Sample records for efficiency contra-rotating generator

  1. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    NASA Astrophysics Data System (ADS)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  2. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  3. Design and Testing of the Contra-Rotating Turbine for the Scimitar Precooled Mach 5 Cruise Engine

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Paniagua, G.; Kato, H.; Thatcher, M.

    tion chamber and subsequent expansion through the main noz- zle to produce thrust. In subsonic flight it becomes the gas generator driving a high bypass ratio ducted fan through a hub turbine, the exhaust mixing with the duct flow and discharging through the bypass nozzle to produce thrust. In both modes the turbo-compressor is driven by a helium turbine which has contra rotating stages to improve its efficiency at low rotational speed and reduce the number of stages required. Due to the large speed of sound mismatch between the air compressor and the helium turbine it is possible to eliminate the turbine stators by contra rotating the spools. The compressor is divided into low pressure and high pressure spools although by normal gas turbine standards they are both low pressure ratio machines.

  4. Structured Overlapping Grid Simulations of Contra-rotating Open Rotor Noise

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin C.

    2015-01-01

    Computational simulations using structured overlapping grids with the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for predicting tonal noise generated by a contra-rotating open rotor (CROR) propulsion system. A coupled Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) numerical approach is applied. Three-dimensional time-accurate hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) CFD simulations are performed in the inertial frame, including dynamic moving grids, using a higher-order accurate finite difference discretization on structured overlapping grids. A higher-order accurate free-stream preserving metric discretization with discrete enforcement of the Geometric Conservation Law (GCL) on moving curvilinear grids is used to create an accurate, efficient, and stable numerical scheme. The aeroacoustic analysis is based on a permeable surface Ffowcs Williams-Hawkings (FW-H) approach, evaluated in the frequency domain. A time-step sensitivity study was performed using only the forward row of blades to determine an adequate time-step. The numerical approach is validated against existing wind tunnel measurements.

  5. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  6. Unsteady Aerodynamic Interaction in a Closely Coupled Turbine Consistent with Contra-Rotation

    DTIC Science & Technology

    2014-08-01

    data on the blade required three instrumentation patches due to slip ring channel limitations. TRF blowdowns designated as experiments 280100...measurements from sensors on the rotating hardware due to slip ring limitations. The experimental data was compared to time-accurate simulations modeling...AFRL-RQ-WP-TR-2014-0195 UNSTEADY AERODYNAMIC INTERACTION IN A CLOSELY COUPLED TURBINE CONSISTENT WITH CONTRA-ROTATION Michael Kenneth

  7. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  8. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.

  9. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  10. Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation

    NASA Astrophysics Data System (ADS)

    Graczyk, Piotr; Zelent, Mateusz; Krawczyk, Maciej

    2018-05-01

    The possibility to generate short spin waves (SWs) is of great interest in the field of magnonics nowadays. We present an effective and technically affordable way of conversion of long SWs, which may be generated by conventional microwave antenna, to the short, sub-micrometer waves. It is achieved by grating-assisted resonant dynamic dipolar interaction between two ferromagnetic layers separated by some distance. We analyze criteria for the optimal conversion giving a semi-analytical approach for the coupling coefficient. We show by the numerical calculations the efficient energy transfer between layers which may be either of co-directional or contra-directional type. Such a system may operate either as a short spin wave generator or a frequency filter, moving forward possible application of magnonics.

  11. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    NASA Astrophysics Data System (ADS)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  12. Contra-rotating homopolar motor-generator for energy storage and return

    DOEpatents

    Kustom, Robert L.; Wehrle, Robert B.

    1978-01-01

    An apparatus for receiving electrical energy in amounts of the order of hundreds of megajoules, converting the electrical energy to mechanical energy for storage, and delivering the stored energy as electrical energy in times of the order of a second comprises a sequence of stacked electrically conducting cylindrical shells having a common axis. The conducting shells are free to rotate and are separated by stationary insulating cylindrical shells. Adjacent conducting shells are connected electrically by brushes at the edges and a radial magnetic field is caused to pass through the conductors. The apparatus permits the reversal in a plasma heating coil of electric currents of amplitudes up to 100,000 amperes in a time of the order of a second.

  13. Contra-Rotating Open Rotor Tone Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2014-01-01

    Reliable prediction of contra-rotating open rotor (CROR) noise is an essential element of any strategy for the development of low-noise open rotor propulsion systems that can meet both the community noise regulations and the cabin noise limits. Since CROR noise spectra typically exhibits a preponderance of tones, significant efforts have been directed towards predicting their tone spectra. To that end, there has been an ongoing effort at NASA to assess various in-house open rotor tone noise prediction tools using a benchmark CROR blade set for which significant aerodynamic and acoustic data had been acquired in wind tunnel tests. In the work presented here, the focus is on the near-field noise of the benchmark open rotor blade set at the cruise condition. Using an analytical CROR tone noise model with input from high-fidelity aerodynamic simulations, detailed tone noise spectral predictions have been generated and compared with the experimental data. Comparisons indicate that the theoretical predictions are in good agreement with the data, especially for the dominant CROR tones and their overall sound pressure level. The results also indicate that, whereas individual rotor tones are well predicted by the linear sources (i.e., thickness and loading), for the interaction tones it is essential that the quadrupole sources be included in the analysis.

  14. Progress in Open Rotor Research: A U.S. Perspective

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.

    2015-01-01

    In response to the 1970s oil crisis, NASA created the Advanced Turboprop Project (ATP) to mature technologies for high-speed propellers to enable large reductions in fuel burn relative to turbofan engines of that era. Both single rotation and contra- rotation concepts were designed and tested in ground based facilities as well as flight. Some novel concepts/configurations were proposed as part of the effort. The high-speed propeller concepts did provide fuel burn savings, albeit with some acoustics and structural challenges to overcome. When fuel prices fell, the business case for radical new engine configurations collapsed and the research emphasis returned to high bypass ducted configurations. With rising oil prices and increased environmental concerns there is renewed interest in high-speed propeller based engine architectures. Contemporary analysis tools for aerodynamics and aeroacoustics have enabled a new era of blade designs that have both high efficiency and lower noise characteristics. A recent series of tests in the U.S. have characterized the aerodynamic performance and noise from these modern contra-rotating propeller designs. Additionally the installation and noise shielding aspects for conventional airframes and blended wing bodies have been studied. Historical estimates of 'propfan' performance have relied on legacy propeller performance and acoustics data. Current system studies make use of the modern propeller data and higher fidelity installation effects data to estimate the performance of a contemporary aircraft system. Contemporary designs have demonstrated high net efficiency, approximately 86%, at 0.78 Mach, and low noise, greater than 15 EPNdB cumulative margin to Chapter 4 when analyzed on a NASA derived aircraft/mission. This paper presents the current state of high-speed propeller/open rotor research within the U.S. from an overall viewpoint of the various efforts ongoing. The remaining technical challenges to a production engine include propulsion airframe integration, acoustic sensitivity to aircraft weight and certification issues.

  15. Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration

    NASA Technical Reports Server (NTRS)

    Clark, John

    2010-01-01

    HPT blade unsteadiness in the presence of a downstream vane consistent with contra-rotation is characterized by strong interaction at the first harmonic of downstream vane passing. E An existing stage-and-one-half transonic turbine rig design was used as a baseline to investigate means of reducing such a blade-vane interaction. E Methods assessed included: Aerodynamic shaping of HPT blades 3D stacking of the downstream vane Steady pressure-side blowing E Of the methods assessed, a combination of vane bowing and steady pressure-side blowing produced the most favorable result. E Transonic turbine experiments are planned to assess predictive accuracy for the baseline turbine and any design improvements.

  16. Progress in Open Rotor Research: A U.S. Perspective

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.

    2015-01-01

    In response to the 1970s oil crisis, NASA created the Advanced Turboprop Project (ATP) to mature technologies for high-speed propellers to enable large reductions in fuel burn relative to turbofan engines of that era. Both single rotation and contra-rotation concepts were designed and tested in ground based facilities as well as flight. Some novel concepts configurations that were not well publicized at the time, were proposed as part of the effort. The high-speed propeller concepts did provide fuel burn savings, albeit with some acoustics and structural challenges to overcome. When fuel prices fell, the business case for radical new engine configurations collapsed and the research emphasis returned to high bypass ducted configurations. With rising oil prices and increased environmental concerns there is renewed interest in high-speed propeller based engine architectures. Contemporary analysis tools for aerodynamics and aeroacoustics have enabled a new era of blade designs that have both high efficiency and acceptable noise characteristics. A recent series of tests in the U.S. have characterized the aerodynamic performance and noise from these modern contra-rotating propeller designs. Additionally the installation and noise shielding aspects for conventional airframes and blended wing bodies have been studied. Historical estimates of propfan performance have relied on legacy propeller performance and acoustics data. Current system studies make use of the modern propeller data with higher fidelity installation effects data to estimate the performance of a contemporary aircraft system with favorable results. This paper presents the current state of high-speed propeller open rotor research within the U.S. from an overall viewpoint of the various efforts ongoing. The current projections for the technology are presented.

  17. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  18. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  19. Counterrotating Propulsive System.

    DTIC Science & Technology

    1981-12-01

    Propellers ," David Taylor Model Basin Report 1342, February 1960. 7. Miller, M.L., " Experimental Determination of Unsteady Forces on Counter- rotating...21. Miller, M.L., " Experimental Determination of Unsteady Forces on Contra- rotating Propellers for Application to Torpedoes," David W. Taylor Naval...pair of counterrotating propellers in a uniform in- flow is given by Reference [14] with the same results. On the

  20. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.

  1. V-I characteristics of a coreless ironless electric generator in a closed-circuit mode for low wind density power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper windings. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low wind density power generation application.

  2. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  3. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  4. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  5. Maximum power point tracking analysis of a coreless ironless electric generator for renewable energy application

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.

  6. On the efficiency of small air coil motors

    NASA Astrophysics Data System (ADS)

    Horowitz, P.

    1981-05-01

    The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.

  7. Internal and external generalizability of temporal dose-response relationships for xerostomia following IMRT for head and neck cancer.

    PubMed

    Thor, Maria; Owosho, Adepitan A; Clark, Haley D; Oh, Jung Hun; Riaz, Nadeem; Hovan, Allan; Tsai, Jillian; Thomas, Steven D; Yom, Sae Hee K; Wu, Jonn S; Huryn, Joseph M; Moiseenko, Vitali; Lee, Nancy Y; Estilo, Cherry L; Deasy, Joseph O

    2017-02-01

    To study internal and external generalizability of temporal dose-response relationships for xerostomia after intensity-modulated radiotherapy (IMRT) for head and neck cancer, and to investigate potential amendments of the QUANTEC guidelines. Objective xerostomia was assessed in 121 patients (n Cohort1 =55; n Cohort2 =66) treated to 70Gy@2Gy in 2006-2015. Univariate and multivariate analyses (UVA, MVA with 1000 bootstrap populations) were conducted in Cohort1, and generalizability of the best-performing MVA model was investigated in Cohort2 (performance: AUC, p-values, and Hosmer-Lemeshow p-values (p HL )). Ultimately and for clinical guidance, minimum mean dose thresholds to the contralateral and the ipsilateral parotid glands (Dmean contra , Dmean ipsi ) were estimated from the generated dose-response curves. The observed xerostomia rate was 38%/47% (3months) and 19%/23% (11-12months) in Cohort1/Cohort2. Risk of xerostomia at 3months increased for higher Dmean contra and Dmean ipsi (Cohort1: 0.17·Dmean contra +0.11·Dmean ipsi -8.13; AUC=0.90±0.05; p=0.0002±0.002; p HL =0.22±0.23; Cohort2: AUC=0.81; p<0.0001; p HL =0.27). The identified minimum Dmean contra thresholds were lower than in the QUANTEC guidelines (Cohort1/Cohort2: Dmean contra =12/19Gy; Dmean contra , Dmean ipsi =16, 25/20, 26Gy). Increased Dmean contra and Dmean ipsi explain short-term xerostomia following IMRT. Our results also suggest decreasing Dmean contra to below 20Gy, while keeping Dmean ipsi to around 25Gy. Long-term xerostomia was less frequent, and no dose-response relationship was established for this follow-up time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Map showing recent (1997-98 El Nino) and historical landslides, Crow Creek and vicinity, Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    Coe, Jeffrey A.; Godt, Jonathan; Tachker, Pierre

    2004-01-01

    This report documents the spatial distribution of 3,800 landslides caused by 1997-98 El Ni?o winter rainfall in the vicinity of Crow Creek in Alameda and Contra Costa Counties, California. The report also documents 558 historical (pre-1997-98) landslides. Landslides were mapped from 1:12,000-scale aerial photographs and classified as either debris flows or slides. Slides include rotational and translational slides, earth flows, and complex slope movements. Debris flows and slides from the 1997-98 winter modified 1 percent of the surface of the 148.6 km2 study area. Debris flows were scattered throughout the area, regardless of the type of underlying bedrock geology. Slides, however, were concentrated in a soft sandstone, conglomerate, and clayey group of rock units. Digital map files accompany the report.

  9. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  10. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  11. Next-Generation Strategic Communication: Building Influence through Online Social Networking

    DTIC Science & Technology

    2009-06-01

    Millon de  Voces  Marchan en Contra de las FARC,” http://www.eltiempo.com, (accessed April 21, 2009).  11 The Washington Post, “Young Voters Find Voice...Millon de Voces Marchan en Contra de las FARC,” http://www.eltiempo.com, (accessed April 21 2009). Facebook, “Barack Obama,” Facebook, https

  12. Evolution and Nucleosynthesis of Massive Stars

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Maeder, André; Choplin, Arthur; Takahashi, Koh; Ekström, Sylvia; Hirschi, Raphael; Chiappini, Cristina; Eggenberger, Patrick

    Massive stars are rapid nuclear reactors that play a key role in injecting new synthesized elements in the interstellar medium. Depending on the strengths of the stellar winds on the efficiency of mixing processes, the masses and the chemical compositions of their ejecta can be dramatically different. In a first part, we describe two types of rotating models differing by the physics involved and discussing various consequences. In a second part, we focus on the impacts of rotation in massive stars at very low metallicity. Various nucleosynthetic signatures pointing towards the need for some extra-mixing in the first generation of stars are presented. This extra-mixing has great chance to be driven by rotation for the following reasons: 1) when the metallicity decreases, the formation of fast rotators seem to be favored; 2) rotational mixing is more efficient at low metallicities; 3) primary nitrogen is produced only at low metallicities a fact that can be well explained by more efficient rotational mixing at low metallicities.

  13. Contra-Rotating Open Rotor Tone Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2014-01-01

    Reliable prediction of contra-rotating open rotor (CROR) noise is an essential element of any strategy for the development of low-noise open rotor propulsion systems that can meet both the community noise regulations and cabin noise limits. Since CROR noise spectra exhibit a preponderance of tones, significant efforts have been directed towards predicting their tone content. To that end, there has been an ongoing effort at NASA to assess various in-house open rotor tone noise prediction tools using a benchmark CROR blade set for which significant aerodynamic and acoustic data have been acquired in wind tunnel tests. In the work presented here, the focus is on the nearfield noise of the benchmark open rotor blade set at the cruise condition. Using an analytical CROR tone noise model with input from high-fidelity aerodynamic simulations, tone noise spectra have been predicted and compared with the experimental data. Comparisons indicate that the theoretical predictions are in good agreement with the data, especially for the dominant tones and for the overall sound pressure level of tones. The results also indicate that, whereas the individual rotor tones are well predicted by the combination of the thickness and loading sources, for the interaction tones it is essential that the quadrupole source is also included in the analysis.

  14. Mandibular deviations in TMD and non-TMD groups related to eye dominance and head posture.

    PubMed

    Pradham, N S; White, G E; Mehta, N; Forgione, A

    2001-01-01

    This study was designed to determine whether eye-dominance affects head posture (rotation) and in turn, whether head posture is associated with mandibular frenum midline deviation, in both TMJ and control subjects. Eye dominance was determined using three tests: Porta, Hole, Point tests. Natural head posture was evaluated using the Arthrodial protractor. Mandibular frenum deviation was recorded as left, right or no deviation. Fifty female subjects were included in the study, 25 TMJ patients attending the Gelb Craniomandibular Pain Center and 25 non-TMJ control subjects. The findings indicate that eye dominance and direction of head rotation are strongly associated in both TMJ and control subjects. Further, in TMJ subjects mandibular deviation occurred in greater frequency than in controls and tends to occur in the contra lateral direction of head rotation.

  15. Allocentric and contra-aligned spatial representations of a town environment in blind people.

    PubMed

    Chiesa, Silvia; Schmidt, Susanna; Tinti, Carla; Cornoldi, Cesare

    2017-10-01

    Evidence concerning the representation of space by blind individuals is still unclear, as sometimes blind people behave like sighted people do, while other times they present difficulties. A better understanding of blind people's difficulties, especially with reference to the strategies used to form the representation of the environment, may help to enhance knowledge of the consequences of the absence of vision. The present study examined the representation of the locations of landmarks of a real town by using pointing tasks that entailed either allocentric points of reference with mental rotations of different degrees, or contra-aligned representations. Results showed that, in general, people met difficulties when they had to point from a different perspective to aligned landmarks or from the original perspective to contra-aligned landmarks, but this difficulty was particularly evident for the blind. The examination of the strategies adopted to perform the tasks showed that only a small group of blind participants used a survey strategy and that this group had a better performance with respect to people who adopted route or verbal strategies. Implications for the comprehension of the consequences on spatial cognition of the absence of visual experience are discussed, focusing in particular on conceivable interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Men Chunhua; Romeijn, H. Edwin; Jia Xun

    2010-11-15

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less

  17. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).

    PubMed

    Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B

    2010-11-01

    To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  18. Near-Resonant Raman Amplification in the Rotational Quantum Wave Packets of Nitrogen Molecular Ions Generated by Strong Field Ionization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya

    2018-02-01

    The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.

  19. Imaging a non-singular rotating black hole at the center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  20. Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation

    PubMed Central

    Watanabe, Rikiya; Noji, Hiroyuki

    2014-01-01

    F1-ATPase (F1) is a rotary motor protein that couples ATP hydrolysis to mechanical rotation with high efficiency. In our recent study, we observed a highly temperature-sensitive (TS) step in the reaction catalyzed by a thermophilic F1 that was characterized by a rate constant remarkably sensitive to temperature and had a Q10 factor of 6–19. Since reactions with high Q10 values are considered to involve large conformational changes, we speculated that the TS reaction plays a key role in the rotation of F1. To clarify the role of the TS reaction, in this study, we conducted a stall and release experiment using magnetic tweezers, and assessed the torque generated during the TS reaction. The results indicate that the TS reaction generates the same amount of rotational torque as does ATP binding, but more than that generated during ATP hydrolysis. Thus, we confirmed that the TS reaction contributes significantly to the rotation of F1. PMID:24825532

  1. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  2. Contra-Thermodynamic, Photocatalytic E→Z Isomerization of Styrenyl Boron Species: Vectors to Facilitate Exploration of Two-Dimensional Chemical Space.

    PubMed

    Molloy, John J; Metternich, Jan B; Daniliuc, Constantin G; Watson, Allan J B; Gilmour, Ryan

    2018-03-12

    Designing strategies to access stereodefined olefinic organoboron species is an important synthetic challenge. Despite significant advances, there is a striking paucity of routes to Z-α-substituted styrenyl organoborons. Herein, this strategic imbalance is redressed by exploiting the polarity of the C(sp 2 )-B bond to activate the neighboring π system, thus enabling a mild, traceless photocatalytic isomerization of readily accessible E-α-substituted styrenyl BPins to generate the corresponding Z-isomers with high fidelity. Preliminary validation of this contra-thermodynamic E→Z isomerization is demonstrated in a series of stereoretentive transformations to generate Z-configured trisubstituted alkenes, as well as in a concise synthesis of the anti-tumor agent Combretastatin A4. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy.

    PubMed

    Cao, Ran; Zhou, Tao; Wang, Bin; Yin, Yingying; Yuan, Zuqing; Li, Congju; Wang, Zhong Lin

    2017-08-22

    Currently, a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) have been hybridized to effectively scavenge mechanical energy. However, one critical issue of the hybrid device is the limited output power due to the mismatched output impedance between the two generators. In this work, impedance matching between the TENG and EMG is achieved facilely through commercial transformers, and we put forward a highly integrated hybrid device. The rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator (RSHG) is designed by simulating the structure of a common EMG, which ensures a high efficiency in transferring ambient mechanical energy into electric power. The RSHG presents an excellent performance with a short-circuit current of 1 mA and open-circuit voltage of 48 V at a rotation speed of 250 rpm. Systematic measurements demonstrate that the hybrid nanogenerator can deliver the largest output power of 13 mW at a loading resistance of 8 kΩ. Moreover, it is demonstrated that a wind-driven RSHG can light dozens of light-emitting diodes and power an electric watch. The distinctive structure and high output performance promise the practical application of this rotating-sleeve structured hybrid nanogenerator for large-scale energy conversion.

  4. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  5. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO): the WOMED concept of lateral tension and its general implications in disease

    PubMed Central

    Moncayo, Roy; Moncayo, Helga

    2007-01-01

    Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO). The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1°) as well as tilted head-on-neck position (mean 5.7°). A further asymmetry feature was external rotation of the legs and feet (mean 27°). Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt to the contra lateral side and tendon snapping. We propose that eccentric muscle action over time can be the basis for a low grade inflammatory condition. The general implications of this model and its relations to Zn and Se will be discussed. PMID:17319961

  6. The punctum fixum-punctum mobile model: a neuromuscular principle for efficient movement generation?

    PubMed

    von Laßberg, Christoph; Rapp, Walter

    2015-01-01

    According to the "punctum fixum-punctum mobile model" that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements.

  7. The Punctum Fixum-Punctum Mobile Model: A Neuromuscular Principle for Efficient Movement Generation?

    PubMed Central

    von Laßberg, Christoph; Rapp, Walter

    2015-01-01

    According to the “punctum fixum–punctum mobile model” that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements. PMID:25822498

  8. Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD

    NASA Astrophysics Data System (ADS)

    Lee, N. J.; Choi, J. W.; Hwang, Y. H.; Kim, Y. T.; Lee, Y. H.

    2012-11-01

    Micro hydraulic turbines have a growing interest because of its small and simple structure, as well as a high possibility of using in micro and small hydropower applications. The differential pressure existing in city water pipelines can be used efficiently to generate electricity in a way similar to that of energy being generated through gravitational potential energy in dams. The pressure energy in the city pipelines is often wasted by using pressure reducing valves at the inlet of water cleaning centers. Instead of using the pressure reducing valves, a micro counter-rotating hydraulic turbine can be used to make use of the pressure energy. In the present paper, a counter-rotating tubular type micro-turbine is studied, with the front runner connected to the generator stator and the rear runner connected to the generator rotor. The performance of the turbine is investigated experimentally and numerically. A commercial ANSYS CFD code was used for numerical analysis.

  9. Electric Generator in the System for Damping Oscillations of Vehicles

    NASA Astrophysics Data System (ADS)

    Serebryakov, A.; Kamolins, E.; Levin, N.

    2017-04-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  10. 28 CFR 601.1 - Jurisdiction of the Independent Counsel: Iran/Contra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Iran/Contra. 601.1 Section 601.1 Judicial Administration OFFICES OF INDEPENDENT COUNSEL, DEPARTMENT OF JUSTICE JURISDICTION OF THE INDEPENDENT COUNSEL: IRAN/CONTRA § 601.1 Jurisdiction of the Independent Counsel: Iran/Contra. (a) The Independent Counsel. Iran/Contra has jurisdiction to investigate to the...

  11. 28 CFR 601.1 - Jurisdiction of the Independent Counsel: Iran/Contra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Iran/Contra. 601.1 Section 601.1 Judicial Administration OFFICES OF INDEPENDENT COUNSEL, DEPARTMENT OF JUSTICE JURISDICTION OF THE INDEPENDENT COUNSEL: IRAN/CONTRA § 601.1 Jurisdiction of the Independent Counsel: Iran/Contra. (a) The Independent Counsel. Iran/Contra has jurisdiction to investigate to the...

  12. 28 CFR 601.1 - Jurisdiction of the Independent Counsel: Iran/Contra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Iran/Contra. 601.1 Section 601.1 Judicial Administration OFFICES OF INDEPENDENT COUNSEL, DEPARTMENT OF JUSTICE JURISDICTION OF THE INDEPENDENT COUNSEL: IRAN/CONTRA § 601.1 Jurisdiction of the Independent Counsel: Iran/Contra. (a) The Independent Counsel. Iran/Contra has jurisdiction to investigate to the...

  13. 28 CFR 601.1 - Jurisdiction of the Independent Counsel: Iran/Contra.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Iran/Contra. 601.1 Section 601.1 Judicial Administration OFFICES OF INDEPENDENT COUNSEL, DEPARTMENT OF JUSTICE JURISDICTION OF THE INDEPENDENT COUNSEL: IRAN/CONTRA § 601.1 Jurisdiction of the Independent Counsel: Iran/Contra. (a) The Independent Counsel. Iran/Contra has jurisdiction to investigate to the...

  14. 28 CFR 601.1 - Jurisdiction of the Independent Counsel: Iran/Contra.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Iran/Contra. 601.1 Section 601.1 Judicial Administration OFFICES OF INDEPENDENT COUNSEL, DEPARTMENT OF JUSTICE JURISDICTION OF THE INDEPENDENT COUNSEL: IRAN/CONTRA § 601.1 Jurisdiction of the Independent Counsel: Iran/Contra. (a) The Independent Counsel. Iran/Contra has jurisdiction to investigate to the...

  15. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.

  16. Treatment of Partial Rotator Cuff Tear with Ultrasound-guided Platelet-rich Plasma.

    PubMed

    Sengodan, Vetrivel Chezian; Kurian, Sajith; Ramasamy, Raghupathy

    2017-01-01

    The treatment of symptomatic partial rotator cuff tear has presented substantial challenge to orthopaedic surgeons as it can vary from conservative to surgical repair. Researches have established the influence of platelet rich plasma in healing damaged tissue. Currently very few data are available regarding the evidence of clinical and radiological outcome of partial rotator cuff tear treated with ultrasound guided platelet rich plasma injection in English literature. 20 patients with symptomatic partial rotator cuff tears were treated with ultrasound guided platelet rich plasma injection. Before and after the injection of platelet rich plasma scoring was done with visual analogue score, Constant shoulder score, and UCLA shoulder score at 8 weeks and third month. A review ultrasound was performed 8 weeks after platelet rich plasma injection to assess the rotator cuff status. Our study showed statistically significant improvements in 17 patients in VAS pain score, constant shoulder score and UCLA shoulder score. No significant changes in ROM were noted when matched to the contra-lateral side ( P < 0.001) at the 3 month follow-up. The study also showed good healing on radiological evaluation with ultrasonogram 8 weeks after platelet rich plasma injection. Ultrasound guided platelet rich plasma injection for partial rotator cuff tears is an effective procedure that leads to significant decrease in pain, improvement in shoulder functions, much cost-effective and less problematic compared to a surgical treatment.

  17. Efficiency of the DOMUS 750 vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  18. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix

    NASA Astrophysics Data System (ADS)

    Palanisamy, Duraivelan; den Otter, Wouter K.

    2018-05-01

    We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

  19. Design of a motor-generator for an energy storage flywheel

    NASA Astrophysics Data System (ADS)

    Niemeyer, W. Leland; Studer, Philip A.

    1988-10-01

    The paper examines motor/generator designs in which the rotor is integrated into the flywheel. Rotational loss considerations tend to dominate the design tradeoffs to maintain high system storage efficiency with a directly coupled unit. Some of the design alternatives are described as a guide to the experimental and analytical program needed to finalize a design.

  20. Kinoform design with an optimal-rotation-angle method.

    PubMed

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  1. Rotation of artificial rotor axles in rotary molecular motors

    PubMed Central

    Baba, Mihori; Iwamoto, Kousuke; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1. These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1. The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1. This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1. PMID:27647891

  2. New fundamental parameters for attitude representation

    NASA Astrophysics Data System (ADS)

    Patera, Russell P.

    2017-08-01

    A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.

  3. Giant Faraday Rotation through Ultrasmall Fe0 n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films.

    PubMed

    Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar

    2017-04-01

    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of x FeO·(100 - x )SiO 2 , unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.

  4. Sanctioned State: The Effects of International Sanctions on Iran’s Internal Politics

    DTIC Science & Technology

    2012-06-01

    Iranian governmental policies.14 Additionally, the loss of tax revenue due to continued international disinvestment from Iran and announced...americanexperience/features/primary-resources/reagan-iran-contra/. Unattributed, “IRAN-CONTRA REPORT; Arms, Hostages and Contras: How a Secret ...hostages-contras- secret -foreign-policy- unraveled.html. 44See Iraq Oil-for-Food program, African conflict diamond sales, and the Iran-Contra affair

  5. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  6. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  7. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    PubMed

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  8. Effects of a traditional Chinese herbal medicine, Kanzo-bushi-to, on the resistance of thermally injured mice infected with herpes simplex virus type 1.

    PubMed

    Matsuo, R; Ball, M A; Kobayashi, M; Herndon, D N; Pollard, R B; Suzuki, F

    1994-10-01

    The protective effect of Kanzo-bushi-to (TJS-038) was investigated on the opportunistic infection of herpes simplex virus type 1 (HSV) in thermally injured mice (TI-Mice). We have previously reported that TI-Mice were approximately 100 times more susceptible to HSV infection than normal mice (N-Mice) and that CD8+ suppressor T (ST)-cells induced by burn injury were involved in causing this increased susceptibility of TI-Mice. Increased susceptibility of TI-Mice to the infection was reversed to the levels observed in N-Mice when TI-Mice were treated intraperitoneally with TJS-038 at a dose of 5 mg/kg 1 and 4 days after thermal injury. The activity of ST-cells was greatly decreased in TI-Mice treated with TJS-038. The generation of Vicia villosa lectin-adherent CD4+ CD28+ TCR-alpha/beta+ contrasuppressor T (Contra-ST)-cells associated with the appearance of ST-cells was expanded and occurred earlier in spleens of TJS-038-treated TI-Mice as compared with that of untreated TI-Mice. The improved resistance of TJS-038-treated TI-Mice to the infection was transferred to untreated TI-Mice by adoptive transfer of Contra-ST-cells prepared from TJS-038-treated TI-Mice. These results suggest that TJS-038 may restore the resistance of TI-Mice to the HSV infection through the expanded generation of Contra-ST-cells.

