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.
Particle and Gas Emissions from an In Situ Burn of Crude Oil on the Ocean.
Hobbs, John L Ross Ronald J Ferek And Peter V
1996-03-01
Burning is a very effective way of removing oil spills from the ocean; the tradeoff is the potential for significant air pollution. Airborne measurements are described for particles and gases from two test burns of crude oil offshore of St. Johns, Newfoundland during the Newfoundland Offshore Burn Experiment (NOBE). The smoke plumes from the burns initially rose 200-400 m into the air and then continued to rise and disperse laterally downwind. The concentrations of accumulation-mode particles in the smoke were ~45,000 cm -3 at 1.5 km from the fires, and they remained as high as ~4,000 cm -3 after an hour or more of travel time downwind. Total particle mass loadings in the plumes were over 1000 µg m -3 near the fires, but decreased to ~100 µg m -3 at 25 km downwind. For each kilogram of fuel consumed, ~770 g of carbon was released in the form of CO2, ~13 g of carbon as CO, -5 g as volatile organic compounds (VOCs), and -87 g as particles with diameters <3.5 µm, of which ~66 g was elemental carbon and ~7 g condensed organic carbon. Also, ~3 g of SO2 was released per kilogram of fuel burned. A relatively low combustion efficiency was indicated by the average molar ratio of the concentration of CO to excess CO2 of 0.017. The molar ratio of NOX to excess CO2 typically varied from 0.3 x 10 -3 to 0.4 x 10 -3 , implying little fixation of atmospheric nitrogen and low concentrations of NOX. For comparison, the total smoke particle production rate in the NOBE burns was about the same as that for a nineacre slash burn.
Auxenfans, Celine; Menet, Veronique; Catherine, Zulma; Shipkov, Hristo; Lacroix, Pierre; Bertin-Maghit, Marc; Damour, Odile; Braye, Fabienne
2015-02-01
The aim was to review the use and indications of cultured autologous epidermis (CAE) in extensive burns and to evaluate the efficiency of our strategy of burn treatment. This retrospective study comprised 15 years (1997-2012). all patients who received CAE. patients who died before complete healing and patients who received exclusively cultured allogeneic keratinocytes. Evaluation criteria were clinical. Time and success of wound healing after CAE graft were evaluated. A total of 63 patients were included with severity Baux score of 107 (from 70 to 140) and mean percentage of TBSA of 71% (from 40% to 97%). The CAE were used as Cuono method, in STSG donor sites and deep 2nd degree burns and in combination with large-meshed STSG (1:6-1:12) in extensively burned patients. Cuono method was used in 6 patients. The final take was 16% (0-30) because of the great fragility of the obtained epidermis. Nine patients with deep 2nd degree burns (mean TBSA 81%, from 60 to 97%) were successfully treated with only CAE without skin grafting. Combined technique (STSG meshed at 1:6-1:12 covered with CAE) was used in 27 patients (mean TBSA 69%, from 49% to 96%) with 85% success rate. Finally, donor sites treated with CAE in 49 patients could be harvested several times thanks to rapid epithelialization (time of wound healing was 7 days (from 5 to 10 days)). The CAE allow rapid healing of STSG donor sites and deep 2nd second degree burns in extensively burned patients. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
3D photography is as accurate as digital planimetry tracing in determining burn wound area.
Stockton, K A; McMillan, C M; Storey, K J; David, M C; Kimble, R M
2015-02-01
In the paediatric population careful attention needs to be made concerning techniques utilised for wound assessment to minimise discomfort and stress to the child. To investigate whether 3D photography is a valid measure of burn wound area in children compared to the current clinical gold standard method of digital planimetry using Visitrak™. Twenty-five children presenting to the Stuart Pegg Paediatric Burn Centre for burn dressing change following acute burn injury were included in the study. Burn wound area measurement was undertaken using both digital planimetry (Visitrak™ system) and 3D camera analysis. Inter-rater reliability of the 3D camera software was determined by three investigators independently assessing the burn wound area. A comparison of wound area was assessed using intraclass correlation co-efficients (ICC) which demonstrated excellent agreement 0.994 (CI 0.986, 0.997). Inter-rater reliability measured using ICC 0.989 (95% CI 0.979, 0.995) demonstrated excellent inter-rater reliability. Time taken to map the wound was significantly quicker using the camera at bedside compared to Visitrak™ 14.68 (7.00)s versus 36.84 (23.51)s (p<0.001). In contrast, analysing wound area was significantly quicker using the Visitrak™ tablet compared to Dermapix(®) software for the 3D Images 31.36 (19.67)s versus 179.48 (56.86)s (p<0.001). This study demonstrates that images taken with the 3D LifeViz™ camera and assessed with Dermapix(®) software is a reliable method for wound area assessment in the acute paediatric burn setting. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma
NASA Astrophysics Data System (ADS)
Wagle, P.; Gowda, P. H.; Northup, B. K.
2016-12-01
Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.
NASA Astrophysics Data System (ADS)
Ghamari, Mohsen
In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate. In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated. Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also tested at different particle loadings. It was found that dispersing nanoparticles results in higher burning rate by means of enhanced radiative heat absorption and thermal conductivity. An optimum particle loading was found for each particle type at which the maximum burning rate was achieved. It was observed that the burning rate again starts to reduce after this optimum point most likely due to the formation of large aggregates that reduce thermal conductivity and suppress the diffusion of species.
Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles.
Hosseini, Seyedehsan; Shrivastava, Manish; Qi, Li; Weise, David R; Cocker, David R; Miller, John W; Jung, Heejung S
2014-06-01
Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities--activities associated with development and care of forests--dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (Arctostaphylos sp.) wood containing 0, 0.25, and 2.5% LDPE by mass were burned. Gaseous and particulate emissions were sampled in real time during the entire flaming, mixed combustion phase--when the flaming and smoldering phases are present at the same time--and during a portion of the smoldering phase. Analysis of variance was used to test significance of modified combustion efficiency (MCE)--the ratio of concentrations of fire-integrated excess CO2 to CO2 plus CO--and LDPE content on measured individual compounds. MCE ranged between 0.983 and 0.993, indicating that combustion was primarily flaming; MCE was seldom significant as a covariate. Of the 195 compounds identified in the smoke emissions, only the emission factor (EF) of 3M-octane showed an increase with increasing LDPE content. Inclusion of LDPE had an effect on EFs of pyrene and fluoranthene, but no statistical evidence of a linear trend was found. Particulate emission factors showed a marginally significant linear relationship with MCE (0.05 < P-value < 0.10). Based on the results of the current and previous studies and literature reviews, the inclusion of small mass proportions of LDPE in piled silvicultural debris does not appear to change the emissions produced when low-moisture-content wood is burned. In general, combustion of wet piles results in lower MCEs and consequently higher levels of emissions. Current air quality regulations permit the use of burning to dispose of silvicultural piles; however, inclusion of low-density polyethyelene (LDPE) plastic in silvicultural piles can result in a designation of the pile as waste. Waste burning is not permitted in many areas, and there is also concern that inclusion of LDPE leads to toxic air emissions.
Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan
2016-01-01
To estimate the potential synergies of OLI and ICESat-2 we used simulated ICESat-2 photon data to predict vegetation structure. In a shrubland environment with a vegetation mean height of 1 m and mean vegetation cover of 33%, vegetation photons are able to explain nearly 50% of the variance in vegetation height. These results, and those from a comparison site, suggest that a lower detection threshold of ICESat-2 may be in the range of 30% canopy cover and roughly 1 m height in comparable dryland environments and these detection thresholds could be used to combine future ICESat-2 photon data with OLI spectral data for improved vegetation structure. Overall, the synergistic use of Landsat 8 and ICESat-2 may improve estimates of above-ground biomass and carbon storage in drylands that meet these minimum thresholds, increasing our ability to monitor drylands for fuel loading and the potential to sequester carbon.
NASA Astrophysics Data System (ADS)
Novelli, Antonio; Aguilar, Manuel A.; Nemmaoui, Abderrahim; Aguilar, Fernando J.; Tarantino, Eufemia
2016-10-01
This paper shows the first comparison between data from Sentinel-2 (S2) Multi Spectral Instrument (MSI) and Landsat 8 (L8) Operational Land Imager (OLI) headed up to greenhouse detection. Two closely related in time scenes, one for each sensor, were classified by using Object Based Image Analysis and Random Forest (RF). The RF input consisted of several object-based features computed from spectral bands and including mean values, spectral indices and textural features. S2 and L8 data comparisons were also extended using a common segmentation dataset extracted form VHR World-View 2 (WV2) imagery to test differences only due to their specific spectral contribution. The best band combinations to perform segmentation were found through a modified version of the Euclidian Distance 2 index. Four different RF classifications schemes were considered achieving 89.1%, 91.3%, 90.9% and 93.4% as the best overall accuracies respectively, evaluated over the whole study area.
Future of Land Remote Sensing: What is Needed
NASA Technical Reports Server (NTRS)
Goward, Samuel N.
2007-01-01
A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do. A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do.
The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.
2010-01-01
The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.
NASA Astrophysics Data System (ADS)
Tan, C.; Fang, W.
2018-04-01
Forest disturbance induced by tropical cyclone often has significant and profound effects on the structure and function of forest ecosystem. Detection and analysis of post-disaster forest disturbance based on remote sensing technology has been widely applied. At present, it is necessary to conduct further quantitative analysis of the magnitude of forest disturbance with the intensity of typhoon. In this study, taking the case of super typhoon Rammasun (201409), we analysed the sensitivity of four common used remote sensing indices and explored the relationship between remote sensing index and corresponding wind speeds based on pre-and post- Landsat-8 OLI (Operational Land Imager) images and a parameterized wind field model. The results proved that NBR is the most sensitive index for the detection of forest disturbance induced by Typhoon Rammasun and the variation of NBR has a significant linear dependence relation with the simulated 3-second gust wind speed.
Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.
2018-05-01
Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... process for gathering the essential post-burn activity information to support emissions inventory and... considers visibility and is based on the criteria of efficiency, economics, law, emission reduction...
MO/DSD online information server and global information repository access
NASA Technical Reports Server (NTRS)
Nguyen, Diem; Ghaffarian, Kam; Hogie, Keith; Mackey, William
1994-01-01
Often in the past, standards and new technology information have been available only in hardcopy form, with reproduction and mailing costs proving rather significant. In light of NASA's current budget constraints and in the interest of efficient communications, the Mission Operations and Data Systems Directorate (MO&DSD) New Technology and Data Standards Office recognizes the need for an online information server (OLIS). This server would allow: (1) dissemination of standards and new technology information throughout the Directorate more quickly and economically; (2) online browsing and retrieval of documents that have been published for and by MO&DSD; and (3) searching for current and past study activities on related topics within NASA before issuing a task. This paper explores a variety of available information servers and searching tools, their current capabilities and limitations, and the application of these tools to MO&DSD. Most importantly, the discussion focuses on the way this concept could be easily applied toward improving dissemination of standards and new technologies and improving documentation processes.
NASA Astrophysics Data System (ADS)
Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity
2010-05-01
Burning of savannas and grasslands consumes more than one third of the total annual biomass burning globally. In Australia, savanna fires emit annually from 2% to 4% of Australia's greenhouse gas emissions. This has led to efforts to reduce savanna burning emissions through early season prescribed burning. These programs aim to change the fire seasonality from predominantly high intensity late season fires which are characterized by low levels of patchiness and high burning efficiencies to early-season fires characterized by low intensity, a high degree of patchiness and low burning efficiency. The result is a net reduction in fire area and associated carbon emissions. Mitigation of greenhouse gas emissions is predicated on there being little change in methane (CH4) or nitrous oxide (N2O) emission factors (EFs) as the fire season progresses, however, recent analysis of the emission characteristics of African savanna fires by Korontzi et al., indicates CH4-EF, in particular, could decline substantially as the fire season progresses. If this also occurs in Australian savanna woodlands, then the current mitigation strategy could be ineffective. To address the issue a series of field campaigns were undertaken in the savanna woodlands of Western Arnhem land, Australia to quantify the variability in CH4 and N2O EFs throughout the fire season. This study compared CH4 and N2O EFs measured in smoke sampled from prescribed burning in late June/early July with those from late season fires in early October. It concentrated on the two major vegetation classes in Western Arnhemland; eucalypt open woodland, in which the fuel is composed predominantly tree leaf-litter supplemented by senescent native Sorghum, and sandstone heaths which are dominated by Spinifex hummocks. There were no significant differences in CH4 EFs between early or late season fires, however there were substantial differences between vegetation classes. The woodland emitted 0.3% of fuel carbon as CH4 compared to 0.15% in the sandstone heathland and pure Spinifex and Sorghum swords. The lower emission factors from the grasses compared to leaf litter can be entirely explained by higher combustion efficiency of grass fires. Emission of N2O were less dependent on combustion conditions; approximately 0.5% of fuel nitrogen was emitted as N2O, however there were no differences between early and late season fires or between vegetation classes. These results compare favorably with previous studies; the CH4-EF is similar to earlier measurements in open woodland, although the N2O-EF is lower than the value of 0.8% reported in previous work. Therefore we conclude that the proposed mitigation strategy is feasible and but the variation in EF with vegetation class calls for further quantification of EFs across all major vegetation types in the savanna regions.
Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik
2015-07-01
Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.
Rajput, Prashant; Sarin, M M
2014-05-01
This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
London's historic pea-soupers''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbinato, D.
Americans may think smog was invented in Los Angeles. Not so. In fact, a Londoner coined the term smog'' in 1905 to describe the city's insidious combination of natural fog and coal smoke. By then, the phenomenon was part of London history, and dirty, acrid smoke-filled pea-soupers'' were as familiar to Londoners as Big Ben and Westminster Abby. Smog in London predates Shakespeare by four centuries. Until the 12th century, most Londoners burned wood for fuel. But as the city grew and the forests shrank, wood became scarce and increasingly expensive. Large deposits of sea-coal'' off the northeast coast providedmore » a cheap alternative. Soon, Londoners were burning the soft, bituminous coal to heat their homes and fuel their factories. Sea-coal was plentiful, but it didn't burn efficiently. A lot of its energy was spent making smoke, not heat. Coal smoke drifting through thousands of London chimneys combined with clean natural fog to make smog. If the weather conditions were right, it would last for days. Early on, no one had the scientific tools to correlate smog with adverse health effects, but complaints about the smoky air as an annoyance date back to at least 1272, when King Edward I, on the urging of important noblemen and clerics, banned the burning of sea-coal. Anyone caught burning or selling the stuff was to be tortured or executed. The first offender caught was summarily put to death. This deterred nobody. Of necessity, citizens continued to burn sea-coal in violation of the law, which required the burning of wood few could afford.« less
Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan
2014-01-01
Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.
Dimethyl sulfoxide but not indomethacin is efficient for healing in hydrofluoric acid eye burns.
Altan, Semih; Oğurtan, Zeki
2017-02-01
In this study, we aimed to investigate the effect of indomethacin and dimethyl sulfoxide (DMSO), well-known antioxidant and anti-inflammatory agents, to heal eye burns induced with hydrofluoric acid in rabbits. After general anesthesia, the right eye of 72 male New Zealand rabbits were burned by instillation of 2% hydrofluoric acid for 60s. Following this, the eyes were irrigated with 500 cc normal saline. The rabbits were then divided into four groups of 18 rabbits each. Group D was instilled dimethyl sulfoxide 40%, Group I indomethacin 0.1%, and Group DI dimethyl sulfoxide together with indomethacin for 2, 7, and 14 treatment days, respectively. Group C received no instilled drug as control. Treatment efficacies were evaluated as clinical (corneal haziness, conjunctival status, conjunctivitis, corneal erosion area, and intraocular pressure) and histopathological (inflammatory cell infiltration, vascularization, stromal thickness, reepithelization, proliferating cell nuclear antigen [PCNA], apoptosis, and inducible nitric oxide synthases [iNOS]). In terms of corneal haziness and erosion area at days 7 and 14, group D showed the best result statistically as compared to the other groups. This group also showed the best result statistically for reepithelization rate, stromal thickness, and inflammatory cell end at day 14 as compared to the other groups. Dimethyl sulfoxide (40%) was efficient to induce reepithelization on mild hydrofluoric acid eye burns, whereas 0.1% indomethacin both alone and along with DMSO poorly induced reepithelization and exacerbated inflammation. Thus, 40% DMSO could be used for the treatment of corneal disorders. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Infrared measurements of a scramjet exhaust. [to determine combustion efficiency
NASA Technical Reports Server (NTRS)
Reed, R. A.; Slack, M. W.
1980-01-01
Diagnostic 2 - 5 mm infrared spectra of a hydrogen burning scramjet exhaust were measured with an interferometer spectrometer. Exhaust gas temperatures and water vapor partial pressures were determined from the observed intensity and spectral profile of the H2O 2.7 mm infrared emission band. Overall engine combustion efficiencies were derived by combining these measurements with the known engine operating conditions. Efficiencies fall (70 - 50 percent) as fuel equivalence ratios rise (0.4 - 1.0). Data analysis techniques and sensitivity studies are also presented.
Multifuel evaluation of rich/quench/lean combustor
NASA Technical Reports Server (NTRS)
Novick, A. S.; Troth, D. L.; Notardonato, J.
1982-01-01
Test results on the RQL low NO(x) industrial gas turbine engine are reported. The air-staged combustor comprises an initial rich burning zone, followed by a quench zone, and a lean reaction and dilution zone. The combustor was tested as part of the DoE/NASA program to define the technology for developing a durable, low-emission gas turbine combustor capable of operation with minimally processed petroleum residual, synthetic, or low/mid-heating value gaseous fuels. The properties of three liquid and two gaseous fuels burned in the combustor trials are detailed. The combustor featured air staging, variable geometry, and generative/convective cooling. The lean/rich mixtures could be varied in zones simultaneously or separately while maintaining a specified pressure drop. Low NO(x) and smoke emissions were produced with each fuel burned, while high combustor efficiencies were obtained.
1990-02-05
Jersey, Philadelphia, Chicago, and to Ismet Abdulahu, Hasan Ramadani , and Haljimi Mrati Canada, to organize receptions and parties for Yugoslav had fled...by (rhetorical) attack. When they did He com h course o studie at tecelopoeit-not avethe ourge-te oly nes n Eropeto ign He completed the course of
Time Series Reconstruction of Surface Flow Velocity on Marine-terminating Outlet Glaciers
NASA Astrophysics Data System (ADS)
Jeong, Seongsu
The flow velocity of glacier and its fluctuation are valuable data to study the contribution of sea level rise of ice sheet by understanding its dynamic structure. Repeat-image feature tracking (RIFT) is a platform-independent, feature tracking-based velocity measurement methodology effective for building a time series of velocity maps from optical images. However, limited availability of perfectly-conditioned images motivated to improve robustness of the algorithm. With this background, we developed an improved RIFT algorithm based on multiple-image multiple-chip algorithm presented in Ahn and Howat (2011). The test results affirm improvement in the new RIFT algorithm in avoiding outlier, and the analysis of the multiple matching results clarified that each individual matching results worked in complementary manner to deduce the correct displacements. LANDSAT 8 is a new satellite in LANDSAT program that has begun its operation since 2013. The improved radiometric performance of OLI aboard the satellite is expected to enable better velocity mapping results than ETM+ aboard LANDSAT 7. However, it was not yet well studied that in what cases the new will sensor will be beneficial, and how much the improvement will be obtained. We carried out a simulation-based comparison between ETM+ and OLI and confirmed OLI outperforms ETM+ especially in low contrast conditions, especially in polar night, translucent cloud covers, and bright upglacier with less texture. We have identified a rift on ice shelf of Pine island glacier located in western Antarctic ice sheet. Unlike the previous events, the evolution of the current started from the center of the ice shelf. In order to analyze this unique event, we utilized the improved RIFT algorithm to its OLI images to retrieve time series of velocity maps. We discovered from the analyses that the part of ice shelf below the rift is changing its speed, and shifting of splashing crevasses on shear margin is migrating to the center of the shelf. Concerning the concurrent disintegration of ice melange on its western part of the terminus, we postulate that change in flow regime attributes to loss of resistance force exerted by the melange. There are several topics that need to be addressed for further improve the RIFT algorithm. As coregistration error is significant contributor to the velocity measurement, a method to mitigate that error needs to be devised. Also, considering that the domain of RIFT product spans not only in space but also in time, its regridding and gap filling work will benefit from extending its domain to both space and time.