  9. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.

    PubMed

    Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-08-19

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  10. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests.

    PubMed

    Li, Uei-Ming; Lee, Bor-Shiunn; Shih, Chin-Tsai; Lan, Wan-Hong; Lin, Chun-Pin

    2002-06-01

    Endodontic instruments upon rotation are subjected to both tensile and compressive stress in curved canals. This stress is localized at the point of curvature. The purpose of this study was to evaluate the cyclic fatigue of 0.04 ProFile nickel titanium rotary instruments operating at different rotational speeds and varied distances of pecking motion in metal blocks that simulated curved canals. A total of 150 ProFile instruments were made to rotate freely in sloped metal blocks at speeds of 200, 300, or 400 rpm by a contra-angle handpiece mounted on an Instron machine. The electric motor and Instron machine were activated until the instruments were broken in two different modes, static and dynamic pecking-motion. The fractured surfaces of separated instruments were examined under a scanning electron microscope. All data obtained were analyzed by a stepwise multiple regression method using a 95% confidence interval. The results demonstrated that the time to failure significantly decreased as the angles of curvature or the rotational speeds increased. However, as pecking distances increased, the time to failure increased. This is because a longer pecking distance gives the instrument a longer time interval before it once again passes through the highest stress area. Microscopic evaluation indicated that ductile fracture was the major cyclic failure mode. To prevent breakage of a NiTi rotary instrument, appropriate rotational speeds and continuous pecking motion in the root canals are recommended.

  11. Treatment of Partial Rotator Cuff Tear with Ultrasound-guided Platelet-rich Plasma

    PubMed Central

    Sengodan, Vetrivel Chezian; Kurian, Sajith; Ramasamy, Raghupathy

    2017-01-01

    Background: The treatment of symptomatic partial rotator cuff tear has presented substantial challenge to orthopaedic surgeons as it can vary from conservative to surgical repair. Researches have established the influence of platelet rich plasma in healing damaged tissue. Currently very few data are available regarding the evidence of clinical and radiological outcome of partial rotator cuff tear treated with ultrasound guided platelet rich plasma injection in English literature. Materials and Methods: 20 patients with symptomatic partial rotator cuff tears were treated with ultrasound guided platelet rich plasma injection. Before and after the injection of platelet rich plasma scoring was done with visual analogue score, Constant shoulder score, and UCLA shoulder score at 8 weeks and third month. A review ultrasound was performed 8 weeks after platelet rich plasma injection to assess the rotator cuff status. Results: Our study showed statistically significant improvements in 17 patients in VAS pain score, constant shoulder score and UCLA shoulder score. No significant changes in ROM were noted when matched to the contra-lateral side (P < 0.001) at the 3 month follow-up. The study also showed good healing on radiological evaluation with ultrasonogram 8 weeks after platelet rich plasma injection. Conclusion: Ultrasound guided platelet rich plasma injection for partial rotator cuff tears is an effective procedure that leads to significant decrease in pain, improvement in shoulder functions, much cost-effective and less problematic compared to a surgical treatment. PMID:28900553

  12. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration

    NASA Astrophysics Data System (ADS)

    Minkovski, N.; Petrov, G. I.; Saltiel, S. M.; Albert, O.; Etchepare, J.

    2004-09-01

    Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.

  13. A rotating superconducting solenoid for 100 kWh energy storage. [in space

    NASA Technical Reports Server (NTRS)

    Waynert, J.; Eyssa, Y. M.; Mcintosh, G. E.; Feng, Z.

    1985-01-01

    Two concentric superconducting solenoids, one rotating, the other stationary are analyzed for energy storage in space. Energy is transferred from the rotating mass through a shaft coupled to a motor-generator. The inner windings interact with the magnetic field of the outer solenoid to cancel the centrifugal and self-field forces of the flywheel rim. Current is induced in the inner solenoid thus requiring no separate power supply, while the current in the outer solenoid must vary with the angular velocity of the flywheel. The effect of the gap and scaling laws are developed. The efficiency in energy per unit mass is marginally attractive.

  14. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  15. In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells.

    PubMed

    Lang, Qi; Ren, Yukun; Hobson, Divia; Tao, Ye; Hou, Likai; Jia, Yankai; Hu, Qingming; Liu, Jiangwei; Zhao, Xin; Jiang, Hongyuan

    2016-11-01

    Herein, we first describe a perfusion chip integrated with an AC electrothermal (ACET) micromixer to supply a uniform drug concentration to tumor cells. The in-plane fluid microvortices for mixing were generated by six pairs of reconstructed novel ACET asymmetric electrodes. To enhance the mixing efficiency, the novel ACET electrodes with rotating angles of 0°, 30°, and 60° were investigated. The asymmetric electrodes with a rotating angle of 60° exhibited the highest mixing efficiency by both simulated and experimental results. The length of the mixing area is 7 mm, and the mixing efficiency is 89.12% (approximate complete mixing) at a voltage of 3 V and a frequency of 500 kHz. The applicability of our micromixer with electrodes rotating at 60° was demonstrated by the drug (tamoxifen) test of human breast cancer cells (MCF-7) for five days, which implies that our ACET in-plane microvortices micromixer has great potential for the application of drug induced rapid death of tumor cells and mixing of biomaterials in organs-on-a-chip systems.

  16. In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells

    PubMed Central

    Lang, Qi; Ren, Yukun; Tao, Ye; Hou, Likai; Jia, Yankai; Hu, Qingming; Liu, Jiangwei; Zhao, Xin; Jiang, Hongyuan

    2016-01-01

    Herein, we first describe a perfusion chip integrated with an AC electrothermal (ACET) micromixer to supply a uniform drug concentration to tumor cells. The in-plane fluid microvortices for mixing were generated by six pairs of reconstructed novel ACET asymmetric electrodes. To enhance the mixing efficiency, the novel ACET electrodes with rotating angles of 0°, 30°, and 60° were investigated. The asymmetric electrodes with a rotating angle of 60° exhibited the highest mixing efficiency by both simulated and experimental results. The length of the mixing area is 7 mm, and the mixing efficiency is 89.12% (approximate complete mixing) at a voltage of 3 V and a frequency of 500 kHz. The applicability of our micromixer with electrodes rotating at 60° was demonstrated by the drug (tamoxifen) test of human breast cancer cells (MCF-7) for five days, which implies that our ACET in-plane microvortices micromixer has great potential for the application of drug induced rapid death of tumor cells and mixing of biomaterials in organs-on-a-chip systems. PMID:27917250

  17. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    NASA Astrophysics Data System (ADS)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  18. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  19. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  20. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  1. A novel instrument for generating angular increments of 1 nanoradian

    NASA Astrophysics Data System (ADS)

    Alcock, Simon G.; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ˜0.3 nrad rms over ˜30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (˜57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  2. A novel instrument for generating angular increments of 1 nanoradian.

    PubMed

    Alcock, Simon G; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ∼0.3 nrad rms over ∼30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (∼57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  3. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  4. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    PubMed Central

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  5. Energy storage apparatus

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E. (Inventor)

    1978-01-01

    A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.

  6. Research on single-chip microcomputer controlled rotating magnetic field mineralization model

    NASA Astrophysics Data System (ADS)

    Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na

    2017-08-01

    As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.

  7. Torque Generation of Enterococcus hirae V-ATPase*

    PubMed Central

    Ueno, Hiroshi; Minagawa, Yoshihiro; Hara, Mayu; Rahman, Suhaila; Yamato, Ichiro; Muneyuki, Eiro; Noji, Hiroyuki; Murata, Takeshi; Iino, Ryota

    2014-01-01

    V-ATPase (VoV1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in VoV1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae VoV1 (EhVoV1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhVoV1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhVoV1 only showed the “clear” state without apparent backward steps, whereas EhV1 showed two states, “clear” and “unclear.” Furthermore, EhVoV1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhVoV1 showed faster rotation than EhV1, and the torque of EhVoV1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhVoV1. These results indicate that rotor-stator interactions of the Vo moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhVoV1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhVoV1. PMID:25258315

  8. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  9. Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI.

    PubMed

    Sahoo, Prativa; Gupta, Rakesh K; Gupta, Pradeep K; Awasthi, Ashish; Pandey, Chandra M; Gupta, Mudit; Patir, Rana; Vaishya, Sandeep; Ahlawat, Sunita; Saha, Indrajit

    2017-12-01

    Aim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI). Sixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with >10years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC). The diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity=1.00, specificity=0.96, p<0.001) compared to the non-expert user (sensitivity=0.65, specificity=0.78, p<0.001). On the other hand, both the expert and non-expert user showed similar diagnostic accuracy for automatic rCBV_WM (sensitivity=0.89, specificity=0.87, p=0.001) and rCBV_GM (sensitivity=0.81, specificity=0.78, p=0.001) measures. Further, it was also observed that, contralateral based method by expert user showed highest agreement with histological grading of tumor (kappa=0.96, agreement 98.33%, p<0.001), however; automatic normalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa=0.76,p<0.001) with histopathological grading. It was inferred from this study that, in the absence of expert user, automated normalization of CBV using the proposed method could provide better diagnostic accuracy compared to the manual contralateral based approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. An Ecosystem-Based Approach to Valley Oak Mitigation

    Treesearch

    Marcus S. Rawlings; Daniel A. Airola

    1997-01-01

    The Contra Costa Water District’s (CCWD’s) Los Vaqueros Reservoir Project will inundate 180 acres of valley oak habitats. Instead of using replacement ratios to identify mitigation needs, we designed an approach that would efficiently replace lost ecological values. We developed a habitat quality index model to assess the value of lost wildlife habitat and...

  11. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  12. Experimental investigation of a supersonic micro turbine running with hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Weiß Andreas, P.; Josef, Hauer; Tobias, Popp; Markus, Preißinger

    2017-09-01

    Experimentally determined efficiency characteristics of a supersonic micro turbine are discussed in the present paper. The micro turbine is a representative of a "micro-turbine-generator-construction-kit" for ORC small scale waste heat recovery. The isentropic total-to-static efficiency of the 12 kW turbine reaches an excellent design point performance of 73.4 %. Furthermore, its off-design operating behavior is very advantageous for small waste heat recovery plants: the turbine efficiency keeps a high level over a wide range of pressure ratio and rotational speed.

  13. Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng

    2017-12-01

    In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=1 :2 . We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=1 :4 and 2 ∶3 . We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.

  14. Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios.

    PubMed

    Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng

    2017-12-08

    In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω_{2}/ω_{1}=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω_{2}/ω_{1}=1:4 and 2∶3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.

  15. Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the Laboratory

    PubMed Central

    2017-01-01

    We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513

  16. Automatic bearing fault diagnosis of permanent magnet synchronous generators in wind turbines subjected to noise interference

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo

    2018-02-01

    An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.

  17. The Analysis of a Vortex Type Magnetohydrodynamic Induction Generator

    NASA Technical Reports Server (NTRS)

    Lengyel, L. L.

    1962-01-01

    Consideration it is given to the performance to the characteristics of an AC magnetohydrodynamic power generator, A rotating magnetic field is imposed on the vortex flow of an electrically conducting fluid, which is injected tangentially into an annulus formed by two nonconducting concentric cylinders and two nonconducting end plates. A perturbation technique is used to determine the two dimensional velocity and three dimensional electromagnetic field and current distributions. Finally, the generated power, the ohmic losses, the effective power and the electrical efficiency of the converter system are calculated.

  18. Do international rotations make surgical residents more resource-efficient? A preliminary study.

    PubMed

    Oliphant, Jason L; Ruhlandt, Ronell R; Sherman, Stanley R; Schlatter, Marc G; Green, Joel A

    2012-01-01

    Interest in international surgery among general surgery residents in the United States has been shown in several publications. Several general surgery residency programs have reported their experiences with international surgery rotations (ISRs). Learning to use limited resources more efficiently is often cited as a benefit of such rotations. We hypothesized that general surgery residents become more resource efficient after they have completed an ISR. Laboratory, radiologic, and diagnostic studies ordered on 2900 patients by 21 general surgery residents over 65 months at a single institution were analyzed retrospectively. The patient populations they wrote orders on were assessed for similarity in age, gender, and diagnoses. The outcomes in those patient populations were assessed by duration of stay and in-hospital mortality. Six (29%) of these residents (ISR residents) completed a 1-month ISR during their third year of residency. Their orders were compared with their classmates who did not participate in an ISR (NISR residents). The results were compared between the 2 cohorts from both before and after their international rotations. An analysis focused on comparing the changes from pre-ISR to post-ISR. A survey was also sent after objective data were collected to all residents and alumni involved in the study to assess their subjective perception of changes in their resource efficiency and to characterize their ISRs. Patient populations were similar in terms of demographics and diagnoses. ISR residents generated an average of $122 less in orders per patient per month after their ISR compared with before. NISR residents generated an average of $338 more in orders per patient per month after the ISRs compared with before (p = 0.04). Pre-ISR order charges were statistically similar. Similar results were observed when radiologic/diagnostic study orders were analyzed independently. Differences in outcomes were statistically insignificant. The survey revealed that most of the ISR residents perceived that their attitude toward ordering tests and laboratories was influenced greatly by their ISR, and all the ISR residents perceived that they became more resource efficient than their peers after their ISRs. These preliminary findings seem to indicate increased resource efficiency among general surgery residents who completed an ISR. However, the sample size of residents was small, and we could not establish conclusively a causal relationship to their ISRs. A more extensive study is needed if reliable conclusions are to be drawn regarding the effect of ISRs on the resource efficiency of residents. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Far infrared diagnostics of electron concentration in combustion MHD plasmas using interferometry and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Kuzmenko, P. J.

    1985-12-01

    The plasma electrical conductivity is a key parameter in determining the efficiency of an magnetohydrodynamic (MHD) generator. Electromagnetic waves offer an accurate, non-intrusive probe. The electron concentration and mobility may be deduced from the refractive index and absorption coefficient measured with an interferometer. The first experiment used an HCOOH laser at 393.6 microns feeding a Michelson interferometer mounted around a combustor duct with open ports. Simultaneous measurements of positive ion density and plasma temperature made with a Langmuir probe and line reversal apparatus verified the operation of the interferometer. With a magnetic field present, measurement of the polarization rotation and induced ellipticity in a wave traveling along the field provides information on the plasma conductivity. Compared to interferometry, diagnostic apparatus based on Faraday rotation offers simpler optics and requires far less stringent mechanical stability at a cost of lower sensitivity. An advanced detection scheme, using a polarizing beam splitter improved the sensitivity to be comparable to that of interferometry. Interferometry is the preferred technique for small scale, high accuracy measurements, with Faraday rotation reserved for large systems or measurements within a working generator.

  20. Impact of contra-lateral breast reshaping on mammographic surveillance in women undergoing breast reconstruction following mastectomy for breast cancer.

    PubMed

    Nava, Maurizio B; Rocco, Nicola; Catanuto, Giuseppe; Falco, Giuseppe; Capalbo, Emanuela; Marano, Luigi; Bordoni, Daniele; Spano, Andrea; Scaperrotta, Gianfranco

    2015-08-01

    The ultimate goal of breast reconstruction is to achieve symmetry with the contra-lateral breast. Contra-lateral procedures with wide parenchymal rearrangements are suspected to impair mammographic surveillance. This study aims to evaluate the impact on mammographic detection of mastopexies and breast reductions for contralateral adjustment in breast reconstruction. We retrospectively evaluated 105 women affected by uni-lateral breast cancer who underwent mastectomy and immediate two-stage reconstruction between 2002 and 2007. We considered three groups according to the contra-lateral reshaping technique: mastopexy or breast reduction with inferior dermoglandular flap (group 1); mastopexy or breast reduction without inferior dermoglandular flap (group 2); no contra-lateral reshaping (group 3). We assessed qualitative mammographic variations and breast density in the three groups. Statistically significant differences have been found when comparing reshaped groups with non reshaped groups regarding parenchymal distortions, skin thickening and stromal edema, but these differences did not affect cancer surveillance. The surveillance mammography diagnostic accuracy in contra-lateral cancer detection was not significantly different between the three groups (p = 0.56), such as the need for MRI for equivocal findings at mammographic contra-lateral breast (p = 0.77) and the need for core-biopsies to confirm mammographic suspect of contra-lateral breast cancer (p = 0.90). This study confirms previous reports regarding the safety of mastopexies and breast reductions when performed in the setting of contra-lateral breast reshaping after breast reconstruction. Mammographic accuracy, sensitivity and specificity are not affected by the glandular re-arrangement. These results provide a further validation of the safety of current reconstructive paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Rotational-path decomposition based recursive planning for spacecraft attitude reorientation

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying

    2018-02-01

    The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.

  2. Orientation of doubly rotated quartz plates.

    PubMed

    Sherman, J R

    1989-01-01

    A derivation from classical spherical trigonometry of equations to compute the orientation of doubly-rotated quartz blanks from Bragg X-ray data is discussed. These are usually derived by compact and efficient vector methods, which are reviewed briefly. They are solved by generating a quadratic equation with numerical coefficients. Two methods exist for performing the computation from measurements against two planes: a direct solution by a quadratic equation and a process of convergent iteration. Both have a spurious solution. Measurement against three lattice planes yields a set of three linear equations the solution of which is an unambiguous result.

  3. Resistivity structure of Sumatran Fault (Aceh segment) derived from 1-D magnetotelluric modeling

    NASA Astrophysics Data System (ADS)

    Nurhasan, Sutarno, D.; Bachtiar, H.; Sugiyanto, D.; Ogawa, Y.; Kimata, F.; Fitriani, D.

    2012-06-01

    Sumatran Fault Zone is the most active fault in Indonesia as a result of strike-slip component of Indo-Australian oblique convergence. With the length of 1900 km, Sumatran fault was divided into 20 segments starting from the southernmost Sumatra Island having small slip rate and increasing to the north end of Sumatra Island. There are several geophysical methods to analyze fault structure depending on physical parameter used in these methods, such as seismology, geodesy and electromagnetic. Magnetotelluric method which is one of geophysical methods has been widely used in mapping and sounding resistivity distribution because it does not only has the ability for detecting contras resistivity but also has a penetration range up to hundreds of kilometers. Magnetotelluric survey was carried out in Aceh region with the 12 total sites crossing Sumatran Fault on Aceh and Seulimeum segments. Two components of electric and magnetic fields were recorded during 10 hours in average with the frequency range from 320 Hz to 0,01 Hz. Analysis of the pseudosection of phase and apparent resistivity exhibit vertical low phase flanked on the west and east by high phase describing the existence of resistivity contras in this region. Having rotated the data to N45°E direction, interpretation of the result has been performed using three different methods of 1D MT modeling i.e. Bostick inversion, 1D MT inversion of TM data, and 1D MT inversion of the impedance determinant. By comparison, we concluded that the use of TM data only and the impedance determinant in 1D inversion yield the more reliable resistivity structure of the fault compare to other methods. Based on this result, it has been shown clearly that Sumatra Fault is characterized by vertical contras resistivity indicating the existence of Aceh and Seulimeum faults which has a good agreement with the geological data.

  4. Turbulent convection in liquid metal with and without rotation.

    PubMed

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr < 1. Most analog models of planetary dynamos, however, use moderate Pr fluids, and the systematic influence of reducing Pr is not well understood. We perform rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr < 1 and Pr > 1 fluids, respectively.

  5. Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo

    2013-07-01

    In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.

  6. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  7. Centrifugation-Assisted Fog-Collecting Abilities of Metal-Foam Structures with Different Surface Wettabilities.

    PubMed

    Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong

    2016-04-20

    The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.

  8. Design and numerical investigations of a counter-rotating axial compressor for a geothermal power plant application

    NASA Astrophysics Data System (ADS)

    Qualman, Thomas, II

    Geothermal provides a steady source of energy unlike other renewable sources, however, there are non-condensable gases (NCG's) that need to be removed before the steam enters the turbine/generator or the efficiency suffers. By utilizing a multistage counter-rotating axial compressor with integrated composite wound impellers the process of removing NCG's could be significantly improved. The novel composite impeller design provides a high level of corrosion resistance, a good strength to weight ratio, reduced size, and reduced manufacturing and maintenance costs. This thesis focuses on the design of the first 3 stages of a multistage counter-rotating axial compressor with integrated composite wound impellers for NCG removal. Because of the novel technique, an unusual set of constraints required a simplified 1 and 2D design methodology to be developed and investigated through CFD. The results indicate that by utilizing constant thickness blades with constant shroud radius (to ease manufacturing difficulties) a total pressure ratio of 1.37 with a total polytropic efficiency of 89.81% could be achieved.

  9. Novel Carbon Films for Next Generation Rotating Equipment Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael McNallan; Ali Erdemir; Yury Gogotsi

    2006-02-20

    This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularlymore » attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.« less

  10. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  11. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  12. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  13. Numeric and fluid dynamic representation of tornadic double vortex thunderstorms

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Marquart, E. J.; Frost, W.; Boaz, W.

    1980-01-01

    Current understanding of a double vortex thunderstorm involves a pair of contra-rotating vortices that exists in the dynamic updraft. The pair is believed to be a result of a blocking effect which occurs when a cylindrical thermal updraft of a thunderstorm protrudes into the upper level air and there is a large amount of vertical wind shear between the low level and upper level air layers. A numerical tornado prediction scheme based on the double vortex thunderstorm was developed. The Energy-Shear Index (ESI) is part of the scheme and is calculated from radiosonde measurements. The ESI incorporates parameters representative of thermal instability and blocking effect, and indicates appropriate environments for which the development of double vortex thunderstorms is likely.

  14. Application of nondestructive testing in cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments.

    PubMed

    Li, Uei-Ming; Shin, Chow-Shing; Lan, Wan-Hong; Lin, Chun-Pin

    2006-06-01

    The purpose of this study was to investigate the application of nondestructive testing in cyclic fatigue evaluation of endodontic ProFile nickel-titanium (NiTi) rotary instruments. As-received ProFile instruments were made to rotate freely in sloped metal blocks by a contra-angle handpiece mounted on a testing machine. Rotation was interrupted periodically, and the instrument removed and engaged onto a device to monitor its stiffness by using two strain gauges in four different directions. This monitoring method has the potential to be developed into a convenient, nondestructive turnkey system that allows in situ assessment of the integrity of NiTi instruments in the clinic. Upon fracture, which was indicated by a change in instrument stiffness, the fractured surface would be examined under a scanning electron microscope. Microscopic evaluation indicated a small area of fatigue fracture with a large area of final ductile fracture, whereby the latter was the major cyclic failure mode. Based on the results of this study, we concluded that a potential nondestructive integrity assessment method for NiTi rotary instruments was developed.

  15. Variable speed control in wells turbine-based oscillating water column devices: optimum rotational speed

    NASA Astrophysics Data System (ADS)

    Lekube, J.; Garrido, A. J.; Garrido, I.

    2018-03-01

    The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.

  16. Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase

    PubMed Central

    Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus

    2004-01-01

    F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464

  17. Excited state dynamics & optical control of molecular motors

    NASA Astrophysics Data System (ADS)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  18. Polarization control of isolated high-harmonic pulses

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang

    2018-06-01

    High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.

  19. Use of Conventional U.S. Naval Forces to Conduct FID in Colombia

    DTIC Science & Technology

    2009-06-01

    Estrategia Naval Contra el Narcoterrorismo, (Colombia, June 2007). http://www.armada.mil.co (accessed September 13, 2008), 3. 15...counter-drug and counter- terrorism operations. The Estrategia Naval Contra el Narcoterrorismo fills in the gaps left by these forces...Colombia’s Estrategia Naval Contra el Narcoterrorismo (Navy Strategy Against Narcoterrorism) of June 2007 outlines the navy’s plan to deny narco- terrorists

  20. Deterministic multi-step rotation of magnetic single-domain state in Nickel nanodisks using multiferroic magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Sohn, Hyunmin; Liang, Cheng-yen; Nowakowski, Mark E.; Hwang, Yongha; Han, Seungoh; Bokor, Jeffrey; Carman, Gregory P.; Candler, Robert N.

    2017-10-01

    We demonstrate deterministic multi-step rotation of a magnetic single-domain (SD) state in Nickel nanodisks using the multiferroic magnetoelastic effect. Ferromagnetic Nickel nanodisks are fabricated on a piezoelectric Lead Zirconate Titanate (PZT) substrate, surrounded by patterned electrodes. With the application of a voltage between opposing electrode pairs, we generate anisotropic in-plane strains that reshape the magnetic energy landscape of the Nickel disks, reorienting magnetization toward a new easy axis. By applying a series of voltages sequentially to adjacent electrode pairs, circulating in-plane anisotropic strains are applied to the Nickel disks, deterministically rotating a SD state in the Nickel disks by increments of 45°. The rotation of the SD state is numerically predicted by a fully-coupled micromagnetic/elastodynamic finite element analysis (FEA) model, and the predictions are experimentally verified with magnetic force microscopy (MFM). This experimental result will provide a new pathway to develop energy efficient magnetic manipulation techniques at the nanoscale.

  1. Towards control of dexterous hand manipulations using a silicon Pattern Generator.

    PubMed

    Russell, Alexander; Tenore, Francesco; Singhal, Girish; Thakor, Nitish; Etienne-Cummings, Ralph

    2008-01-01

    This work demonstrates how an in silico Pattern Generator (PG) can be used as a low power control system for rhythmic hand movements in an upper-limb prosthesis. Neural spike patterns, which encode rotation of a cylindrical object, were implemented in a custom Very Large Scale Integration chip. PG control was tested by using the decoded control signals to actuate the fingers of a virtual prosthetic arm. This system provides a framework for prototyping and controlling dexterous hand manipulation tasks in a compact and efficient solution.

  2. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    NASA Technical Reports Server (NTRS)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  3. Radiative transfer dynamo effect

    DOE PAGES

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-17

    Here, magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  4. Radiative transfer dynamo effect.

    PubMed

    Munirov, Vadim R; Fisch, Nathaniel J

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  5. Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway

    PubMed Central

    Usubuchi, Hajime; Vetter, Douglas E.; Elgoyhen, A. Bélen; Thomas, Steven A.; Liberman, M. Charles

    2012-01-01

    Suppression of ipsilateral distortion product otoacoustic emissions (DPOAEs) by contralateral noise is used in humans and animals to assay the strength of sound-evoked negative feedback from the medial olivocochlear (MOC) efferent pathway. However, depending on species and anesthesia, contributions of other feedback systems to the middle or inner ear can cloud the interpretation. Here, contributions of MOC and middle-ear muscle reflexes, as well as autonomic feedback, to contra-noise suppression in anesthetized mice are dissected by selectively eliminating each pathway by surgical transection, pharmacological blockade, or targeted gene deletion. When ipsilateral DPOAEs were evoked by low-level primaries, contra-noise suppression was typically ∼1 dB with contra-noise levels around 95 dB SPL, and it always disappeared upon contralateral cochlear destruction. Lack of middle-ear muscle contribution was suggested by persistence of contra-noise suppression after paralysis with curare, tensor tympani cauterization, or section of the facial nerve. Contribution of cochlear sympathetics was ruled out by studying mutant mice lacking adrenergic signaling (dopamine β-hydroxylase knockouts). Surprisingly, contra-noise effects on low-level DPOAEs were also not diminished by eliminating the MOC system pharmacologically (strychnine), surgically, or by deletion of relevant cholinergic receptors (α9/α10). In contrast, when ipsilateral DPOAEs were evoked by high-level primaries, the contra-noise suppression, although comparable in magnitude, was largely eliminated by MOC blockade or section. Possible alternate pathways are discussed for the source of contra-noise-evoked effects at low ipsilateral levels. PMID:22514298

  6. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  7. Low and high speed propellers for general aviation - Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    A survey is presented of current research efforts in general aviation, low-speed propeller design and high-speed propfan design, with attention on such features as (1) advanced blade shapes, with novel airfoils and sweep, (2) tip devices, (3) integrated propeller/nacelle designs, (4) area-ruled spinners, (5) lightweight, all-composite blade construction, and (6) contra-rotating propfan systems. The potential overall improvements associated with these design modifications are calculated to lie at 10-15% for low-speed rotors and 15-30% for high-speed ones. Emphasis is placed on noise reduction, blade drag, performance prediction methods and wind tunnel testing of alternative rotor configurations. Extensive use of graphs is made in performance comparisons between alternative blade and rotor designs.

  8. Estimating the distance separating fluorescent protein FRET pairs

    PubMed Central

    van der Meer, B. Wieb; Blank, Paul S.

    2014-01-01

    Förster resonance energy transfer (FRET) describes a physical phenomenon widely applied in biomedical research to estimate separations between biological molecules. Routinely, genetic engineering is used to incorporate spectral variants of the green fluorescent protein (GFPs), into cellular expressed proteins. The transfer efficiency or rate of energy transfer between donor and acceptor FPs is then assayed. As appreciable FRET occurs only when donors and acceptors are in close proximity (1–10 nm), the presence of FRET may indicate that the engineered proteins associate as interacting species. For a homogeneous population of FRET pairs the separations between FRET donors and acceptors can be estimated from a measured FRET efficiency if it is assumed that donors and acceptors are randomly oriented and rotate extensively during their excited state (dynamic regime). Unlike typical organic fluorophores, the rotational correlation-times of FPs are typically much longer than their fluorescence lifetime; accordingly FPs are virtually static during their excited state. Thus, estimating separations between FP FRET pairs is problematic. To overcome this obstacle, we present here a simple method for estimating separations between FPs using the experimentally measured average FRET efficiency. This approach assumes that donor and acceptor fluorophores are randomly oriented, but do not rotate during their excited state (static regime). This approach utilizes a Monte-Carlo simulation generated look-up table that allows one to estimate the separation, normalized to the Förster distance, from the average FRET efficiency. Assuming a dynamic regime overestimates the separation significantly (by 10% near 0.5 and 30% near 0.75 efficiencies) compared to assuming a static regime, which is more appropriate for estimates of separations between FPs. PMID:23811334

  9. ISGV Self-rectifying Turbine Design For Thermoacoustic Application

    NASA Astrophysics Data System (ADS)

    Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh

    2014-11-01

    Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.