Willson, T A; Nagley, P
1987-09-01
This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9 extends further than previously suggested, with the boundary of the N-terminal membrane-embedded stem lying at residue 34. The possibility is raised that the observed suppression of the 2422 mutant phenotype in class III revertants is manifested through an accommodating change in a nuclear-encoded subunit of the ATPase complex.
European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Shen, Bo; Keinath, Chris
2017-01-01
High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less
Wayne County, NY, municipal vehicle retrofit project - final report.
DOT National Transportation Integrated Search
2015-07-01
Police Departments struggle with both increasing fuel prices and increasing demands for : greater fuel efficiency and lower emissions. According to vehicle manufacturers, an : average of one gallon of gasoline is burned every hour that a vehicles ...
Mercury Emissions Capture Efficiency with Activated Carbon ...
This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Russian coals are similar to those found at U.S. plants burning US coals. (The US funding was from funds provided to the EPA by the Department of State pursuant to the Bio-Chemical Redirect Program which engages former Russian (and other former Soviet) weapons scientists in research projects with US collaborators.) Among other things, this report will aid the major task, of developing guidance on best available mercury control technology/best environmental practices (BAT/BEP) for coal-fired power plants, a major source a global anthropogenic emissions. (The new Minamata Convention requires BAT/BEP for new power plants and other major emission sources within five years of treaty ratification.)
Photo-degradation of high efficiency fullerene-free polymer solar cells.
Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf
2017-12-07
Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.
NASA Technical Reports Server (NTRS)
Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry
2006-01-01
The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.
NASA Astrophysics Data System (ADS)
Diehl, K.; Simmel, M.; Wurzler, S.
There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.
Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming
2013-01-01
The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).
From fire whirls to blue whirls and combustion with reduced pollution
NASA Astrophysics Data System (ADS)
Xiao, Huahua; Gollner, Michael J.; Oran, Elaine S.
2016-08-01
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.
From fire whirls to blue whirls and combustion with reduced pollution
Xiao, Huahua; Oran, Elaine S.
2016-01-01
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water–surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics. PMID:27493219
The quality of video information on burn first aid available on YouTube.
Butler, Daniel P; Perry, Fiona; Shah, Zameer; Leon-Villapalos, Jorge
2013-08-01
To evaluate the clinical accuracy and delivery of information on thermal burn first aid available on the leading video-streaming website, YouTube. YouTube was searched using four separate search terms. The first 20 videos identified for each search term were included in the study if their primary focus was on thermal burn first aid. Videos were scored by two independent reviewers using a standardised scoring system and the scores totalled to give each video an overall score out of 20. A total of 47 videos were analysed. The average video score was 8.5 out of a possible 20. No videos scored full-marks. A low correlation was found between the score given by the independent reviewers and the number of views the video received per month (Spearman's rank correlation co-efficient=0.03, p=0.86). The current standard of videos covering thermal burn first aid available on YouTube is unsatisfactory. In addition to this, viewers do not appear to be drawn to videos of higher quality. Organisations involved in managing burns and providing first aid care should be encouraged to produce clear, structured videos that can be made available on leading video streaming websites. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
The estimation of territiry predeposition to wildfires
NASA Astrophysics Data System (ADS)
Panchenko, Ekaterina; Dukarev, Anatoly
2010-05-01
Wildfires have significant environmental effects. The indirect damages because of fires are an emission of various combustion products such as aerosols, greenhouse gases and carcinogen. Analysis of smoke emission show that from 1 ha burning area emitted aerosols from 0.2 to 1 ton. The aim of our research is to estimate biomass burning emission: Biomass Burning Emission=BA x FL x CE x EF, where BA is Burned Area (ha); FL is forest litter cover (cm); CE is Combustion Efficiency (0-1), depends on a class of fire danger; EF is Emission Factor (kg emitted / kg dry-mass burnt). Consequently for estimation of biomass burning emission it is necessary to analyze of territory predisposition to wildfires and give characteristic of combustion material types for detection fire hazard, for prognosis fire origin and extension. Prognosis of occurrence of wildfires and definition of emissions is possible by means of data of depth forest litter, types of vegetation and type of landscapes including concrete weather conditions (seasons, length of arid period, current temperature, wind speed and its direction). The investigated object is the territory Tomskii district near to the city of Tomsk (56° 31 N-85°08 E) - with the population more than 500 thousand people. The conducted analysis of investigated territory and the calculation will be basic prognostic model for researching wildfires.
An Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning
NASA Astrophysics Data System (ADS)
Parete-Koon, Suzanne; Hix, William Raphael; Thielemann, Friedrich-Karl
2010-02-01
The nuclei of the ``iron peak'' are formed late in the evolution of massive stars and during supernovae. Silicon burning during these events is responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. The large number of nuclei involved make accurate modeling of silicon burning computationally expensive. Examination of the physics of silicon burning reveals that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme that takes advantage of this quasi-equilibrium (QSE) to reduce the number of independent variables calculated. Because the membership and number of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. The resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications. )
O'Cleireachain, Marc R; Macias, Luis H; Richey, Karen J; Pressman, Melissa A; Shirah, Gina R; Caruso, Daniel M; Foster, Kevin N; Matthews, Marc R
2014-01-01
Muriatic acid (hydrochloric acid), a common cleaning and resurfacing agent for concrete pools, can cause significant burn injuries. When coating a pool with chlorinated rubber-based paint, the pool surface is initially cleansed using 31.45% muriatic acid. Here we report a 50-year-old Hispanic male pool worker who, during the process of a pool resurfacing, experienced significant contact exposure to a combination of muriatic acid and blue chlorinated rubber-based paint. Confounding the clinical situation was the inability to efficiently remove the chemical secondary to the rubber-based nature of the paint. Additionally, vigorous attempts were made to remove the rubber paint using a variety of agents, including bacitracin, chlorhexidine soap, GOOP adhesive, and Johnson's baby oil. Resultant injuries were devastating fourth-degree burns requiring an immediate operative excision and amputation. Despite aggressive operative intervention and resuscitation, he continued to have severe metabolic derangements and ultimately succumbed to his injuries. We present our attempts at debridement and the system in place to manage patients with complex chemical burns.
Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.
2011-01-01
Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.
Hanahau'oli School: Theory Meets Practice
ERIC Educational Resources Information Center
Peters, Robert
2015-01-01
Progressive schools, by their very nature, need to respond to changing societal conditions. Within that context, learning guided by the teachings of John Dewey will not only make the progressive tradition sustainable but also make it increasingly relevant in a future that will increasingly make demands on students to possess the knowledge to…
The Open Learning Initiative: New Directions for Higher Education.
ERIC Educational Resources Information Center
King, Bruce
This paper describes the Australian Open Learning Initiative (OLI), a program to facilitate access to postsecondary education. The program will provide off-campus or distance education courses for which there is evident high demand. Program features include an independent brokering agency, coordination by a university or group of universities,…
U.S. EPA, Pesticide Product Label, BEST BBC 12-E EMULSIFIABLE LIQUID, 01/12/1968
2011-04-14
... plar,7"":) 1 q'J ;-,I'r Ol.I',' (OTTON, p~EPl/\\~~~ T ~!"~'i!I~~\\.. i)()SrPLANT. PiNEAPPLES: [11'(0(1"\\1' ~'~Lr'~ I.~ .. T ,~,l ~-'lt~~~1:~~'~j ?OSTPLP.,Nf. ...
Attitudes Affecting Online Learning Implementation in Higher Education Institutions
ERIC Educational Resources Information Center
Mitchell, Betty; Geva-May, Iris
2009-01-01
This study explores attitudes towards and affecting online learning implementation (OLI). In recent years there has been greater acceptance of online learning (OL) by institutional decision-makers, as evidenced by higher levels of institutional involvement; nevertheless, the increase in faculty acceptance lags behind. This gap affects the…
Rousseau, Anne-Françoise; Damas, Pierre; Renwart, Ludovic; Amand, Théo; Erpicum, Marie; Morimont, Philippe; Dubois, Bernard; Massion, Paul B
2014-11-01
Acute respiratory distress syndrome management is currently based on lung protective ventilation. Such strategy may lead to hypercapnic acidosis. We report a case of refractory hypercapnia in a severe burn adult, treated with simplified veno-venous extracorporeal carbon dioxide removal technique. We integrated a pediatric oxygenator in a continuous veno-venous hemofiltration circuit. This technique, used during at least 96h, was feasible, sure and efficient with carbon dioxide removal rate up to 32%. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Dual Spark Plugs For Stratified-Charge Rotary Engine
NASA Technical Reports Server (NTRS)
Abraham, John; Bracco, Frediano V.
1996-01-01
Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.
2007-12-01
Ventilation, and Air Conditioning IED Improvised Explosive Device IG DoD Inspector General, Department of Defense IGA Investment Grade Audit JLTV...that certain energy efficient improvements will be achieved (Hansen, 2003). Investment Grade Audit (IGA). Based on the premise that energy...low- grade propane; and a modified diesel engine that can burn gas, ethanol, and diesel fuel in variable proportions (Hamilton, 2007). The TGER
NASA Astrophysics Data System (ADS)
Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan
2017-06-01
For a common household wood stove and a pellet stove we investigated the dependence of emission factors for various gaseous and particulate pollutants on burning phase, burning condition, and fuel. Ideal and non-ideal burning conditions (dried wood, under- and overload, small logs, logs with bark, excess air) were used. We tested 11 hardwood species (apple, ash, bangkirai, birch, beech, cherry, hickory, oak, olive, plum, sugar maple), 4 softwood species (Douglas fir, pine, spruce, spruce/fir), treated softwood, beech and oak wood briquettes, paper briquettes, brown coal, wood chips, and herbaceous species (miscanthus, Chinese silver grass) as fuel. Particle composition (black carbon, non-refractory, and some semi-refractory species) was measured continuously. Repeatability was shown to be better for the pellet stove than for the wood stove. It was shown that the user has a strong influence on wood stove emission behavior both by selection of the fuel and of the burning conditions: Combustion efficiency was found to be low at both very low and very high burn rates, and influenced particle properties such as particle number, mass, and organic content in a complex way. No marked differences were found for the emissions from different wood species. For non-woody fuels, much higher emission factors could be observed (up to five-fold increase). Strongest enhancement of emission factors was found for burning of small or dried logs (up to six-fold), and usage of excess air (two- to three-fold). Real world pellet stove emissions can be expected to be much closer to laboratory-derived emission factors than wood stove emissions, due to lower dependence on user operation.
NASA Astrophysics Data System (ADS)
Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.
2014-12-01
The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.
'Tertiary' nuclear burning - Neutron star deflagration?
NASA Technical Reports Server (NTRS)
Michel, F. Curtis
1988-01-01
A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melody, M.
Waste Technologies Industries (WTI; East Liverpool, Ohio) is trying to wing what it hopes will be its final battle in a 13-year, $160 million war with the government, and community and environmental groups. The company since 1980 has sought EPA approval to operate a hazardous waste incinerator in East Liverpool, Ohio. WTI late last year conducted a pre-test burn, or shakedown, during which the incinerator burned certain types of hazardous waste. The test demonstrates the incinerator's performance under normal operating conditions, Regulatory authorities, including EPA and the Ohio Environmental Protection Agency (OEPA), monitored activity during the shakedown, which was limitedmore » to 720 hours of operation. In accordance with RCRA requirements, the company in March conducted a trial burn to demonstrate that the incinerator meets permit standards. WTI's permit specifies three performance parameters the incinerator must meet -- particulate and hydrogen chloride emissions limits, and destruction removal efficiencies (DREs).« less
NASA Astrophysics Data System (ADS)
Hirao, Akihiro; Sato, Shunichi; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Obara, Minoru
2009-02-01
To obtain efficient antibacterial photodynamic effect in traumatic injuries such as burns, depth-resolved dosimetry of photosensitizer is required. In this study, we performed dual-wavelength photoacoustic (PA) measurement for rat burned skins injected with a photosensitizer. As a photosensitizer, methylene blue (MB) or porfimer sodium was injected into the subcutaneous tissue in rats with deep dermal burn. The wound was irradiated with red (665 nm or 630 nm) pulsed light to excite photosensitizers and green (532 nm) pulsed light to excite blood in the tissue; the latter signal was used to eliminate blood-associated component involved in the former signal. Acoustic attenuation was also compensated from the photosensitizer-associated PA signals. These signal processing was effective to obtain high-contrast image of a photosensitizer in the tissue. Behaviors of MB and porfimer sodium in the tissue were compared.
Low thrust chemical orbit to orbit propulsion system propellant management study
NASA Technical Reports Server (NTRS)
Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.
1981-01-01
Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.
Catalytically assisted combustion of Aquanol in demonstration vehicles
DOT National Transportation Integrated Search
2001-01-01
Aqueous fuels have the potential for lower emissions and higher engine efficiency than can be experienced with gasoline or diesel fuels. Past attempts to burn aqueous fuels in over-the-road vehicles have been unsuccessful due to difficulties in initi...
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu
2015-01-01
Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2–5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p < 0.05), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents. PMID:25678836
NASA Astrophysics Data System (ADS)
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu
2012-12-01
Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348 ± 305 and 396 ± 387 μg kg-1 in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7 ± 49.4 and 189 ± 118 μg kg-1, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p < 0.05), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.
Microfine coal firing results from a retrofit gas/oil-designed industrial boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.; Borio, R.W.; Liljedahl, G.
1995-12-31
The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu
2012-12-01
Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EF oPAHs ) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EF oPAHs for raw fuels combusted in a traditional cooking stove were also measured. EF oPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EF oPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EF oPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EF oPAHs for the pellets in mode I were significantly lower ( p < 0.05 ), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.
NASA Astrophysics Data System (ADS)
Tang, H.; McGuire, L.; Rengers, F. K.; Kean, J. W.; Staley, D. M.
2017-12-01
Wildfire significantly changes the hydrological characteristics of soil for a period of several years and increases the likelihood of flooding and debris flows during high-intensity rainfall in steep watersheds. Hazards related to post-fire flooding and debris flows increase as populations expand into mountainous areas that are susceptible to wildfire, post-wildfire flooding, and debris flows. However, our understanding of post-wildfire debris flows is limited due to a paucity of direct observations and measurements, partially due to the remote locations where debris flows tend to initiate. In these situations, numerical modeling becomes a very useful tool for studying post-wildfire debris flows. Research based on numerical modeling improves our understanding of the physical mechanisms responsible for the increase in erosion and consequent formation of debris flows in burned areas. In this contribution, we study changes in sediment transport efficiency with time since burning by combining terrestrial laser scanning (TLS) surveys of a hillslope burned during the 2016 Fish Fire with numerical modeling of overland flow and sediment transport. We also combine the numerical model with measurements of debris flow timing to explore relationships between post-wildfire rainfall characteristics, soil infiltration capacity, hillslope erosion, and debris flow initiation at the drainage basin scale. Field data show that an initial rill network developed on the hillslope, and became more efficient over time as the overall rill density decreased. Preliminary model results suggest that this can be achieved when flow driven detachment mechanisms dominate and raindrop-driven detachment is minimized. Results also provide insight into the hydrologic and geomorphic conditions that lead to debris flow initiation within recently burned areas.
NASA Astrophysics Data System (ADS)
Tsunoi, Yasuyuki; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro
2012-02-01
For efficient photodynamic treatment of wound infection, a photosensitizer must be distributed in the whole infected tissue region. To ensure this, depth profiling of a photosensitizer is necessary in vivo. In this study, we applied photoacoustic (PA) imaging to visualize the depth profile of an intravenously injected photosensitizer in rat burn models. In burned tissue, pharmacokinetics is complicated; vascular occlusion takes place in the injured tissue, while vascular permeability increases due to thermal invasion. In this study, we first used Evans Blue (EB) as a test drug to examine the feasibility of photosensitizer dosimetry based on PA imaging. On the basis of the results, an actual photosensitizer, talaporfin sodium was used. An EB solution was intravenously injected into a rat deep dermal burn model. PA imaging was performed on the wound with 532 nm and 610 nm nanosecond light pulses for visualizing vasculatures (blood) and EB, respectively. Two hours after injection, the distribution of EB-originated signal spatially coincided well with that of blood-originated signal measured after injury, indicating that EB molecules leaked out from the blood vessels due to increased permeability. Afterwards, the distribution of EB signal was broadened in the depth direction due to diffusion. At 12 hours after injection, clear EB signals were observed even in the zone of stasis, demonstrating that the leaked EB molecules were delivered to the injured tissue layer. The level and time course of talaporfin sodium-originated signals were different compared with those of EB-originated signals, showing animal-dependent and/or drug-dependent permeabilization and diffusion in the tissue. Thus, photosensitizer dosimetry should be needed before every treatment to achieve desirable outcome of photodynamic treatment, for which PA imaging can be concluded to be valid and useful.
NASA Astrophysics Data System (ADS)
Coe, H.; Morgan, W.; Darbyshire, E.; Allan, J. D.; Flynn, M.; Liu, D.; Langridge, J.; Johnson, B. T.; Haywood, J. M.; Longo, K.; Artaxo, P.; Highwood, E.; Mollard, J.
2015-12-01
Open biomass burning makes a substantial contribution to the global budget of black carbon, yet models significantly underestimate absorption aerosol optical depth compared to observations by approximately a factor of two over South America. These large differences need to be addressed. Recent work has shown that the number of deforestation fires has decreased across Amazonia over the last decade, giving rise to a decrease in the abundance of biomass burning aerosol across the region. At the same time there has been an increase in the frequency of agricultural burning across regions that have previously been deforested, as well as increased burning in the east of Brazil in the Cerrado regions. We sampled both of these types of open burning extensively during a recent aircraft experiment. Significant concentrations of organic carbon as well as black carbon were observed, with this ratio providing the main control on the single scattering albedo (SSA).Deforestation fires and wild forest fires are prevalent across the south west of the Amazon Basin, where smouldering burning dominates. In the east of Brazil, agricultural burning proceeds via a much more efficient form of combustion and as a result, black carbon is a much larger fraction of the aerosol mass and SSAs are much lower than in the west. We have analysed MISR data across the region to show that whilst aerosol optical depths have decreased during the dry season over the last decade, with greater rates of reduction occurring over the south western margins of Amazonia, absorption aerosol optical depths have significantly increased over the Cerrado and remained constant over south western Amazonia. This has led to a decline in SSA across the whole of the region with greater reductions occurring over the eastern states. This finding is consistent with our aircraft measurements. We will discuss the implications of these changes for air quality and climate across the region.
Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen
2013-12-01
Mongolian oak (Quercus mongolica) is an important constructive and accompanying species in mixed broadleaf-conifer forest in Northeast China, In this paper, a laboratory burning experiment was conducted under zero-slope and no-wind conditions to study the effects of fuel moisture content, loading, and thickness on the fireline intensity, fuel consumption, and combustion efficiency of the Mongolian oak leaf litter fuelbed. The fuel moisture content, loading, and thickness all had significant effects on the three fire behavior indices, and there existed interactions between these three affecting factors. Among the known models, the Byram model could be suitable for the prediction of local leaf litter fire intensity only after re-parameterization. The re-estimated alpha and beta parameters of the re-parameterized Byram model were 98.009 and 1.099, with an adjusted determination coefficient of 0.745, the rooted mean square error (RMSE) of 8.676 kW x m(-1), and the mean relative error (MRE) of 21%, respectively (R2 = 0.745). The re-estimated a and b by the burning efficiency method proposed by Albini were 0.069 and 0.169, and the re-estimated values were all higher than 93%, being mostly overestimated. The Consume model had a stronger suitability for the fuel. The R2 of the general linear models established for fireline intensity, fuel consumption, and burning efficiency was 0.82, 0.73 and 0.53, and the RMSE was 8.266 kW x m(-1) 0.081 kg x m(-2), and 0.203, respectively. In low intensity surface fires, the fine fuels could not be completely consumed, and thus, to consider the leaf litter and fine fuel in some forest ecosystems being completely consumed would overestimate the carbon release from forest fires.
Emissions characterization of residential wood-fired hydronic heater technologies
NASA Astrophysics Data System (ADS)
Kinsey, John S.; Touati, Abderrahmane; Yelverton, Tiffany L. B.; Aurell, Johanna; Cho, Seung-Hyun; Linak, William P.; Gullett, Brian K.
2012-12-01
Residential wood-fired hydronic heaters (RWHHs) can negatively impact the local ambient air quality and thus are an environmental concern in wood burning areas of the U. S. Only a few studies have been conducted which characterize the emissions from RWHHs. To address the lack of emissions data, a study was conducted on four appliances of differing design using multiple fuel types to determine their thermal, boiler, and combustion efficiency as well as the emissions of carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), nitrous oxide (N2O), methane (CH4), total particulate matter (PM) mass, and particle number as well as particle size distribution (PSD). Three of these appliances were fired with split-log cordwood with the fourth unit using hardwood pellets. The measured thermal efficiencies for the appliances tested varied from 22 to 44% and the combustion efficiencies from 81 to 98%. Depending on appliance and fuel type, the emission factors ranged from about 1300 to 1800 g kg-1 dry fuel for CO2, 8-190 g kg-1 dry fuel for CO, <1-54 g kg-1 dry fuel for THC and 6-120 mg kg-1 for N2O. For the particle phase pollutants, the PM mass emission factors ranged from 0.31 to 47 g kg-1 dry fuel and the PM number emission factors from 8.5 × 1010 to 2.4 × 1014 particles kg-1 dry fuel, also depending on the appliance and fuel tested. The PSD for all four appliances indicated a well established accumulation mode with evidence of a nucleation mode present for Appliances A and B. The average median aerodynamic particle diameters observed for the four appliances ranged from 84 to 187 nm while burning red oak or pellets. In general, the pellet-burning appliance had the highest overall operating efficiency and lowest emissions of the four units tested.
1986-06-01
Cc) Ul y Cli U;ra ISO or.) . ............ t cc fl .9 it it ý I oli CC) I it cli L3 I HIM .......... 114 t4l t.r IM...Burroughz Cost AFIT/LSQ AV785-6280 Curve Programs Prof. Jeff Daneman Z-100 Cost Curve ASD/ACCR AV785- 8583 Programs Capt Arthur Mills * *- PROGRAMS CONCEPT
Automatic Co-Registration of Multi-Temporal Landsat-8/OLI and Sentinel-2A/MSI Images
NASA Technical Reports Server (NTRS)
Skakun, S.; Roger, J.-C.; Vermote, E.; Justice, C.; Masek, J.
2017-01-01
Many applications in climate change and environmental and agricultural monitoring rely heavily on the exploitation of multi-temporal satellite imagery. Combined use of freely available Landsat-8 and Sentinel-2 images can offer high temporal frequency of about 1 image every 3-5 days globally.
Landsat-8: Status and on-orbit performance
Markham, Brian L; Barsi, Julia A.; Morfitt, Ron; Choate, Michael J.; Montanaro, Matthew; Arvidson, Terry; Irons, James R.
2015-01-01
Landsat 8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 ½ years. Landsat 8 has been acquiring substantially more images than initially planned, typically around 700 scenes per day versus a 400 scenes per day requirement, acquiring nearly all land scenes. Both the TIRS and OLI instruments are exceeding their SNR requirements by at least a factor of 2 and are very stable, degrading by at most 1% in responsivity over the mission to date. Both instruments have 100% operable detectors covering their cross track field of view using the redundant detectors as necessary. The geometric performance is excellent, meeting or exceeding all performance requirements. One anomaly occurred with the TIRS Scene Select Mirror (SSM) encoder that affected its operation, though by switching to the side B electronics, this was fully recovered. The one challenge is with the TIRS stray light, which affects the flat fielding and absolute calibration of the TIRS data. The error introduced is smaller in TIRS band 10. Band 11 should not currently be used in science applications.
NASA Astrophysics Data System (ADS)
Pandey, Palak; Kunte, Pravin D.
2016-10-01
This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.
Optimization of an organic yogurt based on sensorial, nutritional, and functional perspectives.
Karnopp, Ariadne Roberto; Oliveira, Katherine Guimarães; de Andrade, Eriel Forville; Postingher, Bruna Mara; Granato, Daniel
2017-10-15
The effects of purple grape juice (PGJ), grape skin flour (GSF), and oligofructose (OLI) on proximate composition, total phenolic content (TPC), antioxidant activity (AA), sensory, physicochemical, and textural properties of yogurts were analyzed using response surface methodology. Multiple regression models were proposed and results showed that PGJ increased the viscosity, AA, and TPC, while GSF increased the ash and total fiber contents of yogurts. GSF and OLI increased the hardness and consistency. A simultaneous optimization was performed to maximize TPC, ash and fibers contents, and sensory acceptance: a yogurt containing 1.7% GSF and 8.0% PGJ had a high fiber (5.60±0.13%) and ash (0.76±0.02%) contents, TPC (28.32±2.10mg GAE/100g), AA toward DPPH (57.85±1.36mg AAE/100g), and total reducing capacity (28.86±5.19mg QE/100g). The optimized yogurt had 79% acceptability index, indicating the use of PGJ and GSF is a feasible alternative to increase the functional properties of yogurts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qin, B.; Li, L.; Li, S.
2018-04-01
Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.
Advanced technology gas-fired commercial clothes dryer. Final report, April 1985-December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topping, R.F.
1991-04-01
The objective of this effort was to demonstrate the technical feasibility of an advanced technology commercial clothes dryer (ATD) which could provide improved fuel efficiency and reduced drying time without burning or otherwise damaging the clothes load.
The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon
NASA Astrophysics Data System (ADS)
Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.
2016-12-01
The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa pine needles, burn almost exclusively via flaming combustion with a high efficiency. Our results indicate that for fuel bed properties typical of many conifer forests, pollutants generated from fires will be higher than that predicted using standard biomass burning models.
Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound's healing in rabbits.
Djerrou, Zouhir; Maameri, Z; Hamdi-Pacha, Y; Serakta, M; Riachi, F; Djaalab, H; Boukeloua, A
2010-04-03
This study aimed to assess the efficiency of the virgin fatty oil of Pistacia lentiscus (PLVFO) for burn wounds healing. It was carried out on 6 adult male New Zealand rabbits. Four burn wounds of deep third degree were made on the back of each animal. The first was not treated and served as control (CRL group); the others were covered immediately after burning procedure by 0.5g of one of the following products: Vaseline gel (VAS group), Madecassol(®) cream 1% (MAD group) or 1ml of PLVFO (PLVFO group). The treatments were repeated once daily until complete healing. For four days post burns, the percentage of wound contraction was assessed. Also, the different healing times were noted. The results showed that both PLVFO and Madecassol(®) significantly accelerated wound healing activity compared to wounds dressed with Vaseline and the untreated wounds. However, the level of wound contraction was significantly higher and the healing time was faster in PLVFO group than those of the MAD group, VAS group and CRL group. The different epithelization periods obtained in days were respectively: 30±3.94 (PLVFO group), 33.5±3.78 (MAD group), 34.66±3.88 (VAS group) and 37.16±3.54 (CRL group). We conclude that Pistacia lentiscus virgin fatty oil promotes significantly (p< 0.05) wound contraction and reduces epithelization period in rabbit model.
Witkowski, Wojciech; Surowiecka-Pastewka, Agnieszka; Biesaga, Magdalena; Gierczak, Tomasz
2015-08-12
The aim of this study was to determine effectiveness of first aid dressings in extinguishing burning white phosphorous (WP), eliminating WP pieces from the surface, inhibiting re-ignition on the model (fresh bacon covered with military uniform), and preventing from late re-ignition caused by persistent WP pieces. Burning WP was extinguished with several dressings: tactical Military Dressing (WJ10), wet gauze, 2 hydrocolloids, and 3 prototypes of hydrocolloids developed by the authors. All examined dressings were effective in extinguishing WP provided that the entire area of the burning substance was completely covered. Moist gauze was especially effective in extinguishing WP, and also removed and absorbed the majority of the WP mass, preventing deeper penetration of WP particles. The immediate re-ignition was observed when all the remaining examined dressings were removed from the bacon. A stream of water was dangerous, as it splashed and transferred pieces of WP around. Moist gauze placed on burning WP for approximately 3 min was most effective in extinguishing WP and removing most of the WP pieces. We recommend moist gauze, used once or twice, as the best primary means for WP elimination and preventing tissue penetration. As a dressing used for medical evacuation (MEDEVAC), or as a second step after complete removal of visible WP, innovative hydrocolloid or hydrogel dressings should be used.
Witkowski, Wojciech; Surowiecka-Pastewka, Agnieszka; Biesaga, Magdalena; Gierczak, Tomasz
2015-01-01
Background The aim of this study was to determine effectiveness of first aid dressings in extinguishing burning white phosphorous (WP), eliminating WP pieces from the surface, inhibiting re-ignition on the model (fresh bacon covered with military uniform), and preventing from late re-ignition caused by persistent WP pieces. Material/Methods Burning WP was extinguished with several dressings: tactical Military Dressing (WJ10), wet gauze, 2 hydrocolloids, and 3 prototypes of hydrocolloids developed by the authors. Results All examined dressings were effective in extinguishing WP provided that the entire area of the burning substance was completely covered. Moist gauze was especially effective in extinguishing WP, and also removed and absorbed the majority of the WP mass, preventing deeper penetration of WP particles. The immediate re-ignition was observed when all the remaining examined dressings were removed from the bacon. A stream of water was dangerous, as it splashed and transferred pieces of WP around. Conclusions Moist gauze placed on burning WP for approximately 3 min was most effective in extinguishing WP and removing most of the WP pieces. We recommend moist gauze, used once or twice, as the best primary means for WP elimination and preventing tissue penetration. As a dressing used for medical evacuation (MEDEVAC), or as a second step after complete removal of visible WP, innovative hydrocolloid or hydrogel dressings should be used. PMID:26264209
NASA Astrophysics Data System (ADS)
Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.
2003-12-01
Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.
Moghazy, A M; Adly, O A; Elbadawy, M A; Hashem, R E
2016-03-31
Intra-venous (IV) burn resuscitation is effective; nevertheless it has its disadvantages. WHO Oral Rehydration Solution (ORS) has shown high effectiveness in treating dehydration. WHO-ORS, with salt supplement, seems to be suitable for burn resuscitation, where IV resuscitation is not available, feasible or possible. The objective of the study was to evaluate acute phase efficacy and safety, as well as limitations and complications of burn resuscitation using WHO-ORS and salt tablets. This randomized controlled clinical trial was conducted in the Burn Unit, Suez Canal University Hospital, Ismailia, Egypt. The study group was given WHO-ORS (15% of body weight/day) with one salt tablet (5gm) per liter according to Sørensen's formula. The control group was given IV fluids according to the Parkland formula. Patients' vital signs and urine output were monitored for 72 hours after starting resuscitation. Both groups were comparable regarding age, sex, and percentage, etiology and degree of burns. For all assessed parameters, there were no major significant differences between the study group (10 cases) and control group (20 cases). Even where there was a significant difference, apart from blood pressure in the first hour of the first day, the study group never crossed safe limits for pulse, systolic blood pressure, urine output, respiratory rate and conscious level. WHO-ORS with 5gm salt tablets, given according to Sørenson's formula, is a safe and efficient alternative for IV resuscitation. It could even be a substitute, particularly in low resource settings and fire disasters.
Bardaa, Sana; Moalla, Dorsaf; Ben Khedir, Sameh; Rebai, Tarek; Sahnoun, Zouheir
2016-01-01
Medicinal plants have been recognized as useful remedies for primary health care. Accordingly, Cucurbita pepo L. (Cucurbitaceae) (pumpkin) and Linum usitatissimum (L.) Griesb. (Linaceae) (linseed) which have extracted oil with prominent pharmacological properties are investigated as possible burn healing treatments. The present study assesses the healing potential of pumpkin and linseed extracted oils on rats. Uniform deep second-degree burns were induced on the dorsum of 24 rats, randomly divided into four groups. The burns were measured, photographed, and topically treated with saline solution, "Cytol Centella®", pumpkin, and linseed-extracted oils (0.52 µl/mm(2) of oil) each 2 d (up until day 33). Post-burning of the 33rd day, biopsies were histologically assessed. At the end of the experiment, the rat groups treated with linseed, pumpkin oils, and "Cytol Centella®" had higher percentage of wound contraction (98.68, 96.71, and 92.54%, respectively) than the control group (58.38%). Wound biopsies from rats treated with extracted oils showed the best tissue regeneration proprieties as compared with the other groups. The histomorphometric analysis of biopsies revealed that linseed oil could significantly stimulate angiogenesis (55.6% ± 7.25). The pumpkin oil, and Cytol Centella® could significantly increase the collagen production 64.9% ± 5.94, and 61.2% ± 7.36, respectively. Overall, our study has given for the first time scientific evidence of the healing efficiency of pumpkin and linseed oils on burn-wounds.
NASA Astrophysics Data System (ADS)
Onasch, T. B.; Shilling, J. E.; Wormhoudt, J.; Sedlacek, A. J., III; Fortner, E.; Pekour, M. S.; Chand, D.; Zhou, S.; Collier, S.; Zhang, Q.; Kleinman, L. I.; Lewis, E. R.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.; Freedman, A.; Williams, L. R.
2017-12-01
The Biomass Burning Observation Project (BBOP), a Department of Energy (DOE) sponsored study, measured emissions from wildland fires in the Pacific Northwest and agricultural burns in the Central Southeastern US from the DOE Gulfstream-1 airborne platform over a four month period in 2013. Rapid physical, chemical and optical changes in biomass burning particles were measured downwind (< 3 hours temporally) from wildland fires. The chemical composition of the particulate emissions was characterized using an Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) and a Single Particle Soot Photometer (SP2) and the measurement results will be presented in the context of the fire location, combustion conditions, and optical property measurements, including extinction and single scattering albedos. The SP-AMS was operated with both laser and resistively heated tungsten vaporizers, alternating between laser on and off. With the laser vaporizer off, the instrument operated as a standard high resolution AMS. Under these sampling conditions, the non-refractory chemical composition, including the level of oxidation (i.e., O:C, H:C, and organic mass/organic carbon ratios, OM:OC), of the biomass burning particles was characterized as a function of the fuel type burned, modified combustion efficiency, and degree of oxidation during downwind transport. With the laser vaporizer on, the SP-AMS was also sensitive to the refractory black carbon (rBC) content, in addition to the non-refractory components. The chemical measurements will be correlated with simultaneous optical measurements. We will also present preliminary results from laboratory studies on tar balls and SP-AMS OA quantification while operating with both laser and tungsten vaporizers.
Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.
Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2013-07-01
The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.
Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, J.L.; Yetter, R.A.; Risha, G.A.
2008-08-15
An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. Atmore » a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions studied. (author)« less
NASA Astrophysics Data System (ADS)
Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.
2017-11-01
Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.
2004-01-01
Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.
NASA Astrophysics Data System (ADS)
Boren, E. J.; Boschetti, L.; Johnson, D.
2016-12-01
With near-future droughts predicted to become both more frequent and more intense (Allen et al. 2015, Diffenbaugh et al. 2015), the estimation of satellite-derived vegetation water content would benefit a wide range of environmental applications including agricultural, vegetation, and fire risk monitoring. No vegetation water content thematic product is currently available (Yebra et al. 2013), but the successful launch of the Landsat 8 OLI and Sentinel 2A satellites, and the forthcoming Sentinel 2B, provide the opportunity for monitoring biophysical variables at a scale (10-30m) and temporal resolution (5 days) needed by most applications. Radiative transfer models (RTM) use a set of biophysical parameters to produce an estimated spectral response and - when used in inverse mode - provide a way to use satellite spectral data to estimate vegetation biophysical parameters, including water content (Zarco-Tejada et al. 2003). Using the coupled leaf and canopy level model PROSAIL5, and Landsat 8 OLI and Sentinel 2A MSI optical satellite data, the present research compares the results of three model inversion techniques: iterative optimization (OPT), look-up table (LUT), and artificial neural network (ANN) training. Ancillary biophysical data, needed for constraining the inversion process, were collected from various crop species grown in a controlled setting and under different water stress conditions. The measurements included fresh weight, dry weight, leaf area, and spectral leaf transmittance and reflectance in the 350-2500 nm range. Plot-level data, collected coincidently with satellite overpasses during three summer field campaigns in northern Idaho (2014 to 2016), are used to evaluate the results of the model inversion. Field measurements included fresh weight, dry weight, leaf area index, plant height, and top of canopy reflectance in the 350-2500 nm range. The results of the model inversion intercomparison exercised are used to characterize the uncertainties of vegetation water content estimation from Landsat 8 OLI and Sentinel 2A data.
Identification of stand age in rubber plantations using time series Landsat and PALSAR-2 data
NASA Astrophysics Data System (ADS)
Chen, B.; Wu, Z.; Xiao, X.; Li, X.; Ma, J.; Lan, G.; Yang, C.; Xie, G.; Dong, J.; Qin, Y.
2016-12-01
Stand age of rubber plantation is vital for optimal plantation management such as fertilization, prediction of latex yield and timber production. It is also an important variable for biomass estimation and determining the distribution of carbon pools and fluxes in rubber plantation ecosystem. Benefit from the traits of large coverage, high speed, and low-cost, satellite remote sensing techniques have been serviced as a major approach to map acreage and stand age of forest and plantations. Despite a number of studies working on acreage and stand age mapping, the stand age information of rubber plantation is still poorly available at regional scale. In this study, the 25-m cloud-free Phased Array type L-band Synthetic Aperture Radar 2 (PALSAR-2) mosaic product, together with the 30-m time series images of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI), were used to map stand age of rubber plantation in China under Google Earth Engine computing platform. Rubber plantation in 2015 were first identified by structural information in PALSAR-2 and phenological and spectral signatures (deciduous, rapid change of canopies during rubber defoliation and foliation periods, and dense canopy in growing season) that derived from time series Landsat ETM+/OLI images. Based on the resultant rubber plantation map, we then successfully identified the stand age of rubber plantation using land cover transfer information during rubber seeding cultivation period, specifically, by yearly composited Land Surface Water Index (LSWI) of Landsat TM/ETM+/OLI images since 1985. The estimated stand age has very high accuracy with Root Square Mean Error (RMSE) less than 2 years. The resultant rubber stand age information are likely to be useful for sustainable plantation management and ecological assessment, and the methodology can be extendable for applications in other regions.