  10. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  11. Proposed Expansion of Acme Landfill Operations, Contra Costa, County, California. Volume 1.

    DTIC Science & Technology

    1983-06-01

    for example, plastic beverage bottles, cardboard, wood, yardwastes, textiles , rubber, and leather. In addition to traditional activities, a central...a 6000-foot-long dredged channel. The 200-acre parcel is crossed with a number of drainage ditches, constructed by the Contra Costa Mosquito ...incoming flow at the high tide. It is the only point of discharge for flood water and is maintained by the Contra Costa Mosquito Abatement District

  12. Efficient Z gates for quantum computing

    NASA Astrophysics Data System (ADS)

    McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M.

    2017-08-01

    For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ /2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ /2 gate characterized by low error [1.95 (3 ) ×10-4] and low leakage [3.1 (6 ) ×10-6] . Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.

  13. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  14. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1991-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. The two outstanding problems of interest are: (1) the origins and nature of chaos in baroclinically unstable flows; and (2) the physical mechanisms responsible for high speed zonal winds and banding on the giant planets. The methods used to study these problems, and the insights gained, are useful in more general atmospheric and climate dynamic settings. Because the planetary curvature or beta-effect is crucial in the large scale nonlinear dynamics, the motions of rotating convecting liquids in spherical shells were studied using electrohydrodynamic polarization forces to generate radial gravity and centrally directed buoyancy forces in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. The interpretation and extension of these results have led to the construction of efficient numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. Efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument have led us to develop theoretical and numerical models of baroclinic instability. Some surprising properties of both these models were discovered.

  15. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase

    PubMed Central

    Li, Chun-Biu; Ueno, Hiroshi; Watanabe, Rikiya; Noji, Hiroyuki; Komatsuzaki, Tamiki

    2015-01-01

    F1-ATPase (F1) is a rotary motor protein that can efficiently convert chemical energy to mechanical work of rotation via fine coordination of its conformational motions and reaction sequences. Compared with reactant binding and product release, the ATP hydrolysis has relatively little contributions to the torque and chemical energy generation. To scrutinize possible roles of ATP hydrolysis, we investigate the detailed statistics of the catalytic dwells from high-speed single wild-type F1 observations. Here we report a small rotation during the catalytic dwell triggered by the ATP hydrolysis that is indiscernible in previous studies. Moreover, we find in freely rotating F1 that ATP hydrolysis is followed by the release of inorganic phosphate with low synthesis rates. Finally, we propose functional roles of the ATP hydrolysis as a key to kinetically unlock the subsequent phosphate release and promote the correct reaction ordering. PMID:26678797

  16. The use of a rotating cylinder electrode to recover zinc from rinse water generated by the electroplating industry.

    PubMed

    Matlalcuatzi, Sairi; Nava, José L

    2012-01-01

    This work concerns the application of a laboratory scale rotating cylinder electrode (RCE) to recover zinc from rinse water generated by the electrolytic zinc process (initially 1,300, 4,400, 50, 20 mg L(-1) of Zn(II), Fe(III), Ag(I) and Cr(VI), respectively, at pH 2), although it is also applicable to other electroplating industries. Experimental results demonstrated the convenience of the removal of ferric ions, as (Fe(OH)(3(s))) by a pH adjustment to 4, before zinc electro recovery on the RCE. The generation of smooth zinc deposits on the RCE was obtained at Reynolds numbers within the range of 15,000 ≤ Re ≤ 124,000 and limiting current densities (J(L)) in the interval of -4.8 to -13 mA cm(-2). The zinc recovery reached a conversion of 67% in 90 min of electrolysis for Re = 124,000 and J = -13 mA cm(-2), 21% current efficiency, and energy consumption of 9.5 kWh m(-3). The treated solution can be recycled back through the same rinsing process.

  17. Optimization and application of TiO₂/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously.

    PubMed

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Xu, Yunlan; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2014-10-01

    A TiO2/Ti-Pt photo fuel cell (PFC) was established to generate electricity and degrade organic pollutants simultaneously. The electricity generation was optimized through investigation the influences of photoanode calcination temperature and dissolve oxygen on the resistances existing in PFC. TiO2 light quantum yield was also improved in PFC which resulted in a higher PC degradation efficiency. Two kinds of real textile wastewaters were also employed in this PFC system, 62.4% and 50.0% Coulombic efficiency were obtained for 8 h treatment. These refractory wastewaters with high salinity may become good fuels in PFC because a) TiO2 has no selectivity and can degrade nearly any organic substance, b) no more electrolyte is needed due to the high salinity, c) the energy in wastes can be recovered to generate electricity. The electricity generated by the PFC was further applied on a TiO2/Ti rotating disk photoelectrocatalytic reactor. A bias voltage between 0.6 and 0.75 V could be applied and the PC degradation efficiency was significantly improved. This result was similar with that obtained by a 0.7 V DC power. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. JPRS Report China

    DTIC Science & Technology

    1990-02-12

    military support for the Nicaraguan antigovernment (Contra) forces, generating hope that the " fast knot" in U.S.-Nicaraguan relations can be untied...outpaced the public portion. There is no need to worry no matter how much faster it is growing. What we must be concerned with is not how fast it is...nonferrous metals were smaller. Some that only had a few days of production capacity worked intermittently . Some of the larger, newly opened enterprises

  19. Raman conversion in intense femtosecond Bessel beams in air

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel

    2014-05-01

    We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.

  20. The development of a control system for a small high speed steam microturbine generator system

    NASA Astrophysics Data System (ADS)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  1. Gas absorption/desorption temperature-differential engine

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1981-01-01

    Continuously operating compressor system converts 90 percent of gas-turbine plant energy to electricity. Conventional plants work in batch mode, operating at 40 percent efficiency. Compressor uses metal hydride matrix on outside of rotating drum to generate working gas, hydrogen. Rolling valve seals allow continuous work. During operation, gas is absorbed, releasing heat, and desorbed with heat gain. System conserves nuclear and fossil fuels, reducing powerplant capital and operating costs.

  2. Problems in the Development of High-Power Turbogenerators with Superconducting Field Windings,

    DTIC Science & Technology

    1983-12-05

    Both these constructions use a pulsating magnetic flux, which lowers the efficiency of the machine. In the case of rotating armature winding there is...Current pickup is accomplished with the aid of springs or flexible . connections. Calculations showed that with power 500 MW such a generator should...superconducting inductor a number of complicated technical problems appears. The main problem - the provision of strength and perfect heat insulation

  3. Overview of a flywheel stack energy storage system

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  4. Freely Tunable Broadband Polarization Rotator for Terahertz Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping

    2014-12-28

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

  5. Computation of the turbulent boundary layer downstream of vortex generators

    NASA Astrophysics Data System (ADS)

    Chang, Paul K.

    1987-12-01

    The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.

  6. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  7. Axial propulsion with flapping and rotating wings, a comparison of potential efficiency.

    PubMed

    Kroninger, Christopher M

    2018-04-18

    Interest in biological locomotion and what advantages the principles governing it might offer in the design of manmade vehicles prompts one to consider the power requirements of flapping relative to rotary propulsion. The amount of work performed on the fluid surrounding a thrusting surface (wing or blade) is reflected in the kinetic energy of the wake. Consideration of the energy in the wake is sufficient to define absolute minimum limitations on the power requirement to generate a particular thrust. This work applies wake solutions to compare the minimum inviscid propulsive power requirement of wings flapping and in rotation at wing loading conditions reflective of hover through a state of lightly-loaded cruise. It is demonstrated that hovering flapping flight is less efficient than rotary wing propulsion except for the most extreme flap amplitude strokes ([Formula: see text]   >  160°) if operating at large wake wavelength. In cruise, a larger range of flap amplitude kinematics ([Formula: see text]  >  140°) can be aerodynamically more energy efficient for wake wavelengths reflective of biological propulsion. These results imply, based on the observed wing kinematics of continuous steady flight, that flapping propulsion in animals is unlikely to be more efficient than rotary propulsion.

  8. On the Terminal Rotation Rates of Giant Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  9. Structureborne noise control in advanced turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  10. The comparative hydrodynamics of rapid rotation by predatory appendages.

    PubMed

    McHenry, M J; Anderson, P S L; Van Wassenbergh, S; Matthews, D G; Summers, A P; Patek, S N

    2016-11-01

    Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling and phylogenetic comparative analyses. We found that computationally efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly measured spearing species, Coronis scolopendra The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order of magnitude smaller, yet experienced values of drag-induced torque similar to those of a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer, which uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In summary, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages. © 2016. Published by The Company of Biologists Ltd.

  11. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  12. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Milner, V

    2017-06-16

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  13. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  14. The role of oscillatory brain activity in object processing and figure-ground segmentation in human vision.

    PubMed

    Kinsey, K; Anderson, S J; Hadjipapas, A; Holliday, I E

    2011-03-01

    The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The effect of in situ augmentation on implant anchorage in proximal humeral head fractures.

    PubMed

    Unger, Stefan; Erhart, Stefanie; Kralinger, Franz; Blauth, Michael; Schmoelz, Werner

    2012-10-01

    Fracture fixation in patients suffering from osteoporosis is difficult as sufficient implant anchorage is not always possible. One method to enhance implant anchorage is implant/screw augmentation with PMMA-cement. The present study investigated the feasibility of implant augmentation with PMMA-cement to enhance implant anchorage in the proximal humerus. A simulated three part humeral head fracture was stabilised with an angular stable plating system in 12 pairs of humeri using six head screws. In the augmentation group the proximal four screws were treated with four cannulated screws, each augmented with 0.5ml of PMMA-cement, whereas the contra lateral side served as a non-augmented control. Specimens were loaded in varus-bending or axial-rotation using a cyclic loading protocol with increasing load magnitude until failure of the osteosynthesis occurred. Augmented specimens showed a significant higher number of load cycles until failure than non-augment specimens (varus-bending: 8516 (SD 951.6) vs. 5583 (SD 2273.6), P=0.014; axial-rotation: 3316 (SD 348.8) vs. 2050 (SD 656.5), P=0.003). Non-augmented specimens showed a positive correlation of load cycles until failure and measured bone mineral density (varus-bending: r=0.893, P=0.016; axial-rotation: r=0.753, P=0.084), whereas no correlation was present in augmented specimens (varus-bending: r=0,258, P=0.621; axial-rotation r=0.127, P=0.810). These findings suggest that augmentation of cannulated screws is a feasible method to enhance implant/screw anchorage in the humeral head. The improvement of screw purchase is increasing with decreasing bone mineral density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. [Application of diffusion tensor imaging in judging infarction time of acute ischemic cerebral infarction].

    PubMed

    Dai, Zhenyu; Chen, Fei; Yao, Lizheng; Dong, Congsong; Liu, Yang; Shi, Haicun; Zhang, Zhiping; Yang, Naizhong; Zhang, Mingsheng; Dai, Yinggui

    2015-08-18

    To evaluate the clinical application value of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) in judging infarction time phase of acute ischemic cerebral infarction. To retrospective analysis DTI images of 52 patients with unilateral acute ischemic cerebral infarction (hyper-acute, acute and sub-acute) from the Affiliated Yancheng Hospital of Southeast University Medical College, which diagnosed by clinic and magnetic resonance imaging. Set the regions of interest (ROIs) of infarction lesions, brain tissue close to infarction lesions and corresponding contra (contralateral normal brain tissue) on DTI parameters mapping of fractional anisotropy (FA), volume ratio anisotropy (VRA), average diffusion coefficient (DCavg) and exponential attenuation (Exat), record the parameters values of ROIs and calculate the relative parameters value of infarction lesion to contra. Meanwhile, reconstruct the DTT images based on the seed points (infarction lesion and contra). The study compared each parameter value of infarction lesions, brain tissue close to infarction lesions and corresponding contra, also analysed the differences of relative parameters values in different infarction time phases. The DTT images of acute ischemic cerebral infarction in each time phase could show the manifestation of fasciculi damaged. The DCavg value of cerebral infarction lesions was lower and the Exat value was higher than contra in each infarction time phase (P<0.05). The FA and VRA value of cerebral infarction lesions were reduced than contra only in acute and sub-acute infarction (P<0.05). The FA, VRA and Exat value of brain tissue close to infarction lesions were increased and DCavg value was decreased than contra in hyper-acute infarction (P<0.05). There were no statistic differences of FA, VRA, DCavg and Exat value of brain tissue close to infarction lesions in acute and sub-acute infarction. The relative FA and VRA value of infarction lesion to contra gradually decreased from hyper-acute to sub-acute cerebral infarction (P<0.05), but there were no difference of the relative VRA value between acute and sub-acute cerebral infarction. The relative DCavg value of infarction lesion to contra in hyper-acute infarction than that in acute and sub-acute infarction (P<0.05), however there was also no difference between acute and sub-acute infarction. ROC curve showed the best diagnosis cut off value of relative FA, VRA and DCavg of infarction lesions to contra were 0.852, 0.886 and 0.541 between hyper-acute and acute cerebral infarction, the best diagnosis cut off value of relative FA was 0.595 between acute and sub-acute cerebral infarction, respectively. The FA, VRA, DCavg and Exat value have specific change mode in acute ischemic cerebral infarction of different infarction time phases, which can be combine used in judging infarction time phase of acute ischemic cerebral infarction without clear onset time, thus to help selecting the reasonable treatment protocols.

  17. A ‘reader’ unit of the chemical computer

    PubMed Central

    Smelov, Pavel S.

    2018-01-01

    We suggest the main principals and functional units of the parallel chemical computer, namely, (i) a generator (which is a network of coupled oscillators) of oscillatory dynamic modes, (ii) a unit which is able to recognize these modes (a ‘reader’) and (iii) a decision-making unit, which analyses the current mode, compares it with the external signal and sends a command to the mode generator to switch it to the other dynamical regime. Three main methods of the functioning of the reader unit are suggested and tested computationally: (a) the polychronization method, which explores the differences between the phases of the generator oscillators; (b) the amplitude method which detects clusters of the generator and (c) the resonance method which is based on the resonances between the frequencies of the generator modes and the internal frequencies of the damped oscillations of the reader cells. Pro and contra of these methods have been analysed. PMID:29410852

  18. [Yellow fever vaccination in non-immunocompetent patients].

    PubMed

    Bruyand, M; Receveur, M C; Pistone, T; Verdière, C H; Thiebaut, R; Malvy, D

    2008-10-01

    Any person travelling in countries where yellow fever (YF) is endemic and without presenting contra-indication for the vaccination against YF may be vaccinated. This vaccination can very rarely induce a potentially lethal neurotropic or viscerotropic disease. In severely immunodeficient patients, the vaccination is contra-indicated because postvaccinal encephalitis may occur after the vaccination, due to vaccine strain pathogenecity. It is important to evaluate the general health status in elderly individuals before vaccinating because of the increased risk of viscerotropic disease in people of 60 years of age and over. Pregnant women should not be vaccinated, except if departure to an endemic zone is unavoidable. YF vaccinatio is contra-indicated for newborns under six months of age. Solid organ grafts, congenital immunodeficiency, leukemia, lymphoma, cancer, and immunosuppressive treatments are contra-indications for this vaccination. Nevertheless, YF immunization is possible after a bone marrow graft and a two-year period without graft-versus-host disease or immunosuppressive treatment. There is no data to support that immunization of the dono prior to the graft could confer protection against yellow fever to the recipient. Low doses, short courses of corticosteroids either as systemic treatment or intra-articular injections are not contra-indications for YF vaccination. Patients infected with HIV with stable clinical status and T CD4-cel count above 200 cells per millimetre cube may be vaccinated. Thymic diseases, including thymoma and thymectomy, are contra-indications for YF vaccination. Finally, a substantial residual level of antibodies beyond 10 years after the latest vaccination could confer protection, thus avoiding a new vaccination when it is an issue.

  19. Mechanical power efficiency of modified turbine blades

    NASA Astrophysics Data System (ADS)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  20. Exact nonlinear command generation and tracking for robot manipulators and spacecraft slewing maneuvers

    NASA Technical Reports Server (NTRS)

    Dywer, T. A. W., III; Lee, G. K. F.

    1984-01-01

    In connection with the current interest in agile spacecraft maneuvers, it has become necessary to consider the nonlinear coupling effects of multiaxial rotation in the treatment of command generation and tracking problems. Multiaxial maneuvers will be required in military missions involving a fast acquisition of moving targets in space. In addition, such maneuvers are also needed for the efficient operation of robot manipulators. Attention is given to details regarding the direct nonlinear command generation and tracking, an approach which has been successfully applied to the design of control systems for V/STOL aircraft, linearizing transformations for spacecraft controlled with external thrusters, the case of flexible spacecraft dynamics, examples from robot dynamics, and problems of implementation and testing.

  1. Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits.

    PubMed

    Wei, L F; Liu, Yu-xi; Nori, Franco

    2006-06-23

    Going beyond the entanglement of microscopic objects (such as photons, spins, and ions), here we propose an efficient approach to produce and control the quantum entanglement of three macroscopic coupled superconducting qubits. By conditionally rotating, one by one, selected Josephson-charge qubits, we show that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be deterministically generated. The existence of GHZ correlations between these qubits could be experimentally demonstrated by effective single-qubit operations followed by high-fidelity single-shot readouts. The possibility of using the prepared GHZ correlations to test the macroscopic conflict between the noncommutativity of quantum mechanics and the commutativity of classical physics is also discussed.

  2. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  3. Effects of bending-torsional duct-induced swirl distortion on aerodynamic performance of a centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hou, Hongjuan; Wang, Leilei; Wang, Rui; Yang, Yanzhao

    2017-04-01

    A turbocharger compressor working in commercial vehicles, especially in some passenger cars, often works together with some pipes with complicated geometry as an air intake system, due to limit of available space in internal combustion engine compartments. These pipes may generate various distortions of physical parameters of the air at the inlet of the compressor and therefore the compressor aerodynamic performance deteriorates. Sometimes, the turbocharging engine fails to work at some operation points. This paper investigates the effects of various swirl distortions induced by different bending-torsional intake ducts on the aerodynamic performance of a turbocharger compressor by both 3D numerical simulations and experimental measurements. It was found that at the outlet of the pipes the different inlet ducts can generate different swirl distortions, twin vortices and bulk-like vortices with different rotating directions. Among them, the bulk-like vortices not only affect seriously the pressure distribution in the impeller domain, but also significantly deteriorate the compressor performance, especially at high flow rate region. And the rotating direction of the bulk-like vortices is also closely associated with the efficiency penalty. Besides the efficiency, the transient flow rate through a single impeller channel, or the asymmetric mass flow crossing the whole impeller, can be influenced by two disturbances. One is from the upstream bending-torsional ducts; other one is from the downstream volute.

  4. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  5. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil.

    PubMed

    Yang, Yang; Zhou, Xihong; Tie, Boqing; Peng, Liang; Li, Hongliang; Wang, Kelin; Zeng, Qingru

    2017-12-01

    Selecting suitable plants tolerant to heavy metals and producing products of economic value may be a key factor in promoting the practical application of phytoremediation polluted soils. The aim of this study is to further understand the utilization and remediation of seriously contaminated agricultural soil. In a one-year field experiment, we grew oilseed rape over the winter and then subsequently sunflowers, peanuts and sesame after the first harvest. This three rotation system produced high yields of dry biomass; the oilseed rape-sunflower, oilseed rape-peanut and oilseed rape-sesame rotation allowed us to extract 458.6, 285.7, and 134.5 g ha -1 of cadmium, and 1264.7, 1006.1, and 831.1 g ha -1 of lead from soil, respectively. The oilseed rape-sunflower rotation showed the highest phytoextraction efficiency (1.98%) for cadmium. Lead and cadmium in oils are consistent with standards after extraction with n-hexane. Following successive extractions with potassium tartrate, concentrations of lead and cadmium in oilseed rape and peanut seed meals were lower than levels currently permissible for feeds. Thus, this rotation system could be useful for local farmers as it would enable the generation of income during otherwise sparse phytoremediation periods. Copyright © 2017. Published by Elsevier Ltd.

  6. Dynamic Imbalance Would Counter Offcenter Thrust

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason

    1994-01-01

    Dynamic imbalance generated by offcenter thrust on rotating body eliminated by shifting some of mass of body to generate opposing dynamic imbalance. Technique proposed originally for spacecraft including massive crew module connected via long, lightweight intermediate structure to massive engine module, such that artificial gravitation in crew module generated by rotating spacecraft around axis parallel to thrust generated by engine. Also applicable to dynamic balancing of rotating terrestrial equipment to which offcenter forces applied.

  7. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses : Evaluation Results Update

    DOT National Transportation Integrated Search

    2007-10-01

    In early 2007, the National Renewable Energy Laboratory (NREL) published a preliminary evaluation results report1 (April through November 2006) on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District (AC Transit) in ...

  8. Feasibility study of entrance and exit dose measurements at the contra lateral breast with alanine/electron spin resonance dosimetry in volumetric modulated radiotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Wagner, Daniela M.; Hüttenrauch, Petra; Anton, Mathias; von Voigts-Rhetz, Philip; Zink, Klemens; Wolff, Hendrik A.

    2017-07-01

    The Physikalisch-Technische Bundesanstalt has established a secondary standard measurement system for the dose to water, D W, based on alanine/ESR (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The aim of this study was to test the established measurement system for the out-of-field measurements of inpatients with breast cancer. A set of five alanine pellets were affixed to the skin of each patient at the contra lateral breast beginning at the sternum and extending over the mammilla to the distal surface. During 28 fractions with 2.2 Gy per fraction, the accumulated dose was measured in four patients. A cone beam computer tomography (CBCT) scan was generated for setup purposes before every treatment. The reference CT dataset was registered rigidly and deformably to the CBCT dataset for 28 fractions. To take the actual alanine pellet position into account, the dose distribution was calculated for every fraction using the Acuros XB algorithm. The results of the ESR measurements were compared to the calculated doses. The maximum dose measured at the sternum was 19.9 Gy  ±  0.4 Gy, decreasing to 6.8 Gy  ±  0.2 Gy at the mammilla and 4.5 Gy  ±  0.1 Gy at the distal surface of the contra lateral breast. The absolute differences between the calculated and measured doses ranged from  -1.9 Gy to 0.9 Gy. No systematic error could be seen. It was possible to achieve a combined standard uncertainty of 1.63% for D W  =  5 Gy for the measured dose. The alanine/ESR method is feasible for in vivo measurements.

  9. Modification of Impulse Generation During Pirouette Turns With Increased Rotational Demands.

    PubMed

    Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-10-01

    This study determined how dancers regulated angular and linear impulse during the initiation of pirouettes of increased rotation. Skilled dancers (n = 11) performed single and double pirouette turns with each foot supported by a force plate. Linear and angular impulses generated by each leg were quantified and compared between turn types using probability-based statistical methods. As rotational demands increased, dancers increased the net angular impulse generated. The contribution of each leg to net angular impulse in both single and double pirouettes was influenced by stance configuration strategies. Dancers who generated more angular impulse with the push leg than with the turn leg initiated the turn with the center of mass positioned closer to the turn leg than did other dancers. As rotational demands increased, dancers tended to increase the horizontal reaction force magnitude at one or both feet; however, they used subject-specific mechanisms. By coordinating the generation of reaction forces between legs, changes in net horizontal impulse remained minimal, despite impulse regulation at each leg used to achieve more rotations. Knowledge gained regarding how an individual coordinates the generation of linear and angular impulse between both legs as rotational demand increased can help design tools to improve that individual's performance.

  10. Single Piezo-Actuator Rotary-Hammering Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to prevent it from being subjected to tensile stress that will cause it to fail. The backing is intended to transfer the generated mechanical vibrations towards the horn. In order to cause rotation, the horn is configured asymmetrically with helical segments and, upon impacting the bit, it introduces longitudinal along the axis of the actuator and tangential force causing twisting action that rotates the bit. The longitudinal component of the vibrations of the stack introduces percussion impulses between the bit and the rock to fracture it when the ultimate strain is exceeded under the bit.

  11. Quantitative prediction of collision-induced vibration-rotation distributions from physical data

    NASA Astrophysics Data System (ADS)

    Marsh, Richard J.; McCaffery, Anthony J.

    2003-04-01

    We describe a rapid, accurate technique for computing state-to-state cross-sections in collision-induced vibration-rotation transfer (VRT) using only physical data, i.e. spectroscopic constants, bond length, mass and velocity distribution. The probability of linear-to-angular momentum (AM) conversion is calculated for a set of trajectories, each of which is subjected to energy conservation boundary conditions. No mechanism is specified for inducing vibrational state change. In the model, this constitutes a velocity or momentum barrier that must be overcome before rotational AM may be generated in the new vibrational state. The method is subjected to stringent testing by calculating state-to-state VRT probabilities for diatomics in highly excited vibrational, rotational and electronic states. Comparison is made to experimental data and to results from quantum mechanical and from quasi-classical trajectory calculations. There is quantitative agreement with data from all three sources, indicating that despite its simplicity the essential physics of collisions involving highly excited species is captured in the model. We develop further the concept of the molecular efficiency factor as an indicative parameter in collision dynamics, and derive an expression for ji > 0 and for VRT.

  12. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  13. Imagining physically impossible self-rotations: geometry is more important than gravity.

    PubMed

    Creem, S H; Wraga, M; Proffitt, D R

    2001-08-01

    Previous studies found that it is easier for observers to spatially update displays during imagined self-rotation versus array rotation. The present study examined whether either the physics of gravity or the geometric relationship between the viewer and array guided this self-rotation advantage. Experiments 1-3 preserved a real or imagined orthogonal relationship between the viewer and the array, requiring a rotation in the observer's transverse plane. Despite imagined self-rotations that defied gravity, a viewer advantage remained. Without this orthogonal relationship (Experiment 4), the viewer advantage was lost. We suggest that efficient transformation of the egocentric reference frame relies on the representation of body-environment relations that allow rotation around the observer's principal axis. This efficiency persists across different and conflicting physical and imagined postures.

  14. Imagining physically impossible self-rotations: geometry is more important than gravity

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Wraga, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    Previous studies found that it is easier for observers to spatially update displays during imagined self-rotation versus array rotation. The present study examined whether either the physics of gravity or the geometric relationship between the viewer and array guided this self-rotation advantage. Experiments 1-3 preserved a real or imagined orthogonal relationship between the viewer and the array, requiring a rotation in the observer's transverse plane. Despite imagined self-rotations that defied gravity, a viewer advantage remained. Without this orthogonal relationship (Experiment 4), the viewer advantage was lost. We suggest that efficient transformation of the egocentric reference frame relies on the representation of body-environment relations that allow rotation around the observer's principal axis. This efficiency persists across different and conflicting physical and imagined postures.

  15. Rotating-disk sorptive extraction: effect of the rotation mode of the extraction device on mass transfer efficiency.

    PubMed

    Jachero, Lourdes; Ahumada, Inés; Richter, Pablo

    2014-05-01

    The extraction device used in rotating-disk sorptive extraction consists of a Teflon disk in which a sorptive phase is fixed on one of its surfaces. Depending on the configuration, the rotation axis of the disk device can be either perpendicular or parallel to its radius, giving rise to two different mass transfer patterns when rotating-disk sorptive extraction is applied in liquid samples. In the perpendicular case (configuration 1), which is the typical configuration, the disk contains an embedded miniature stir bar that allows the disk rotation to be driven using a common laboratory magnetic stirrer. In the parallel case (configuration 2), the disk is driven by a rotary rod connected to an electric stirrer. In this study, triclosan and its degradation product methyl triclosan were used as analyte models to demonstrate the significant effect of the rotation configuration of the disk on the efficiency of analyte mass transfer from water to a sorptive phase of polydimethylsiloxane. Under the same experimental conditions and at a rotation velocity of 1,250 rpm, extraction equilibrium was reached at 80 min when the disk was rotated in configuration 1 and at 30 min when the disk was rotated in configuration 2. The extraction equilibration time decreased to 14 min when the rotation velocity was increased to 2,000 rpm in configuration 2. Because the rotation pattern affects the mass transfer efficiency, each rotation configuration was characterized through the Reynolds number; Re values of 6,875 and 16,361 were achieved with configurations 1 and 2, respectively, at 1,250 rpm.

  16. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  17. Millisecond newly born pulsars as efficient accelerators of electrons

    NASA Astrophysics Data System (ADS)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.

  18. Characterization and limits of a cold-atom Sagnac interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauguet, A.; Canuel, B.; Leveque, T.

    2009-12-15

    We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generation of ultrasensitive atom gyroscopes.

  19. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses : Third Evaluation Report

    DOT National Transportation Integrated Search

    2008-07-04

    This report describes operations at Alameda-Contra Costa Transit District (AC Transit) for three prototype fuel cell buses and six diesel buses operating from the same location. This is the third evaluation report for this site, and it describes new ...