Pan, Jianjun
2018-01-01
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073
Next Generation Landsat Products Delivered Using Virtual Globes and OGC Standard Services
NASA Astrophysics Data System (ADS)
Neiers, M.; Dwyer, J.; Neiers, S.
2008-12-01
The Landsat Data Continuity Mission (LDCM) is the next in the series of Landsat satellite missions and is tasked with the objective of delivering data acquired by the Operational Land Imager (OLI). The OLI instrument will provide data continuity to over 30 years of global multispectral data collected by the Landsat series of satellites. The U.S. Geological Survey Earth Resources Observation and Science (USGS EROS) Center has responsibility for the development and operation of the LDCM ground system. One of the mission objectives of the LDCM is to distribute OLI data products electronically over the Internet to the general public on a nondiscriminatory basis and at no cost. To ensure the user community and general public can easily access LDCM data from multiple clients, the User Portal Element (UPE) of the LDCM ground system will use OGC standards and services such as Keyhole Markup Language (KML), Web Map Service (WMS), Web Coverage Service (WCS), and Geographic encoding of Really Simple Syndication (GeoRSS) feeds for both access to and delivery of LDCM products. The USGS has developed and tested the capabilities of several successful UPE prototypes for delivery of Landsat metadata, full resolution browse, and orthorectified (L1T) products from clients such as Google Earth, Google Maps, ESRI ArcGIS Explorer, and Microsoft's Virtual Earth. Prototyping efforts included the following services: using virtual globes to search the historical Landsat archive by dynamic generation of KML; notification of and access to new Landsat acquisitions and L1T downloads from GeoRSS feeds; Google indexing of KML files containing links to full resolution browse and data downloads; WMS delivery of reduced resolution browse, full resolution browse, and cloud mask overlays; and custom data downloads using WCS clients. These various prototypes will be demonstrated and LDCM service implementation plans will be discussed during this session.
Comparison of Landsat-8 and Sentinel-2A reflectance and normalized difference vegetation index
NASA Astrophysics Data System (ADS)
Zhang, H.; Roy, D. P.; Yan, L.; Li, Z.; Huang, H.
2017-12-01
The moderate spatial resolution satellite data from the polar-orbiting Landsat-8 (launched 2013) and Sentinel-2A (launched 2015) sensors provide 10 m to 30 m multi-spectral global coverage with a better than 5-day revisit. Although a national laboratory traceable cross-calibration comparison of the Landsat-8 Operational Land Imager (OLI) and the Sentinel-2A MultiSpectral Instrument (MSI) was undertaken pre-launch, there are a number of other sensor differences, notably due to spectral, spatial and angular differences. To examine these in a comprehensive way, Landsat-8 and Sentinel-2A data for approximately 20° × 10° of southern Africa acquired in the summer (January to March) and winter (July to September) of 2016 were compared. Only Landsat-8 and Sentinel-2A observations acquired within one-day apart were considered. The sensor data were registered and then each orbit projected into 30 m fixed global Web Enabled Landsat Data (GWELD) tiles defined in the MODIS sinusoidal equal area projection. Only corresponding sensor observations of each 30 m tile pixel that were flagged as cloud and snow-free, unsaturated, and that had no significant change in their one day separation, were compared. Both the Landsat-8 and Sentinel-2A data were atmospherically corrected using the Landsat Surface Reflectance Code (LaSRC) and were also corrected to nadir BRDF adjusted reflectance (NBAR). Top of atmosphere and surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared OLI and MSI bands, and derived normalized difference vegetation index (NDVI), were compared and their differences quantified using regression analyses. The resulting statistical transformations may be used to improve the consistency between the Landsat-8 OLI and Sentinel-2A MSI data. The importance and sensitivity of the results to correct filtering, atmospheric correction and adjustment to NBAR is demonstrated.
Characteristics of smoke emissions from biomass fires of the Amazon region - BASE-A experiment
NASA Technical Reports Server (NTRS)
Ward, Darold E.; Setzer, Alberto W.; Kaufman, Yoram J.; Rasmussen, Rei A.
1991-01-01
The Biomass Burning Airborne and Spaceborne Experiment-Amazonia was designed for study of both aerosol and gaseous emissions from fires using an airborne sampling platform. The emission factors for combustion products from four fires suggest that the proportion of carbon released in the form of CO2 is higher than for fires of logging which has been burned in the western U.S. Combustion efficiency was of the order of 97 percent for the Amazonian test fire and 86-94 percent for deforestation fires. The inorganic content of particles from tropical fires are noted to be different from those of fires in the U.S.
1991-07-01
for archive. b. Except where noted, includes 2,3,7,8-TCDO, 2,3,7,8-TCOF, and total PCOD /PCOF. c. Except where noted, includes acid-type semivolatiles...TCDD- 3 7C14, P5CDD- 13 C12 , H pCOD - 13 C12, CD-13 C12, and P5CDF-13C 12 were used to calculate the accuracy of recovery efficiencies. Whereas for...burns are shown in Table 17. None of these PCOD congeners were detected, including the specific analysis for 2,3,7,8-TCDD. DLVs ranged between 30.02 and
Trace gas emissions from chaparral and boreal forest fires
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.
1989-01-01
Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.
2015-01-01
Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.
Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Shouse, D. T.; Roquemore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.
2001-01-01
The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL (Rich burn/Quick mix/Lean burn) modes of combustion. The present work describes the operational principles of the TVC, and provides detailed performance data on a configuration featuring a tri-pass diffusion system. Performance data include EINOx (NO(sub x) emission index) results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable in comparison to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.
Newman, Michael J.; Speller, Emily M.; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M.; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung
2018-01-01
Abstract Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C71 butyric acid methyl ester (BTR:PC71BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV–vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation – rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra. PMID:29511397
Newman, Michael J; Speller, Emily M; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung
2018-01-01
Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C 71 butyric acid methyl ester (BTR:PC 71 BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV-vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation - rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...
Solid-fuel cook stoves: Fuel efficiency and emissions testing--Austin
The World Health Organization estimates that approximately 1.6 million people prematurely die each year due to exposure to air pollutants from burning solid fuels for residential cooking and heating (WHO, 2010). Residential solid-fuel use accounts for approximately 25 percent of ...
Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing
2010-05-15
A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.
Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.
Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C
2006-12-08
Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.
Fazal, Nadeem
2013-01-01
Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.
Fazal, Nadeem
2013-01-01
Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury. PMID:24600560
Hultman, C Scott; Tong, Winnie T; Surrusco, Matthew; Roden, Katherine S; Kiser, Michelle; Cairns, Bruce A
2012-07-01
Although previous studies have investigated the impact of weather and temporal factors on incidence of trauma admissions, there is a paucity of data describing the effect of seasonal change on burn injury. The purpose of this study was to examine the impact of the changing seasons on admissions to and resource utilization at an accredited burn center, with the goal of optimizing patient throughput and matching supply with demand. We performed a retrospective review of all burn admissions to an accredited, regional burn center, from Summer 2009 through Spring 2010. Patients were segregated into the seasonal cohorts of Summer, Fall, Winter, and Spring, based on admission date. Patient demographics included age, gender, mechanism of injury, and total body surface area (TBSA) injured. Main outcome measures included length of intensive care unit (ICU) stay, length of stay (LOS), and hospital charges, which served as a proxy for resource utilization (nursing, wound, and critical care; access to operating room (OR); inpatient rehabilitation). Groups were compared by T tests, with statistical significance assigned to P values <0.05. Seven hundred thirty patients were admitted to the burn center during this annual period, with a mean age of 31.6 years and a TBSA of 8.9%. Although Spring had the greatest the number of admissions at 219 (30%), patients from Summer and Winter had the largest burns, longest length of ICU and hospital stays, and highest hospital charges (P < 0.05). Furthermore, variability of these parameters, as measured by standard deviation, was greatest during Summer and Winter, serving to reduce throughput via uneven demand on resources. Highest throughput occurred during the Spring, which had the highest admission-to-LOS ratio. No differences were observed in age, gender, and incidence of electrical injuries, across the 4 seasons. Summer and winter were the peak seasons of resource utilization at our burn center, in terms of length and variability of ICU and hospital stays, as well as total hospital charges. Such seasonal change may be related to acuity of burn injury but not number of burn admissions. To improve operational efficiency and maximize patient throughput, resource allocation should be structured to anticipate seasonal changes, so that supply of services matches demand.
NASA Technical Reports Server (NTRS)
Choi, Mun Young; Yozgatligil, Ahmet; Dryer, Frederick L.; Kazakov, Andrei; Dobashi, Ritsu
2001-01-01
Today, despite efforts to develop and utilize natural gas and renewable energy sources, nearly 97% of the energy used for transportation is derived from combustion of liquid fuels, principally derived from petroleum. While society continues to rely on liquid petroleum-based fuels as a major energy source in spite of their finite supply, it is of paramount importance to maximize the efficiency and minimize the environmental impact of the devices that burn these fuels. The development of improved energy conversion systems, having higher efficiencies and lower emissions, is central to meeting both local and regional air quality standards. This development requires improvements in computational design tools for applied energy conversion systems, which in turn requires more robust sub-model components for combustion chemistry, transport, energy transport (including radiation), and pollutant emissions (soot formation and burnout). The study of isolated droplet burning as a unidimensional, time dependent model diffusion flame system facilitates extensions of these mechanisms to include fuel molecular sizes and pollutants typical of conventional and alternative liquid fuels used in the transportation sector. Because of the simplified geometry, sub-model components from the most detailed to those reduced to sizes compatible for use in multi-dimensional, time dependent applied models can be developed, compared and validated against experimental diffusion flame processes, and tested against one another. Based on observations in microgravity experiments on droplet combustion, it appears that the formation and lingering presence of soot within the fuel-rich region of isolated droplets can modify the burning rate, flame structure and extinction, soot aerosol properties, and the effective thermophysical properties. These observations led to the belief that perhaps one of the most important outstanding contributions of microgravity droplet combustion is the observation that in the absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized. The effects of soot on droplet burning parameters, including burning rate, soot shell dynamics, flame structure, and extinction phenomena provide significant testing parameters for studying the structure and coupling of soot models with other sub-model components.
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
NASA Technical Reports Server (NTRS)
Kawai, Ronald T. (Compiler)
2011-01-01
This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.
Combustion Limits and Efficiency of Turbojet Engines
NASA Technical Reports Server (NTRS)
Barnett, H. C.; Jonash, E. R.
1956-01-01
Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.
USDA-ARS?s Scientific Manuscript database
Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM). Landsat Thematic Mapper (TM) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and ...
USDA-ARS?s Scientific Manuscript database
Surface albedo is widely used in climate and environment applications as an important parameter for controlling the surface energy budget. There is an increasing need for fine resolution (< 100 m) albedo data for use in small scale applications and for validating coarse-resolution datasets; however,...
Monitoring vegetation cover in the postfire in Tavira - São Brás de Alportel (southern Portugal)
NASA Astrophysics Data System (ADS)
Ramos-Simões, Nuno A.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Jordán, Antonio; Zavala, Lorena M.
2014-05-01
1. INTRODUCTION Often, restoration of areas affected by fire faces lack of knowledge of how ecosystems respond to the action of fire. Depending on environmental conditions, structure and diversity of the vegetation or the severity of the fire, burnt systems can provide responses ranging from spontaneous recovery in a relatively short time to onset of severe degradation processes. For this reason, it is necessary to monitor the evolution of post-burned in the fire, in order to plan effective strategies for restoring systems and soil erosion control. In order to assess soil erosion risk, this research aims to is to analyse the evolution of vegetation cover in a Mediterranean burnt forest soil, using vegetation indexes derived from Landsat-7 (Thematic Mapper sensor-TM) and Landsat-8 (Operation Land Imager sensor, OLI). 2. METHODS This study was carried out in a forest area affected by a wildfire by 18-22 July 2012. The study area is located within the coordinates 37o 9' - 37o 21' N and 7o 40' - 7o 53' W, including part of the municipalities of Tavira and São Brás de Alportel (southern Portugal). The relief in the studied area has an irregular topography. Soils are shallow and develop mainly metamorphic rocks (as slates or quartzite) and igneous rocks, which produce acidic and nutrient-poor soils, poorly developed in depth. The wildfire was one of the most important fires in Portugal during the recent years, and affected more than 24000 ha. Vegetation is dominated by cork oak (Quercus suber) ,holm oaks (Quercus ilex), strawberry tree (Arbutus unedo) and sclerophyllous vegetation (mostly formed by Quercus coccifera and Rosmarinus officinalis). These species are adapted to acidic-poor soils and show a great capability of resprouting and germination after fire. The study area is poorly developed, with cork and timber harvesting and other forest products or tourism as main economic activities. The area shows a highly fragmented urban fabric with the sparse infrastructures. In recent years, migration processes have further aggravated the economic situation in this region. Landsat 7 and Landsat 8 images were used for this study (April 2012, December 2012, March 2013 and November 2013). Images were corrected for the scattering effect by extraction of black objects for near infrared bands and correction by linear regression for the red bands. Several vegetation indexes were used, such as, vegetation ratio, NDVI, the perpendicular vegetation index with assessment of distance to soil, PVI, WDVI, PVI3, and vegetation indexes based on orthogonal transformation of bands (Tasselled Cap) and principal component analysis (PCA). After studying the correlations between indexes by PCA, the Tasselled Cap-green index was selected as the most accurate one. Presence/absence of vegetation and land use were monitored to select the best parameter to study the evolution of vegetation. The evolution of the vegetation was compared with the CORINE Land Cover map (2006) and validated in field visits in January 2014. 3. RESULTS For the study area, results show a positive evolution of vegetation in the burned area during the months following to burning. Recovery of natural-native vegetation is more intense than anthropic vegetation types, with sclerophyllous vegetation showing the most intense evolution after burning.
Fluidized-bed combustion reduces atmospheric pollutants
NASA Technical Reports Server (NTRS)
Jonke, A. A.
1972-01-01
Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.
The Future of Aircraft Paint Removal Methods
1989-09-01
barium, cadmium, chromium, lead, mercury , selenium, and silver. We must develop small efficient blast furnaces to burn the media thus reducing the...permit the safe collection, consolidation, and detoxication of stripping waste. This may be as simple as a series of filters to clean the air from
TURBULENT FLAME REACTOR STUDIES OF CHLORINATED HYDROCARBON DESTRUCTION EFFICIENCY
Four mixtures of C1 and C2 chlorinated hydrocarbons, diluted in heptane, were burned in a Turbulent Flame Reactor (TFR) under high and low oxygen conditions. Emissions of undestroyed feed, stable organic by-products, carbon monoxide, carbon dioxide and oxyg...
Overview of a prescribed burning experiment within a boreal forest in Finland
NASA Astrophysics Data System (ADS)
Virkkula, A.; Levula, J.; Pohja, T.; Aalto, P. P.; Keronen, P.; Schobesberger, S.; Clements, C. B.; Pirjola, L.; Kieloaho, A.-J.; Kulmala, L.; Aaltonen, H.; Patokoski, J.; Pumpanen, J.; Rinne, J.; Ruuskanen, T.; Pihlatie, M.; Manninen, H. E.; Aaltonen, V.; Junninen, H.; Petäjä, T.; Backman, J.; Dal Maso, M.; Nieminen, T.; Olsson, T.; Grönholm, T.; Kerminen, V.-M.; Schultz, D. M.; Kukkonen, J.; Sofiev, M.; de Leeuw, G.; Bäck, J.; Hari, P.; Kulmala, M.
2013-08-01
A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha-1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000-3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s-1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1-2 × 106 cm-3 in the plume at a distance of 100-200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker) were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land) measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC flux was observed after the burning. After one year, the fluxes were nearly stabilised close to the level before the burning. The clearcutting and burning of slash increased the total long-term CO2 release from the soil, altered the soil's physical, chemical and biological properties such as increased the available nitrogen contents of the soil, which in turn, affected the level of the long-term fluxes of greenhouse gases.
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.
2016-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.
Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini
2014-07-01
Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trinchenko, A. A.; Paramonov, A. P.
2017-10-01
Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.
Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel
NASA Astrophysics Data System (ADS)
Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven
2014-01-01
Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.
Five years' experience of the modified Meek technique in the management of extensive burns.
Hsieh, Chun-Sheng; Schuong, Jen-Yu; Huang, W S; Huang, Ted T
2008-05-01
The Meek technique of skin expansion is useful for covering a large open wound with a small piece of skin graft, but requires a carefully followed protocol. Over the past 5 years, a skin graft expansion technique following the Meek principle was used to treat 37 individuals who had sustained third degree burns involving more than 40% of the body surface. A scheme was devised whereby the body was divided into six areas, in order to clarify the optimal order of wound debridements and skin grafting procedures as well as the regimen of aftercare. The mean body surface involvement was 72.9% and the mean area of third degree burns was 41%. The average number of operations required was 1.84. There were four deaths among in this group of patients. The Meek technique of skin expansion and the suggested protocol are together efficient and effective in covering an open wound, particularly where there is a paucity of skin graft donor sites.
Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melissa Teague; Michael Tonks; Stephen Novascone
2014-01-01
Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISONmore » fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.« less
Optimal utilization of waste-to-energy in an LCA perspective.
Fruergaard, T; Astrup, T
2011-03-01
Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chemical and Optical Properties of Water-Soluble Organic Aerosols from Biomass Burning Emissions
NASA Astrophysics Data System (ADS)
Yu, J. M.; Park, S.; Cho, S. Y.
2016-12-01
Light absorption property by organic aerosols is an important parameter to determine their radiative forcing on global and regional scales. However, the optical measurements by light absorbing aerosols from biomass burning emissions are rather lacking. This study explored the chemical and light-absorption properties of humic-like substances (HULIS) from biomass burning aerosols of three types; rice straw (RS), pine needles (PN), and sesame stem (SS). Water-soluble organic carbon (WSOC) contributed 42.5, 42.0, and 57.0% to the OC concentrations of the RS, PN, and SS emissions, respectively. Respective HULIS (=1.94´HULIS-C) concentrations accounted for 29.5±2.0, 15.3±3.1, and 25.8±4.0% of PM2.5, and contributed 63±5, 36±10, and 51±8% to WSOC concentration. Absorption Ångström exponents (AAEs) of the WSOC fitted between 300 and 400 nm wavelengths were 7.4-8.3, indicating no significant differences among the biomass types. These AAEs are similar to those reported for aqueous extracts of biomass burning HULIS and fresh secondary organic aerosols from ozonolysis of terpenes. HULIS, which is a hydrophobic part of WSOC and a significant fraction of brown carbon, showed absorption spectra similar to brown carbon. WSOC mass absorption efficiency (MAE365) at 365 nm were 1.37, 0.86, and 1.38 m2/g×C for RS, PN, and SS burning aerosols, respectively. The MAE values by WSOC were less than 10% of MAE caused by light-absorbing black carbon. The light absorption of the water extracts at 365 nm indicated that light absorption was more strongly associated with HULIS from biomass burning emissions than with the hydrophilic WSOC fraction.
Moghazy, A.M.; Adly, O.A.; Elbadawy, M.A.; Hashem, R.E.
2016-01-01
Summary Intra-venous (IV) burn resuscitation is effective; nevertheless it has its disadvantages. WHO Oral Rehydration Solution (ORS) has shown high effectiveness in treating dehydration. WHO-ORS, with salt supplement, seems to be suitable for burn resuscitation, where IV resuscitation is not available, feasible or possible. The objective of the study was to evaluate acute phase efficacy and safety, as well as limitations and complications of burn resuscitation using WHO-ORS and salt tablets. This randomized controlled clinical trial was conducted in the Burn Unit, Suez Canal University Hospital, Ismailia, Egypt. The study group was given WHO-ORS (15% of body weight/day) with one salt tablet (5gm) per liter according to Sørensen’s formula. The control group was given IV fluids according to the Parkland formula. Patients’ vital signs and urine output were monitored for 72 hours after starting resuscitation. Both groups were comparable regarding age, sex, and percentage, etiology and degree of burns. For all assessed parameters, there were no major significant differences between the study group (10 cases) and control group (20 cases). Even where there was a significant difference, apart from blood pressure in the first hour of the first day, the study group never crossed safe limits for pulse, systolic blood pressure, urine output, respiratory rate and conscious level. WHO-ORS with 5gm salt tablets, given according to Sørenson’s formula, is a safe and efficient alternative for IV resuscitation. It could even be a substitute, particularly in low resource settings and fire disasters. PMID:27857652
Auricular burns associated with operating microscope use during otologic surgery.
Latuska, Richard F; Carlson, Matthew L; Neff, Brian A; Driscoll, Colin L; Wanna, George B; Haynes, David S
2014-02-01
To raise awareness of the potential hazard of auricular burns associated with operating microscope use during otologic surgery. Retrospective case series and summary of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database of voluntary adverse event reports pertaining to microscope related auricular thermal injuries. All patients who sustained auricular burns while using the operating microscope during otologic surgery at 2 tertiary academic referral centers. Surgical procedure, microscope model, intensity of illumination, length of procedure, focal length, location and severity of burn, and patient outcome. A total of 4 microscope-related auricular thermal injuries were identified from the authors' institutions. Additionally, 82 unique cases of soft tissue burns associated with the use of an operative microscope have been voluntarily reported to the FDA since 2004. A disproportionately large percent (∼ 30%) of these occurred within the field of otology, the majority of which were during tympanoplasty or tympanomastoidectomy procedures at focal length distances of 300 mm or less with xenon light source microscopes. Simultaneous advancements in light delivery technologies and lens optics have continued to improve the efficiency of the operating microscope; however, these improvements also increase the potential for thermal injuries. Although rare, a review of the FDA MAUDE database suggests that microscope-related soft tissue burns occur more frequently in otology than any other surgical specialty. A variety of factors may help explain this finding, including the unique anatomy of the external ear with thin skin and limited underlying adipose tissue. Preventative measures should be taken to decrease the risk of thermal injuries including use of the lowest comfortable light intensity, adjusting the aperture width to match the operative field, frequent wound irrigation, and covering exposed portions of the pinna with a moist surgical sponge.
Fire management of California shrubland landscapes
Keeley, Jon E.
2002-01-01
Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.
Fire management of California shrubland landscapes.
Keeley, Jon E
2002-03-01
Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.
OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS
NASA Technical Reports Server (NTRS)
Breakwell, J. V.
1994-01-01
OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.
Large Scale Flame Spread Environmental Characterization Testing
NASA Technical Reports Server (NTRS)
Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.
2013-01-01
Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation strategy to incorporate into the microgravity experiment.
Gholipourmalekabadi, M; Bandehpour, M; Mozafari, M; Hashemi, A; Ghanbarian, H; Sameni, M; Salimi, M; Gholami, M; Samadikuchaksaraei, A
2015-11-01
Human amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients. Therefore, a HAM was decellularized and tested for its antibacterial activity. Decellularization of the tissue was confirmed by hematoxylin and eosin (H&E) and 4,6-diamidino-2-phenylindole (DAPI) staining. In addition, the cyto-biocompatibility of the acellular HAM was proven by the cell viability test (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) and scanning electron microscopy (SEM). The resistant bacteria were isolated from burns, identified, and tested for their susceptibility to antibiotics using both the antibiogram and polymerase chain reaction (PCR) techniques. Among the isolated bacteria, three blaIMP gene-positive Pseudomonas aeruginosa strains were chosen for their high resistance to the tested antibiotics. The antibacterial activity of the HAM was also tested for Klebsiella pneumoniae (American Type Culture Collection (ATCC) 700603) as a resistant ATCC bacterium; Staphylococcus aureus (mecA positive); and three standard strains of ATCC bacteria including Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27833), and S. aureus (ATCC 25923). Antibacterial assay revealed that only the latter three bacteria were susceptible to the HAM. All the data obtained from this study suggest that an alternative strategy is required to complement HAM grafting in order to fully protect burns from nosocomial infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Particle agglomeration and fuel decomposition in burning slurry droplets
NASA Astrophysics Data System (ADS)
Choudhury, P. Roy; Gerstein, Melvin
In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.
Evaluation of hollow fiberoptic tips for the conduction of Er:YAG laser.
Alves, Paulo Roberto Vieira; Aranha, Norberto; Alfredo, Edson; Marchesan, Melissa Andréia; Brugnera Junior, Aldo; Sousa-Neto, Manoel D
2005-08-01
The use of Er:YAG laser operating in the 3 microm range with adjustable power and pulses has become popular for dental and medical practice due to its high photoablative capacity, surgical precision and antimicrobial action. The existing fiberoptic tips irradiate lasers parallel to the long axes of the tooth limiting its efficiency in the root canal. We evaluated hollow fiberoptic tips obtained from silicate glass as a means of Er:YAG laser conduction in dental procedures. The fiber tips were molded from capillary tubes with different profiles so that their ends would have cylindric, conical or spherical shapes. The performance of the three fibers as a means of propagation of Er:YAG (lambda = 2.94 microm) laser radiation was compared to that of a solid sapphire fiber at 10 Hz and 200 mJ and of 20 Hz and 500 mJ. The profiles of frontal and lateral burning were visualized on thermal paper. Analysis of these profiles demonstrated that the sapphire tip and the hollow fiber of cylindric section did not differ significantly in the profiles of frontal burning, and no lateral burning was detected. The fibers of the conical and spherical sections, although presenting attenuation in the frontal output power, showed a larger burning area in the frontal profile, in addition to producing lateral burning. The results indicate that commercial hollow fiberoptics have advantages such as easy manufacture of the different tip shapes, great adaptability, low cost, and a low loss of transmission.
A Child With a Burn-Related Foot and Ankle Contracture Treated With Multiple Modalities.
Yelvington, Miranda; Scoggins, Michelle; White, Leslie
2017-01-01
The presence of hypertrophic scars, which cross lower extremity joints, can often result in decreased range of motion, limitations in functional mobility, and gait deviations. This article reviews a case and describes a multimodal treatment approach. A 6-year-old girl developed aggressive hypertrophic scars following a burn injury. A multimodal treatment approach, including splinting, elastomers, and physical therapy, was developed. Rapid improvements were demonstrated in measured objective outcomes. Early multimodal intervention, in addition to range of motion, stretching, massage, and compression garments, is recommended when treating hypertrophic scars. This case suggests that further study into a multimodal treatment approach may be beneficial to develop a standardized protocol for more efficient scar management.
Comparison and analysis of the results of direct-driven targets implosion
NASA Astrophysics Data System (ADS)
Demchenko, N. N.; Dolgoleva, G. V.; Gus'kov, S. Yu; Kuchugov, P. A.; Rozanov, V. B.; Stepanov, R. V.; Zmitrenko, N. V.; Yakhin, R. A.
2017-10-01
The article presents calculation results, which were received for the implosion of the typical cryogenic thermonuclear direct-drive targets that are intended for use at the OMEGA facility, NIF and Russian laser facility. The compression and burning characteristics, which were obtained using various numerical codes of different scientific groups, are compared. The data indicate good agreement between the numerical results. Various sources of target irradiation inhomogeneity and their influence on the implosion parameters are considered. The nominal scales of these disturbances for various facilities are close to each other. The main negative effect on the efficiency of compression and burning is due to the accidental offset of the target from the center of the chamber.
NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS
The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...
Human-ignited wildfire patterns and responses to policy shifts
M. L. Chas-Amil; J. P. Prestemon; C. J. McClean; J. Touza
2015-01-01
Development of efficient forest wildfire policies requires an understanding of the underlying reasons behind forest fire occurrences. Globally, there is a close relationship between forest wildfires and human activities; most wildfires are human events due to negligence (e.g., agricultural burning escapes) and deliberate actions (e.g., vandalism, pyromania, revenge,...
ERIC Educational Resources Information Center
Birr, David
2000-01-01
Energy performance contracting allows schools to pay for needed new energy equipment and modernization improvements with savings from reduced utility and maintenance costs. Improved energy efficiency reduces demand for burning fossil fuels, which reduces air pollution, leading to improved learning environments and budgets (through improved average…
2011-03-01
algorithm is utilized by Belue, Steppe, & Bauer and Kocur , et al. (Belue, Steppe, & Bauer, April 1996) ( Kocur , et al., 1996). Bacauskiene and...Society. Cardiff, UK. Kocur , C., Roger, S., Myers, L., Burns, T., Hoffmeister, J., Bauer, K., et al. (1996). Using neural networks to select
24 CFR 3280.707 - Heat producing appliances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... with a comfort heating system. (i) When a manufactured home is manufactured to contain a heating... oil burning comfort heating appliances shall have a flue loss of not more than 25 percent, and a thermal efficiency of not less than that specified in nationally recognized standards (See § 3280.703). (b...
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
NASA Astrophysics Data System (ADS)
Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.
2016-09-01
The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could contribute to satellite observations of high levels of HCN in the lower stratosphere above the Asian monsoon. HCN was also emitted in significant quantities by several non-biomass burning sources. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were major emissions from both dung- (˜ 4.5 g kg-1) and wood-fuel (˜ 1.5 g kg-1) cooking fires, and a simple method to estimate indoor exposure to the many measured important air toxics is described. Biogas emerged as the cleanest cooking technology of approximately a dozen stove-fuel combinations measured. Crop residue burning produced relatively high emissions of oxygenated organic compounds (˜ 12 g kg-1) and SO2 (2.54 ± 1.09 g kg-1). Two brick kilns co-firing different amounts of biomass with coal as the primary fuel produced contrasting results. A zigzag kiln burning mostly coal at high efficiency produced larger amounts of BC, HF, HCl, and NOx, with the halogenated emissions likely coming from the clay. The clamp kiln (with relatively more biomass fuel) produced much greater quantities of most individual organic gases, about twice as much BrC, and significantly more known and likely organic aerosol precursors. Both kilns were significant SO2 sources with their emission factors averaging 12.8 ± 0.2 g kg-1. Mixed-garbage burning produced significantly more BC (3.3 ± 3.88 g kg-1) and BTEX (˜ 4.5 g kg-1) emissions than in previous measurements. For all fossil fuel sources, diesel burned more efficiently than gasoline but produced larger NOx and aerosol emission factors. Among the least efficient sources sampled were gasoline-fueled motorcycles during start-up and idling for which the CO EF was on the order of ˜ 700 g kg-1 - or about 10 times that of a typical biomass fire. Minor motorcycle servicing led to minimal if any reduction in gaseous pollutants but reduced particulate emissions, as detailed in a companion paper (Jayarathne et al., 2016). A small gasoline-powered generator and an "insect repellent fire" were also among the sources with the highest emission factors for pollutants. These measurements begin to address the critical data gap for these important, undersampled sources, but due to their diversity and abundance, more work is needed.
Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S
2015-05-01
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.
Aurell, Johanna; Gullett, Brian K
2013-08-06
Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. A comprehensive array of emissions, including PM2.5, black carbon (BC), brown carbon (BrC), carbon dioxide (CO2), volatile organic compounds (VOCs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were sampled using ground-based and aerostat-lofted platforms for determination of emission factors. The PM2.5 emission factors ranged from 14 to 47 g/kg biomass, up to three times higher than previously published studies. The biomass type was the primary determinant of PM2.5, rather than whether the emission sample was gathered from the laboratory or the field and from aerial- or ground-based sampling. The BC and BrC emission factors ranged from 1.2 to 2.1 g/kg biomass and 1.0 to 1.4 g/kg biomass, respectively. A decrease in BC and BrC emission factors with decreased combustion efficiency was found from both field and laboratory data. VOC emission factors increased with decreased combustion efficiency. No apparent differences in averaged emission factors were observed between the field and laboratory for BC, BrC, and VOCs. The average PCDD/PCDF emission factors ranged from 0.06 to 4.6 ng TEQ/kg biomass.
NASA Astrophysics Data System (ADS)
Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar
2017-10-01
Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.
A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms
Torbick, Nathan; Corbiere, Megan
2015-01-01
Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophyll-a and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost. PMID:26389930
Mapping of the Seagrass Cover Along the Mediterranean Coast of Turkey Using Landsat 8 Oli Images
NASA Astrophysics Data System (ADS)
Bakirman, T.; Gumusay, M. U.; Tuney, I.
2016-06-01
Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5-10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction) of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.
Ahamad, M Niyaz; Varma, K B R
2009-08-01
Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 < or = x < or = 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.
NASA Astrophysics Data System (ADS)
Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.
2015-12-01
We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.
Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae
NASA Astrophysics Data System (ADS)
Wu, C.; Wang, B.; Liu, D.; Han, Z.
2017-07-01
Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.
Ganguli, Rajive; Bandopadhyay, Sukumar
2012-01-01
Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash). he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less
Prechamber equipped laser ignition for improved performance in natural gas engines
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...
2017-04-25
Lean-burn operation of stationary natural gas engines offers lower NO x emissions and improved efficiency. A proven pathway to extend lean-burn operation has been to use laser ignition instead of standard spark ignition. However, under lean conditions, flame speed reduces thereby offsetting any efficiency gains resulting from the higher ratio of specific heats, γ. The reduced flame speeds, in turn, can be compensated with the use of a prechamber to result in volumetric ignition, and thereby lead to faster combustion. In this study, the optimal geometry of PCLI was identified through several tests in a single-cylinder engine as a compromisemore » between autoignition, NO x and soot formation within the prechamber. Subsequently, tests were conducted in a single-cylinder natural gas engine comparing the performance of three ignition systems: standard electrical spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI). Out of the three, the performance of PCLI was far superior compared to the other two. Efficiency gain of 2.1% points could be achieved while complying with EPA regulation (BSNO x < 1.34 kW-hr) and the industry standard for ignition stability (COV_IMEP < 5%). Finally, test results and data analysis are presented identifying the combustion mechanisms leading to the improved performance.« less
Treatability of stabilize landfill leachate by using pressmud ash as an adsorbent
NASA Astrophysics Data System (ADS)
Azme, N. N. Mohd; Murshed, M. F.
2018-04-01
Leachate is a liquid produced from the landfill that contains high concentration of heavy metals, chemicals and nutrient loading. The treatability of these contaminants are complicated since the current treatment technology are costly and site specific. Therefore, this study was conducted to evaluate the treatability of stabilized landfill leachate by using waste (pressmud ash) as an absorbent. Pressmud ash was prepared by burning at different temperature from 100 to 700 degree Celsius and test at 24 hours shaking time, pH 8, and 4000 rpm. Leachate samples were collected from municipal solid waste (MSW) Pulau Burung Sanitary Landfill (PBSL) and were analyzed for heavy metal, COD, ammonia and colour. This study was performed in two phases i) leachate characteristic, ii) treatability assessment by using pressmud ash. Pressmud was sampled from the sugar mill, Malaysian Sugar Manufacturing (MSM) Sdn Bhd, Seberang Perai, Pulau Pinang. The pressmud with 400°C are highly potential material with a low cost which can be a good adsorbent was capable reducing efficiencies of COD (60.76%), ammonia (64.37%) and colour (35.78%) from real wastewater leachate. Pressmud showed good sorption capability. Surface modification with burning greatly enhanced the reducing efficiency of sugar waste based adsorbent with adsorption efficiency.
The use of video capture virtual reality in burn rehabilitation: the possibilities.
Haik, Josef; Tessone, Ariel; Nota, Ayala; Mendes, David; Raz, Liat; Goldan, Oren; Regev, Elli; Winkler, Eyal; Mor, Elisheva; Orenstein, Arie; Hollombe, Ilana
2006-01-01
We independently explored the use of the Sony PlayStation II EyeToy (Sony Corporation, Foster City, CA) as a tool for use in the rehabilitation of patients with severe burns. Intensive occupational and physical therapy is crucial in minimizing and preventing long-term disability for the burn patient; however, the therapist faces a difficult challenge combating the agonizing pain experienced by the patient during therapy. The Sony PlayStation II EyeToy is a projected, video-capture system that, although initially developed as a gaming environment for children, may be a useful application in a rehabilitative context. As compared with other virtual reality systems the EyeToy is an efficient rehabilitation tool that is sold commercially at a relatively low cost. This report presents the potential advantages for use of the EyeToy as an innovative rehabilitative tool with mitigating effects on pain in burn rehabilitation. This new technology represents a challenging and motivating way for the patient to immerse himself or herself in an alternate reality while undergoing treatment, thereby reducing the pain and discomfort he or she experiences. This simple, affordable technique may prove to heighten the level of patient cooperation and therefore speed the process of rehabilitation and return of functional ability.
Hybrid Wing Body Configuration Scaling Study
NASA Technical Reports Server (NTRS)
Nickol, Craig L.
2012-01-01
The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.
NASA Astrophysics Data System (ADS)
Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.
2017-11-01
On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.
Stavrakakis, P; Agapiou, A; Mikedi, K; Karma, S; Statheropoulos, M; Pallis, G C; Pappa, A
2014-01-01
Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed. Chemical analysis, despite its limitations, corresponded to the burning process with a minor time delay. Nevertheless, the evolution profile of CO2, CO, NO, and O2 were detected and monitored. The chemical monitoring of smoke components enabled the observing of the different fire phases (flaming, smoldering) based on the emissions identified in each phase. The analysis of fire acoustical signals presented accurate and timely response to the fire event. In the same content, the use of a thermographic camera, for monitoring the biomass burning, was also considerable (both profiles of the intensities of average gray and red component greater than 230) and presented similar promising potentials to audio results. Further work is needed towards integrating sensors signals for automation purposes leading to potential applications in real situations.
Multi-modal distraction. Using technology to combat pain in young children with burn injuries.