  20. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    PubMed

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  1. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  2. Evolving Regional Security in the Andean Region

    DTIC Science & Technology

    2004-03-19

    November 2003. 5 Joseph R. Nuñez, “Luchando en Contra de la Trinidad Hobbesiana en Colombia: Una Estrategia Para la Paz” Aerospace Power Journal . Tercer...December 2002. Nuñez, Joseph R. Luchando en Contra de la Trinidad Obesiana en Colombia: Una Estrategia Para la Paz. Aerospace Power Journal. Tercer

  3. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli

    DTIC Science & Technology

    1984-01-01

    Classical Enteropathogenic (Serotyped) Escherichia coli Strains of Proven Pathogenicity. Infect. Immun. 38:798-801, 1982. 8. Levine, M.M. Vacunas Contra...Microbiol., 18:808-815, 1983. 8 15. Levine, M.M., Lanata, C. Progresos en Vacunas Contra Diarrea Bacteriana. Adelantos Microbiol. Enferm. Inf., 2:67-117

  4. High pressure rotating reverse osmosis for long term space missions

    NASA Astrophysics Data System (ADS)

    Christensen Pederson, Cynthia Lynn

    Rotating reverse osmosis, which uses reverse osmosis to purify water and rotating filtration to improve the efficacy of filtration, has great potential for wastewater recycling on a long term space mission. Previous investigations of a proof-of-concept device indicated that the most efficient method to improve rotating reverse osmosis performance is to increase the operational pressure. Thus, a second generation device and fluid circuit were designed, fabricated, and tested to permit high pressure operation for long time periods. The design overcame several obstacles including membrane attachment, rotating seal design, and fluid and pressure management. A theoretical model of rotating reverse osmosis was modified to properly account for the flow conditions in the new design. Tests lasting a week were conducted with a variety of model wastewaters. Significant fouling and a decrease in flux were observed after three days of testing regardless of the operational parameters. A semi-empirical model, the fouling potential, was added to the theoretical model to account for the fouling. This allowed the simulation of 48 hour cleaning cycles that significantly increased the flux of the device. Experimental investigation of the rotational speed and concentrate flow rate indicated that an increase in either parameter decreased the fouling slightly. A week long test of a wastewater ersatz with a biocide did not exhibit a decrease in flux around day three that otherwise occurred. Therefore, biofouling was identified as the primary mechanism of fouling. Rotating reverse osmosis was compared with conventional spiral wound reverse osmosis and displayed increased rejection under dead end filtration conditions. The rotating device exhibited similar rejection and increased flux compared to a tubular reverse osmosis device previously used in a NASA wastewater recovery system. The integration of the rotating device into a NASA water recovery management system was evaluated. Lastly, a theoretical model of rotating hemofiltration was developed that demonstrated that the device is not clinically feasible given the permeability of available hemofiltration membranes.

  5. Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length.

    PubMed

    García-Sánchez, Pablo; Ramos, Antonio

    2015-11-01

    We theoretically study the rotation induced on a metal sphere immersed in an electrolyte and subjected to a rotating electric field. The rotation arises from the interaction of the field with the electric charges induced at the metal-electrolyte interface, i.e., the induced electrical double layer (EDL). Particle rotation is due to the torque on the induced dipole, and also from induced-charge electro-osmostic flow (ICEO). The interaction of the electric field with the induced dipole on the system gives rise to counterfield rotation, i.e., the direction opposite to the rotation of the electric field. ICEO generates co-field rotation of the sphere. For thin EDL, ICEO generates negligible rotation. For increasing size of EDL, co-field rotation appears and, in the limit of very thick EDL, it compensates the counter-field rotation induced by the electrical torque. We also report computations of the rotating fluid velocity field around the sphere.

  6. Mm-Wave Spectroscopic Sensors, Catalogs, and Uncatalogued Lines

    NASA Astrophysics Data System (ADS)

    Medvedev, Ivan; Neese, Christopher F.; De Lucia, Frank C.

    2014-06-01

    Analytical chemical sensing based on high resolution rotational molecular spectra has been recognized as a viable technique for decades. We recently demonstrated a compact implementation of such a sensor. Future generations of these sensors will rely on automated algorithms for quantification of chemical dilutions based on their spectral libraries, as well as identification of spectral features not present in spectral catalogs. Here we present an algorithm aimed at detection of unidentified lines in complex molecular species based on spectroscopic libraries developed in our previous projects. We will discuss the approaches suitable for data mining in feature-rich rotational molecular spectra. Neese, C.F., I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, and F.C. De Lucia, "A Compact Submillimeter/Terahertz Gas Sensor with Efficient Gas Collection, Preconcentration, and ppt Sensitivity." Sensors Journal, IEEE, 2012. 12(8): p. 2565-2574

  7. An Intense Slit Discharge Source of Jet-Cooled Molecular Ions and Radicals (T(sub rot) less than 30 K)

    NASA Technical Reports Server (NTRS)

    Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.

    1996-01-01

    A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).

  8. Design of refractive laser beam shapers to generate complex irradiance profiles

    NASA Astrophysics Data System (ADS)

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-05-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.

  9. Optimizing Systems of Threshold Detection Sensors

    DTIC Science & Technology

    2008-03-01

    0.075 10 Queens County, NY 2,255,175 0.0075 1.47 0.703 0.071 21 Suffolk County, NY 1,469,715 0.0049 1.76 0.595 0.039 36 Contra Costa Co., CA...Suffolk County, NY 1.76 1.77 0.595 0.592 0.039 0.039 36 Contra Costa Co., CA 2.01 1.95 0.498 0.521 0.022 0.026 77 Lake County, IL 2.25 2.13 0.400 0.449...1,043,500 0.0062 1.939 0.524 0.026 36 Contra Costa County, CA 1,024,319 0.0060 1.948 0.521 0.026 37 Fairfax County, VA 1,010,443 0.0060 1.955 0.518

  10. Fear improves mental rotation of low-spatial-frequency visual representation.

    PubMed

    Borst, Grégoire

    2013-10-01

    Previous studies have demonstrated that the brief presentation of a fearful face improves not only low-level visual processing such as contrast and orientation sensitivity but also improves visuospatial processing. In the present study, we investigated whether fear improves mental rotation efficiency (i.e., the mental rotation rate) because of the effect of fear on the sensitivity of magnocellular neurons. We asked 2 groups of participants to perform a mental rotation task with either low-pass or high-pass filtered 3-dimensional objects. Following the presentation of a fearful face, participants mentally rotated objects faster compared with when a neutral face was presented but only for low-pass filtered objects. The results suggest that fear improves mental rotation efficiency by increasing sensitivity to motion-related visual information within the magnocellular pathway.

  11. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation.

    PubMed

    Crudo, Daniele; Bosco, Valentina; Cavaglià, Giuliano; Grillo, Giorgio; Mantegna, Stefano; Cravotto, Giancarlo

    2016-11-01

    Triglyceride transesterification for biodiesel production is a model reaction which is used to compare the conversion efficiency, yield, reaction time, energy consumption, scalability and cost estimation of different reactor technology and energy source. This work describes an efficient, fast and cost-effective procedure for biodiesel preparation using a rotating generator of hydrodynamic cavitation (HC). The base-catalyzed transesterification (methanol/sodium hydroxide) has been carried out using refined and bleached palm oil and waste vegetable cooking oil. The novel HC unit is a continuous rotor-stator type reactor in which reagents are directly fed into the controlled cavitation chamber. The high-speed rotation of the reactor creates micron-sized droplets of the immiscible reacting mixture leading to outstanding mass and heat transfer and enhancing the kinetics of the transesterification reaction which completes much more quickly than traditional methods. All the biodiesel samples obtained respect the ASTM standard and present fatty acid methyl ester contents of >99% m/m in both feedstocks. The electrical energy consumption of the HC reactor is 0.030kWh per L of produced crude biodiesel, making this innovative technology really quite competitive. The reactor can be easily scaled-up, from producing a few hundred to thousands of liters of biodiesel per hour while avoiding the risk of orifices clogging with oil impurities, which may occur in conventional HC reactors. Furthermore it requires minimal installation space due to its compact design, which enhances overall security. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Far Ultraviolet Imaging from the Image Spacecraft

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Stock, J. M.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Habraken, S.

    2000-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora. The IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a novel form of monochromatic imager, will image the aurora, filtered by wavelength. The proton-induced component of the aurora will be imaged separately by measuring the Doppler-shifted Lyman-a. Finally, the GEO instrument will observe the distribution of the geocoronal emission to obtain the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. To maximize photon collection efficiency and use efficiently the short time available for exposures the FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, the set of multiple images are electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distort ion-corrected in real time. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationary platforms, mostly in vacuum chambers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to emulate their performance on a rotating spacecraft.

  13. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.

    PubMed

    Martín López, Lucía Martina; Miller, Patrick J O; Aguilar de Soto, Natacha; Johnson, Mark

    2015-05-01

    Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; and Hyperoodon ampullatus, N=2) to characterize their swimming gaits. In addition to continuous stroking and stroke-and-glide gaits described for other diving mammals, all whales produced occasional fluke-strokes with distinctly larger dorso-ventral acceleration, which we termed 'type-B' strokes. These high-power strokes occurred almost exclusively during deep dive ascents as part of a novel mixed gait. To quantify body rotations and specific acceleration generated during strokes we adapted a kinematic method combining data from two sensors in the tag. Body rotations estimated with high-rate magnetometer data were subtracted from accelerometer data to estimate the resulting surge and heave accelerations. Using this method, we show that stroke duration, rotation angle and acceleration were bi-modal for these species, with B-strokes having 76% of the duration, 52% larger body rotation and four times more surge than normal strokes. The additional acceleration of B-strokes did not lead to faster ascents, but rather enabled brief glides, which may improve the overall efficiency of this gait. Their occurrence towards the end of long dives leads us to propose that B-strokes may recruit fast-twitch fibres that comprise ∼80% of swimming muscles in Blainville's beaked whales, thus prolonging foraging time at depth. © 2015. Published by The Company of Biologists Ltd.

  14. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  15. A Further Review of the California State University's Contra Costa Center. Commission Report 89-9.

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    A follow-up report on the California State University's Contra Costa Center, a proposed permanent off-campus center, is presented. The California Postsecondary Education Commission approved the original proposal in 1987, contingent on finding solutions to concerns about transportation access and services to disadvantaged students. The university…

  16. 77 FR 42788 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Unresolved Account Balances in the Exchange's Online Comparison System July 16, 2012. Pursuant to Section 19... assigning the contra party to unresolved account balances in the Exchange's Online Comparison System. The... maker (``DMM'') unit as the contra party for any unresolved omnibus account balances in the Exchange's...

  17. 75 FR 13301 - Los Vaqueros Reservoir Expansion, Contra Costa and Alameda Counties, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Los Vaqueros Reservoir Expansion, Contra Costa... Reservoir Expansion Final EIS/EIR. Los Vaqueros Expansion is a proposed action in the August 2000 CALFED Bay... Vaqueros Reservoir from its existing capacity of 100 thousand acre-feet (TAF). A 175 TAF expansion option...

  18. Identification of buried victims in natural disaster with GPR method

    NASA Astrophysics Data System (ADS)

    Dewi, Rianty Kusuma; Kurniawan, Adityo; Taqwantara, Reyhan Fariz; Iskandar, Farras M.; Naufal, Taufiq Ziyan; Widodo

    2017-07-01

    Indonesian is one of the most seismically active regions in the world and has very complicated plate convergence because there is meeting point of several tectonic plates. The complexity of tectonic features causes a lot of natural disasters such as landslides, tsunamis, earth quakes, volcanoes eruption, etc. Sometimes, the disasters occurs in high populated area and causing thousands to millions of victim been buried under the rumble. Unfortunately, the evacuation still uses the conventional method such using rescue dogs whereas the sensitivity of smell is decrease when the victims buried under the level of the ground. The purpose of this study is to detect buried bodies using GPR method, so it can enhance the effectiveness and the efficiency in looking for the disaster victims. GPR method is used because it can investigate things under the ground. A detailed GPR research has been done in Cikutra Graveyard, Bandung, with corpse buried two week until two years before the research. The radar profiles from this research showed amplitude contras anomaly between the new corpse and the old ones. We obtained the amplitude contras at 1.2-1.4 meters under the surface. This method proved to be effective but still need more attention on undulated surface and non-soil areas.

  19. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    NASA Astrophysics Data System (ADS)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with analytical solutions in order to quantify the numerical error in the simulations. Additionally, experimental data from laboratory scale combustors was used to validate 2D and 3D numerical simulations. The effects of different modeling parameters on RDC predictions was also studied. The validated simulation strategy was then used to assess the performance of RDC for different combustion chamber geometries and operating conditions relevant to GT applications. As a result, the limiting conditions for which continuous detonation and pressure gain combustion can be achieved were predicted and the effect of operating conditions on flow structures and RDC performance was assessed. The modeling strategy and the results from this study could be further used to design more efficient and more stable RDC systems.

  20. Torque Generation Mechanism of F1-ATPase upon NTP Binding

    PubMed Central

    Arai, Hidenobu C.; Yukawa, Ayako; Iwatate, Ryu John; Kamiya, Mako; Watanabe, Rikiya; Urano, Yasuteru; Noji, Hiroyuki

    2014-01-01

    Molecular machines fueled by NTP play pivotal roles in a wide range of cellular activities. One common feature among NTP-driven molecular machines is that NTP binding is a major force-generating step among the elementary reaction steps comprising NTP hydrolysis. To understand the mechanism in detail,in this study, we conducted a single-molecule rotation assay of the ATP-driven rotary motor protein F1-ATPase using uridine triphosphate (UTP) and a base-free nucleotide (ribose triphosphate) to investigate the impact of a pyrimidine base or base depletion on kinetics and force generation. Although the binding rates of UTP and ribose triphosphate were 103 and 106 times, respectively, slower than that of ATP, they supported rotation, generating torque comparable to that generated by ATP. Affinity change of F1 to UTP coupled with rotation was determined, and the results again were comparable to those for ATP, suggesting that F1 exerts torque upon the affinity change to UTP via rotation similar to ATP-driven rotation. Thus, the adenine-ring significantly enhances the binding rate, although it is not directly involved in force generation. Taking into account the findings from another study on F1 with mutated phosphate-binding residues, it was proposed that progressive bond formation between the phosphate region and catalytic residues is responsible for the rotation-coupled change in affinity. PMID:24988350

  1. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  2. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  3. Nanotechnologies for efficient solar and wind energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  4. Hunger in the Midst of Affluence: Task Force Combats Hunger in Contra Costa County.

    ERIC Educational Resources Information Center

    Fujii, Mary Lavender

    1994-01-01

    Research conducted by the Hunger Task Force in Contra Costa County (California) revealed a significant increase in the number of families, especially with young children, who live in poverty and who are going hungry. A food stamp outreach program, a countywide school breakfast program, and food distribution programs have been initiated. (LP)

  5. Author's Response to Commentaries on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.

    2015-01-01

    In this article, Peter Molenaar responds to three commentaries (this issue) on his article, "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics." He addresses aspects of relational developmental systems (RDS) mentioned and questions raised in each of the…

  6. Parental Influence, Youth Contra-Culture and Rural Adolescent Attitudes Toward Negroes.

    ERIC Educational Resources Information Center

    Hough, Richard L.; And Others

    High school students and heads of households in rural areas of Illinois were studied with respect to their attitudes toward Negroes. The hypothesis used was that a youth subculture or "contra-culture" did serve as an important socializing agent in forming the attitudes of students toward Negroes. Results indicated that there was only…

  7. Performance assessment of the Gash Delta Spate Irrigation System, Sudan

    NASA Astrophysics Data System (ADS)

    Ghebreamlak, Araya Z.; Tanakamaru, Haruya; Tada, Akio; Adam, Bashir M. Ahmed; Elamin, Khalid A. E.

    2018-02-01

    The Gash Delta Spate Irrigation System (GDSIS), located in eastern Sudan with a net command area of 100 000 ha (an area currently equipped with irrigation structures), was established in 1924. The land is irrigated every 3 years (3-year rotation) or every 2 years (2-year rotation) so that about 33 000 or 50 000 ha respectively can be cultivated annually. This study deals with assessing the performance of the 3- and 2-year rotation systems using the Monte Carlo simulation. Reliability, which is a measure of how frequently the irrigation water supply satisfies the demand, and vulnerability, which is a measure of the magnitude of failure, were selected as the performance criteria. Combinations of five levels of intake ratio and five levels of irrigation efficiency for the irrigation water supply of each rotation system were analysed. Historical annual flow data of the Gash River for 107 years were fit to several frequency distributions. The Weibull distribution was the best on the basis of the Akaike information criteria and was used for simulating the ensembles of annual river flow. The reliabilities and vulnerabilities of both rotation systems were evaluated at typical values of intake ratio and irrigation efficiency. The results show that (i) the 3-year rotation is more reliable in water supply than the 2-year rotation, (ii) the vulnerability of the 3-year rotation is lower than that of the 2-year rotation and (iii) therefore the 3-year rotation is preferable in the GDSIS. The sensitivities of reliability and vulnerability to changes in intake ratio and irrigation efficiency were also examined.

  8. Wingtip mounted, counter-rotating proprotor for tiltwing aircraft

    NASA Technical Reports Server (NTRS)

    Wechsler, James K. (Inventor); Rutherford, John W. (Inventor)

    1995-01-01

    A tiltwing aircraft, capable of in-flight conversion between a hover and forward cruise mode, employs a counter-rotating proprotor arrangement which permits a significantly increased cruise efficiency without sacrificing either the size of the conversion envelope or the wing efficiency. A benefit in hover is also provided because of the lower effective disk loading for the counter-rotating proprotor, as opposed to a single rotation proprotor of the same diameter. At least one proprotor is provided on each wing section, preferably mounted on the wingtip, with each proprotor having two counter-rotating blade rows. Each blade row has a plurality of blades which are relatively stiff-in-plane and are mounted such that cyclic pitch adjustments may be made for hover control during flight.

  9. Developmental Changes in the Effect of Active Left and Right Head Rotation on Random Number Generation.

    PubMed

    Sosson, Charlotte; Georges, Carrie; Guillaume, Mathieu; Schuller, Anne-Marie; Schiltz, Christine

    2018-01-01

    Numbers are thought to be spatially organized along a left-to-right horizontal axis with small/large numbers on its left/right respectively. Behavioral evidence for this mental number line (MNL) comes from studies showing that the reallocation of spatial attention by active left/right head rotation facilitated the generation of small/large numbers respectively. While spatial biases in random number generation (RNG) during active movement are well established in adults, comparable evidence in children is lacking and it remains unclear whether and how children's access to the MNL is affected by active head rotation. To get a better understanding of the development of embodied number processing, we investigated the effect of active head rotation on the mean of generated numbers as well as the mean difference between each number and its immediately preceding response (the first order difference; FOD) not only in adults ( n = 24), but also in 7- to 11-year-old elementary school children ( n = 70). Since the sign and absolute value of FODs carry distinct information regarding spatial attention shifts along the MNL, namely their direction (left/right) and size (narrow/wide) respectively, we additionally assessed the influence of rotation on the total of negative and positive FODs regardless of their numerical values as well as on their absolute values. In line with previous studies, adults produced on average smaller numbers and generated smaller mean FODs during left than right rotation. More concretely, they produced more negative/positive FODs during left/right rotation respectively and the size of negative FODs was larger (in terms of absolute value) during left than right rotation. Importantly, as opposed to adults, no significant differences in RNG between left and right head rotations were observed in children. Potential explanations for such age-related changes in the effect of active head rotation on RNG are discussed. Altogether, the present study confirms that numerical processing is spatially grounded in adults and suggests that its embodied aspect undergoes significant developmental changes.

  10. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  11. Horizontally rotating disc recirculated photoreactor with TiO2-P25 nanoparticles immobilized onto a HDPE plate for photocatalytic removal of p-nitrophenol.

    PubMed

    Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed

    2018-04-01

    In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO 2 ) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min -1 ) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO 2 -P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R 2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.

  12. Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells.

    PubMed

    Rampini, S; Kilinc, D; Li, P; Monteil, C; Gandhi, D; Lee, G U

    2015-08-21

    Nonlinear magnetophoresis (NLM) is a novel approach for on-chip transport and separation of superparamagnetic (SPM) beads, based on a travelling magnetic field wave generated by the combination of a micromagnet array (MMA) and an applied rotating magnetic field. Here, we present two novel MMA designs that allow SPM beads to be focused, sorted, and separated on-chip. Converging MMAs were used to rapidly collect the SPM beads from a large region of the chip and focus them into synchronised lines. We characterise the collection efficiency of the devices and demonstrate that they can facilitate on-chip analysis of populations of SPM beads using a single-point optical detector. The diverging MMAs were used to control the transport of the beads and to separate them based on their size. The separation efficiency of these devices was determined by the orientation of the magnetisation of the micromagnets relative to the external magnetic field and the size of the beads and relative to that of micromagnets. By controlling these parameters and the rotation of the external magnetic field we demonstrated the controlled transport of SPM bead-labelled single MDA-MB-231 cells. The use of these novel MMAs promises to allow magnetically-labelled cells to be efficiently isolated and then manipulated on-chip for analysis with high-resolution chemical and physical techniques.

  13. Investigating the feasibility of using partial least squares as a method of extracting salient information for the evaluation of digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhang, George Z.; Myers, Kyle J.; Park, Subok

    2013-03-01

    Digital breast tomosynthesis (DBT) has shown promise for improving the detection of breast cancer, but it has not yet been fully optimized due to a large space of system parameters to explore. A task-based statistical approach1 is a rigorous method for evaluating and optimizing this promising imaging technique with the use of optimal observers such as the Hotelling observer (HO). However, the high data dimensionality found in DBT has been the bottleneck for the use of a task-based approach in DBT evaluation. To reduce data dimensionality while extracting salient information for performing a given task, efficient channels have to be used for the HO. In the past few years, 2D Laguerre-Gauss (LG) channels, which are a complete basis for stationary backgrounds and rotationally symmetric signals, have been utilized for DBT evaluation2, 3 . But since background and signal statistics from DBT data are neither stationary nor rotationally symmetric, LG channels may not be efficient in providing reliable performance trends as a function of system parameters. Recently, partial least squares (PLS) has been shown to generate efficient channels for the Hotelling observer in detection tasks involving random backgrounds and signals.4 In this study, we investigate the use of PLS as a method for extracting salient information from DBT in order to better evaluate such systems.

  14. Controlling Data Collection to Support SAR Image Rotation

    DOEpatents

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  15. Electrode geometry for electrostatic generators and motors

    DOEpatents

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  16. Third-order-harmonic generation in coherently spinning molecules

    NASA Astrophysics Data System (ADS)

    Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.

    2017-10-01

    The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.

  17. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less

  18. A Principle and Winding Design of Consequent-Pole Bearingless Motors

    NASA Astrophysics Data System (ADS)

    Takenaga, Tomohiro; Kubota, Yutaka; Chiba, Akira; Fukao, Tadashi

    Recently, bearingless motors have been developed to enhance motor drive systems with magnetic suspension. Several types of motors have been proposed as bearingless motors, such as induction, surface mounted permanent magnet, inset permanent magnet, interior permanent magnet, buried permanent magnet, homopolar, hybrid, and switched reluctance bearingless motors. Permanent magnet bearingless motors have been attracting more interests in these years because of the high efficiency. In this paper, a consequent-pole bearingless motor is proposed. A rotor has buried permanent magnets, of which polarities are like. The radial force of a consequent-pole bearingless motor is generated by dc current. Thus, rotational angular position is not needed in a magnetic suspension controller. Radial force variations caused by a rotor rotation are minimized by improving arrangement of stator suspension conductors. A prototype bearingless motor and its controller are built. In experiment, principles of magnetic suspension in the proposed consequent-pole bearingless drive are confirmed.

  19. Turbo test rig with hydroinertia air bearings for a palmtop gas turbine

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Isomura, Kousuke; Togo, Shin-ichi; Esashi, Masayoshi

    2004-11-01

    This paper describes a turbo test rig to test the compressor of a palmtop gas turbine generator at low temperature (<100 °C). Impellers are 10 mm in diameter and have three-dimensional blades machined using a five-axis NC milling machine. Hydroinertia bearings are employed in both radial and axial directions. The performance of the compressor was measured at 50% (435 000 rpm) and 60% (530 000 rpm) of the rated rotational speed (870 000 rpm) by driving a turbine using compressed air at room temperature. The measured pressure ratio is lower than the predicted value. This could be mainly because impeller tip clearance was larger than the designed value. The measured adiabatic efficiency is unrealistically high due to heat dissipation from compressed air. During acceleration toward the rated rotational speed, a shaft crashed to the bearing at 566 000 rpm due to whirl. At that time, the whirl ratio was 8.

  20. Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder

    NASA Technical Reports Server (NTRS)

    Baer, James

    2012-01-01

    A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.

  1. Resonantly driven CNOT gate for electron spins.

    PubMed

    Zajac, D M; Sigillito, A J; Russ, M; Borjans, F; Taylor, J M; Burkard, G; Petta, J R

    2018-01-26

    Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. An efficient algorithm for the retarded time equation for noise from rotating sources

    NASA Astrophysics Data System (ADS)

    Loiodice, S.; Drikakis, D.; Kokkalis, A.

    2018-01-01

    This study concerns modelling of noise emanating from rotating sources such as helicopter rotors. We present an accurate and efficient algorithm for the solution of the retarded time equation, which can be used both in subsonic and supersonic flow regimes. A novel approach for the search of the roots of the retarded time function was developed based on considerations of the kinematics of rotating sources and of the bifurcation analysis of the retarded time function. It is shown that the proposed algorithm is faster than the classical Newton and Brent methods, especially in the presence of sources rotating supersonically.

  3. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.

    PubMed

    Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep

    2016-02-01

    Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.

  4. Uniform rotating field network structure to efficiently package a magnetic bubble domain memory

    NASA Technical Reports Server (NTRS)

    Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)

    1978-01-01

    A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.

  5. Understanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2016-10-01

    It is shown for the first time that turbulence-driven residual Reynolds stress can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Nonlinear, global gyrokinetic simulations using GTS of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced non-diffusive momentum flux generated around a mid-radius-peaked intrinsic toroidal rotation profile. The non-diffusive momentum flux is dominated by the residual stress with a negligible contribution from the momentum pinch. The residual stress profile shows a robust anti-gradient, dipole structure in a set of ECH discharges with varying ECH power. Such interesting features of non-diffusive momentum fluxes, in connection with edge momentum sources and sinks, are found to be critical to drive the non-monotonic core rotation profiles in the experiments. Both turbulence intensity gradient and zonal flow ExB shear are identified as major contributors to the generation of the k∥-asymmetry needed for the residual stress generation. By balancing the residual stress and the momentum diffusion, a self-organized, steady-state rotation profile is calculated. The predicted core rotation profiles agree well with the experimentally measured main-ion toroidal rotation. The validated model is further used to investigate the characteristic dependence of global rotation profile structure in the multi-dimensional parametric space covering turbulence type, q-profile structure and collisionality with the goal of developing physics understanding needed for rotation profile control and optimization. Interesting results obtained include intrinsic rotation reversal induced by ITG-TEM transition in flat-q profile regime and by change in q-profile from weak to normal shear.. Fluctuation-generated poloidal Reynolds stress is also shown to significantly modify the neoclassical poloidal rotation in a way consistent with experimental observations. Finally, the first-principles-based model is applied to studying the ρ * -scaling and predicting rotations in ITER regime. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  6. Gyrofluid Simulations of Intrinsic Rotation Generation in Reversed Shear Plasmas with Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Kwon, J. M.; Terzolo, L.; Kim, J. Y.; Diamond, P. H.

    2010-11-01

    It is accepted that the intrinsic rotation is generated via the residual stress, which is non-diffusive components of the turbulent Reynolds stress, without external momentum input. The physics leading to the onset of intrinsic rotation in L- and H- mode plasmas have been elucidated elsewhere. However, the physics responsible for the generation and transport of the intrinsic rotation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) plasmas have not been explored in detail, which is the main subject in the present work. The revised version of the global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. In particular, the role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking in RS plasmas.

  7. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  8. A novel torsional exciter for modal vibration testing of large rotating machinery

    NASA Astrophysics Data System (ADS)

    Sihler, Christof

    2006-10-01

    A novel exciter for applying a dynamic torsional force to a rotating structure is presented in this paper. It has been developed at IPP in order to perform vibration tests with shaft assemblies of large flywheel generators (synchronous machines). The electromagnetic exciter (shaker) needs no fixture to the rotating shaft because the torque is applied by means of the stator winding of an electrical machine. Therefore, the exciter can most easily be applied in cases where a three-phase electrical machine (a motor or generator) is part of the shaft assembly. The oscillating power for the shaker is generated in a separate current-controlled DC circuit with an inductor acting as a buffer storage of magnetic energy. An AC component with adjustable frequency is superimposed on the inductor current in order to generate pulsating torques acting on the rotating shaft with the desired waveform and frequency. Since this torsional exciter does not require an external power source, can easily be installed (without contact to the rotating structure) and provides dynamic torsional forces which are sufficient for multi-megawatt applications, it is best suited for on-site tests of large rotating machinery.

  9. Fluid mechanics of swimming bacteria with multiple flagella.

    PubMed

    Kanehl, Philipp; Ishikawa, Takuji

    2014-04-01

    It is known that some kinds of bacteria swim by forming a bundle of their multiple flagella. However, the details of flagella synchronization as well as the swimming efficiency of such bacteria have not been fully understood. In this study, swimming of multiflagellated bacteria is investigated numerically by the boundary element method. We assume that the cell body is a rigid ellipsoid and the flagella are rigid helices suspended on flexible hooks. Motors apply constant torque to the hooks, rotating the flagella either clockwise or counterclockwise. Rotating all flagella clockwise, bundling of all flagella is observed in every simulated case. It is demonstrated that the counter rotation of the body speeds up the bundling process. During this procedure the flagella synchronize due to hydrodynamic interactions. Moreover, the results illustrated that during running the multiflagellated bacterium shows higher propulsive efficiency (distance traveled per one flagellar rotation) over a bacterium with a single thick helix. With an increasing number of flagella the propulsive efficiency increases, whereas the energetic efficiency decreases, which indicates that efficiency is something multiflagellated bacteria are assigning less priority to than to motility. These findings form a fundamental basis in understanding bacterial physiology and metabolism.

  10. Modification of impulse generation during piqué turns with increased rotational demands.

    PubMed

    Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-06-01

    During initiation of a piqué turn, a dancer generates impulse to achieve the desired lateral translation and whole-body rotation. The goal of this study was to determine how individuals regulate impulse generation when initiating piqué turns with increased rotational demands. Skilled dancers (n=10) performed single (∼360°) and double (∼720°) piqué turns from a stationary position. Linear and angular impulse generated by the push and turn legs were quantified using ground reaction forces and compared across turn conditions as a group and within a dancer using probability-based statistical methods. The results indicate that as the rotation demands of the piqué turn increased, the net angular impulse generated increased whereas net lateral impulse decreased. Early during turn initiation, the free moment contributed to angular impulse generation. Later during turn initiation, horizontal reaction forces were controlled to generate angular impulse. As rotational demands increased, the moment applied increased primarily from redirection of the horizontal reaction force (RFh) at the push leg and a combination of RFh magnitude and moment arm increases at the turn leg. RFh at each leg were coordinated to limit unwanted net linear impulse. Knowledge of observed subject-specific mechanisms is important to inform the design of turning performance training tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

    NASA Astrophysics Data System (ADS)

    Feonychev, A. I.

    It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of thermal gravitational and thermocapillary convection with secondary flow created by rotating magnetic field, the pulsating oscillations had been also discovered. High-frequency oscillations, with frequencies are usual for oscillatory thermocapillary convection, are modulated by low-frequency oscillation. The latter has frequency is less than the first one by a factor of 10 and more and amplitude can be comparable to amplitude of high-frequency oscillations. Mathematical model of fluid rotating by the action of magnetic field gives an instrument for study of different hydrodynamic problems. Some geophysical problems connected with flow of rotating fluid had been considered in /5/. References 1. Feonychev A.I., Dolgikh G.A. Cosmic Research. 2001. Vol. 39. N 4, pp. 390-399 (translated from Kosmicheskie Issledovaniya). 2. Feonychev A.I. Cosmic Research. 2004 (in press, in Russia). 3. Feonychev A.I., Dolgikh G.A. IX Europ. Symp.'' Gravity-Dependent Phenomena in Physical Science''. Berlin. 1995. Abstracts. P. 246. 4. Feonychev A.I., Bondareva N.V. 2004. Vol. 77. N 2 (translated from Inzhinerno-Physicheskyi zhurnal). 5. Feonychev A.I., Bondareva N.V. Laminar and turbulent flows in homogeneous and stratified rotating fluid. 27th General Assembly of the European Geophysical Society. Nice. France. April 21-26. 2002. Abstract EGS02 -- A -- 01226.

  12. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  13. The Evolution of Massive Close Binaries: Anomalous Relationship between Nitrogen Abundances and Rotational Velocities

    NASA Astrophysics Data System (ADS)

    Song, Hanfeng; Wang, Jiangtao; Song, Fen; Zhang, Ruiyu; Li, Zhi; Peng, Weiguo; Zhan, Qiong; Jing, Jianghong

    2018-05-01

    The combined effects of rotation and mass accretion on the evolution of binary systems are investigated in this work. Rotational binaries provide us with a promising channel that could explain the abnormal phenomenon of the nitrogen abundances in Groups 1 and 2 of the Galactic Hunter diagram. Group 1 contains fast-rotating but nitrogen-unenriched stars, whereas Group 2 includes apparently slowly rotating but nitrogen-enhanced stars. The donor star suffers from heavy mass loss that progressively exposes deep layers of nitrogen and corresponding angular momentum loss that can efficiently spin the star down. Rapid-rotation stars without nitrogen enrichment may be related to mass gainers that had accreted little matter from a close companion and then been spun up to rapid rotation. Nitrogen enrichment of mass gainers can be greatly suppressed by low accreting efficiency, which is induced by critical rotation, thermohaline mixing, and the gradient of mean molecular weight. Nitrogen enrichment due to mass accretion appears to be more efficient than that due to rotational mixing, because there exist thermohaline instabilities during Roche lobe overflow. The mixing in the enlarged convective core reduces carbon and nitrogen abundances but increases oxygen abundances in mass gainers. This process significantly triggers CNO cycling but does not support CN cycling. The orbital separation can be widened because of the nonconservative mass transfer, and this process gives rise to weak tidal torques. Therefore, invoking binaries has the potential to simultaneously explain the observed stars in Groups 1 and 2 of the Galactic Hunter diagram.

  14. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  15. Automated medical resident rotation and shift scheduling to ensure quality resident education and patient care.

    PubMed

    Smalley, Hannah K; Keskinocak, Pinar

    2016-03-01

    At academic teaching hospitals around the country, the majority of clinical care is provided by resident physicians. During their training, medical residents often rotate through various hospitals and/or medical services to maximize their education. Depending on the size of the training program, manually constructing such a rotation schedule can be cumbersome and time consuming. Further, rules governing allowable duty hours for residents have grown more restrictive in recent years (ACGME 2011), making day-to-day shift scheduling of residents more difficult (Connors et al., J Thorac Cardiovasc Surg 137:710-713, 2009; McCoy et al., May Clin Proc 86(3):192, 2011; Willis et al., J Surg Edu 66(4):216-221, 2009). These rules limit lengths of duty periods, allowable duty hours in a week, and rest periods, to name a few. In this paper, we present two integer programming models (IPs) with the goals of (1) creating feasible assignments of residents to rotations over a one-year period, and (2) constructing night and weekend call-shift schedules for the individual rotations. These models capture various duty-hour rules and constraints, provide the ability to test multiple what-if scenarios, and largely automate the process of schedule generation, solving these scheduling problems more effectively and efficiently compared to manual methods. Applying our models on data from a surgical residency program, we highlight the infeasibilities created by increased duty-hour restrictions placed on residents in conjunction with current scheduling paradigms.

  16. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  17. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  18. Technical Note: Comparison of first- and second-generation photon-counting slit-scanning tomosynthesis systems.

    PubMed

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.

  19. [Effects of strip planting and fallow rotation on the soil and water loss and water use efficiency of slope farmland].

    PubMed

    Hou, Xian-Qing; Li, Rong; Han, Qing-Fang; Jia, Zhi-Kuan; Wang, Wei; Yan, Bo; Yang, Bao-Ping

    2012-08-01

    In order to enhance the soil water-retaining capacity of slope farmland and reduce its soil and water loss, a field study was conducted in 2007-2010 to examine the effects of strip planting and fallow rotation on the soil water regime, soil and water loss characteristics, and water use efficiency of a 10 degrees-15 degrees slope farmland in the arid area of southern Ningxia, Northwest China. Compared with the traditional no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer significantly, with an increment of 4.9% -7.0%. Strip planting and fallow rotation pattern could also effectively conserve the soil water in rain season, and obviously improve the soil water regime at crops early growth stages. As compared to no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer by 5.4%-8.5%, decreased the surface runoff by 0.7-3.2 m3 x hm(-2), sediment runoff by 0.2-1.9 t x hm(-2), and soil total N loss by 42.1% -73.3%, while improved the crop water use efficiency by 6.1% -24.9% and the precipitation use efficiency by 6.3% -15.3%.

  20. Development of advanced generator of singlet oxygen for a COIL

    NASA Astrophysics Data System (ADS)

    Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Hrubý, Jan

    2006-05-01

    The generator of singlet oxygen (SOG) remains still a challenge for a chemical oxygen-iodine laser (COIL). Hitherto, only chemical generators based on the gas-liquid reaction system (chlorine-basic hydrogen peroxide) can supply singlet oxygen, O II(1Δ), in enough high yields and at pressures to maintain operation of the high power supersonic COIL facilities. Employing conventional generators of jet-type or rotating disc-type makes often problems resulting mainly from liquid droplets entrained by an O II (1Δ) stream into the laser cavity, and a limited scalability of these generators. Advanced generator concepts investigated currently are based on two different approaches: (i)O II(1Δ) generation by the electrical discharge in various configurations, eliminating thus a liquid chemistry, and (ii) O II(1Δ) generation by the conventional chemistry in novel configurations offering the SOG efficiency increase and eliminating drawbacks of existing devices. One of the advanced concepts of chemical generator - a spray SOG with centrifugal separation of gasliquid phases - has been proposed and investigated in our laboratory. In this paper we present a description of the generator principle, some essential results of theoretical estimations, and interim experimental results obtained with the spray SOG.

  1. Passive magnetic bearing for a motor-generator

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2006-07-18

    Conductive lap windings are interleaved with conventional loops in the stator of a motor-generator. The rotor provides magnetic induction lines that, when rotated, cut across the lap windings and the loops. When the rotor is laterally displaced from its equilibrium axis of rotation, its magnetic lines of induction induce a current in the interleaved lap windings. The induced current interacts with the magnetic lines of induction of the rotor in accordance with Lenz's law to generate a radial force that returns the rotor to its equilibrium axis of rotation.

  2. A study of flow past an airfoil with a jet issuing from its lower surface

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1984-01-01

    The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.

  3. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    NASA Astrophysics Data System (ADS)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  4. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less

  5. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2012-03-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present study suggests that manipulating the angle of attack during a flapping cycle is the most effective way to control the aerodynamic forces and corresponding power expenditure for a dragonfly-like inclined flapping wing.

  6. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  7. Evaluation of stator core loss of high speed motor by using thermography camera

    NASA Astrophysics Data System (ADS)

    Sato, Takeru; Enokizono, Masato

    2018-04-01

    In order to design a high-efficiency motor, the iron loss that is generated in the motor should be reduced. The iron loss of the motor is generated in a stator core that is produced with an electrical steel sheet. The iron loss characteristics of the stator core and the electrical steel sheet are agreed due to a building factor. To evaluate the iron loss of the motor, the iron loss of the stator core should be measured more accurately. Thus, we proposed the method of the iron loss evaluation of the stator core by using a stator model core. This stator model core has been applied to the surface mounted permanent magnet (PM) motors without windings. By rotate the permanent magnet rotor, the rotating magnetic field is generated in the stator core like a motor under driving. To evaluate the iron loss of the stator model core, the iron loss of the stator core can be evaluated. Also, the iron loss can be calculated by a temperature gradient. When the temperature gradient is measured by using thermography camera, the iron loss of entire stator core can be evaluated as the iron loss distribution. In this paper, the usefulness of the iron loss evaluation method by using the stator model core is shown by the simulation with FEM and the heat measurement with thermography camera.

  8. Role of the DELSEED Loop in Torque Transmission of F1-ATPase

    PubMed Central

    Tanigawara, Mizue; Tabata, Kazuhito V.; Ito, Yuko; Ito, Jotaro; Watanabe, Rikiya; Ueno, Hiroshi; Ikeguchi, Mitsunori; Noji, Hiroyuki

    2012-01-01

    F1-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ—termed the DELSEED loop—is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F1, suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F1, whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α3β3-stator ring of the glycine mutant than in the wild-type F1 and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions. PMID:23009846

  9. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  10. On the experimental prediction of the stability threshold speed caused by rotating damping

    NASA Astrophysics Data System (ADS)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  11. Multiscale Analysis of Rapidly Rotating Dynamo Simulations

    NASA Astrophysics Data System (ADS)

    Orvedahl, R.; Calkins, M. A.; Featherstone, N. A.

    2017-12-01

    The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek=ν /Ω L2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.

  12. JPRS Report, East Europe.

    DTIC Science & Technology

    1987-12-18

    and the specialized institutions would make the contra-plans. Thus, the Ministry of Finance would work out the financial contra-plan, the Ministry...The financial system then is in bad condition, and the institutional incompetence additionally complicates the electronics enterprises’ situation...life. He has in him something of Prince Mishkin and he seems to follow in the footsteps of Alyosha Karamazov. Terrified by the scourge of drugs, he

  13. Thirty-Seven Years of the Contra Costa Community College District Governing Board's Minutes in Historical Context. An Abstract.

    ERIC Educational Resources Information Center

    Drexel, Karl O., Ed.; And Others

    This compilation of highly condensed abstracts of the minutes of governing board meetings chronicles the 37-year history of the Contra Costa Community College District (CCCCD) from 1949 to 1986. First, introductory material describes the context and the character of the opening years of the district, and lists the previous and current members of…

  14. Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration

    2016-11-01

    Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.

  15. Trajectory generation for an on-road autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  16. Multiplexed Energy Coupler for Rotating Equipment

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang

    2011-01-01

    A multiplexing antenna assembly can efficiently couple AC signal/energy into, or out of, rotating equipment. The unit only passes AC energy while blocking DC energy. Concentric tubes that are sliced into multiple pieces are assembled together so that, when a piece from an outer tube aligns well with an inner tube piece, efficient energy coupling is achieved through a capacitive scheme. With N outer pieces and M inner pieces, an effective N x M combination can be achieved in a multiplexed manner. The energy coupler is non-contact, which is useful if isolation from rotating and stationary parts is required. Additionally, the innovation can operate in high temperatures. Applications include rotating structure sensing, non-contact energy transmission, etc.

  17. Motor/generator

    DOEpatents

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  18. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    PubMed Central

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  19. Non invasive sensors for monitoring the efficiency of AC electrical rotating machines.

    PubMed

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer.

  20. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  1. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  2. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  3. Developmental Changes in the Effect of Active Left and Right Head Rotation on Random Number Generation

    PubMed Central

    Sosson, Charlotte; Georges, Carrie; Guillaume, Mathieu; Schuller, Anne-Marie; Schiltz, Christine

    2018-01-01

    Numbers are thought to be spatially organized along a left-to-right horizontal axis with small/large numbers on its left/right respectively. Behavioral evidence for this mental number line (MNL) comes from studies showing that the reallocation of spatial attention by active left/right head rotation facilitated the generation of small/large numbers respectively. While spatial biases in random number generation (RNG) during active movement are well established in adults, comparable evidence in children is lacking and it remains unclear whether and how children’s access to the MNL is affected by active head rotation. To get a better understanding of the development of embodied number processing, we investigated the effect of active head rotation on the mean of generated numbers as well as the mean difference between each number and its immediately preceding response (the first order difference; FOD) not only in adults (n = 24), but also in 7- to 11-year-old elementary school children (n = 70). Since the sign and absolute value of FODs carry distinct information regarding spatial attention shifts along the MNL, namely their direction (left/right) and size (narrow/wide) respectively, we additionally assessed the influence of rotation on the total of negative and positive FODs regardless of their numerical values as well as on their absolute values. In line with previous studies, adults produced on average smaller numbers and generated smaller mean FODs during left than right rotation. More concretely, they produced more negative/positive FODs during left/right rotation respectively and the size of negative FODs was larger (in terms of absolute value) during left than right rotation. Importantly, as opposed to adults, no significant differences in RNG between left and right head rotations were observed in children. Potential explanations for such age-related changes in the effect of active head rotation on RNG are discussed. Altogether, the present study confirms that numerical processing is spatially grounded in adults and suggests that its embodied aspect undergoes significant developmental changes. PMID:29541048

  4. System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object

    NASA Astrophysics Data System (ADS)

    Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab

    2017-02-01

    In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.

  5. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOEpatents

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  6. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOEpatents

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2011-11-15

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  7. Effects of reset stators and a rotating, grooved stator hub on performance of a 1.92-pressure-ratio compressor stage

    NASA Technical Reports Server (NTRS)

    Lewis, G. W., Jr.; Urasek, D. C.; Reid, L.

    1977-01-01

    The overall performance and blade-element performance of a transonic fan stage are presented for two modified test configurations and are compared with the unmodified stage. Tests were conducted with reset stators 2 deg open and reset stators with a rotating grooved stator hub. Detailed radial and circumferential (behind stator) surveys of the flow conditions were made over the stable operating range at rotative speeds of 70, 90, and 100 percent of design speed. Reset stator blade tests indicated a small increase in stage efficiency, pressure ratio, and maximum weight flow at each speed. Performance with reset stators and a rotating, grooved stator hub resulted in an additional increase in stage efficiency and pressure ratio at all speeds. The rotating grooved stator hub reduced hub losses considerably.

  8. Rotational control of computer generated holograms.

    PubMed

    Preece, Daryl; Rubinsztein-Dunlop, Halina

    2017-11-15

    We develop a basis for three-dimensional rotation of arbitrary light fields created by computer generated holograms. By adding an extra phase function into the kinoform, any light field or holographic image can be tilted in the focal plane with minimized distortion. We present two different approaches to rotate an arbitrary hologram: the Scheimpflug method and a novel coordinate transformation method. Experimental results are presented to demonstrate the validity of both proposed methods.

  9. Investigation of compressible vortex flow characteristics

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1977-01-01

    The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.

  10. Digital database of microfossil localities in Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    McDougall, Kristin; Block, Debra L.

    2014-01-01

    The eastern San Francisco Bay region (Contra Costa and Alameda Counties, California) is a geologically complex area divided by faults into a suite of tectonic blocks. Each block contains a unique stratigraphic sequence of Tertiary sediments that in most blocks unconformably overlie Mesozoic sediments. Age and environmental interpretations based on analysis of microfossil assemblages are key factors in interpreting geologic history, structure, and correlation of each block. Much of this data, however, is distributed in unpublished internal reports and memos, and is generally unavailable to the geologic community. In this report the U.S. Geological Survey microfossil data from the Tertiary sediments of Alameda and Contra Costa counties are analyzed and presented in a digital database, which provides a user-friendly summary of the micropaleontologic data, locality information, and biostratigraphic and ecologic interpretations.

  11. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice.

    PubMed

    Shirasawa, Hideyuki; Matsumura, Noboru; Shimoda, Masayuki; Oki, Satoshi; Yoda, Masaki; Tohmonda, Takahide; Kanai, Yae; Matsumoto, Morio; Nakamura, Masaya; Horiuchi, Keisuke

    2017-01-31

    Fatty infiltration in muscle is often observed in patients with sizable rotator cuff tear (RCT) and is thought to be an irreversible event that significantly compromises muscle plasticity and contraction strength. These changes in the mechanical properties of the affected muscle render surgical repair of RCT highly formidable. Therefore, it is important to learn more about the pathology of fatty infiltration to prevent this undesired condition. In the present study, we aimed to generate a mouse model that can reliably recapitulate some of the important characteristics of muscular fatty infiltration after RCT in humans. We found that fatty infiltration can be efficiently induced by a combination of the following procedures: denervation of the suprascapular nerve, transection of the rotator cuff tendon, and resection of the humeral head. Using this model, we found that platelet-derived growth factor receptor-α (PDGFRα)-positive mesenchymal stem cells are induced after this intervention and that inhibition of PDGFR signaling by imatinib treatment can significantly suppress fatty infiltration. Taken together, the present study presents a reliable fatty infiltration mouse model and suggests a key role for PDGFRα-positive mesenchymal stem cells in the process of fatty infiltration after RCT in humans.

  12. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice

    PubMed Central

    Shirasawa, Hideyuki; Matsumura, Noboru; Shimoda, Masayuki; Oki, Satoshi; Yoda, Masaki; Tohmonda, Takahide; Kanai, Yae; Matsumoto, Morio; Nakamura, Masaya; Horiuchi, Keisuke

    2017-01-01

    Fatty infiltration in muscle is often observed in patients with sizable rotator cuff tear (RCT) and is thought to be an irreversible event that significantly compromises muscle plasticity and contraction strength. These changes in the mechanical properties of the affected muscle render surgical repair of RCT highly formidable. Therefore, it is important to learn more about the pathology of fatty infiltration to prevent this undesired condition. In the present study, we aimed to generate a mouse model that can reliably recapitulate some of the important characteristics of muscular fatty infiltration after RCT in humans. We found that fatty infiltration can be efficiently induced by a combination of the following procedures: denervation of the suprascapular nerve, transection of the rotator cuff tendon, and resection of the humeral head. Using this model, we found that platelet-derived growth factor receptor-α (PDGFRα)-positive mesenchymal stem cells are induced after this intervention and that inhibition of PDGFR signaling by imatinib treatment can significantly suppress fatty infiltration. Taken together, the present study presents a reliable fatty infiltration mouse model and suggests a key role for PDGFRα-positive mesenchymal stem cells in the process of fatty infiltration after RCT in humans. PMID:28139720

  13. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Spacecraft Rotating Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The ISS utilizes two large rotating mechanisms, the SARJ, as part of the solar arrays alignment system for more efficient power generation. The SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2008, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) of one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately was ultimately successful in recovering the functionality of the starboard SARJ. The M&P function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  14. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  15. Environmental Assessment for a Security Forces Armory/Combat Arms Facility

    DTIC Science & Technology

    2005-03-21

    tener), Contra Costa goldfields (Lasthenia conjugens), and the San Joaquin spearscale (Atriplex joaquiniana) – that are listed by the California Native...Plant Society as rare. The akali milkvetch and the San Joaquin spearscale are also listed as federal species of concern (Travis AFB, 2002a). The...following federally listed species have been identified at Travis AFB: • Contra Costa goldfields (Lasthenia conjugens), a federally endangered plant

  16. [The use of triptan in ambulatory medicine in Midi-Pyrénées Region: clinical and pharmacological contra-indications and drug abuse].

    PubMed

    Roussel, Henri; Lo Re, Geneviève; Honorat, Christian; Alonso, Michèle; Sciortino, Vincent

    2006-01-01

    Evaluate triptan prescriptions in ambulatory medicine. Collection of medical data from 301 patients treated with triptans reimbursed by the French National Health Fund in the region of Midi-Pyrenees. Ninety-five per cent of selected patients suffered from migraine condition according to the International Headache Society diagnosis criteria [Confidence interval (CI) 95%: 93-98]. Co-morbidity factors contra-indicating triptan therapy were present in 6% of patients (CI 95%: 3-9). 2% of patients were prescribed other medicinal products contra-indicated with their triptan therapy (CI 95%: 0-4). Twenty-six per cent of patients were taking triptan medicines more than 8 times per month over a period of three months (CI 95%: 21-31) and 8% were taking this treatment more than 12 times per month (CI 95%: 5-1 I). Eleven per cent kept written information of their migraine crises (CI 95%: 7-15). Thirty-nine per cent benefited from dedicated prophylactic treatments (CI 95%: 33-45). In a context of sustained increase in prescriptions of migraine treatments, it appears necessary to remain cautious about clinical and pharmacological contra-indications. Prevention of abuse of medicines is based on a better use of crises agendas and introduction of prophylactic therapies.

  17. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H 2O 2

    DOE PAGES

    Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...

    2017-03-01

    The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less

  18. Rotational periods and other parameters of magnetars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    2006-05-01

    The rotational periods P, period derivatives dP/dt, and magnetic fields B in the region where the emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) is generated are calculated using a model that associates the emission of these objects with the existence of drift waves at the periphery of the magnetosphere of a neutron star. The values obtained for these parameters are P = 11-737 ms, dP/dt = 3.7 × 10-16-5.5 × 10-12, and log B (G) = 2.63-6.25. We find a dependence between the X-ray luminosity of AXPs and SGRs, L x, and the rate at which they lose rotational energy, dE/dt, which is similar to the L x(dE/dt) dependence for radio pulsars with detected X-ray emission. Within the errors, AXPs/SGRs and radio pulsars with short periods (P < 0.1 s) display the same slopes for their log(dP/dt)-log P relations and for the dependence of the efficiency of their transformation of rotational energy into radiation on their periods. A dipole model is used to calculate the surface magnetic fields of the neutron stars in AXPs and SGRs, which turn out to be, on average, comparable to the surface fields of normal radio pulsars ( = 11.90).

  19. Rates of inbreeding and genetic adaptation for populations managed as herds in zoos with a rotational mating system or with optimized contribution of parents.

    PubMed

    Mucha, S; Komen, H

    2016-08-01

    This study compares two genetic management scenarios for species kept in herds, such as deer. The simulations were designed so that their results can be extended to a wide range of zoo populations. In the first scenario, the simulated populations of size 3 × 20, 6 × 40 or 20 × 60 (herds × animals in herd) were managed with a rotational mating (RM) scheme in which 10%, 20% or 50% of males were selected for breeding and moved between herds in a circular fashion. The second scenario was based on optimal contribution theory (OC). OC requires an accurate pedigree to calculate kinship; males were selected and assigned numbers of offspring to minimize kinship in the next generation. RM was efficient in restriction of inbreeding and produced results comparable with OC. However, RM can result in genetic adaptation of the population to the zoo environment, in particular when 20% or less males are selected for rotation and selection of animals is not random. Lowest rates of inbreeding were obtained by combining OC with rotation of males as in the RM scheme. RM is easy to implement in practice and does not require pedigree data. When full pedigree is available, OC management is preferable. © 2015 Blackwell Verlag GmbH.

  20. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  1. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number

    PubMed Central

    Guo, S.

    2018-01-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsive efficiency-ηp, and efficiency for producing lift-Pf) of the wing are optimized at Strouhal number (St) between 0.1 and 0.5 for a range of wing pitch angles (upstroke angle of attack αu less than 45°); the St for high Pf (St = 0.1 ∼ 0.3) is generally lower than for high ηp (St = 0.2 ∼ 0.5), while the St for equilibrium rotation states lies between the two. Further systematic calculations show that the natural equilibrium of the passive rotating wing automatically converges to high-efficiency states: above 85% of maximum Pf can be obtained for a wide range of prescribed wing kinematics. This study provides insight into the aerodynamic efficiency of biological flyers in cruising flight, as well as practical applications for micro air vehicle design. PMID:29657749

  2. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  3. Application of Theodorsen's Theory to Propeller Design

    NASA Technical Reports Server (NTRS)

    Crigler, John L

    1948-01-01

    A theoretical analysis is presented for obtaining by use of Theodorsen's propeller theory the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition.The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.

  4. Application of Theodorsen's theory to propeller design

    NASA Technical Reports Server (NTRS)

    Crigler, John L

    1949-01-01

    A theoretical analysis is presented for obtaining, by use of Theodorsen's propeller theory, the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition. The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.

  5. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-01

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  6. Dynamic Torque and Vertical Force Analysis during Nickel-titanium Rotary Root Canal Preparation with Different Modes of Reciprocal Rotation.

    PubMed

    Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi

    2017-10-01

    The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P < .05). The maximum torque values in clockwise and counterclockwise directions in groups TqR and TmR were significantly smaller than those in group CR (P < .05). Under the present experimental conditions using TF Adaptive instruments, both torque-sensitive and time-dependent reciprocal rotation generated significantly lower maximum torque and may have advantages in reducing stress generation caused by screw-in forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  8. Magnetostrictive energy generator for harvesting the rotation of human knee joint

    NASA Astrophysics Data System (ADS)

    Yan, Baiping; Zhang, Chengming; Li, Liyi

    2018-05-01

    This paper presents the design and fabrication of a rotary-impact magnetostrictive energy generator, used to harvest the rotation of human knee joint. The harvester consists of twelve movable Terfenol-D rods, surrounded by the picked up coils respectively, and alternate permanent magnet (PM) array sandwiched in each part of the shell. Rotational electromagnetic power generating effect and impacted magnetostrictive power generating effect are designed in the harvester. Modeling and simulation are used to validate the concept. Then, magnetic field and leakage of the harvester are analyzed, electromagnetic force in the harvester is simulated. A prototype of harvester is fabricated, and subjected to the experimental characterization. It can be concluded that huge induced voltage generated in the short-time impact situation and that induced voltage in the harvester can reach up to 60-80 volts at 0.91Hz low frequency rotation. Also, the presented harvester has good harvesting effects at low frequency human walking and periodic swing crus situation, which are suitable to be used for future researches of wearable knee joint applications.

  9. Design and aero-acoustic analysis of a counter-rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Agrawal, Vineesh V.

    Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.

  10. Energy flux determines magnetic field strength of planets and stars.

    PubMed

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  11. Magnetization-induced second- and third-harmonic generation in transparent magnetic films

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-Ichi; Shimura, Jusuke; Ikeda, Katsuyoshi; Hashimoto, Kazuhito

    2005-01-01

    We describe the magnetization-induced second-harmonic (SH) generation in (FeIIxCrII1-x)1.5[CrIII(CN)6]. 7.5H2O and the magnetization-induced third-harmonic (TH) generation in Y1.5Bi1.5Fe3.8Al1.2O12 (Bi, Al:YIG). The polarization plane of a SH wave from a (FeIIxCrII1-x)1.5[CrIII(CN)6].7.5H2O film was rotated by an applied external magnetic field. This SH rotation is ascribed to the interaction between the electric polarization along the out-of-plane and spontaneous magnetizations. In particular, the magnetic linear term χijkLmagn(1) contributed to the SH rotation. Applying a longitudinal external magnetic field to a Bi,Al:YIG magnetic film rotated the polarization plane of the TH wave. This TH rotation is understood by the contribution of the magnetic term of χyxxxZmagn(1) in a third-order nonlinear optical susceptibility.

  12. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    PubMed

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  13. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  14. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  15. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  16. Efficient monitoring of the blood-stage infection in a malaria rodent model by the rotating-crystal magneto-optical method

    NASA Astrophysics Data System (ADS)

    Orbán, Ágnes; Rebelo, Maria; Molnár, Petra; Albuquerque, Inês S.; Butykai, Adam; Kézsmárki, István

    2016-03-01

    Intense research efforts have been focused on the improvement of the efficiency and sensitivity of malaria diagnostics, especially in resource-limited settings for the detection of asymptomatic infections. Our recently developed magneto-optical (MO) method allows the accurate quantification of malaria pigment crystals (hemozoin) in blood by their magnetically induced rotation. First evaluations of the method using β-hematin crystals and in vitro P. falciparum cultures implied its potential for high-sensitivity malaria diagnosis. To further investigate this potential, here we study the performance of the method in monitoring the in vivo onset and progression of the blood-stage infection in a rodent malaria model. Our results show that the MO method can detect the first generation of intraerythrocytic P. berghei parasites 66-76 hours after sporozoite injection, demonstrating similar sensitivity to Giesma-stained light microscopy and exceeding that of flow cytometric techniques. Magneto-optical measurements performed during and after the treatment of P. berghei infections revealed that both the follow up under treatment and the detection of later reinfections are feasible with this new technique. The present study demonstrates that the MO method - besides being label and reagent-free, automated and rapid - has a high in vivo sensitivity and is ready for in-field evaluation.

  17. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    PubMed

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  18. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    PubMed

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  19. On generation and evolution of seaward propagating internal solitary waves in the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Jiexin; Chen, Zhiwu; Xie, Jieshuo; Cai, Shuqun

    2016-03-01

    In this paper, the generation and evolution of seaward propagating internal solitary waves (ISWs) detected by satellite image in the northwestern South China Sea (SCS) are investigated by a fully nonlinear, non-hydrostatic, three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm). The three-dimensional (3D) modeled ISWs agree favorably with those by satellite image, indicating that the observed seaward propagating ISWs may be generated by the interaction of barotropic tidal flow with the arc-like continental slope south of Hainan Island. Though the tidal current is basically in east-west direction, different types of internal waves are generated by tidal currents flowing over the slopes with different shaped shorelines. Over the slope where the shoreline is straight, only weak internal tides are generated; over the slope where the shoreline is seaward concave, large-amplitude internal bores are generated, and since the concave isobaths of the arc-like continental slope tend to focus the baroclinic tidal energy which is conveyed to the internal bores, the internal bores can efficiently disintegrate into a train of rank-ordered ISWs during their propagation away from the slope; while over the slope where the shoreline is seaward convex, no distinct internal tides are generated. It is also implied that the internal waves over the slope are generated due to mixed lee wave mechanism. Furthermore, the effects of 3D model, continental slope curvature, stratification, rotation and tidal forcing on the generation of ISWs are discussed, respectively. It is shown that, the amplitude and phase speed of ISWs derived from a two-dimensional (2D) model are smaller than those from the 3D one, and the 3D model has an advantage over 2D one in simulating the ISWs generated by the interaction between tidal currents and 3D curved continental slope; the reduced continental slope curvature hinders the extension of ISW crestline; both weaker stratification and rotation suppress the generation of ISWs; and the width of ISW crestline generated by K1 tidal harmonic is longer than that by M2 tidal harmonic.