Miller, Kate; Rodger, Sylvia; Bucolo, Sam; Greer, Ristan; Kimble, Roy M
2010-08-01
The use of non-pharmacological pain management remains adhoc within acute paediatric burns pain management protocols despite ongoing acknowledgement of its role. Advancements in adult based pain services including the integration of virtual reality has been adapted to meet the needs of children in pain, as exemplified by the development of multi-modal distraction (MMD). This easy to use, hand held interactive device uses customized programs designed to inform the child about the procedure he/she is about to experience and to distract the child during dressing changes. (1) To investigate if either MMD procedural preparation (MMD-PP) or distraction (MMD-D) has a greater impact on child pain reduction compared to standard distraction (SD) or hand held video game distraction (VG), (2) to understand the impact of MMD-PP and MMD-D on clinic efficiency by measuring length of treatment across groups, and lastly, (3) to assess the efficacy of distraction techniques over three dressing change procedures. A prospective randomised control trial was completed in a paediatric tertiary hospital Burns Outpatient Clinic. Eighty participants were recruited and studied over their first three dressing changes. Pain was assessed using validated child report, caregiver report, nursing observation and physiological measures. MMD-D and MMD-PP were both shown to significantly relieve reported pain (p
Huang, Jianjun; Boerner, Ralph E J; Rebbeck, Joanne
2007-05-01
The oak-rich deciduous forests of the central Appalachian Mountains of eastern North America have changed significantly since the onset of effective fire suppression early in the 20th century. Those changes have resulted in progressively decreasing light and nutrient supplies to herbaceous perennial understory species. Application of ecological restoration treatments such as reintroduction of frequent dormant-season fire and overstory thinning to pre-suppression density often increase light, soil temperature and moisture, and short-term nutrient availability to pre-suppression levels. To persist in this environment, perennial understory herbs must be able to acclimate phenotypically to the very different resource supply combinations present with and without fire suppression. As part of a larger study of the response of the long-lived herbaceous perennials Desmodium nudiflorum and Panicum boscii to ecosystem restoration treatments in Ohio mixed-oak forests, this study examined the ecophysiological effects of prescribed burning (B) and the combination of burning and thinning (T + B) in mixed-oak forests in southern Ohio. Control (C) plants had significantly lower maximum photosynthetic rate (A(max)) than those in the treated plots. The enhancement of A(max) averaged 26.7% and 52.7% in the B and T + B treatments, respectively. Plants from the T + B plots had higher quantum yield, stomatal conductance, and photosynthetic nutrient use efficiency than B and C plants. B plants had greater intrinsic water use efficiency (WUE) than plants in the C or T + B treatments. Light saturation point (LSP), light compensation point (LCP), and "dark" respiration (DR) did not differ among treatments. Photosynthetic parameters did vary significantly between the species, but no significant treatment × species interactions were detected. Our results support the hypothesis that prescribed burning, especially when combined with overstory thinning, in these perennial herbs can result in phenotypic acclimation characterized by enhanced photosynthetic performance.
NASA Astrophysics Data System (ADS)
Kenway, Gaetan K. W.
This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.
NASA Astrophysics Data System (ADS)
Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.
2014-09-01
We estimated of emissions of carbon, as CO2-equivalents, from planned fire in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 T CO2-e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of estimating emissions when only a few fuel variables are known, Monte-Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were: (1) all measured data were constrained between measured maximum and minimum values for each variable, (2) as for (1) except the proportion of carbon within a fuel type was constrained between 0 and 1, (3) as for (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved.
NASA Astrophysics Data System (ADS)
Schill, G. P.; DeMott, P. J.; Suski, K. J.; Emerson, E. W.; Rauker, A. M.; Kodros, J.; Levin, E. J.; Hill, T. C. J.; Farmer, D.; Pierce, J. R.; Kreidenweis, S. M.
2017-12-01
Black carbon (BC) has been implicated as a potential immersion-mode ice nucleating particle (INP) because of its relative abundance in the upper troposphere. Furthermore, several field and aircraft measurements have observed positive correlations between BC and INP concentrations. Despite this, the efficiency of BC to act as an immersion-mode INP is poorly constrained. Indeed, previous results from laboratory studies are in conflict, with estimates of BC's impact on INP ranging from no impact to being efficient enough to rival the well-known INP mineral dust. It is, however, becoming clear that the ice nucleation activity of BC may depend on both its fuel type and combustion conditions. For example, previous work has shown that diesel exhaust BC is an extremely poor immersion-mode INP, but laboratory burns of biomass fuels indicate that BC can contribute up to 70% of all INP for some fuel types. Given these dependencies, we propose that sampling from real-world biomass burning sources would provide the most useful new information on the contribution of BC to atmospheric INP. In this work, we will present recent results looking at the sources of INP from prescribed burns and wildfires. To determine the specific contribution of refractory black carbon (rBC) to INP concentrations, we utilized a new technique that couples the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. Furthermore, we have also used a filter-based technique for measuring INP, the Ice Spectrometer, which can employ pretreatments such as heating and digestion by H2O2 to determine the contribution of heat-labile and organic particles, respectively.
DOT National Transportation Integrated Search
2006-09-30
The focus on optimizing aircraft fuel efficiency : as well as interest in assessing aviation : emissions inventories to measure the efficacy of : efforts to limit or reduce aviation emissions : worldwide has spurred a number of efforts in : the U.S. ...
When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...
Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mecartnery, Martha; Graeve, Olivia; Patel, Maulik
2017-05-25
The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity
Solar Spectral Radiative Forcing During the Southern African Regional Science Initiative
NASA Technical Reports Server (NTRS)
Pilewskie, P.; Pommier, J.; Bergstrom, R.; Gore, W.; Howard, S.; Rabbette, M.; Schmid, B.; Hobbs, P. V.; Tsay, S. C.
2003-01-01
During the dry season component of the Southern African Regional Science Initiative (SAFARI) in late winter 2000, the net solar spectral irradiance was measured at flight levels throughout biomass burning haze layers. From these measurements, the flux divergence, fractional absorption, instantaneous heating rate, and absorption efficiency were derived. Two cases are examined: on 24 August 2000 off the coast of Mozambique in the vicinity of Inhaca Island and on 6 September 2000 in a very thick continental haze layer over Mongu, Zambia. The measured absolute absorption was substantially higher for the case over Mongu where the measured midvisible optical depth exceeded unity. Instantaneous heating from aerosol absorption was 4 K d(sup -1) over Mongu, Zambia and 1.5 K d(sup -1) near Inhaca Island, Mozambique. However, the spectral absorption efficiency was nearly identical for both cases. Although the observations over Inhaca Island preceded the river of smoke from the southern African continent by nearly 2 weeks, the evidence here suggests a continental influence in the lower tropospheric aerosol far from source regions of burning.
High-power laser phosphor light source with liquid cooling for digital cinema applications
NASA Astrophysics Data System (ADS)
Li, Kenneth
2014-02-01
Laser excited phosphor has been used to excite phosphor material, producing high intensity light output with smaller etendue than that of LEDs with the same long lifetime. But due to the high intensity of the laser light, phosphor with organic binder burns at low power, which requires the phosphor to be deposited on a rotating wheel in practical applications. Phosphor with inorganic binders, commonly known as ceramic phosphor, on the other hand, does not burn, but efficiency goes down as temperature goes up under high power excitation. This paper describes cooling schemes in sealed chambers such that the phosphor materials using organic or inorganic binders can be liquid cooled for high efficiency operations. Confined air bubbles are introduced into the sealed chamber accommodating the differential thermal expansion of the liquid and the chamber. For even higher power operation suitable for digital cinema, a suspension of phosphor in liquid is described suitable for screen brightness of over 30,000 lumens. The aging issues of phosphor can also be solved by using replaceable phosphor cartridges.
Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleton, P P; Dearborn, D P; Lattanzio, J
2006-07-26
Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between themore » hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.« less
NASA Astrophysics Data System (ADS)
Chen, Gang; Metz, Margaret R.; Rizzo, David M.; Dillon, Whalen W.; Meentemeyer, Ross K.
2015-04-01
Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively similar performance, where both spectral responses and texture contributed to burn assessments. However, the application of PCA and MNF introduced much greater variation among models across the three stages. For the early-stage disease progression, neither band reduction algorithms improved or retained the accuracy of burn severity modeling (except for the use of 10 MNF components). Compared to the no-band-reduction scenario, band reduction led to a greater level of overestimation of low-degree burns and underestimation of medium-degree burns, suggesting that the spectral variation removed by PCA and MNF was vital for distinguishing between the spectral reflectance from disease-induced dried crowns (still retaining high structural complexity) and fire ash. For the middle-stage, both algorithms improved the model R2 values by 2-37%, while the late-stage models had comparable or better performance to those using the original 50 spectral bands. This could be explained by the loss of tree crowns enabling better signal penetration, thus leading to reduced spectral variation from canopies. Hence, spectral bands containing a high degree of random noise were correctly removed by the band reduction algorithms. Compared to the middle-stage, the late-stage forest stands were covered by large piles of fallen trees and branches, resulting in higher variability of MASTER imagery. The ability of band reduction to improve the model performance for these late-stage forest stands was reduced, because the valuable spectral variation representing the actual late-stage forest status was partially removed by both algorithms as noise. Our results indicate that PCA and MNF are promising for balancing computation efficiency and the performance of burn severity models in forest stands subject to the middle and late stages of sudden oak death disease progression. Compared to PCA, MNF dramatically reduced image spectral variation, generating larger image objects with less complexity of object shapes. Whereas, PCA-based models delivered superior performance in most evaluated cases suggesting that some key spectral variability contributing to the accuracy of burn severity models in diseased forests may have been removed together with true spectral noise through MNF transformations.
Validation of numerical simulations for nano-aluminum composite solid propellants
NASA Astrophysics Data System (ADS)
Yan, Allen H.
2011-12-01
Nano-aluminum is of interest as an energetic additive in composite solid propellant formulations for its demonstrated ability to increase combustion efficiency and burning rate. However, due to the current cost of nano-aluminum and the associated safety risks associated with propellant testing, it may not always be practical to spend the time and effort to mix, cast, and thoroughly evaluate the burning rate of a new formulation. To provide an alternative method of determining this parameter, numerical methods have been developed to predict the performance of nano-aluminum composite propellants, but these codes still require thorough validation before application. For this purpose, six propellant compositions were formulated, fully characterized, and burn rates were measured at several pressures between 34.0 and 129.3 atmospheres at room temperature, 20°C, and at an elevated temperature of 71.1°C in order to test the code's ability to predict pressure dependent burn rate and temperature sensitivity. To ensure the most accurate model possible, special emphasis was placed on characterizing the size distribution of the constituent nano-aluminum and ammonium perchlorate powders through optical diffraction or optical imaging techniques. Experimental burn rate is compared to the propellant combustion model and shows excellent agreement within 5% for a range of formulations and pressures, however under other conditions the model deviates by as much as 21%. An analysis of the results suggests that the current framework of the numerical model is unable to accurately simulate all the combustion physics of high aluminum content propellants, and suggestions for improvements are identified.
Logistics of building a laser practice for the treatment of hypertrophic burn scars.
Hultman, Charles Scott; Edkins, Renee E; Cairns, Bruce A; Meyer, Anthony A
2013-05-01
Although lasers can improve burn scars, such treatment has not been adopted universally, due to operational challenges starting a practice and the perception that such a program is not financially viable. We report the logistics of building a laser practice for the treatment of hypertrophic burn scars. We analyzed the clinical, operational, and financial components of our laser practice, focusing on treatment of hypertrophic burn scars, using pulsed dye laser, fractional CO2 laser, and intense pulsed light. Cases were performed in an operating room, with anesthesia, after preauthorization. We examined professional charges and collections, case time, variable and indirect expenses, and breakeven volumes. Our practice grew as follows: 2008, 1 case; 2009, 44 cases; 2010, 169 cases; and 2011, 415 cases. Overall collection rate was 32.1%. Expenses incurred by the provider, per 8-hour session, included laser rental/lease ($2375), personnel salaries ($1900), and physician overhead ($808), for a total cost of $5083. Mean charge was $1642 per case; mean collection was $527 per case. Median case time (procedure plus turnover) was 40 minutes. In this model, breakeven volume is 9.7 cases per day; breakeven time is 49.7 minutes. Provider profit margin for 10 cases per day, or 83% capacity utilization, is $187 per day (income - expenses = $5270 - $5083). Despite high costs associated with starting and operating a laser practice for the treatment of hypertrophic burn scars, a sustainable enterprise can be achieved when the provider has accrued enough volume to batch cases over an entire day. Critical to achieving breakeven is preauthorization, controlling overhead, and efficient throughput.
Nuisance or Not? Part 2 "Wood" New Additives Make a Difference?
NASA Astrophysics Data System (ADS)
Vilardi, J. R.
2017-12-01
Nuisance or Not? Part 2"Wood" New Additives Make a Difference? Julian Vilardi Wetumpka Middle School, Wetumpka, USA Last year fuel briquettes were created out of nuisance organisms. Several samples had results better or comparable to the controls. This project is a revision/ extension. Purpose: Find process and formula for a long lasting environmentally friendly biofuel that produces high energy with low byproducts and low cost. Hypotheses: If wisteria is processed to make a biofuel that contains 90% wisteria leaves and vines and 10% pine cones, then a high energy, low byproduct, biofuel will be created. Procedure: Collect, dry and chop material, compress mass, burn test, repeat for every organism. Kudzu was combined in a 70 % kudzu: 30 % wood additive with used cooking oil and pressed into logs. Logs were massed, burned and temperature was recorded and compared to controls. Results: Kudzu had the longest flame but produced smoke. Kudzu logs with recycled cooking oil had less smoke and burned for an hour plus. Conclusions: Wisteria did not compact or have great flammability. Pine cones did not flame well either. This hypothesis was unsupported. All kudzu samples when compacted and combined with any additive were the best biofuel. Kudzu logs with the mixture of wood additives burned the longest and was one of the hottest. The gas chromatograph/emissions tests showed the organic byproducts produced on burning the kudzu logs were less than the accepted range for air quality. These supported the hypothesis and met the purpose of this project. A low cost, environmentally friendly, efficient fuel source was created!
Foreskin-isolated keratinocytes provide successful extemporaneous autologous paediatric skin grafts.
Mcheik, Jiad N; Barrault, Christine; Pedretti, Nathalie; Garnier, Julien; Juchaux, Franck; Levard, Guillaume; Morel, Franck; Lecron, Jean-Claude; Bernard, François-Xavier
2016-03-01
Severe burns in children are conventionally treated with split-thickness skin autografts or epidermal sheets. However, neither early complete healing nor quality of epithelialization is satisfactory. An alternative approach is to graft isolated keratinocytes. We evaluated paediatric foreskin and auricular skin as donor sources, autologous keratinocyte transplantation, and compared the graft efficiency to the in vitro capacities of isolated keratinocytes to divide and reconstitute epidermal tissue. Keratinocytes were isolated from surgical samples by enzymatic digestion. Living cell recovery, in vitro proliferation and epidermal reconstruction capacities were evaluated. Differentiation status was analysed, using qRT-PCR and immunolabelling. Eleven children were grafted with foreskin-derived (boys) or auricular (girls) keratinocyte suspensions dripped onto deep severe burns. The aesthetic and functional quality of epithelialization was monitored in a standardized way. Foreskin keratinocyte graft in male children provides for the re-epithelialization of partial deep severe burns and accelerates wound healing, thus allowing successful wound closure, and improves the quality of scars. In accordance, in vitro studies have revealed a high yield of living keratinocyte recovery from foreskin and their potential in terms of regeneration and differentiation. We report a successful method for grafting paediatric males presenting large severe burns through direct spreading of autologous foreskin keratinocytes. This alternative method is easy to implement, improves the quality of skin and minimizes associated donor site morbidity. In vitro studies have highlighted the potential of foreskin tissue for graft applications and could help in tissue selection with the prospect of grafting burns for girls. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
NASA Astrophysics Data System (ADS)
Serpenguzel, Ali; Arnold, Stephen; Griffel, Giora
1995-05-01
Recently, photonic atoms (dielectric microspheres) have enjoyed the attention of the optical spectroscopy community. A variety of linear and nonlinear optical processes have been observed in liquid microdroplets. But solid state photonic devices using these properties are scarce. A first of these applications is the room temperature microparticle hole-burning memory. New applications can be envisioned if microparticle resonances can be coupled to traveling waves in optical fibers. In this paper we demonstrate the excitation of narrow morphology dependent resonances of microparticles placed on an optical fiber. Furthermore we reveal a model for this process which describes the coupling efficiency in terms of the geometrical and material properties of the microparticle-fiber system.
Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Richardson, Georgia A.
2010-01-01
The two-burn maneuver to escape the gravitational pull of a central body is described. The maneuver, originally suggested by Hermann Oberth, improves efficiency considerably for a wide range of missions of interest in space exploration and scientific investigation. A clear delineation of when the maneuver is more effective is given, as are methods to extract the most advantage when using the maneuver. Some examples are given of how this maneuver can enable exploration of the outer solar system, near interstellar space, and crewed missions to Mars and beyond. The maneuver has the potential to halve the required infrastructure associated with a crewed mission to Mars and achieve increased solar escape velocities with existing spacecraft technologies.
NASA Astrophysics Data System (ADS)
Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.; Marquis, J. W.
2016-12-01
Currently, with the improvements in aerosol forecast accuracies through aerosol data assimilation, the community is unavoidably facing a scientific question: is it worth the computational time to insert real-time aerosol analyses into numerical models for weather forecasts? In this study, by analyzing a significant biomass burning aerosol event that occurred in 2015 over the Northern part of the Central US, the impact of aerosol particles on near-surface temperature forecasts is evaluated. The aerosol direct surface cooling efficiency, which links surface temperature changes to aerosol loading, is derived from observational-based data for the first time. The potential of including real-time aerosol analyses into weather forecasting models for near surface temperature forecasts is also investigated.
Optimization of air plasma reconversion of UF6 to UO2 based on thermodynamic calculations
NASA Astrophysics Data System (ADS)
Tundeshev, Nikolay; Karengin, Alexander; Shamanin, Igor
2018-03-01
The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the paper. Calculation of burning parameters of gas-air mixtures is carried out and the compositions of mixtures obtained via energy-efficient conversion of DUHF in air plasma are determined. With the help of plasma-chemical conversion, thermodynamic modeling optimal composition of UF6-H2-Air mixtures and its burning parameters, the modes for production of uranium dioxide in the condensed phase are determined. The results of the conducted researches can be used for creation of technology for plasma-chemical conversion of DUHF in the form of air-gas mixtures with hydrogen.
Characteristics code for shock initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partom, Y.
1986-10-01
We developed SHIN, a characteristics code for shock initiation studies. We describe in detail the equations of state, reaction model, rate equations, and numerical difference equations that SHIN incorporates. SHIN uses the previously developed surface burning reaction model which better represents the shock initiation process in TATB, than do bulk reaction models. A large number of computed simulations prove the code is a reliable and efficient tool for shock initiation studies. A parametric study shows the effect on build-up and run distance to detonation of (1) type of boundary condtion, (2) burning velocity curve, (3) shock duration, (4) rise timemore » in ramp loading, (5) initial density (or porosity) of the explosive, (6) initial temperature, and (7) grain size. 29 refs., 65 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module introduces the concept of burning hazardous wastes in units regulated under RCRA and outlines the requirements for one type of device - the incinerator. It explains what an incinerator is and how incinerators are regulated, and states the conditions under which an owner/operator may be exempt from subpart O. It defines principal organic hazardous constituent (POHC) and describes the criteria under which a POHC is selected. It defines destruction and removal efficiency (DRE) and describes the interaction between compliance with performance standards and compliance with incinerator operating conditions established in the permit. It defines and explains the purposemore » of a `trial burn`.« less
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Delany, Anthony C.
1990-01-01
Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. The basic processes are illustrated with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale.
U.S. EPA, Pesticide Product Label, PRENTOX METHOXYCHLOR 50W, 10/06/1982
2011-04-14
... I"·'!I'fettIG1 ~ II'I\\K "{>eM (Ol"i'/\\\\ 'JO" 'K"'ItU''''tl'flo, teNor pill ~lInd "'Iy br J\\~ U III <;CI'iV •• ,It' \\\\I\\PtIl\\'Ofl, It). ... "''''I<)I/C.'''I)' ~.,t \\",It,t·t:"!\\O"" 01 Clu\\I'O tI'\\fJ''lwQ ...
1981-12-23
34~ ~ ~ ~ ~ ~ ~ ~ ~~ ~A .... . ... .. . .. ... ... . . .. . .. ........ . . . . . . .. ’_L ’,AL CLIŘATOLOGY FRANCH 7AC SURFACE WINDS S A T,-.ŕ SERVICM/MAC...72 C USAP ETAC 0-1-5n (a.. A) ..vWW... 1394""S "IS FOOD ~~ ADS 00OLI *L ,AL CLIMATOLOGY BRANCH uSAFETAC CEILING VERSUS VISIBILITY A7. EATHER SERVICE/MAC
NASA Astrophysics Data System (ADS)
Yanti, Apriwida; Susilo, Bowo; Wicaksono, Pramaditya
2016-11-01
Gajahmungkur reservoir is administratively located in Wonogiri Regency, Central Java, with the main function as a flood control in the upstream of Bengawan Solo River. Other functions of the reservoir are as hydroelectric power plant (PLTA), water supply, irrigation, fisheries and tourism. Economic utilization of the reservoir is estimated until 100 years, but it is begun to be threatened by the silting of the reservoir. Eroded materials entering water body will be suspended and accumulated. Suspended Material or TSS (Total Suspended Solid) will increase the turbidity of water, which can affect the quality of water and silting the reservoir. Remote sensing technology can be used to determine the spatial distribution of TSS. The purposes of this study were to 1) utilize and compare the accuracy of single band Landsat 8 OLI for mapping the spatial distribution of TSS and 2) estimate the TSS on Gajahmungkur reservoir surface waters up to the depth of 30 cm. The method used for modelling the TSS spatial distribution is the empirical modelling that integrates image pixel values and field data using correlation analysis and regression analysis. The data used in the empirical modelling are single band of visible, NIR, and SWIR of Landsat 8 OLI, which was acquired on 8 May 2016, and field-measured TSS values based on the field data collection conducted on 12 April 2016. The results revealed that mapping the distribution and the estimated value of TSS in Reservoir Gajahmungkur can be performed more accurately using band 4 (red band). The determinant coefficient between TSS field and TSS value of image using band 4 is 0.5431. The Standard Error (SE) of the predicted TSS value is 16.16 mg/L. The results also showed that the estimated total TSS of May 2016 according to band 4 is 1.087,56 tons. The average estimation of TSS value in up to the depth of 30 cm is 61.61 mg/L. The highest TSS distribution is in the northern parts, which was dominated by eroded materials from Keduang River.
NASA Astrophysics Data System (ADS)
Rupasinghe, P. A.; Markle, C. E.; Marcaccio, J. V.; Chow-Fraser, P.
2017-12-01
Phragmites australis (European common reed), is a relatively recent invader of wetlands and beaches in Ontario. It can establish large homogenous stands within wetlands and disperse widely throughout the landscape by wind and vehicular traffic. A first step in managing this invasive species includes accurate mapping and quantification of its distribution. This is challenging because Phragimtes is distributed in a large spatial extent, which makes the mapping more costly and time consuming. Here, we used freely available multispectral satellite images taken monthly (cloud free images as available) for the calendar year to determine the optimum phenological state of Phragmites that would allow it to be accurately identified using remote sensing data. We analyzed time series, Landsat-8 OLI and Sentinel-2 images for Big Creek Wildlife Area, ON using image classification (Support Vector Machines), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). We used field sampling data and high resolution image collected using Unmanned Aerial Vehicle (UAV; 8 cm spatial resolution) as training data and for the validation of the classified images. The accuracy for all land cover classes and for Phragmites alone were low at both the start and end of the calendar year, but reached overall accuracy >85% by mid to late summer. The highest classification accuracies for Landsat-8 OLI were associated with late July and early August imagery. We observed similar trends using the Sentinel-2 images, with higher overall accuracy for all land cover classes and for Phragmites alone from late July to late September. During this period, we found the greatest difference between Phragmites and Typha, commonly confused classes, with respect to near-infrared and shortwave infrared reflectance. Therefore, the unique spectral signature of Phragmites can be attributed to both the level of greenness and factors related to water content in the leaves during late summer. Landsat-8 OLI or Sentinel-2 images acquired in late summer can be used as a cost effective approach to mapping Phragmites at a large spatial scale without sacrificing accuracy.
A Review of Materials for Gas Turbines Firing Syngas Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, Thomas; Wright, Ian G
2009-05-01
Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now amore » mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.« less
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Multi-fuel combustor for gas turbine engines: Phase 1, Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melconian, J.O.; Marden, W.W., III
An innovative can combustor configuration has been developed for gas turbine engines which has the potential of burning fuels ranging from gasoline to coal/water slurries at high efficiencies. The design is based on a Variable Residence Time (VRT) concept which allows large and agglomerated fuel particles adequate time to completely burn. High durability of the combustor is achieved by dual function use of the incoming air. For applications which require the burning of coal/water slurries, the design has the capability of removing the ash particles directly from the primary zone of the combustor. It is anticipated that because of themore » small size requirement of this combustor design, existing gas turbine engines could be retrofitted within the confines of the current engine envelope. In Phase 1, the feasibility of the concept was successfully demonstrated by three-dimensional mathematical modeling and water analogue tests. The Plexiglas model used in the water analogue tests was designed to fit the current production engine of a major manufacturer. 19 figs., 2 tabs.« less
Joubert, Romain; Daniel, Estelle; Bonnin, Nicolas; Comptour, Aurélie; Gross, Christelle; Belville, Corinne; Chiambaretta, Frédéric; Blanchon, Loïc; Sapin, Vincent
2017-07-01
Alkali burns are the most common, severe chemical ocular injuries, their functional prognosis depending on corneal wound healing efficiency. The purpose of our study was to compare the benefits of amniotic membrane (AM) grafts and homogenates for wound healing in the presence or absence of previous all-trans retinoic acid (atRA) treatment. Fifty male CD1 mice with reproducible corneal chemical burn were divided into five groups, as follows: group 1 was treated with saline solution; groups 2 and 3 received untreated AM grafts or grafts treated with atRA, respectively; and groups 4 and 5 received untreated AM homogenates or homogenates treated with atRA, respectively. After 7 days of treatment, ulcer area and depth were measured, and vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9) were quantified. AM induction by atRA was confirmed via quantification of retinoic acid receptor β (RARβ), a well-established retinoic acid-induced gene. Significant improvements of corneal wound healing in terms of ulcer area and depth were obtained with both strategies. No major differences were found between the efficiency of AM homogenates and grafts. This positive action was increased when AM was pretreated with atRA. Furthermore, AM induced a decrease in VEGF and MMP-9 levels during the wound healing process. The atRA treatment led to an even greater decrease in the expression of both proteins. Amnion homogenate is as effective as AM grafts in promoting corneal wound healing in a mouse model. A higher positive effect was obtained with atRA treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less
Liu, Yafei; Zhang, You; Li, Chuang; Bai, Yun; Zhang, Daoming; Xue, Chunyu; Liu, Guangqing
2018-05-15
Pollutant emissions from incomplete combustion of raw coal in low-efficiency residential heating stoves greatly contribute to winter haze in China. Semi-coke coals and improved heating stoves are expected to lower air pollutant emissions and are vigorously promoted by the Chinese government in many national and local plans. In this study, the thermal performance and air pollutant emissions from semi-coke combustion in improved heating stoves were measured in a pilot rural county and compared to the baseline of burning raw coal to quantify the mitigation potential of air pollutant emissions. A total of five stove-fuel combinations were tested, and 27 samples from 27 different volunteered households were obtained. The heating efficiency of improved stoves increased, but fuel consumption appeared higher with more useful energy output compared to traditional stoves. The emission factors of PM 2.5 , SO 2 , and CO 2 of semi-coke burning in specified improved stoves were lower than the baseline of burning raw coal chunk, but no significant NOx and CO decreases were observed. The total amount of PM 2.5 and SO 2 emissions per household in one heating season was lower, but CO, CO 2 , and NOx increased when semi-coke coal and specified improved stoves were deployed. Most differences were not statistically significant due to the limited samples and large variation, indicating that further evaluation would be needed to make conclusions that could be considered for policy. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, Aleksei N; Orishich, Anatolii M
Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less
NASA Astrophysics Data System (ADS)
Pokhrel, Rudra Prasad
This dissertation examines the optical properties of fresh and aged biomass burning aerosols, parameterization of these properties, and development of new instrumentation and calibration techniques to measure aerosol optical properties. Data sets were collected from the fourth Fire Lab at Missoula Experiment (FLAME-4) that took place from October 15 to November 16, 2012. Biomass collected from the various parts of the world were burned under controlled laboratory conditions and fresh emissions from different stages of burning were measured and analyzed. Optical properties of aged aerosol under different conditions was also explored. A photoacoustic absorption spectrometer (PAS) was built and integrated with a newly designed thermal denuder to improve upon observations made during Flame-4. A novel calibration technique for the PAS was developed. Single scattering albedo (SSA) and absorption Angstrom exponent (AAE) from 12 different fuels with 41 individual burns were estimated and parameterized with modified combustion efficiency (MCE) and the ratio of elemental carbon (EC) to organic carbon (OC) mass. The EC / OC ratio has better capability to parameterize SSA and AAE than MCE. The simple linear regression model proposed in this study accurately predicts SSA during the first few hours of plume aging with the ambient data from a biomass burning event. In addition, absorption due to brown carbon (BrC) can significantly lower the SSA at 405 nm resulting in a wavelength dependence of SSA. Furthermore, smoldering dominated burns have larger AAE values while flaming dominated burns have smaller AAE values indicating a large fraction of BrC is emitted during the smoldering stage of the burn. Enhancement in BC absorption (EAbs) due to coating by absorbing and non-absorbing substances is estimated at 405 nm and 660 nm. Relatively smaller values of EAbs at 660 nm compared to 405 nm suggests lensing is a less important contributor to biomass burning aerosol absorption at lower wavelengths. Multiple burns of the same fuel produced significantly different EAbs values at 405 nm, but show good correlation with the EC/OC ratio indicating less dependency on fuel type and more dependency on burn conditions. In addition, absorption due to BrC can contribute up to 92 % of the total biomass burning aerosol absorption at 405 nm and up to 58 % of the total absorption at 532 nm. Indicating BrC absorption in biomass burning emissions is equally or more important than the absorption due to BC at short wavelengths. Furthermore, fractional absorption due to BrC shows reasonably good correlation with EC/OC ratio and AAE. Primary organic aerosol is found to be more volatile than secondary organic aerosol and it is found that the thermal denuder deployed in this study removes less organic aerosol if secondary organic aerosol is present. SSA at 532 nm remains constant during different conditions of aging while SSA at 405 nm increases under certain conditions suggesting the degradation of BrC. Decreases in AAE under the same experiment further support the proposed BrC degradation. The novel thermal denuder designed completely removes non-refractory material and can be used under higher flow rates (maximum of 5 LPM) than the most commercially available thermal denuders. The new calibration techniques proposed for the photoacousitc absorption spectrometer will reduce uncertainty during calibration compared to the conventional calibration methods.
NASA Astrophysics Data System (ADS)
Jiang, L.
2016-12-01
Snow cover is one of important elements in the water supply of large populations, especially in those downstream from mountainous watershed. The cryosphere process in the Tibetan Plateau is paid much attention due to rapid change of snow amount and cover extent. Snow mapping from MODIS has been increased attention in the study of climate change and hydrology. But the lack of intensive validation of different snow mapping methods especially at Tibetan Plateau hinders its application. In this work, we examined three MODIS snow products, including standard MODIS fractional snow product (MOD10A1) (Kaufman et al., 2002; Salomonson & Appel, 2004, 2006), two other fractional snow product, MODSCAG (Painter et al., 2009) and MOD_MESMA (Shi, 2012). Both these two methods are based on spectral mixture analysis. The difference between MODISCAG and MOD_MESMA was the endmember selection. For MODSCAG product, snow spectral endmembers of varying grain size was obtained both from a radiative transfer model and spectra of vegetation, rock and soil collected in the field and laboratory. MOD_MESMA was obtained from automated endmember extraction method using linear spectral mixture analysis. Its endmembers are selected in each image to enhance the computational efficiency of MESMA (Multiple Endmember Spectral Analysis). Landsat-8 Operatinal Land Imager (OLI) data from 2013-2015 was used to evaluate the performance of these three snow fraction products in Tibetan Plateau. The effect of land cover types including forest, grass and bare soil was analyzed to evaluate three products. In addition, the effects of relatively flat surface in internal plateau and high mountain areas of Himalaya were also evaluated on the impact of these snow fraction products. From our comparison, MODSCAG and MOD10A1 overestimated snow cover, while MOD_MESMA underestimated snow cover. And RMSE of MOD_MESMA at each land cover type including forest, grass and mountain area decreased with the spatial resolution increasing from 500m, 1km, 2km to 5km. The RMSE of MODSCAG and MOD10A1 is very similar. In Himalaya area, these two RMSEs of MODSCAG and MOD10A1 increased with the spatial resolution increasing from 500m to 5km. For forest, grass and bare soil, RMSE decreased from 500m to 1km, then increased from 1km to 2km.
Avifaunal responses to fire in southwestern montane forests along a burn severity gradient
Kotliar, N.B.; Kennedy, P.L.; Ferree, K.
2007-01-01
The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17 351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the importance of quantifying burn severity and controlling confounding sources of spatiotemporal variation in studies of fire effects. After-only gradient analysis can be an efficient tool for quantifying fire effects. This analysis can also augment historical data sets that have small samples sizes coupled with high non-process variation, which limits the power of before-after comparisons. ?? 2007 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Deroubaix, Adrien; Brito, Joel; Dupuy, Régis; Colomb, Aurélie; Schwarzenboeck, Alfons; Sellegri, Karine; Chazette, Patrick; Duplissy, Jonathan; Flamant, Cyrille
2017-04-01
Southern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. The region is also strongly impacted by important natural pollution from distant locations. Biomass burning mainly from vegetation fires in Central Africa and mineral dust from the Saharan and Sahel-Sudan regions are advected by winds to the SWA region especially in summer. Both biomass burning and mineral dust aerosols scatter and absorb solar radiation and are able to significantly modify the regional radiative budget. Presently, the potential radiative impact of dust and biomass burning particles on SWA is unclear due to inadequate data information on the aerosols properties and vertical distribution. In the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure the aerosol optical properties (CAPS, nephelometer, PSAP), the aerosol size distribution (SMPS, GRIMM, USHAS, PCASP, FSSP) and the aerosol chemical composition (SP2, AMS). A mini backscattered lidar system provided additional measurements of the aerosol vertical structure and the aerosol optical properties such as the particulate depolarization ratio. The CHIMERE chemistry and transport model has been used to characterize the source area and the long-range transport of dust and biomass burning plumes. Here, we investigate the aerosol microphysical, chemical and optical properties of biomass burning and dust aerosols transported in SWA. In particular the following questions will be addressed: (i) what are the differences in the aerosol optical properties and vertical distribution in SWA during intense biomass burning and dust events ? (ii) what is the range of mass extinction efficiencies and single scattering albedo for these events and what explains their variability ? (iii) what is the range in aerosol size distribution in biomass burning and dust layers and how does this vary with plume age ?
NASA Astrophysics Data System (ADS)
Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin
2017-07-01
The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction error is lower than 5% for the four propellants tested. Results of this study are expected to provide better insight and enrich in the theoretical frame of aluminum agglomeration.
Fontaine, Mathieu; Latarjet, Jacques; Payre, Jacqueline; Poupelin, Jean-Charles; Ravat, François
2017-03-01
The severe pain related to repeated burn dressing changes at bedside is often difficult to manage. However these dressings can be performed at bedside on spontaneously breathing non-intubated patients using powerful intravenous opioids with a quick onset and a short duration of action such as alfentanil. The purpose of this study is to demonstrate the efficacy and safety of the protocol which is used in our burn unit for pain control during burn dressing changes. Cohort study began after favorable opinion from local ethic committee has been collected. Patient's informed consent was collected. No fasting was required. Vital signs for patients were continuously monitored (non-invasive blood pressure, ECG monitoring, cutaneous oxygen saturation, respiratory rate) all over the process. Boluses of 500 (±250) mcg IV alfentanil were administered. A continuous infusion was added in case of insufficient analgesia. Adverse reactions were collected and pain intensity was measured throughout the dressing using a ten step verbal rating scale (VRS) ranging from 0 (no pain) to 10 (worst pain conceivable). 100 dressings (35 patients) were analyzed. Median age was 45 years and median burned area 10%. We observed 3 blood pressure drops, 5 oxygen desaturations (treated with stimulation without the necessity of ventilatory support) and one episode of nausea. Most of the patients (87%) were totally conscious during the dressing and 13% were awakened by verbal stimulation. Median total dose of alfentanil used was 2000μg for a median duration of 35min. Pain scores during the procedure were low or moderate (VRS mean=2.0 and maximal VRS=5). Median satisfaction collected 2h after the dressing was 10 on a ten step scale. Pain control with intravenous alfentanil alone is efficient and appears safe for most burn bedside repeated dressings in hospitalized patients. It achieves satisfactory analgesia during and after the procedure. It is now our standard analgesic method to provide repeated bedside dressings changes for burned patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Droplet Suspended on a Wire Begins Ignition
NASA Technical Reports Server (NTRS)
2003-01-01
The Fiber Supported Droplet Combustion Experiment completing a number of successful burns on STS-94, July 11, 1997, MET:9/17:40 (approximate). The photo shows a droplet of 95% heptane and 5% hexadecane, suspended and positioned by the fiber wire, just as it is being ignited by the glowing coil beneath. Study of the physical properties of burning fuel from this experiment is expected to contribute to more efficient use of fossil fuels and reduction of combustion by-products on Earth. The sequence is from a time-lapse movie (34 seconds condensed to 12 seconds), and clearly shows particles emanating from the droplet during the burn. The droplet shrank to nothing as it was consumed. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.2 MB, 11-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300180.html.
Ignition of Droplet Suspended on a Wire
NASA Technical Reports Server (NTRS)
2003-01-01
The Fiber Supported Droplet Combustion Experiment completing a number of successful burns on STS-94, July 11, 1997, MET:9/17:40 (approximate). The photo shows a droplet of 95% heptane and 5% hexadecane, suspended and positioned by the fiber wire, just as it is being ignited by the glowing coil beneath. Study of the physical properties of burning fuel from this experiment is expected to contribute to more efficient use of fossil fuels and reduction of combustion by-products on Earth. The sequence is from a time-lapse movie (34 seconds condensed to 12 seconds), and clearly shows particles emanating from the droplet during the burn. The droplet shrank to nothing as it was consumed. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (133KB JPEG, 656 x 741 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300181.html.
Wildfire effects on hiking and biking demand in New Mexico: a travel cost study.
Hesseln, Hayley; Loomis, John B; González-Cabán, Armando; Alexander, Susan
2003-12-01
We use a travel cost model to test the effects of wild and prescribed fire on visitation by hikers and mountain bikers in New Mexico. Our results indicate that net benefits for mountain bikers is $150 per trip and that they take an average of 6.2 trips per year. Hikers take 2.8 trips per year with individual net benefits per trip of $130. Both hikers' and mountain bikers' demand functions react adversely to prescribed burning. Net benefits for both groups fall as areas recover from prescribed burns. Because both visitation and annual recreation benefits decrease to these two types of visitors, this gives rise to multiple use costs associated with prescribed burning. With respect to wildfire, hikers and mountain bikers both exhibit decreased visitation as areas recover from wildfires, however, only hikers indicate an increase in per trip net benefits. Bikers' demand effectively drops to zero. These results differ from previous findings in the literature and have implications for efficient implementation of the National Fire Plan and whether prescribed burning is a cost effective tool for multiple use management of National Forests. Specifically, that fire and recreation managers cannot expect recreation users to react similarly to fire across recreation activities, or different geographic regions. What is cost effective in one region may not be so in another.