  20. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    PubMed

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  1. Final report of the independent counsel for Iran/Contra matters. Volume 2: Indictments, plea agreements, interim reports to the congress, and administrative matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, L.E.

    1993-08-04

    In October and November 1986, two secret U.S. Government operations were publicly exposed, potentially implicating Reagan Administration officials in illegal activities. These operations were the provision of assistance to the military activities of the Nicaraguan contra rebels during an October 1984 to October 1986 prohibition on such aid, and the sale of U.S. arms to Iran in contravention of stated U.S. policy and in possible violation of arms-export controls. In late November 1986, Reagan Administration officials announced that some of the proceeds from the sale of U.S. arms to Iran had been diverted to the contras. As a result, Attorneymore » General Edwin Meese III sought the appointment of an independent counsel to investigate and prosecute possible crimes. Volume II contains indictments, plea agreements, interim reports to Congress and administrative matters from that investigation.« less

  2. Final report of the independent counsel for Iran/Contra matters. Volume 1: Investigations and prosecutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, L.E.

    1993-08-04

    In October and November 1986, two secret U.S. Government operations were publicly exposed, potentially implicating Reagan Administration officials in illegal activities. These operations were the provision of assistance to the military activities of the Nicaraguan contra rebels during an October 1984 to October 1986 prohibition on such aid, and the sale of U.S. arms to Iran in contravention of stated U.S. policy and in possible violation of arms-export controls. In late November 1986, Reagan Administration officials announced that some of the proceeds from the sale of U.S. arms to Iran had been diverted to the contras. As a result ofmore » the exposure of these operations, Attorney General Edwin Meese III sought the appointment of an independent counsel to investigate and, if necessary, prosecute possible crimes arising from them. This is the final report of that investigation.« less

  3. Multiscale Analysis of Rapidly Rotating Dynamo Simulations

    NASA Astrophysics Data System (ADS)

    Orvedahl, Ryan; Calkins, Michael; Featherstone, Nicholas

    2017-11-01

    The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek = ν / ΩL2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.

  4. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  5. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE PAGES

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen; ...

    2018-01-05

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  6. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  7. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids

    NASA Astrophysics Data System (ADS)

    Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun

    2017-07-01

    Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.

  8. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  9. Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes.

    PubMed

    Zeng, Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun, Wenbing

    2008-05-01

    Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 murad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.

  10. Particle motion and Penrose processes around rotating regular black hole

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.

  11. Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject.

    PubMed

    Guillaud, Etienne; Simoneau, Martin; Blouin, Jean

    2011-06-01

    Reaching for a target while rotating the trunk generates substantial Coriolis and centrifugal torques that push the arm in the opposite direction of the rotations. These torques rarely perturb movement accuracy, suggesting that they are compensated for during the movement. Here we tested whether signals generated during body motion (e.g., vestibular) can be used to predict the torques induced by the body rotation and to modify the motor commands accordingly. We asked a deafferented subject to reach for a memorized visual target in darkness. At the onset of the reaching, the patient was rotated 25° or 40° in the clockwise or the counterclockwise directions. During the rotation, the patient's head remained either fixed in space (Head-Fixed condition) or fixed on the trunk (Head Rotation condition). At the rotation onset, the deafferented patient's hand largely deviated from the mid-sagittal plane in both conditions. The hand deviations were compensated for in the Head Rotation condition only. These results highlight the computational faculty of the brain and show that body rotation-related information can be processed for predicting the consequence of the rotation dynamics on the reaching arm movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques

    NASA Technical Reports Server (NTRS)

    Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.

    2003-01-01

    When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to < or =1.8 g (1 g = 9.81 m/s(2)) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.

  13. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.

    PubMed

    Pigeon, Pascale; Bortolami, Simone B; DiZio, Paul; Lackner, James R

    2003-01-01

    When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to < or =1.8 g (1 g = 9.81 m/s(2)) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.

  14. Novel Spiral-Like Electrode Structure Design for Realization of Two Modes of Energy Harvesting.

    PubMed

    Chen, Lin; Guo, Hengyu; Xia, Xiaona; Liu, Guanlin; Shi, Haofei; Wang, Mingjun; Xi, Yi; Hu, Chenguo

    2015-08-05

    A planar spiral-like electrodes (PSE) based triboelectric generator has been designed for harvesting rotary mechanical energy to translate into electricity. The performance of the PSE-triboelectric generator with different cycles of spiral-like electrode strip at different rotating speeds is investigated, which demonstrates the open-circuit voltage and short-circuit current of 470 V and 9.0 μA at rotating speed of 500 r/min with three cycles. In addition, a novel coaxially integrated multilayered PSE-triboelectric generator is built, which can enhance the output of the power effectively. The short-circuit current, the open-circuit voltage, and output power reach to 41.55 μA, 500 V, and 11.73 mW, respectively, at rotating speed of 700 r/min. The output power of the multilayered PSE-triboelectric generator can drive 200 LEDs connected in antiparallel and charge a 110 μF commercial capacitor to 6 V in 23 s. Besides, due to the spiral-like electrode structure, the PSE-generator can work simultaneously in the modes of triboelectricity and electromagnetic induced electricity by sticking a small magnet on the rotating disk. The electromagnetic induced output power reaches to 21 μW at a loading resistance of 2 Ω at a rotating rate of 200 r/min. The spiral-like electrode structure not only broadens the electrode structure design but also adds a new function to the electrode.

  15. Comparison of the benefits of cochlear implantation versus contra-lateral routing of signal hearing aids in adult patients with single-sided deafness: study protocol for a prospective within-subject longitudinal trial.

    PubMed

    Kitterick, Pádraig T; O'Donoghue, Gerard M; Edmondson-Jones, Mark; Marshall, Andrew; Jeffs, Ellen; Craddock, Louise; Riley, Alison; Green, Kevin; O'Driscoll, Martin; Jiang, Dan; Nunn, Terry; Saeed, Shakeel; Aleksy, Wanda; Seeber, Bernhard U

    2014-01-01

    Individuals with a unilateral severe-to-profound hearing loss, or single-sided deafness, report difficulty with listening in many everyday situations despite having access to well-preserved acoustic hearing in one ear. The standard of care for single-sided deafness available on the UK National Health Service is a contra-lateral routing of signals hearing aid which transfers sounds from the impaired ear to the non-impaired ear. This hearing aid has been found to improve speech understanding in noise when the signal-to-noise ratio is more favourable at the impaired ear than the non-impaired ear. However, the indiscriminate routing of signals to a single ear can have detrimental effects when interfering sounds are located on the side of the impaired ear. Recent published evidence has suggested that cochlear implantation in individuals with a single-sided deafness can restore access to the binaural cues which underpin the ability to localise sounds and segregate speech from other interfering sounds. The current trial was designed to assess the efficacy of cochlear implantation compared to a contra-lateral routing of signals hearing aid in restoring binaural hearing in adults with acquired single-sided deafness. Patients are assessed at baseline and after receiving a contra-lateral routing of signals hearing aid. A cochlear implant is then provided to those patients who do not receive sufficient benefit from the hearing aid. This within-subject longitudinal design reflects the expected care pathway should cochlear implantation be provided for single-sided deafness on the UK National Health Service. The primary endpoints are measures of binaural hearing at baseline, after provision of a contra-lateral routing of signals hearing aid, and after cochlear implantation. Binaural hearing is assessed in terms of the accuracy with which sounds are localised and speech is perceived in background noise. The trial is also designed to measure the impact of the interventions on hearing- and health-related quality of life. This multi-centre trial was designed to provide evidence for the efficacy of cochlear implantation compared to the contra-lateral routing of signals. A purpose-built sound presentation system and established measurement techniques will provide reliable and precise measures of binaural hearing. Current Controlled Trials http://www.controlled-trials.com/ISRCTN33301739 (05/JUL/2013).

  16. Using community participation to assess acceptability of "Contra Caries", a theory-based, promotora-led oral health education program for rural Latino parents: a mixed methods study.

    PubMed

    Hoeft, Kristin S; Rios, Sarah M; Pantoja Guzman, Estela; Barker, Judith C

    2015-09-03

    Latino children experience more prevalent and severe tooth decay than non-Hispanic white and non-Hispanic black children. Few theory-based, evaluated and culturally appropriate interventions target parents of this vulnerable population. To fill this gap, the Contra Caries Oral Health Education Program, a theory-based, promotora-led education program for low-income, Spanish-speaking parents of children aged 1-5 years, was developed. This article describes qualitative findings of the acceptability of curriculum content and activities, presents the process of refinement of the curriculum through engaging the target population and promotoras, and presents results from the evaluation assessing the acceptability of the curriculum once implemented. Focus groups were conducted with low-income Spanish-speaking parents of children 1-5 years living in a city in an agricultural area of California. Interviews were digitally recorded, translated and transcribed, checked for accuracy and the resulting data was thematically coded and analyzed using a social constructionist approach. The Contra Caries Oral Health Education Program was then implemented with a separate but similar sample, and after completing the program, participants were administered surveys asking about acceptability and favorite activities of the education program. Data were entered into a database, checked for accuracy, open-ended questions were categorized, and responses to close-ended questions counted. Twelve focus groups were conducted (N = 51), 105 parents attended the Contra Caries Oral Health Education Program, and 83 parents filled out surveys. Complete attendance and retention was high (89% and 90%, respectively). This study found that their children's oral health is a high priority. Parents were not only interested in, but actually attended classes focused on increasing their knowledge and skills with respect to early childhood oral health. The Contra Caries content and format was perceived as acceptable by parents. Strong opinions about curriculum content were expressed for including information on how caries starts and progresses, weaning from the bottle, oral health care for children and adults, motivational strategies for children's tooth brushing, dental visits and cavity restorations. The Contra Caries Oral Health Education Program was acceptable to low-income, Spanish-speaking parents of children 1-5 years. Participating in the curriculum development and revision process likely played an important role in the parents' high acceptability of the program.

  17. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  18. Pulsed source of ultra low energy positive muons for near-surface μSR studies

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Matsuda, Yasuyuki; Miyake, Yasuhiro; Nagamine, Kanetada; Iwasaki, Masahiko; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick; Makimura, Shunshuke

    2008-01-01

    We have produced a pulsed beam of low energy (ultra slow) polarized positive muons (LE-μ+) and performed several demonstration muon spin rotation/relaxation (μSR) experiments at ISIS RIKEN-RAL muon facility in UK. The energy of the muons implanted into a sample is tuneable between 0.1 keV and 18 keV. This allows us to use muons as local magnetic microprobes on a nanometre scale. The control over the implantation depth is from several nanometres to hundreds of nanometres depending on the sample density and muon energy. The LE-μ+ are produced by two-photon resonant laser ionization of thermal muonium atoms. Currently ∼15 LE-μ+/s with 50% spin polarization are transported to the μSR sample position, where they are focused to a small spot with a diameter of only 4 mm. The overall LE-μ+ generation efficiency of 3 × 10-5 is comparable to that obtained when moderating the muon beam to epithermal energies in simple van der Waals bound solids. In contrast to other methods of LE-μ+ generation, the implantation of the muons into the sample can be externally triggered with the duration of the LE-μ+ pulse being only 7.5 ns. This allows us to measure spin rotation frequencies of up to 40 MHz.

  19. Experimental study on optimization of curvature blade impeller pump as turbine which functioned as power plant picohydro

    NASA Astrophysics Data System (ADS)

    Himawanto, Dwi Aries; Tjahjana, D. D. D. P.; Hantarum

    2017-01-01

    Pump as turbine or PAT is an application that promises to produce small-scale electric power supply. Compared to conventional turbines, pumps have low prices and available in the market with various sizes. Therefore, PAT is suitable for hydroelectric power generation for rural areas in Indonesian. The study emphasizes experiments aimed to find the best operating point of the pump as the turbine by modifying the curvature of the pump blade. A pump with a capacity of 563.22 liters / min and a total head of 20 meters was tested in the laboratory with a radius of curvature of the blade is modified Radius 11 (backward), 13 (backward), 15 (backward), Radial, 11 (forward), 13 (forward), 15 (forward) centimeter with head from 2, 3, 4 meters and connected to a generator. The results showed that the best is 31.39% efficiency at 4.2 liters / sec and the rotation of the turbine shaft 870 rpm at the head of 4 meters. Maximum power output is 90 watts which are enough to generate electricity for a small house. The experimental results showed good results theoretically. Suggested for further modifications by using the same pump, expected better results to achieve the best efficiency point of PAT.

  20. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    PubMed

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Efficient tight focusing of laser beams optimally matched to their thin-film linear-to-radial polarization conversion: Method, implementation, and field near focus

    NASA Astrophysics Data System (ADS)

    Sedukhin, Andrey G.; Poleshchuk, Alexander G.

    2018-01-01

    A method is proposed for efficient, rotationally symmetric, tight mirror focusing of laser beams that is optimally matched to their thin-film linear-to-radial polarization conversion by a constant near-Brewster angle of incidence of the beams onto a polarizing element. Two optical systems and their modifications are considered that are based on this method and on the use of Toraldo filters. If focusing components of these systems operate in media with refractive indices equal to that of the focal region, they take the form of an axicon and an annular reflector generated by the revolution of an inclined parabola around the optical axis. Vectorial formulas for calculating the diffracted field near the focus of these systems are derived. Also presented are the results of designing a thin-film obliquely illuminated polarizer and a numerical simulation of deep UV laser beams generated by one of the systems and focused in an immersion liquid. The transverse and axial sizes of a needle longitudinally polarized field generated by the system with a simplest phase Toraldo filter were found to be 0.39 λ and 10.5 λ, with λ being the wavelength in the immersion liquid.

  2. Fatigue reduction during aggregated and distributed sequential stimulation.

    PubMed

    Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei

    2017-08-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.

  3. A high-efficiency electromechanical battery

    NASA Astrophysics Data System (ADS)

    Post, Richard F.; Fowler, T. K.; Post, Stephen F.

    1993-03-01

    In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.

  4. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China

    PubMed Central

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N.; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011–2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice (Oryza sativa L.)-oilseed rape (Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. ROx represented the N fertilizer application rates (kg ha−1) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59–71% (rice) and 109–160% (oilseed rape) during the total rotation (2011–2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha−1) followed by R02 (234.2 kg ha−1) and highest under R06 (344.5 kg ha−1) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China. PMID:27746809

  5. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China.

    PubMed

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011-2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice ( Oryza sativa L.)-oilseed rape ( Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. RO x represented the N fertilizer application rates (kg ha -1 ) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59-71% (rice) and 109-160% (oilseed rape) during the total rotation (2011-2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha -1 ) followed by R02 (234.2 kg ha -1 ) and highest under R06 (344.5 kg ha -1 ) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China.

  6. Integrated polymer polarization rotator based on tilted laser ablation

    NASA Astrophysics Data System (ADS)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide sidewalls, employing the tilted laser ablation technology, currently available at CMST. Therefore, the aforementioned simulation steps adhere fully to the respective design rules, taking into account the anticipated fabrication variations

  7. The link between mental rotation ability and basic numerical representations

    PubMed Central

    Thompson, Jacqueline M.; Nuerk, Hans-Christoph; Moeller, Korbinian; Cohen Kadosh, Roi

    2013-01-01

    Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities. PMID:23933002

  8. Mechanics of snout expansion in suction-feeding seahorses: musculoskeletal force transmission.

    PubMed

    Van Wassenbergh, Sam; Leysen, Heleen; Adriaens, Dominique; Aerts, Peter

    2013-02-01

    Seahorses and other syngnathid fishes rely on a widening of the snout to create the buccal volume increase needed to suck prey into the mouth. This snout widening is caused by abduction of the suspensoria, the long and flat bones outlining the lateral sides of the mouth cavity. However, it remains unknown how seahorses can generate a forceful abduction of the suspensoria. To understand how force is transmitted to the suspensoria via the hyoid and the lower jaw, we performed mathematical simulations with models based on computerized tomography scans of Hippocampus reidi. Our results show that the hinge joint between the left and right hyoid bars, as observed in H. reidi, allows for an efficient force transmission to the suspensorium from a wide range of hyoid angles, including the extremely retracted hyoid orientations observed in vivo for syngnathids. Apart from the hyoid retraction force by the sternohyoideus-hypaxial muscles, force generated in the opposite direction on the hyoid by the mandibulohyoid ligament also has an important contribution to suspensorium abduction torque. Forces on the lower jaw contribute only approximately 10% of the total suspensorium torque. In particular, when dynamical aspects of hyoid retraction are included in the model, a steep increase is shown in suspensorium abduction torque at highly retracted hyoid positions, when the linkages to the lower jaw counteract further hyoid rotation in the sagittal plane. A delayed strain in these linkages allows syngnathids to postpone suction generation until the end of cranial rotation, a fundamental difference from non-syngnathiform fishes.

  9. NASA Tech Briefs, July 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Thin-Film Resistance Heat-Flux Sensors Circuit Indicates that Voice-Recording Disks are Nearly Full Optical Sensing of Combustion Instabilities in Gas Turbines Topics include: Crane-Load Contact Sensor; Hexagonal and Pentagonal Fractal Multiband Antennas; Multifunctional Logic Gate Controlled by Temperature; Multifunctional Logic Gate Controlled by Supply Voltage; Power Divider for Waveforms Rich in Harmonics; SCB Quantum Computers Using iSWAP and 1-Qubit Rotations; CSAM Metrology Software Tool; Update on Rover Sequencing and Visualization Program; Selecting Data from a Star Catalog; Rotating Desk for Collaboration by Two Computer Programmers; Variable-Pressure Washer; Magnetically Attached Multifunction Maintenance Rover; Improvements in Fabrication of Sand/Binder Cores for Casting; Solid Freeform Fabrication of Composite-Material Objects; Efficient Computational Model of Hysteresis; Gauges for Highly Precise Metrology of a Compound Mirror; Improved Electrolytic Hydrogen Peroxide Generator; High-Power Fiber Lasers Using Photonic Band Gap Materials; Ontology-Driven Information Integration; Quantifying Traversability of Terrain for a Mobile Robot; More About Arc-Welding Process for Making Carbon Nanotubes; Controlling Laser Spot Size in Outer Space; or Software-Reconfigurable Processors for Spacecraft.

  10. Plasma Acceleration by Rotating Magnetic Field Method using Helicon Source

    NASA Astrophysics Data System (ADS)

    Furukawa, Takeru; Shimura, Kaichi; Kuwahara, Daisuke; Shinohara, Shunjiro

    2017-10-01

    Electrodeless plasma thrusters are very promising due to no electrode damage, leading to realize further deep space exploration. As one of the important proposals, we have been concentrating on Rotating Magnetic Field (RMF) acceleration method. High-dense plasma (up to 1013 cm-3) can be generated by using a radio frequency (rf) external antenna, and also accelerated by an antenna wound around outside of a discharge tube. In this scheme, thrust increment is achieved by the axial Lorentz force caused by non linear effects. RMF penetration condition into plasma can be more satisfied than our previous experiment, by increasing RMF coil current and decreasing the RMF frequency, causing higher thrust and fuel efficiency. Measurements of AC RMF component s have been conducted to investigate the acceleration mechanism and the field penetration experimentally. This study has been partially supported by Grant-in-Aid for Scientific Research (B: 17H02995) from the Japan Society for the Promotion of Science.

  11. Robustness of the Rotary Catalysis Mechanism of F1-ATPase*

    PubMed Central

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V.; Noji, Hiroyuki

    2014-01-01

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought. PMID:24876384

  12. Control mechanism of double-rotator-structure ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  13. An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Park, Jun-Hyuk; Ahn, Kyung-Jun; Park, Kang-Il; Na, Seok-In; Kim, Han-Ki

    2010-03-01

    We report the characteristics of Al-doped zinc oxide (AZO) films prepared by a highly efficient cylindrical rotating magnetron sputtering (CRMS) system for use as a transparent conducting electrode in cost-efficient bulk hetero-junction organic solar cells (OSCs). Using a rotating cylindrical type cathode with an AZO target, whose usage was above 80%, we were able to obtain a low cost and indium free AZO electrode with a low sheet resistance of ~4.59 Ω/sq, a high transparency of 85% in the visible wavelength region and a work function of 4.9 eV at a substrate temperature of 230 °C. Moreover, the neutral poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) based OSC fabricated on the CRMS-grown AZO electrode at 230 °C showed an open circuit voltage of 0.5 V, a short circuit current of 8.94 mA cm-2, a fill factor of 45% and power conversion efficiency of 2.01%, indicating that CRMS is a promising cost-efficient AZO deposition technique for low cost OSCs.

  14. The chemo-mechanical coupled model for F(1)F(0)-motor.

    PubMed

    Xu, Lizhong; Liu, Fang

    2012-04-01

    F(1)F(0)-motor (ATP synthase) is the universal enzyme in biological energy conversion that is present in the membranes of mitochondria, chloroplasts and bacteria. It uses the energy of the proton gradient across the membrane to synthesize ATP. Previous theory and model about rotation of the ATP synthase is reviewed, then a novel chemo-mechanical coupled model for rotation of the F(1)F(0)-motor is proposed. In the model, more events are considered simultaneously that includes the movement of F(1), the movement of F(0), reactions at F(1) and reactions at F(0). Using the model, the possible substep modes of the rotation for F(1)F(0) are predicted, the dependence of the motor efficiency and its rotation rate on the rigidity of the γ shaft is investigated. We conclude that the γ shaft has a large rotation rate for a limited driving potential because two ends of the γ shaft can rotate alternately for its flexibility. The flexibility also makes the efficiency of F(1)F(0) drop because elastic twisting deformation power is needed during alternate rotation of the γ shaft at two ends. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number.

    PubMed

    Li, H; Guo, S

    2018-03-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsive efficiency- η p , and efficiency for producing lift- P f ) of the wing are optimized at Strouhal number ( St ) between 0.1 and 0.5 for a range of wing pitch angles (upstroke angle of attack α u less than 45°); the St for high P f ( St  = 0.1 ∼ 0.3) is generally lower than for high η p ( St  = 0.2 ∼ 0.5), while the St for equilibrium rotation states lies between the two. Further systematic calculations show that the natural equilibrium of the passive rotating wing automatically converges to high-efficiency states: above 85% of maximum P f can be obtained for a wide range of prescribed wing kinematics. This study provides insight into the aerodynamic efficiency of biological flyers in cruising flight, as well as practical applications for micro air vehicle design.

  16. Joint representation of translational and rotational components of optic flow in parietal cortex

    PubMed Central

    Sunkara, Adhira; DeAngelis, Gregory C.; Angelaki, Dora E.

    2016-01-01

    Terrestrial navigation naturally involves translations within the horizontal plane and eye rotations about a vertical (yaw) axis to track and fixate targets of interest. Neurons in the macaque ventral intraparietal (VIP) area are known to represent heading (the direction of self-translation) from optic flow in a manner that is tolerant to rotational visual cues generated during pursuit eye movements. Previous studies have also reported that eye rotations modulate the response gain of heading tuning curves in VIP neurons. We tested the hypothesis that VIP neurons simultaneously represent both heading and horizontal (yaw) eye rotation velocity by measuring heading tuning curves for a range of rotational velocities of either real or simulated eye movements. Three findings support the hypothesis of a joint representation. First, we show that rotation velocity selectivity based on gain modulations of visual heading tuning is similar to that measured during pure rotations. Second, gain modulations of heading tuning are similar for self-generated eye rotations and visually simulated rotations, indicating that the representation of rotation velocity in VIP is multimodal, driven by both visual and extraretinal signals. Third, we show that roughly one-half of VIP neurons jointly represent heading and rotation velocity in a multiplicatively separable manner. These results provide the first evidence, to our knowledge, for a joint representation of translation direction and rotation velocity in parietal cortex and show that rotation velocity can be represented based on visual cues, even in the absence of efference copy signals. PMID:27095846

  17. Multilayer radiation shield

    DOEpatents

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  18. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1987-06-01

    The ogjectives are to design, develop, and demonstrate a natural-gas-fueled, highly recuperated, 50 kw Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Recent marketing studies have shown that the Advanced Energy System (AES), with its many cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantates of the system that result in low cost ownership are high electrical efficiency (34 percent, LHV), low maintenance, high reliability and long life (20 years). Significant technical features include: an integral turbogenerator with shaft-speed permanent magnet generator; a rotating assembly supported by compliant foil air bearings; a formed-tubesheet plate/fin recuperator with 91 percent effectiveness; and a bi-directional power conditioner to ultilize the generator for system startup. The planned introduction of catalytic combustion will further enhance the economic and ecological attractiveness.

  19. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles.

    PubMed

    Lima, Márcio D; Li, Na; Jung de Andrade, Mônica; Fang, Shaoli; Oh, Jiyoung; Spinks, Geoffrey M; Kozlov, Mikhail E; Haines, Carter S; Suh, Dongseok; Foroughi, Javad; Kim, Seon Jeong; Chen, Yongsheng; Ware, Taylor; Shin, Min Kyoon; Machado, Leonardo D; Fonseca, Alexandre F; Madden, John D W; Voit, Walter E; Galvão, Douglas S; Baughman, Ray H

    2012-11-16

    Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.

  20. Full characterization of an attosecond pulse generated using an infrared driver

    PubMed Central

    Zhang, Chunmei; Brown, Graham G.; Kim, Kyung Taec; Villeneuve, D. M.; Corkum, P. B.

    2016-01-01

    The physics of attosecond pulse generation requires using infrared driving wavelength to reach the soft X-rays. However, with longer driving wavelength, the harmonic conversion efficiency drops significantly. It makes the conventional attosecond pulse measurement using streaking very difficult due to the low photoionization cross section in the soft X-rays region. In-situ measurement was developed for precisely this purpose. We use in-situ measurement to characterize, in both space and time, an attosecond pulse produced by ultrafast wavefront rotation of a 1.8 μm fundamental beam. We confirm what models suggest – that each beamlet is an isolated attosecond pulse in the time domain. We get almost constant flat wavefront curvature through the whole photon energy range. The measurement method is scalable to the soft X-ray spectral region. PMID:27230961

  1. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles

    NASA Astrophysics Data System (ADS)

    Lima, Márcio D.; Li, Na; Jung de Andrade, Mônica; Fang, Shaoli; Oh, Jiyoung; Spinks, Geoffrey M.; Kozlov, Mikhail E.; Haines, Carter S.; Suh, Dongseok; Foroughi, Javad; Kim, Seon Jeong; Chen, Yongsheng; Ware, Taylor; Shin, Min Kyoon; Machado, Leonardo D.; Fonseca, Alexandre F.; Madden, John D. W.; Voit, Walter E.; Galvão, Douglas S.; Baughman, Ray H.

    2012-11-01

    Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.

  2. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    PubMed

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  3. Second Harmonic Generation Optical Rotation Solely Attributable to Chirality in Plasmonic Metasurfaces.

    PubMed

    Collins, Joel T; Hooper, David C; Mark, Andrew G; Kuppe, Christian; Valev, Ventsislav Kolev

    2018-05-31

    Chiral plasmonic nanostructures, those lacking mirror symmetry, can be designed to manipulate the polarization of incident light resulting in chiroptical (chiral optical) effects such as circular dichroism (CD) and optical rotation (OR). Due to high symmetry sensitivity, corresponding effects in second harmonic generation (SHG-CD and SHG-OR) are typically much stronger in comparison. These nonlinear effects have long been used for chiral molecular analysis and characterization, however both linear and nonlinear optical rotation can occur even in achiral structures, if the structure is birefringent due to anisotropy. Crucially, chiroptical effects resulting from anisotropy typically exhibit a strong dependence on structural orientation. Here we report large second-harmonic generation optical rotation of ±45°, due to intrinsic chirality in a highly anisotropic helical metamaterial. The SHG intensity is found to strongly relate to the structural anisotropy, however the angle of SHG-OR is invariant under sample rotation. We show that by tuning the geometry of anisotropic nanostructures, the interaction between anisotropy, chirality, and experiment geometry can allow even greater control over the chiroptical properties of plasmonic metamaterials.

  4. Advanced wind turbine with lift cancelling aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  5. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

    PubMed Central

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-01-01

    Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800

  6. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  7. Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming

    2017-07-01

    The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.

  8. Visuomotor mental rotation of a saccade: The contingent negative variation scales to the angle of rotation.

    PubMed

    Heath, Matthew; Colino, Francisco L; Chan, Jillian; Krigolson, Olave E

    2018-02-01

    The visuomotor mental rotation (VMR) of a saccade requires a response to a region of space that is dissociated from a stimulus by a pre-specified angle, and work has shown a monotonic increase in reaction times as a function of increasing oblique angles of rotation. These results have been taken as evidence of a continuous process of rotation and have generated competing hypotheses. One hypothesis asserts that rotation is mediated via frontoparietal structures, whereas a second states that a continuous shift in the activity of direction-specific neurons in the superior colliculus (SC) supports rotation. Research to date, however, has not examined the neural mechanisms underlying VMR saccades and both hypotheses therefore remain untested. The present study measured the behavioural data and event-related brain potentials (ERP) of standard (i.e., 0° of rotation) and VMR saccades involving 35°, 70° and 105° of rotation. Behavioural results showed that participants adhered to task-based rotation demands and ERP findings showed that the amplitude of the contingent negative variation (CNV) linearly decreased with increasing angle of rotation. The cortical generators of the CNV are linked to frontoparietal structures supporting movement preparation. Although our ERP design does not allow us to exclude a possible role of the SC in the rotation of a VMR saccade, they do demonstrate that such actions are supported by a continuous and cortically based rotation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. SU-E-T-333: Dosimetric Impact of Rotational Error On the Target Coverage in IMPT Lung Cancer Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, S; Zheng, Y

    2015-06-15

    Purpose: The main purpose of this study was to investigate the impact of rotational (yaw, roll, and pitch) error on the planning target volume (PTV) coverage in lung cancer plans generated by intensity modulated proton therapy (IMPT). Methods: In this retrospective study, computed tomography (CT) dataset of previously treated lung case was used. IMPT plan were generated on the original CT dataset using left-lateral (LL) and posterior-anterior (PA) beams for a total dose of 74 Gy[RBE] with 2 Gy[RBE] per fraction. In order to investigate the dosimetric impact of rotational error, 12 new CT datasets were generated by re-sampling themore » original CT dataset for rotational (roll, yaw, and pitch) angles ranged from −5° to +5°, with an increment of 2.5°. A total of 12 new IMPT plans were generated based on the re-sampled CT datasets using beam parameters identical to the ones in the original IMPT plan. All treatment plans were generated in XiO treatment planning system. The PTV coverage (i.e., dose received by 95% of the PTV volume, D95) in new IMPT plans were then compared with the PTV coverage in the original IMPT plan. Results: Rotational errors caused the reduction in the PTV coverage in all 12 new IMPT plans when compared to the original IMPT lung plan. Specifically, the PTV coverage was reduced by 4.94% to 50.51% for yaw, by 4.04% to 23.74% for roll, and by 5.21% to 46.88% for pitch errors. Conclusion: Unacceptable dosimetric results were observed in new IMPT plans as the PTV coverage was reduced by up to 26.87% and 50.51% for rotational error of 2.5° and 5°, respectively. Further investigation is underway in evaluating the PTV coverage loss in the IMPT lung cancer plans for smaller rotational angle change.« less

  10. Could the United States Army Have a Positive Impact on the Insurgency and Counterdrug Problems in Peru

    DTIC Science & Technology

    1994-06-03

    CGSC, Fort Leavenworth, KS, Dec. 1990 LAS FUERZAS ARMADAS DEL PERU Y LOS DERECHOS HUMANOS EN LA LUCHA CONTRA EL TERRORISMO (Not Dated), A Booklet...op- erations were countered by the DINCOTE (Direccion Nacional Contra el Terrorismo ), a special antiterrorist branch of the national police. They...branches of our Army could contribute to a joint and combined operation in Peru to defeat Shining Path ele - ments. In addition to this, the reader may

  11. Personal Reflections on Bill Casey’s Last Month at CIA

    DTIC Science & Technology

    1996-01-01

    had been providing bridge financing for the arms deal were owed a lot of money and were prepared to go public with their story if their money was not...financial mechanisms used by North and General Secord to com mingle Contra money and arms sales money . This was another subject about which Casey seemed to...Second, know ing Casey�s deep concern for the Contras, I am inclined to believe that, if he had known that large sums of money ostensibly earmarked for the

  12. Chemical quality of ground water in San Joaquin and part of Contra Costa Counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1981-01-01

    Chemical water-quality conditions were investigated in San Joaquin and part of Contra Costa Counties by canvassing available wells and sampling water from 324 representative wells. Chemical water types varied, with 73 percent of the wells sampled containing either calcium-magnesium bicarbonate, or calcium-sodium bicarbonate type water. Substantial areas contain ground water exceeding water-quality standards for boron, manganese, and nitrate. Trace elements, with the exception of boron and manganese, were present in negligible amounts. (USGS)

  13. A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

    NASA Astrophysics Data System (ADS)

    Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.

    2018-05-01

    The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

  14. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  15. Visual Cues Generated during Action Facilitate 14-Month-Old Infants' Mental Rotation

    ERIC Educational Resources Information Center

    Antrilli, Nick K.; Wang, Su-hua

    2016-01-01

    Although action experience has been shown to enhance the development of spatial cognition, the mechanism underlying the effects of action is still unclear. The present research examined the role of visual cues generated during action in promoting infants' mental rotation. We sought to clarify the underlying mechanism by decoupling different…

  16. Low torque hydrodynamic lip geometry for rotary seals

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  17. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  18. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.

    PubMed

    Chow, Jerry M; Gambetta, Jay M; Córcoles, A D; Merkel, Seth T; Smolin, John A; Rigetti, Chad; Poletto, S; Keefe, George A; Rothwell, Mary B; Rozen, J R; Ketchen, Mark B; Steffen, M

    2012-08-10

    We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  19. Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  20. GT200 getting better than 34% efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, R.

    1980-01-01

    Design features are described for the GT200, a 50-Hz machine blend of high temperature advanced aircraft rotating components and heavy frame industrial gas turbine structure. It includes a twin spool as generator with a two-stage power turbine giving nominal performance of 85,000 kW ISO peak output with a 10,120 Btu per kW-h heat rate on LHV distillate. It is desgined for base, intermediate, or peak load operation simple or combined cycle. Stal-Laval in Sweden developed it and sold the first unit to the Swedish State Power Board in July 1977. The unit was installed at the Stallbocka Station.

  1. Conceptual design of free-piston Stirling conversion system for solar power units

    NASA Astrophysics Data System (ADS)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  2. Ultra-high pressure waterjets efficient in removing coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    Little if any thought was given to pipeline rehabilitation 50 years, a time when pipe manufacturers often coated the external diameter of pipe with coal tar to help eliminate corrosion. Unfortunately, contractors rehabilitating these pipelines today encounter major difficulties when attempting to remove coal tar with traditional removal processes. A leading pipeline rehabilitation firm, F.F. Yockey Company, Inc. of Magnolia, Texas, faced a constant challenge stripping coal tar with rotating knives and brushes. The process generated heat that melted the tar and caused the machines to jam. Another problem was the damage to the substrate caused by the friction-based cleaningmore » techniques of rotating knives and brushes. The knives also failed to completely clean the substrate, leaving behind a significant amount of residue. Contractors learned that new coating bonded poorly to the substrates covered with residual contaminants, thus yielding unsatisfactory results. As he looked for a solution, Dick Yockey, president and CEO of R.F. Yockey, began exploring the use of ultra-high pressure waterjet surface preparation equipment. This system involved water pressurized at levels ranging from 35,000 to 55,000 psi. The water travels through small orifices in a high-speed rotating nozzle, forming a cohesive stream of water. This paper reviews the design and performance of this system.« less

  3. A cycloidal wobble motor driven by shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyun; Higuchi, Toshiro

    2014-05-01

    A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor.

  4. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Rotating Spacecraft Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The International Space Station (ISS) utilizes two large rotating mechanisms, the solar alpha rotary joints (SARJs), as part of the solar arrays' alignment system for more efficient power generation. Each SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2007, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) to one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately that effort was ultimately successful in also recovering the functionality of the starboard SARJ. The M&P engineering function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  5. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance

    PubMed Central

    Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko

    2016-01-01

    The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application. PMID:27763522

  6. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.

    PubMed

    Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko

    2016-10-17

    The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application.

  7. Development of magnetic bearing system for a new third-generation blood pump.

    PubMed

    Lee, Jung Joo; Ahn, Chi Bum; Choi, Jaesoon; Park, Jun Woo; Song, Seung-Joon; Sun, Kyung

    2011-11-01

    A magnetic bearing system is a crucial component in a third-generation blood pump, particularly when we consider aspects such as system durability and blood compatibility. Many factors such as efficiency, occupying volume, hemodynamic stability in the flow path, mechanical stability, and stiffness need to be considered for the use of a magnetic bearing system in a third-generation blood pump, and a number of studies have been conducted to develop novel magnetic bearing design for better handling of these factors. In this study, we developed and evaluated a new magnetic bearing system having a motor for a new third-generation blood pump. This magnetic bearing system consists of a magnetic levitation compartment and a brushless direct current (BLDC) motor compartment. The active-control degree of freedom is one; this control is used for controlling the levitation in the axial direction. The levitation in the radial direction has a passive magnetic levitation structure. In order to improve the system efficiency, we separated the magnetic circuit for axial levitation by using a magnetic circuit for motor drive. Each magnetic circuit in the bearing system was designed to have a minimum gap by placing mechanical parts, such as the impeller blades, outside the circuit. A custom-designed noncontact gap sensor was used for minimizing the system volume. We fabricated an experimental prototype of the proposed magnetic bearing system and evaluated its performance by a control system using the Matlab xPC Target system. The noncontact gap sensor was an eddy current gap sensor with an outer diameter of 2.38 mm, thickness of 0.88 mm, and resolution of 5 µm. The BLDC motor compartment was designed to have an outer diameter of 20 mm, length of 28.75 mm, and power of 4.5 W. It exhibited a torque of 8.6 mNm at 5000 rpm. The entire bearing system, including the motor and the sensor, had an outer diameter of 22 mm and a length of 97 mm. The prototype exhibited sufficient levitation performance in the stop state and the rotation state with a gap of 0.2 mm between the rotor and the stator. The system had a steady position error of 0.01 µm in the stop state and a position error of 0.02 µm at a rotational speed of 5000 rpm; the current consumption rates were 0.15 A and 0.17 A in the stop state and the rotation state, respectively. In summary, we developed and evaluated a unique magnetic bearing system with an integrated motor. We believe that our design will be an important basis for the further development of the design of an entire third-generation blood pump system. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rakesh K.; Wolk, Scott J.; Christensen, Ulrich R.

    2016-12-20

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristicsmore » of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.« less

  9. Rotational viscometer for high-pressure high-temperature fluids

    DOEpatents

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  10. [Percutaneous radiofrequency ablation of hepatic metastases. Preliminary experience].

    PubMed

    De Baere, T; Elias, D; Ducreux, M; Dromain, C; Kuach, V; Gamal El Din, M; Sobotka, A; Lasser, P; Roche, A

    1999-11-01

    To evaluate the efficiency of percutaneous radiofrequency ablation in the treatment of liver metastases. Eighteen patients with 31 liver metastases, mainly from colorectal cancer, 10 - 35 mm in diameter (m = 23), underwent 26 courses of percutaneous radiofrequency ablation. Fifteen patients had previously undergone hepatectomy, and 3 patients had contra-indications to surgery. Imaging guidance was ultrasound in 21 patients, CT in 4 (tumors not seen with ultrasound), and both in 1. A generator working at 450 KHz with a maximum output power of 150 W was used to treat each lesion for 18 - 20 min. Treatment was monitored with real time ultrasound. Among the 12 patients followed more than 3 months, only one of the 24 treated lesions recurred after a mean follow up of 259 ¿ 109 days. Liver disease was controlled in 8 of the 12 patients after 90 - 509 days (m = 306). Among these 8 patients, 3 were tumor free after 559, 378 and 90 days, respectively; 2 died tumor free of non-tumoral disease (pulmonary embolism, digestive bleeding); 3 developed lung metastases treated with chemotherapy (n = 2) or surgery (n = 1). Three of the 12 patients had widespread hepatic tumor occurrence, and one patient died of these metastases. Six patients experienced mild skin burns, but no major complication was observed. Radiofrequency ablation of hepatic metastases appears safe and promising in this preliminary experience. Further investigation is needed.

  11. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  12. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity

    NASA Astrophysics Data System (ADS)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2016-01-01

    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  13. Electric current generation in photorefractive bismuth silicon oxide without application of external electric field

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Kukhtarev, Nickolai; Kukhtareva, Tatiana; Edwards, Matthew E.; Reagan, Michael A.; Lyuksyutov, Sergei F.

    2003-10-01

    A holographic radial diffraction grating (HRDG) is an efficient optical element for splitting single laser beam on three 0, -1st, and +1st- diffraction order beams. The rotation of the grating at certain velocity allows a window for quality control over the frequency detuning between -1st, and +1st diffracted beams. The running interference fringes produced by the beams and projected on photorefractive crystal induce running holographic gratings in the crystal. This simple configuration is an effective tool for the study of such phenomena as space charge waves [1], domains motion [2], and electric current generation [3]. Specifics of photorefractive mechanism in cubic photorefractive crystals (BSO, BTO) normally require a use of external electric field to produce reasonable degree of refractive index modulation to observe associated with it phenomena. In this work we provide a direct experimental observation of the electric current generated in photorefractive BSO using running grating technique without an applied electric field. Moving interference fringes modulate a photoconductivity and an electric field in photorefractive crystal thus creating the photo electro-motive force (emf) and the current. The magnitude of the current varies between 1 and 10 nA depending on the rotation speed of HRDG. The peculiarities of the current behavior include a backward current flow, and current oscillations. The holographic current generated through this technique can find applications in non-destructive testing for ultra-sensitive vibrometry, materials characterization, and for motion sensors. References [1] S.F. Lyuksyutov, P. Buchhave, and M.V. Vasnetsov, Physical Review Letters, 79, No.1, 67-70 (1997) [2] P. Buchhave, S. Lyuksyutov, M. Vasnetsov, and C. Heyde, Journal Optical Society of America B, 13, No.11 2595-2602 (1996) [3] M. Vasnetsov, P. Buchhave, and S. Lyuksyutov Optics Communications, 137, 181-191 (1997)

  14. Final report of the independent counsel for Iran/Contra matters. Volume 3: Comments and materials submitted by individuals and their attorneys responding to volume 1 of the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, L.E.

    1993-08-04

    In October and November 1986, two secret U.S. Government operations were publicly exposed, potentially implicating Reagan Administration officials in illegal activities. These operations were the provision of assistance to the military activities of the Nicaraguan contra rebels during an October 1984 to October 1986 prohibition on such aid, and the sale of U.S. arms to Iran in contravention of stated U.S. policy and in possible violation of arms-export controls. In late November 1986, Reagan Administration officials announced that some of the proceeds from the sale of U.S. arms to Iran had been diverted to the contras. As a result, Attorneymore » General Edwin Meese III sought the appointment of an independent counsel to investigate and prosecute possible crimes. Volume III contains comments and materials submitted by individuals and their attorneys from that investigation.« less

  15. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  16. Protein–protein docking by fast generalized Fourier transforms on 5D rotational manifolds

    PubMed Central

    Padhorny, Dzmitry; Kazennov, Andrey; Zerbe, Brandon S.; Porter, Kathryn A.; Xia, Bing; Mottarella, Scott E.; Kholodov, Yaroslav; Ritchie, David W.; Vajda, Sandor; Kozakov, Dima

    2016-01-01

    Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein–protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold SO(3)×(SO(3)∖S1), where SO(3) is the rotation group representing the space of the rotating ligand, and (SO(3)∖S1) is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for SO(3). Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring. PMID:27412858

  17. Twin rotor damper for the damping of stochastically forced vibrations using a power-efficient control algorithm

    NASA Astrophysics Data System (ADS)

    Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe

    2018-01-01

    The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.

  18. Nonequilibrium gas absorption in rotating permeable media

    NASA Astrophysics Data System (ADS)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  19. Idling speed control system of an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Ishii, M.; Kako, H.

    1986-09-16

    This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less

  20. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficiency of an H2—SF6 laser with electron-beam initiation of chemical reactions

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Orlovskii, Viktor M.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.

    2000-06-01

    The spectral and amplitude—time characteristics of HF lasers pumped by a nonchain chemical reaction and initiated by radially convergent and planar electron beams were investigated. The principal channels leading to the formation of vibrationally excited HF molecules were analysed. It was confirmed that high efficiencies (~10%) of a nonchain HF laser may be attained only as a result of the simultaneous formation of atomic and molecular fluorine when the active mixture is acted upon by an electron beam and of the participation of molecular fluorine in population inversion. It was shown that a laser pulse has a complex spectral—temporal profile caused by the successive generation of P-lines and the overlap during the radiation pulse of both the rotational lines of the same vibrational band and of individual vibrational bands.

  1. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  2. Computer code for preliminary sizing analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.

  3. Fast and efficient indexing approach for object recognition

    NASA Astrophysics Data System (ADS)

    Hefnawy, Alaa; Mashali, Samia A.; Rashwan, Mohsen; Fikri, Magdi

    1999-08-01

    This paper introduces a fast and efficient indexing approach for both 2D and 3D model-based object recognition in the presence of rotation, translation, and scale variations of objects. The indexing entries are computed after preprocessing the data by Haar wavelet decomposition. The scheme is based on a unified image feature detection approach based on Zernike moments. A set of low level features, e.g. high precision edges, gray level corners, are estimated by a set of orthogonal Zernike moments, calculated locally around every image point. A high dimensional, highly descriptive indexing entries are then calculated based on the correlation of these local features and employed for fast access to the model database to generate hypotheses. A list of the most candidate models is then presented by evaluating the hypotheses. Experimental results are included to demonstrate the effectiveness of the proposed indexing approach.

  4. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. Anmore » over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.« less

  5. SURVEYS OF FALLOUT SHELTER--A COMPARISON BETWEEN AERIAL PHOTOGRAPHIC AND DOCUMENTARY METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinecke, D.C.

    1960-02-01

    In 1959 a large part of Contra Costa County, California, was surveyed for fallout shelter areas. This survey was based on an examination of the tax assessor's records of existing buildings. A portion of this area was also surveyed independently by a method based on aerial photography. A statistical comparison of the results of these two surveys indicates that the aerial photographic method was more efficient than the documentary method in locating potential shelter space in buildings of heavy construction. This result, however, is probably not operationally significant. There is reason to believe that a combination of these two surveymore » methods could be devised which would be operationally preferable to either method. (auth)« less

  6. Generating a Crop Rotation Dataset for the U.S and its Application in Inferring Land Use Change Induced Wetland Losses in the Prairie Pothole Region

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Zhang, X.; Izaurralde, R. C.; Hurtt, G. C.

    2013-12-01

    Agricultural management practices plays a major role in the global fluxes of greenhouse gases, soil carbon sequestration and production of ecosystem services. A key component of these practices are the crop rotations selected by the farmer. Here, we present an algorithm to create a crop rotation dataset for the U.S and demonstrate the tradeoffs between the number and accuracy of rotations comprising a state. To generate the rotations, we use the USDA Cropland Data Layer (CDL) available for the entire U.S at a resolution of 30 m from 2010 to 2012. Several studies have generated rotations simply by merging several years of CDL data, resulting in thousands of rotations per state. Alternatively, they tend to aggregate the rotations into a few predefined categories. This over simplification can lead to erroneous acreage values impacting both biogeochemical model estimates and land use change studies. Our algorithm uses the edit distance metric to combine similar rotations to obtain a product which retains the accuracy of CDL while minimizing the number of rotations. We find that 180 unique rotations are needed to represent the entire U.S with an accuracy exceeding 80% when compared to the underlying CDL datasets for rotations from 2010 to 2012. For the agriculturally important and diverse Western corn belt, the number of rotations needed to represent each state with an accuracy exceeding 90% when compared to the CDL dataset, ranges from 3 unique rotations for Iowa to more than 50 for North Dakota. As an application of the dataset, we examine the findings of Wright and Wimberly (1), who reported in a recent issue of PNAS that recent grassland conversion to corn and soybean cropping (GRCS) from 2006 to 2011 in the Prairie Pothole Region (PPR) is concentrated in the vicinity of wetlands. Their analysis implicitly assumes that all wetlands affected by GRCS in the PPR existed in or after 2006. However, the areal extent of wetlands was based on National Wetland Inventory maps, which were produced from aerial photography taken in the 1970s and 1980s. Thus, we conclude that Wright and Wimberly overestimated the total area of agricultural expansion through GRCS within 500 m of wetlands. Instead of attributing historical wetland conversion to recent land use changes in the PPR, here we provide separate estimates of wetland conversion from 1982 - 2007 and 2006 - 2011 using data from National Resources Inventory and rotations generated using CDL data from 2006 to 2011. We use the rotations generated using CDL data from 2006 to 2011, to estimate the total area of agricultural expansion through GRCS within 500 m of wetlands in the PPR. We find that the total grassland acreage in close proximity to wetlands that was converted to corn/soybean cropping between 2006 and 2011 was 58% of the nearly 400,000 ha estimated by Wright and Wimberly. While biofuel production impacts land use decisions, it is critical to use appropriate tools and datasets to inform our analysis of environmental impacts of these decisions, lest it divert our focus from other drivers of land use change. Reference: 1. Wright CK, Wimberly MC (2013) Recent land use change in the Western Corn Belt threatens grasslands and wetlands. PNAS.

  7. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    PubMed

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.

  8. Current concepts on the use of IUDs.

    PubMed

    McCarthy, T

    1989-08-01

    IUDs have been used in Singapore since the mid 1960's but acceptance of this contraceptive method has fluctuated widely as a result of misconceptions regarding possible complications. The current generation of copper bearing devices have pregnancy rates below 1 per 100 women per year and this rate falls further with continued use. New developments which hold promise include a device releasing 20 mcg levonorgestrel per day and a copper device without a plastic frame which may reduce menstrual blood loss and dysmenorrhoea. In addition to the well established contra-indications to use, a past history of pelvic inflammatory disease or ectopic pregnancy, promiscuity, nulliparity and age less than 25 are now considered relative contraindications.

  9. Natural remanent magnetization acquisition in bioturbated sediment: General theory and implications for relative paleointensity reconstructions

    NASA Astrophysics Data System (ADS)

    Egli, R.; Zhao, X.

    2015-04-01

    We present a general theory for the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques, and (c) torques resulting from interaction forces. Dynamic equilibrium between (a) and (b) in the water column and at the sediment-water interface generates a detrital remanent magnetization (DRM), while much stronger randomizing torques may be provided by bioturbation inside the mixed layer. These generate a so-called mixed remanent magnetization (MRM), which is stabilized by mechanical interaction forces. During the time required to cross the surface mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by a MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter γ that is defined as the product of rotational diffusion and mixed-layer thickness, divided by sedimentation rate. This parameter defines three regimes: (1) slow mixing (γ < 0.2) leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing (γ > 10) with MRM acquisition and full DRM randomization, and (3) intermediate mixing. Because the acquisition efficiency of DRM is larger than that of MRM, NRM intensity is particularly sensitive to γ in case of mixed regimes, generating variable NRM acquisition efficiencies. This model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths that lead to DRM preservation, (3) specific NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) some relative paleointensity artifacts.

  10. Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT)

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Li, Ruijiang

    2014-03-01

    The last few years have seen a number of technical and clinical advances which give rise to a need for innovations in dose optimization and delivery strategies. Technically, a new generation of digital linac has become available which offers features such as programmable motion between station parameters and high dose-rate Flattening Filter Free (FFF) beams. Current inverse planning methods are designed for traditional machines and cannot accommodate these features of new generation linacs without compromising either dose conformality and/or delivery efficiency. Furthermore, SBRT is becoming increasingly important, which elevates the need for more efficient delivery, improved dose distribution. Here we will give an overview of our recent work in SPORT designed to harness the digital linacs and highlight the essential components of SPORT. We will summarize the pros and cons of traditional beamlet-based optimization (BBO) and direct aperture optimization (DAO) and introduce a new type of algorithm, compressed sensing (CS)-based inverse planning, that is capable of automatically removing the redundant segments during optimization and providing a plan with high deliverability in the presence of a large number of station control points (potentially non-coplanar, non-isocentric, and even multi-isocenters). We show that CS-approach takes the interplay between planning and delivery into account and allows us to balance the dose optimality and delivery efficiency in a controlled way and, providing a viable framework to address various unmet demands of the new generation linacs. A few specific implementation strategies of SPORT in the forms of fixed-gantry and rotational arc delivery are also presented.

  11. Understanding and predicting profile structure and parametric scaling of intrinsic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W. X.; Grierson, B. A.; Ethier, S.

    2017-08-10

    This study reports on a recent advance in developing physical understanding and a first-principles-based model for predicting intrinsic rotation profiles in magnetic fusion experiments. It is shown for the first time that turbulent fluctuation-driven residual stress (a non-diffusive component of momentum flux) along with diffusive momentum flux can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Both the turbulence intensity gradient and zonal flow E×B shear are identified as major contributors to the generation of the k ∥-asymmetry needed for the residual stress generation. The model predictions of core rotation based on global gyrokineticmore » simulations agree well with the experimental measurements of main ion toroidal rotation for a set of DIII-D ECH discharges. The validated model is further used to investigate the characteristic dependence of residual stress and intrinsic rotation profile structure on the multi-dimensional parametric space covering the turbulence type, q-profile structure, and up-down asymmetry in magnetic geometry with the goal of developing the physics understanding needed for rotation profile control and optimization. It is shown that in the flat-q profile regime, intrinsic rotations driven by ITG and TEM turbulence are in the opposite direction (i.e., intrinsic rotation reverses). The predictive model also produces reversed intrinsic rotation for plasmas with weak and normal shear q-profiles.« less

  12. A motor-driven ventricular assist device controlled with an optical encoder system.

    PubMed

    Nakamura, T; Hayashi, K; Yamane, H

    1993-01-01

    An electric motor-driven ventricular assist device has been developed for long-term use inside the body. The system is composed of a pusher-plate-type blood pump and an actuator consisting of an electrical motor and a ball screw. Cyclic change of the direction of motor rotation makes a back-and-forth axial movement of the ball screw shaft. The shaft, which is detached from the pump diaphragm, pushes the diaphragm via a pusher plate to eject blood during systole; blood is sucked by the diaphragm resilience during diastole. Using the output signals from a newly designed, incremental-type, miniature optical rotary encoder mounted inside the actuator, the input voltage of the motor is optimally controlled referring to the phase difference between the current position of the moving rotor and the electrical reference signal of the rotation generated by a microprocessor-based controller. In vitro performance tests indicated that the system fulfills required specifications. The maximum efficiency was 11%, which was about twice as high as that obtained with the previous open-loop prototype system. In the air, the surface temperature of the actuator elevated to 20 degrees C above the room temperature. An acute in vivo test showed its feasibility as a left ventricular assist device. Analysis of the energy loss in each component of the system indicated that redesign and precise assembly of the mechanical parts could increase the system efficiency.

  13. Comparison of the benefits of cochlear implantation versus contra-lateral routing of signal hearing aids in adult patients with single-sided deafness: study protocol for a prospective within-subject longitudinal trial

    PubMed Central

    2014-01-01

    Background Individuals with a unilateral severe-to-profound hearing loss, or single-sided deafness, report difficulty with listening in many everyday situations despite having access to well-preserved acoustic hearing in one ear. The standard of care for single-sided deafness available on the UK National Health Service is a contra-lateral routing of signals hearing aid which transfers sounds from the impaired ear to the non-impaired ear. This hearing aid has been found to improve speech understanding in noise when the signal-to-noise ratio is more favourable at the impaired ear than the non-impaired ear. However, the indiscriminate routing of signals to a single ear can have detrimental effects when interfering sounds are located on the side of the impaired ear. Recent published evidence has suggested that cochlear implantation in individuals with a single-sided deafness can restore access to the binaural cues which underpin the ability to localise sounds and segregate speech from other interfering sounds. Methods/Design The current trial was designed to assess the efficacy of cochlear implantation compared to a contra-lateral routing of signals hearing aid in restoring binaural hearing in adults with acquired single-sided deafness. Patients are assessed at baseline and after receiving a contra-lateral routing of signals hearing aid. A cochlear implant is then provided to those patients who do not receive sufficient benefit from the hearing aid. This within-subject longitudinal design reflects the expected care pathway should cochlear implantation be provided for single-sided deafness on the UK National Health Service. The primary endpoints are measures of binaural hearing at baseline, after provision of a contra-lateral routing of signals hearing aid, and after cochlear implantation. Binaural hearing is assessed in terms of the accuracy with which sounds are localised and speech is perceived in background noise. The trial is also designed to measure the impact of the interventions on hearing- and health-related quality of life. Discussion This multi-centre trial was designed to provide evidence for the efficacy of cochlear implantation compared to the contra-lateral routing of signals. A purpose-built sound presentation system and established measurement techniques will provide reliable and precise measures of binaural hearing. Trial registration Current Controlled Trials http://www.controlled-trials.com/ISRCTN33301739 (05/JUL/2013) PMID:25152694

  14. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    NASA Astrophysics Data System (ADS)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  15. Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less

  16. Measuring Speed Of Rotation With Two Brushless Resolvers

    NASA Technical Reports Server (NTRS)

    Howard, David E.

    1995-01-01

    Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.

  17. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  18. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  19. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  20. Rotating magnetizations in electrical machines: Measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  1. Rotating rake design for unique measurement of fan-generated spinning acoustic modes

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Hausmann, Clifford R.

    1993-01-01

    In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.

  2. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  3. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1990-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.

  4. OH rotational temperature measurements via a two temperature distribution analysis in plasma with water microdroplets

    NASA Astrophysics Data System (ADS)

    Tsumaki, Masanao; Ito, Tsuyohito

    2016-09-01

    We study plasma processing with water/solution microdroplets for a new nanoparticle synthesis method. In the process, it is important to know gas temperature (Tg) for understanding the mechanism of the particle growth and controlling its properties. Since OH emissions are naturally observed in such plasma, the rotational temperature (Tr) of OH (A-X) is estimated and compared with Tr from N2 (C-B). The plasma is generated by dielectric barrier discharges in He with N2 (2.6%) gas flow, and microdroplets are generated by an ultrasonic atomizer and carried into He/N2 plasma. Optical emission spectroscopy revealed that with the increase of voltage and frequency of plasma generation, the Tr of N2 increases. While the good theoretical spectrum fit on N2 experimental spectrum could be achieved, it was hard to obtain a reasonable fit for the OH spectrum with a single rotational energy distribution. On the other hand, two rotational distribution analysis could reproduce the experimental spectrum of OH and the lower Tr agrees to Tr by N2. The results suggest that the lower Tr obtained with the two rotational temperature analysis of OH spectrum represents Tg of the environment.

  5. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

    DOEpatents

    Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

    1997-01-01

    An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

  6. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  7. Dynamics of paramagnetic agents by off-resonance rotating frame technique

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2006-12-01

    Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.