Hospital bioterrorism planning and burn surge.
Kearns, Randy D; Myers, Brent; Cairns, Charles B; Rich, Preston B; Hultman, C Scott; Charles, Anthony G; Jones, Samuel W; Schmits, Grace L; Skarote, Mary Beth; Holmes, James H; Cairns, Bruce A
2014-01-01
On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity.
Hospital Bioterrorism Planning and Burn Surge
Myers, Brent; Cairns, Charles B.; Rich, Preston B.; Hultman, C. Scott; Charles, Anthony G.; Jones, Samuel W.; Schmits, Grace L.; Skarote, Mary Beth; Holmes, James H.; Cairns, Bruce A.
2014-01-01
On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity. PMID:24527874
Evaporation And Ignition Of Dense Fuel Sprays
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth G.
1988-01-01
Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.
Mapping the potential for high severity wildfire in the western United States
Greg Dillon; Penny Morgan; Zack Holden
2011-01-01
Each year, large areas are burned in wildfires across the Western United States. Assessing the ecological effects of these fires is crucial to effective postfire management. This requires accurate, efficient, and economical methods to assess the severity of fires at broad landscape scales (Brennan and Hardwick 1999; Parsons and others 2010). While postfire assessment...
Natural and social factors influencing forest fire occurrence at a local spatial scale
Maria Luisa Chas-Amil; Julia M. Touza; Jeffrey P. Prestemon; Colin J. McClean
2012-01-01
Development of efficient forest fire policies requires an understanding of the underlying reasons behind forest fire ignitions. Globally, there is a close relationship between forest fires and human activities, i.e., fires understood as human events due to negligence (e.g., agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use change...
An Efficient MCMC Algorithm to Sample Binary Matrices with Fixed Marginals
ERIC Educational Resources Information Center
Verhelst, Norman D.
2008-01-01
Uniform sampling of binary matrices with fixed margins is known as a difficult problem. Two classes of algorithms to sample from a distribution not too different from the uniform are studied in the literature: importance sampling and Markov chain Monte Carlo (MCMC). Existing MCMC algorithms converge slowly, require a long burn-in period and yield…
NASA Astrophysics Data System (ADS)
Acharya, Prasenjit; Sreekesh, S.; Kulshrestha, Umesh
2016-10-01
Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM) due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI). MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA) during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4) during rice and 10.89 t/ha (±8.7) during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.
NASA Astrophysics Data System (ADS)
Lee, Alex K. Y.; Willis, Megan D.; Healy, Robert M.; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.
2016-05-01
Biomass burning organic aerosol (BBOA) can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC) that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC), and potassium (K, a tracer for biomass burning aerosol) in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8-1.1 m2 g-1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ˜ 33-44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low-volatility organics.
NASA Astrophysics Data System (ADS)
Murakami, Hiroshi
2018-04-01
Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.
Adenoviral Gene Delivery to Primary Human Cutaneous Cells and Burn Wounds
Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars
2006-01-01
The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determined up to 30 days. Expression was quantified by FACS analysis and fluorimeter. Cytotoxicity was measured using the trypan blue exclusion method. 45 male Sprague Dawley rats received 2 × 108 pfu of Ad5-CMV-LacZ or carrier control intradermally into either superficial partial thickness scald burn or unburned skin. Animals were euthanized after 48 h, 7 or 14 days posttreatment. Transgene expression was assessed using immunohistochemistry and bioluminescent assays. The highest transfection rate was observed 48 h posttransfection: 79% for HKC, 70% for HFB, and 48% for HaCaT. The eGFP expression was detectable in all groups over 30 days (P > 0.05). Cytotoxic effects of the adenoviral vector were observed for HFB after 10 days and HaCaT after 30 days. Reporter gene expression in vivo was significantly higher in burned skin compared with unburned skin (P = 0,004). Gene expression decreases from 2 to 7 days with no significant expression after 14 days. This study demonstrates that effective adenoviral-mediated gene transfer of epidermal primary cells and cell-lines is feasible. Ex vivo gene transfer in epithelial cells might have promise for the use in severely burned patients who receive autologous keratinocyte sheets. Transient cutaneous gene delivery in burn wounds using adenoviral vectors causes significant concentrations in the wound tissue for at least 1 week. Based on these findings, we hypothesize that transient cutaneous adenoviral gene delivery of wound healing promoting factors has potential for clinical application. PMID:17225867
Adenoviral gene delivery to primary human cutaneous cells and burn wounds.
Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars
2006-01-01
The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determined up to 30 days. Expression was quantified by FACS analysis and fluorimeter. Cytotoxicity was measured using the trypan blue exclusion method. 45 male Sprague Dawley rats received 2x10(8) pfu of Ad5-CMV-LacZ or carrier control intradermally into either superficial partial thickness scald burn or unburned skin. Animals were euthanized after 48 h, 7 or 14 days posttreatment. Transgene expression was assessed using immunohistochemistry and bioluminescent assays. The highest transfection rate was observed 48 h posttransfection: 79% for HKC, 70% for HFB, and 48% for HaCaT. The eGFP expression was detectable in all groups over 30 days (P>0.05). Cytotoxic effects of the adenoviral vector were observed for HFB after 10 days and HaCaT after 30 days. Reporter gene expression in vivo was significantly higher in burned skin compared with unburned skin (P=0,004). Gene expression decreases from 2 to 7 days with no significant expression after 14 days. This study demonstrates that effective adenoviral-mediated gene transfer of epidermal primary cells and cell-lines is feasible. Ex vivo gene transfer in epithelial cells might have promise for the use in severely burned patients who receive autologous keratinocyte sheets. Transient cutaneous gene delivery in burn wounds using adenoviral vectors causes significant concentrations in the wound tissue for at least 1 week. Based on these findings, we hypothesize that transient cutaneous adenoviral gene delivery of wound healing promoting factors has potential for clinical application.
How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013).
Fox, D M; Carrega, P; Ren, Y; Caillouet, P; Bouillon, C; Robert, S
2018-04-15
Wildfires burn >450,000ha of forest every year in Euro-Mediterranean countries. Many fires originate in the Wildland Urban Interface (WUI) where housing density and weather conditions affect fire occurrence. Housing density is determined by long term land use policies while weather conditions evolve quickly. The first objective was to quantify the impacts of land use policy on WUI characteristics and fire risk in SE France during 1990-2012. The second objective was to quantify how Fire Weather Index (FWI) is related to fire occurrence. WUI was mapped from 1990, 1999, and 2012 building layers and crossed with a NDVI derived vegetation layer. In all, 12 WUI categories were derived: 4 building density classes and 3 vegetation layers. The I87 FWI was based on daily temperature, wind speed, relative humidity and soil water content. Despite a 30% increase in the number of new buildings, WUI area increased by only 5% as new housing filled in open space in existing WUI area. This trend can be linked to national level urban planning legislation and forest fire protection laws. Major driver variables determining housing location were aspect, slope, and distance to city centers. Fire frequency and burned area were nonlinearly related to FWI: 73% of the 99 fires occurred during weeks with FWI values ≥90 even though these accounted for only 44% of all weeks. Burned area was even more sensitive to FWI since 97% of total burned area occurred during weeks with mean FWI values ≥90. All days with burned areas >100ha had FWI values >150. The study demonstrated that WUI legislation can be an efficient tool to limit WUI fire risk. FWI results suggest the predicted increase in extreme summer heat events with global warming could increase burned area as firefighting resources are stretched beyond capacity. Copyright © 2017 Elsevier B.V. All rights reserved.
Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012
NASA Astrophysics Data System (ADS)
Hodgson, Amy K.; Morgan, William T.; O'Shea, Sebastian; Bauguitte, Stéphane; Allan, James D.; Darbyshire, Eoghan; Flynn, Michael J.; Liu, Dantong; Lee, James; Johnson, Ben; Haywood, Jim M.; Longo, Karla M.; Artaxo, Paulo E.; Coe, Hugh
2018-04-01
We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA) Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) and a Single Particle Soot Photometer (SP2) are reported for the first time in a tropical biomass burning environment. Emissions from a mostly smouldering tropical forest wildfire in Rondônia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the tropical forest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly smouldering emissions. We determined fire-integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg-1) compared to the tropical forest fire (EFBC of 0.019 ± 0.006 g kg-1), and more than 6 times the amount of organic aerosol was emitted from the tropical forest fire per unit of fuel combustion (EFOM of 8.00 ± 2.53 g kg-1, EFOC of 5.00 ± 1.58 g kg-1) compared to the Cerrado fires (EFOM of 1.31 ± 0.42 g kg-1, EFOC of 0.82 ± 0.26 g kg-1). Particulate-phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel mixture, along with different measurement techniques. Previous modelling studies focussed on the biomass burning season in tropical South America have required significant scaling up of emissions to reproduce in situ and satellite aerosol concentrations over the region. Our results do not indicate that emission factors used in inventories are biased low, which could be one potential cause of the reported underestimates in modelling studies. This study supplements and updates trace gas and particulate emission factors for fire-type-specific biomass burning in Brazil for use in weather and climate models. The study illustrates that initial fire conditions can result in substantial differences in terms of their emitted chemical components, which can potentially perturb the Earth system.
Detection flying aircraft from Landsat 8 OLI data
NASA Astrophysics Data System (ADS)
Zhao, F.; Xia, L.; Kylling, A.; Li, R. Q.; Shang, H.; Xu, Ming
2018-07-01
Monitoring flying aircraft from satellite data is important for evaluating the climate impact caused by the global aviation industry. However, due to the small size of aircraft and the complex surface types, it is almost impossible to identify aircraft from satellite data with moderate resolution, e.g. 30 m. In this study, the 1.38 μm water vapor absorption channel, often used for cirrus cloud or ash detection, is for the first time used to monitor flying aircraft from Landsat 8 data. The basic theory behind the detection of flying aircraft is that in the 1.38 μm channel most of the background reflectance between the ground and the aircraft is masked due to the strong water vapor absorption, while the signal of the flying aircraft will be attenuated less due to the low water vapor content between the satellite and the aircraft. A new composition of the Laplacian and Sobel operators for segmenting aircraft and other features were used to identify the flying aircraft. The Landsat 8 Operational Land Imager (OLI) 2.1 μm channel was used to make the method succeed under low vapor content. The accuracy assessment based on 65 Landsat 8 images indicated that the percentage of leakage is 3.18% and the percentage of false alarm is 0.532%.
NASA Astrophysics Data System (ADS)
Alvarez, César I.; Teodoro, Ana; Tierra, Alfonso
2017-10-01
Thin clouds in the optical remote sensing data are frequent and in most of the cases don't allow to have a pure surface data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the linear regression established. This algorithm was employed without any reference image or mask to try to remove the clouds. The results of the application of the ACRM algorithm over Quito didn't show a good performance. Therefore, was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works successfully for all conditions.
Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K.
2017-01-01
The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r2 values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country. PMID:29036896
Modified Optimization Water Index (mowi) for LANDSAT-8 Oli/tirs
NASA Astrophysics Data System (ADS)
Moradi, M.; Sahebi, M.; Shokri, M.
2017-09-01
Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI) defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI) has a proper performance on different condition like cloud, cloud shadow and mountain shadow.
NASA Astrophysics Data System (ADS)
Suhardiman, A.; Tampubolon, B. A.; Sumaryono, M.
2018-04-01
Many studies revealed significant correlation between satellite image properties and forest data attributes such as stand volume, biomass or carbon stock. However, further study is still relevant due to advancement of remote sensing technology as well as improvement on methods of data analysis. In this study, the properties of three vegetation indices derived from Landsat 8 OLI were tested upon above-ground carbon stock data from 50 circular sample plots (30-meter radius) from ground survey in PT. Inhutani I forest concession in Labanan, Berau, East Kalimantan. Correlation analysis using Pearson method exhibited a promising results when the coefficient of correlation (r-value) was higher than 0.5. Further regression analysis was carried out to develop mathematical model describing the correlation between sample plots data and vegetation index image using various mathematical models.Power and exponential model were demonstrated a good result for all vegetation indices. In order to choose the most adequate mathematical model for predicting Above-ground Carbon (AGC), the Bayesian Information Criterion (BIC) was applied. The lowest BIC value (i.e. -376.41) shown by Transformed Vegetation Index (TVI) indicates this formula, AGC = 9.608*TVI21.54, is the best predictor of AGC of study area.
NASA Astrophysics Data System (ADS)
Chen, Pengfei; Jing, Qi
2017-02-01
An assumption that the non-linear method is more reasonable than the linear method when canopy reflectance is used to establish the yield prediction model was proposed and tested in this study. For this purpose, partial least squares regression (PLSR) and artificial neural networks (ANN), represented linear and non-linear analysis method, were applied and compared for wheat yield prediction. Multi-period Landsat-8 OLI images were collected at two different wheat growth stages, and a field campaign was conducted to obtain grain yields at selected sampling sites in 2014. The field data were divided into a calibration database and a testing database. Using calibration data, a cross-validation concept was introduced for the PLSR and ANN model construction to prevent over-fitting. All models were tested using the test data. The ANN yield-prediction model produced R2, RMSE and RMSE% values of 0.61, 979 kg ha-1, and 10.38%, respectively, in the testing phase, performing better than the PLSR yield-prediction model, which produced R2, RMSE, and RMSE% values of 0.39, 1211 kg ha-1, and 12.84%, respectively. Non-linear method was suggested as a better method for yield prediction.
Gonsior, Constantin; Binamé, Fabien; Frühbeis, Carsten; Bauer, Nina M.; Hoch-Kraft, Peter; Luhmann, Heiko J.; Trotter, Jacqueline; White, Robin
2014-01-01
Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation. PMID:24586768
Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; ...
2014-11-12
The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in themore » form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. In conclusion, these new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.« less
Ahmed, M Razu; Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K
2017-10-14
The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r ² values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country.
The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Jhabvala, M; Choi, K.; Reuter, D.; Sundaram, M.; Jhabvala, C; La, Anh; Waczynski, Augustyn; Bundas, Jason
2010-01-01
The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8[mu]m and 12.0[mu]m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.
The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Reuter, D.; Choi, K.; Sundaram, M.; Jhabvala, C.; La, A.; Waczynski, A.; Bundas, J.
2011-01-01
The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8 m and 12.0 m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.
Impact of prescribed and repeated vegetation burning on blanket peat hydrology
NASA Astrophysics Data System (ADS)
Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian
2013-04-01
In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are dominated by saturation processes rather than infiltration-excess overland flow. In this presentation we focus on the hydrological findings from the EMBER project but where relevant we relate these to other supporting environmental data we collected in order to interrogate process explanations for the differences we observed. For example, surface and near-surface peat temperatures were significantly more variable (both warmer and cooler depending on season and time of day) for burnt sites (and for patches burnt < 5 yrs prior to monitoring within burnt sites) but with warmer peat associated with burning overall. The results provide clear evidence that prescribed vegetation burning on blanket peat significantly impacts peatland hydrology at both the plot and stream scale and therefore raises issues for government bodies who have legal responsibility to protect many peatland landscapes, their integrity, their biogeochemical functions and the ecosystem services that peatlands provide.
NASA Astrophysics Data System (ADS)
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.
2017-12-01
Mobile laser technological complex MLTC-20 with radiation power 20 kW and radiation wavelength 1.07 μm created in SRC RF TRINITI on the base of a three cw fiber Yb lasers is used successfully at remote cutting of the metalworks at carrying out of the emergency-reduction works on the out of control gas wells. In this work the results of the investigation of the possibility and the efficiency of laser radiation application for remote cutting of metals on the emergency oil wells have been presented. Measurements of the mean absorption coefficient of the radiation of a cw fiber Yb laser under its propagation in a flame of burning oil in dependence on radiation intensity have been carried out. It was shown that at the intensity ~104 W/cm2 the absorption coefficient traverses the maximum where its value is equal to ~0.1 cm-1, and at the intensity increasing to the values 105 - 106 W/cm2 it stabilizes on a small level ~5·10-3 - 10-2 cm-1. It is established that the maximal velocity and the efficiency of remote cutting of the steel plates with a thickness up to 10 mm by the radiation with the intensity 106 W/cm2 exceed these factors at the intensity 104 W/cm2. The possibility of the efficient remote cutting of steel plate with a thickness of 60 mm by laser radiation having the power 7.5 kW and the intensity 105 W/cm2 has been demonstrated.
Limits to CO2-Neutrality of Burning Wood. (Review)
NASA Astrophysics Data System (ADS)
Abolins, J.; Gravitis, J.
2016-08-01
Consumption of wood as a source of energy is discussed with respect to efficiency and restraints to ensure sustainability of the environment on the grounds of a simple analytical model describing dynamics of biomass accumulation in forest stands - a particular case of the well-known empirical Richards' equation. Amounts of wood harvested under conditions of maximum productivity of forest land are presented in units normalised with respect to the maximum of the mean annual increment and used to determine the limits of CO2-neutrality. The ecological "footprint" defined by the area of growing stands necessary to absorb the excess amount of CO2 annually released from burning biomass is shown to be equal to the land area of a plantation providing sustainable supply of fire-wood.
Emission of methyl bromide from biomass burning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoe, S.; Andreae, M.O.
1994-03-04
Bromine is, per atom, far more efficient than chlorine in destroying stratospheric ozone, and methyl bromide is the single largest source of stratospheric bromine. The two main previously known sources of this compound are emissions from the ocean and from the compound's use as an agricultural pesticide. Laboratory biomass combustion experiments showed that methyl bromide was emitted in the smoke from various fuels tested. Methyl bromide was also found in smoke plumes from wildfires in savannas, chaparral, and boreal forest. Global emissions of methyl bromide from biomass burning are estimated to be in the range of 10 to 50 gigagramsmore » per year, which is comparable to the amount produced by ocean emission and pesticide use and represents a major contribution ([approximately]30 percent) to the stratospheric bromine budget.« less
NASA Astrophysics Data System (ADS)
Hall, Joanne; Loboda, Tatiana
2018-05-01
The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.
Chang, Chih-Chun; Yeh, Chin-Chuan; Chu, Fang-Yeh
2016-10-01
The Formosa Fun Coast explosion, occurring in a recreational water park located in the Northern Taiwan on 27 June 2015, made 499 people burn-injured. For those who had severe burn trauma, surgical intervention and fluid resuscitation were necessary, and potential blood transfusion therapy could be initiated, especially during and after broad escharotomy. Here, we reviewed the literature regarding transfusion medicine and skin grafting as well as described the practicing experience of combined tissue and blood bank in the burn disaster in Taiwan. It was reported that patients who were severely burn-injured could receive multiple blood transfusions during hospitalization. Since the use of skin graft became a mainstay alternative for wound coverage after the early debridement of burn wounds at the beginning of the 20th century, the development of tissue banking program was initiated. In Taiwan, the tissue banking program was started in 2006. And the first combined tissue and blood bank was established in Far Eastern Memorial Hospital in 2010, equipped with the non-sterile, clean and sterile zones distinctly segregated with a unidirectional movement in the sterile area. The sterile zone was a class 10000 clean room equipped with high efficiency particulate air filter (HEPAF) and positive air pressure ventilation. The combined tissue and blood bank has been able to provide the assigned blood products and tissue graft timely and accurately, with the concepts of centralized management. In the future, the training of tissue and blood bank technicians would be continued and fortified, particularly on the regulation and quality control for further bio- and hemovigilance. Copyright © 2016 Elsevier Ltd. All rights reserved.