  8. Homogeneous wave turbulence driven by tidal flows

    NASA Astrophysics Data System (ADS)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  9. Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Khan, Muhammad Ijaz; Alsaedi, Ahmed

    2018-01-01

    Simultaneous effects of viscous dissipation and Joule heating in flow by rotating disk of variable thickness are examined. Radiative flow saturating porous space is considered. Much attention is given to entropy generation outcome. Developed nonlinear ordinary differential systems are computed for the convergent series solutions. Specifically, the results of velocity, temperature, entropy generation, Bejan number, coefficient of skin friction, and local Nusselt number are discussed. Clearly the entropy generation rate depends on velocity and temperature distributions. Moreover the entropy generation rate is a decreasing function of Hartmann number, Eckert number, and Reynolds number, while they gave opposite behavior for Bejan numbers.

  10. Rotating elastic string loops in flat and black hole spacetimes: stability, cosmic censorship and the Penrose process

    NASA Astrophysics Data System (ADS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2018-04-01

    We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).

  11. Job Language Performance Requirements for MOS 91E, Dental Specialist, Reference Soldier’s Manual Dated 30 August 1977.

    DTIC Science & Technology

    1977-08-30

    lubricate the air turbine driven straight, dental handpiece (Tru-Torc) L 081-91E-3768 Clean and lubricate the contra-angle, latch type dental handpiece 081...91E-3769 Clean and lubricate the Midwest "Quiet-Air"Ultra speed, contra-angle dental handpiece 081-91E-3810 Sharpen scaling instruments by using rotary...b-Al21 845 JOB LANGUAGE PERFORMANCE REQUIREMENTS FOR NOS 9iE In2 DENTAL SPECIALIST REFER.. (U) DEFENSE LANGUAGE INST LACKLAND AFB TX ENGLISH LANGUAGE

  12. Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon.

    PubMed

    Shi, Wei; Yun, Han; Lin, Charlie; Greenberg, Mark; Wang, Xu; Wang, Yun; Fard, Sahba Talebi; Flueckiger, Jonas; Jaeger, Nicolas A F; Chrostowski, Lukas

    2013-03-25

    Wavelength-division-multiplexing (WDM) networks with wide channel grids and bandwidths are promising for low-cost, low-power optical interconnects. Wide-bandwidth, single-band (i.e., no free-spectral range) add-drop filters have been developed on silicon using anti-reflection contra-directional couplers with out-of-phase Bragg gratings. Using such filter components, we demonstrate a 4-channel, coarse-WDM demultiplexer with flat passbands of up to 13 nm and an ultra-compact size of 1.2 × 10(-3) mm(2).

  13. A Checklist Intervention to Assess Resident Diagnostic Knee and Shoulder Arthroscopic Efficiency.

    PubMed

    Nwachukwu, Benedict; Gaudiani, Michael; Hammann-Scala, Jennifer; Ranawat, Anil

    The purpose of this investigation was to apply an arthroscopic shoulder and knee checklist in the evaluation of orthopedic resident arthroscopic skill efficiency and to demonstrate the use of a surgical checklist for assessing resident surgical efficiency over the course of a surgical rotation. Orthopedic surgery residents rotating on the sports medicine service at our institution between 2011 and 2015 were enrolled in this study. Residents were administered a shoulder and knee arthroscopy assessment tool at the beginning and end of their 6-week rotation. The assessment tools consisted of checklist items for knee and shoulder arthroscopy skills. Residents were timed while performing these checklist tasks. The primary outcome measure was resident improvement as a function of time to completion for the checklist items, and the intervention was participation in a 6-week resident rotation with weekly arthroscopy didactics, cadaver simulator work, and operating room experience. A paired t test was used to compare means. Mean time to checklist completion during week 1 among study participants for the knee checklist was 787.4 seconds for the knee checklist and 484.4 seconds at the end of the rotation. Mean time to checklist completion during week 1 among study participants for the shoulder checklist was 1655.3 seconds and 832.7 seconds for the shoulder checklist at the end of the rotation. Mean improvement in time to completion was 303 seconds (p = 0.0006, SD = 209s) and 822.6 seconds (p = 0.00008, SD = 525.2s) for the arthroscopic knee and shoulder assessments, respectively. An arthroscopic checklist is 1 method to evaluate and assess resident efficiency and improvement during surgical training. Among residents participating in this study, we found statistically significant improvements in time for arthroscopic task completion. II. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Comparative study of sub-micrometer polymeric structures: Dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing

    NASA Astrophysics Data System (ADS)

    Csete, M.; Sipos, Á.; Kőházi-Kis, A.; Szalai, A.; Szekeres, G.; Mathesz, A.; Csákó, T.; Osvay, K.; Bor, Zs.; Penke, B.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Marti, O.

    2007-12-01

    Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.

  15. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-05-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  16. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-07-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high-field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc are formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here, we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that the field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture, a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  17. Cooling for a rotating anode X-ray tube

    DOEpatents

    Smither, Robert K.

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  18. Spiral groove seal. [for rotating shaft

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  19. Rotating housing turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouche, Erez; Jaganathan, Arun P.

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  20. A low frequency rotational energy harvesting system

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.; Ramirez, J. M.; Gatti, C. D.

    2016-11-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation.

  1. Electro-mechanical sine/cosine generator

    NASA Technical Reports Server (NTRS)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  2. Investigation of eddy current examination on OD fatigue crack for steam generator tubes

    NASA Astrophysics Data System (ADS)

    Kong, Yuying; Ding, Boyuan; Li, Ming; Liu, Jinhong; Chen, Huaidong; Meyendorf, Norbert G.

    2015-03-01

    The opening width of fatigue crack was very small, and conventional Bobbin probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin probe was not sensitive for fatigue crack even for small through wall crack mixed with denting signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD phase to depth curve for fatigue crack using rotating probe was established and the results agreed very well with the true crack size.

  3. Rotational viscometer for high-pressure, high-temperature fluids

    DOEpatents

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  4. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  5. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.

    PubMed

    Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W

    2011-04-28

    Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water.

  6. Large eddy simulation for predicting turbulent heat transfer in gas turbines

    PubMed Central

    Tafti, Danesh K.; He, Long; Nagendra, K.

    2014-01-01

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. PMID:25024418

  7. Real World Testing Of A Piezoelectric Rotational Energy Harvester For Human Motion

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.

    2013-12-01

    Harvesting energy from human motion is challenging because the frequencies are generally low and random compared to industrial machinery that vibrates at much higher frequencies. One of the most promising and popular strategies to overcome this is frequency up-conversion. The transducing element is actuated at its optimal frequency of operation, higher than the source excitation frequency, through some kind of catch and release mechanism. This is beneficial for efficient power generation. Such devices have now been investigated for a few years and this paper takes a previously introduced piezoelectric rotational harvester, relying on beam plucking for the energy conversion, to the next step by testing the device during a half marathon race. The prototype and data acquisition system are described in detail and the experimental results presented. A comparison of the input excitation, based on an accelerometer readout, and the output voltage of the piezoelectric beam, recorded at the same time, confirm the successful implementation of the system. For a device functional volume of 1.85 cm3, a maximum power output of 7 μW was achieved when the system was worn on the upper arm. However, degradation of the piezoelectric material meant that the performance dropped rapidly from this initial level; this requires further research. Furthermore, the need for intermediate energy storage solutions is discussed, as human motion harvesters only generate power as long as the wearer is actually moving.

  8. Optimization of rotational speed and hydraulic retention time of a rotational sponge reactor for sewage treatment.

    PubMed

    Hewawasam, Choolaka; Matsuura, Norihisa; Takimoto, Yuya; Hatamoto, Masashi; Yamaguchi, Takashi

    2018-05-26

    A rotational sponge (RS) reactor was proposed as an alternative sewage treatment process. Prior to the application of an RS reactor for sewage treatment, this study evaluated reactor performance with regard to organic removal, nitrification, and nitrogen removal and sought to optimize the rotational speed and hydraulic retention time (HRT) of the system. RS reactor obtained highest COD removal, nitrification, and nitrogen removal efficiencies of 91%, 97%, and 65%, respectively. For the optimization, response surface methodology (RSM) was employed and optimum conditions of rotational speed and HRT were 18 rounds per hour and 4.8 h, respectively. COD removal, nitrification, and nitrogen removal efficiencies at the optimum conditions were 85%, 85%, and 65%, respectively. Corresponding removal rates at optimum conditions were 1.6 kg-COD m -3 d -1 , 0.3 kg-NH 4 + -N m -3 d -1 , and 0.12 kg-N m -3 d -1 . Microbial community analysis revealed an abundance of nitrifying and denitrifying bacteria in the reactor, which contributed to nitrification and nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  10. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    NASA Astrophysics Data System (ADS)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  11. The supernova-regulated ISM. III. Generation of vorticity, helicity, and mean flows

    NASA Astrophysics Data System (ADS)

    Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R.

    2018-03-01

    Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aim. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods: We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions. Results: As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α (AKA) effect. We use the method of moments to fit for the turbulent transport coefficients, and find αAKA values of the order 3-5 km s-1. Conclusions: Even in a weakly rotationally and shear-influenced system, small-scale anisotropies can lead to significant effects at large scales. Here we report on two consequences of such effects, namely on the generation of net helicity and on the emergence of large-scale flows by the AKA effect, the latter detected for the first time in a direct numerical simulation of a realistic astrophysical system.

  12. A proposed mechanism for rapid adaptation to spectrally distorted speech.

    PubMed

    Azadpour, Mahan; Balaban, Evan

    2015-07-01

    The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.

  13. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    NASA Astrophysics Data System (ADS)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  14. Plasma rotation in the Peking University Plasma Test device.

    PubMed

    Xiao, Chijie; Chen, Yihang; Yang, Xiaoyi; Xu, Tianchao; Wang, Long; Xu, Min; Guo, Dong; Yu, Yi; Lin, Chen

    2016-11-01

    Some preliminary results of plasma rotations in a linear plasma experiment device, Peking University Plasma Test (PPT) device, are reported in this paper. PPT has a cylindrical vacuum chamber with 500 mm diameter and 1000 mm length, and a pair of Helmholtz coils which can generate cylindrical or cusp magnetic geometry with magnitude from 0 to 2000 G. Plasma was generated by a helicon source and the typical density is about 10 13 cm -3 for the argon plasma. Some Langmuir probes, magnetic probes, and one high-speed camera are set up to diagnose the rotational plasmas. The preliminary results show that magnetic fluctuations exist during some plasma rotation processes with both cylindrical and cusp magnetic geometries, which might be related to some electromagnetic processes and need further studies.

  15. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions.

    PubMed

    Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M

    2018-01-01

    One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke survivors with impaired touch sensation. Hemisphere of lesion was associated with different patterns of altered functional connectivity within the somatosensory network and with related function was associated with different patterns of altered functional connectivity within the somatosensory network and with related functional networks.

  16. Tertiary Treatment of Wastewater Using a Rotating Biological Contactor System.

    DTIC Science & Technology

    1980-02-01

    in deter- gal/sq ft/day (0.04 m3 /m 2 /day) could remove BOD mining nitrification efficiency (temperature steady at from winery wastes at an efficiency...and J. E. Tehan, "Treatment of 210. Hao and G. F. Hendricks. "Rotating Biological Reactors Winery Wastes by Aerated Lagoon. Activated Sludge, and...Pollution Control Federa- tion, January 1978). LaBella. S. A.. I. H. Thaker, and J. E. Tehan. "Treatment of Winery Wastes by Aerated Lagoon. Domestic

  17. Rotating samples in FT-RAMAN spectrometers

    NASA Astrophysics Data System (ADS)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  18. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus--implications for starter design.

    PubMed

    Mills, S; Griffin, C; Coffey, A; Meijer, W C; Hafkamp, B; Ross, R P

    2010-03-01

    An efficient approach for generation of bacteriophage-insensitive mutants (BIMs) of Streptococcus thermophilus starters was described in our laboratory [Mills et al. (2007) J Microbiol Methods70, 159-164]. The aim of this study was to analyse the phage resistance mechanism responsible for BIM formation. Three clustered regularly interspaced short palindromic repeat (CRISPR) regions have been identified in Strep. thermophilus, and Strep. thermophilus can integrate novel spacers into these loci in response to phage attack. Characterization of three sets of BIMs indicated that two sets had altered CRISPR1 and/or CRISPR3 loci. A range of BIMs of yoghurt starter CSK938 were generated with the same phage in different phage challenge experiments, and each acquired unique spacer regions ranging between one and four new spacers in CRISPR1. In addition, the BIM that acquired only one new spacer in CRISPR1 also acquired an additional spacer in CRISPR3. A fourth BIM, generated with a different phage, had two spacers deleted from CRISPR1 but acquired two spacers in CRISPR3. Analysis of the Mozzarella starter CSK939 and its associated BIMs indicated that formation of second generation BIMs does not lead to increases in spacer number but to alterations in spacer regions. BIMs of an exopolysaccharide (EPS)-producing strain that lost the ability to produce EPS did not harbour an altered CRISPR, suggesting that phage sensitivity may be related to the EPS-producing phenotype. Acquisition/deletion of new spacers in CRISPR loci in response to phage attack generates distinctly individual variants. It also demonstrates that other modifications may be responsible for the phage resistance of Strep. thermophilus BIMs. Isolation of individual BIMs that have unique spacers towards the leader region of the CRISPR locus may be a very useful approach for rotation strategies with the same starter backbone. Upon phage infection, BIMs 'in reserve' can be slotted into the rotation scheme.

  19. Efficient Charging of Li‐Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators

    PubMed Central

    Pu, Xiong; Liu, Mengmeng; Li, Linxuan; Zhang, Chi; Pang, Yaokun; Jiang, Chunyan; Shao, Lihua

    2016-01-01

    The triboelectric nanogenerator (TENG) is a promising mechanical energy harvesting technology, but its pulsed output and the instability of input energy sources make associated energy‐storage devices necessary for real applications. In this work, feasible and efficient charging of Li‐ion batteries by a rotating TENG with pulsed output current is demonstrated. In‐depth discussions are made on how to maximize the power‐storage efficiency by achieving an impedance match between the TENG and a battery with appropriate design of transformers. With a transformer coil ratio of 36.7, ≈72.4% of the power generated by the TENG at 250 rpm can be stored in an LiFePO4–Li4Ti5O12 battery. Moreover, a 1 h charging of an LiCoO2–C battery by the TENG at 600 rpm delivers a discharge capacity of 130 mAh, capable of powering many smart electronics. Considering the readily scale‐up capability of the TENG, promising applications in personal electronics can be anticipated in the near future. PMID:27774382

  20. The Laser Cooling and Magneto-Optical Trapping of the YO Molecule

    NASA Astrophysics Data System (ADS)

    Yeo, Mark

    Laser cooling and magneto-optical trapping of neutral atoms has revolutionized the field of atomic physics by providing an elegant and efficient method to produce cold dense samples of ultracold atoms. Molecules, with their strong anisotropic dipolar interaction promises to unlock even richer phenomenon. However, due to their additional vibrational and rotational degrees of freedom, laser cooling techniques have only been extended to a small set of diatomic molecules. In this thesis, we demonstrate the first magneto-optical trapping of a diatomic molecule using a quasi-cycling transition and an oscillating quadrupole magnetic field. The transverse temperature of a cryogenically produced YO beam was reduced from 25 mK to 10 mK via doppler cooling and further reduced to 2 mK with the addition of magneto-optical trapping forces. The optical cycling in YO is complicated by the presence of an intermediate electronic state, as decays through this state lead to optical pumping into dark rotational states. Thus, we also demonstrate the mixing of rotational states in the ground electronic state using microwave radiation. This technique greatly enhances optical cycling, leading to a factor of 4 increase in the YO beam fluorescence and is used in conjunction with a frequency modulated and chirped continuous wave laser to longitudinally slow the YO beam. We generate YO molecules below 10 m/s that are directly loadable into a three-dimensional magneto-optical trap. This mixing technique provides an alternative to maintaining rotational closure and should extend laser cooling to a larger set of molecules.

  1. MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk

    Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first studymore » to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.« less

  2. Generation of a Large-scale Magnetic Field in a Convective Full-sphere Cross-helicity Dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Yokoi, N.

    2018-05-01

    We study the effects of the cross-helicity in the full-sphere large-scale mean-field dynamo models of a 0.3 M ⊙ star rotating with a period of 10 days. In exploring several dynamo scenarios that stem from magnetic field generation by the cross-helicity effect, we found that the cross-helicity provides the natural generation mechanisms for the large-scale scale axisymmetric and nonaxisymmetric magnetic field. Therefore, the rotating stars with convective envelopes can produce a large-scale magnetic field generated solely due to the turbulent cross-helicity effect (we call it γ 2-dynamo). Using mean-field models we compare the properties of the large-scale magnetic field organization that stems from dynamo mechanisms based on the kinetic helicity (associated with the α 2 dynamos) and cross-helicity. For the fully convective stars, both generation mechanisms can maintain large-scale dynamos even for the solid body rotation law inside the star. The nonaxisymmetric magnetic configurations become preferable when the cross-helicity and the α-effect operate independently of each other. This corresponds to situations with purely γ 2 or α 2 dynamos. The combination of these scenarios, i.e., the γ 2 α 2 dynamo, can generate preferably axisymmetric, dipole-like magnetic fields at strengths of several kGs. Thus, we found a new dynamo scenario that is able to generate an axisymmetric magnetic field even in the case of a solid body rotation of the star. We discuss the possible applications of our findings to stellar observations.

  3. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  4. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    PubMed

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  5. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is released by a massive magnetar that is (initially) gravitationally stable: its rotational energy is dissipated mainly by internal torques. A distinct plasmoid structure is seen in our nonrotating simulations, which will generate a radio transient with subluminal expansion and greater synchrotron efficiency than is expected in shock models. Closely related phenomena appear to be at work in the giant flares of Galactic magnetars.

  6. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.

  7. Isotope Brayton electric power system for the 500 to 2500 watt range.

    NASA Technical Reports Server (NTRS)

    Macosko, R. P.; Barna, G. J.; Block, H. B.; Ingle, B. D.

    1972-01-01

    An extensive study was conducted at the Lewis Research Center to evaluate an isotope Brayton electric power system for use in the 500 to 2500 W power range. The study emphasized overall system simplicity in order to reduce parasitic power losses and improve system reliability. The study included detailed parametric cycle analysis, conceptual component designs, and evaluation of system packaging. The study has resulted in the selection of a single-loop system (gas) with six major components including one rotating unit. Calculated net system efficiency varies from 23 to 28% over the power range. The use of the Pu-238 heat source being developed for the Multi-Hundred-Watt Radioisotope Thermoelectric Generator program was assumed.

  8. Noncontact manipulation using a transversely magnetized rolling robot

    NASA Astrophysics Data System (ADS)

    Tung, Hsi-Wen; Peyer, Kathrin E.; Sargent, David F.; Nelson, Bradley J.

    2013-09-01

    A type of magnetic, wireless microrobot has been designed for non-contact manipulation of micro-objects in liquids. The agent, named the RodBot, has typical dimensions of 300 μm × 60 μm × 50 μm. The RodBot is transversely magnetized and rolls around its long axis on a surface in a rotating external magnetic field. In liquid environments, the RodBot generates a rising flow in front of it and a vortex above its body. The flow and vortex are efficient for picking-up and trapping micro-objects of sizes ranging from microns to one millimeter. In viscous solutions, a RodBot can transport objects many times its own size and weight.

  9. Wear of sharp aggregates in a rotating drum

    NASA Astrophysics Data System (ADS)

    Deiros Quintanilla, Ivan; Combe, Gaël; Emeriault, Fabrice; Toni, Jean-Benoît; Voivret, Charles; Ferellec, Jean François

    2017-06-01

    Aggregates constituting ballast layer wear due to the continuous passage of trains and during the necessary maintenance operations of the track. In order to develop efficient solutions for ballasted tracks design and maintenance, a proper knowledge of the degradation laws of ballast grains is needed. In tribology, the amount of wear due to friction when two surfaces are in contact is classically predicted by Archard's equation. However, due to the continuous evolution of grain angularity and roughness, at the macro-scale wear coefficient cannot be assumed to remain constant, but will depend on the state of degradation of the grain surface. In order to adjust the model to this particular case, the Micro-Deval Attrition test is used. The rotating drum is stopped at intermediate stages and the amount of generated fine particles is measured. Thus the curve of mass loss along time is built. These results are then linked to Archard's model using the values of contact forces and relative displacements extracted from discrete element simulations. Finally, a morphology analysis is performed tracking shape and roughness parameters at different stages of degradation using X-ray tomography and a laser profilometer.

  10. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  11. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  12. [Muscle efficiency in total shoulder prosthesis implantation: dependence on position of the humeral head and rotator cuff function].

    PubMed

    Klages, A; Hurschler, C; Wülker, N; Windhagen, H

    2001-09-01

    Modern shoulder prostheses permit an anatomic reconstruction of the joint, although the biomechanical advantages are not proven. The goal of this study was to investigate the relationship between position of the humeral head and function of the shoulder prosthesis (muscle efficiency). Shoulder elevation-motion and rotator cuff defects were simulated in vitro in a robot-assisted shoulder simulator. The EPOCA Custom Offset shoulder prosthesis (Argomedical AG, Cham, CH) was implanted in seven normal shoulders (77 +/- 20 kg, 55 +/- 14 years). Active elevation was simulated by hydraulic cylinders, and scapulothoratic motion by a specially programmed industrial robot. Muscle efficiency (elevation-angle/muscle-force of the deltoid muscle) was measured in anatomic (ANA), medialised (MED) and lateralised (LAT) positions of the humeral head, with or without rotator cuff muscle deficiency. Medialisation increased efficiency by 0.03 +/- 0.04 deg/N (p = 0.022), lateralisation decreased it by 0.04 +/- 0.06 deg/N (p = 0.009). Supraspinatus muscle deficiency increased the deltoid force required to elevate the arm, and thus decreased efficiency (ANA p = 0.091, MED p = 0.018, LAT p = 0.028). The data confirm that the position of the humeral head affects the mechanics of total shoulder arthroplasty. Medialisation increases efficiency of the deltoid muscle and may prove useful in compensating isolated supraspinatus muscle deficiency. Lateralisation, in contrast, leads to an unfavorable situation.

  13. Importance of body rotation during the flight of a butterfly.

    PubMed

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  14. Experimental and Numerical Studies of Mechanically- and Convectively-Driven Turbulence in Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Grannan, Alexander Michael

    2017-08-01

    The energy for driving turbulent flows in planetary fluid layers comes from a combination of thermocompositional sources and the motion of the boundary in contact with the fluid through mechanisms like precessional, tidal, and librational forcing. Characterizing the resulting turbulent fluid motions are necessary for understanding many aspects of the planet's dynamics and evolution including the generation of magnetic fields in the electrically conducting fluid layers and dissipation in the oceans. Although such flows are strongly inertial they are also strongly influenced by the Coriolis force whose source is in the rotation of the body and tends to constrain the inertial effects and provide support for fluid instabilities that might in-turn generate turbulence. Furthermore, the magnetic fields generated by the electrically conducting fluids act back on the fluid through the Lorentz force that also tends to constrain the flow. The goal of this dissertation is to investigate the characteristics of turbulent flows under the influence of mechanical, convective, rotational and magnetic forcing. In order to investigate the response of the fluid to mechanical forcing, I have modified a unique set of laboratory experiments that allows me to quantify the generation of turbulence driven by the periodic oscillations of the fluid containing boundary through tides and libration. These laboratory experiments replicate the fundamental ingredients found in planetary environments and are necessary for the excitation of instabilities that drive the turbulent fluid motions. For librational forcing, a rigid ellipsoidal container and ellipsoidal shell of isothermal unstratified fluid is made to rotate with a superimposed oscillation while, for tidal forcing, an elastic ellipsoidal container of isothermal unstratified fluid is made to rotate while an independently rotating perturbance also flexes the elastic container. By varying the strength and frequencies of these oscillations the characteristics of the resulting turbulence are investigated using meridional views to identify the dominate modes and spatial location of the turbulence. For the first time, measurements of the velocity in the equatorial plane are coupled with high resolution numerical simulations of the full flow field in identical geometry to characterize the instability mechanism, energy deposited into the fluid layer, and long-term evolution of the flow. The velocities determined through laboratory and numerical simulations when extrapolated to planets allow me to argue that the dynamics of mechanical forcing in low viscosity fluids may an important role as new and potentially large source of dissipation in planetary interiors. To study convective forcing, I have modified and performed a set of rotating and non-rotating hydrodynamic convection experiments using water as well as rotating and non-rotating magnetohydrodynamic convection in gallium. These studies are performed in a cylindrical geometry representing a model of high latitude planetary core style convection wherein the axis of rotation and gravity are aligned. For the studies using water, the steady columns that are characteristic of rotating convection and present in the dynamo models are likely to destabilize at the more extreme planetary parameters giving way to transitions to more complex styles of rotating turbulent flow. In the studies of liquid metal where the viscosity is lower, the onset of rotating convection occurs through oscillatory columnar convection well below the onset of steady columns. Such oscillatory modes are not represented at the parameters used by current dynamo models. Furthermore a suite of laboratory experiments shows that the imposition of rotational forces and magnetic forces both separately and together generate zeroeth order flow transitions that change the fundamental convective modes and heat transfer. Such regimes are more easily accessible to laboratory experiments then to numerical simulations but demonstrate the need for a new generation of dynamo simulations capable of including the fundamental properties of liquid metals as are relevant for understanding the dynamics of planetary interiors.

  15. Modeling the Effects of Turbulence in Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Smith, Katherine; Hamlington, Peter; van Schoor, Marthinus; TESLa Team; Midé Team

    2014-03-01

    Propulsion systems based on detonation waves, such as rotating and pulsed detonation engines, have the potential to substantially improve the efficiency and power density of gas turbine engines. Numerous technical challenges remain to be solved in such systems, however, including obtaining more efficient injection and mixing of air and fuels, more reliable detonation initiation, and better understanding of the flow in the ejection nozzle. These challenges can be addressed using numerical simulations. Such simulations are enormously challenging, however, since accurate descriptions of highly unsteady turbulent flow fields are required in the presence of combustion, shock waves, fluid-structure interactions, and other complex physical processes. In this study, we performed high-fidelity three dimensional simulations of a rotating detonation engine and examined turbulent flow effects on the operation, performance, and efficiency of the engine. Along with experimental data, these simulations were used to test the accuracy of commonly-used Reynolds averaged and subgrid-scale turbulence models when applied to detonation engines. The authors gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).

  16. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    NASA Astrophysics Data System (ADS)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  17. AC electric field induced dipole-based on-chip 3D cell rotation.

    PubMed

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  18. Structure and Dynamics of Fluid Planets

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2014-12-01

    Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.

  19. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment.

    PubMed

    Naje, Ahmed Samir; Chelliapan, Shreeshivadasan; Zakaria, Zuriati; Abbas, Saad A

    2016-07-01

    This paper investigates the optimum operational conditions of a novel rotated bed electrocoagulation (EC) reactor for the treatment of textile wastewater. The effect of various operational parameters such as rotational speed, current density (CD), operational time (RT), pH, temperature, and inter-electrode distance (IED) on the pollutant removal efficiency were examined. In addition, the consumption of aluminum (Al) and electrical energy, as well as operating costs at optimum conditions were also calculated. The results indicated that the optimum conditions for the treatment of textile wastewater were achieved at CD = 4 mA/cm(2), RT = 10 min, rotational speed = 150 rpm, pH = 4.57, temperature = 25 °C, and IED = 1 cm. The electrode consumption, energy consumption, and operating costs were 0.038 kg/m(3), 4.66 kWh/m(3) and 0.44 US$/m(3), respectively. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solid (TSS), turbidity and color were 97.10%, 95.55%, 98%, 96% and 98.50%, respectively, at the first 10 min of reaction time, while the phenol compound of the wastewater was almost entirely removed (99.99%). The experimental results confirm that the new reactor design with rotated anode impellers and cathode rings provided high treatment efficiency at a reduced reaction time and with lower energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Power harvesting for railroad track safety enhancement using vertical track displacement

    NASA Astrophysics Data System (ADS)

    Nelson, Carl A.; Platt, Stephen R.; Hansen, Sean E.; Fateh, Mahmood

    2009-03-01

    A significant portion of railroad infrastructure exists in areas that are relatively remote. Railroad crossings in these areas are typically only marked with reflective signage and do not have warning light systems or crossbars due to the cost of electrical infrastructure. Distributed sensor networks used for railroad track health monitoring applications would be useful in these areas, but the same limitation regarding electrical infrastructure exists. This motivates the search for a long-term, low-maintenance power supply solution for remote railroad deployment. This paper describes the development of a mechanical device for harvesting mechanical power from passing railcar traffic that can be used to supply electrical power to warning light systems at crossings and to remote networks of sensors via rechargeable batteries. The device is mounted to and spans two rail ties such that it directly harnesses the vertical displacement of the rail and attached ties and translates the linear motion into rotational motion. The rotational motion is amplified and mechanically rectified to rotate a PMDC generator that charges a system of batteries. A prototype was built and tested in a laboratory setting for verifying functionality of the design. Results indicate power production capabilities on the order of 10 W per device in its current form. This is sufficient for illuminating high-efficiency LED lights at a railroad crossing or for powering track-health sensor networks.

  1. Non-resonant energy harvester with elastic constraints for low rotating frequencies

    NASA Astrophysics Data System (ADS)

    Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.

    2017-11-01

    This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.

  2. Efficient global biopolymer sampling with end-transfer configurational bias Monte Carlo

    NASA Astrophysics Data System (ADS)

    Arya, Gaurav; Schlick, Tamar

    2007-01-01

    We develop an "end-transfer configurational bias Monte Carlo" method for efficient thermodynamic sampling of complex biopolymers and assess its performance on a mesoscale model of chromatin (oligonucleosome) at different salt conditions compared to other Monte Carlo moves. Our method extends traditional configurational bias by deleting a repeating motif (monomer) from one end of the biopolymer and regrowing it at the opposite end using the standard Rosenbluth scheme. The method's sampling efficiency compared to local moves, pivot rotations, and standard configurational bias is assessed by parameters relating to translational, rotational, and internal degrees of freedom of the oligonucleosome. Our results show that the end-transfer method is superior in sampling every degree of freedom of the oligonucleosomes over other methods at high salt concentrations (weak electrostatics) but worse than the pivot rotations in terms of sampling internal and rotational sampling at low-to-moderate salt concentrations (strong electrostatics). Under all conditions investigated, however, the end-transfer method is several orders of magnitude more efficient than the standard configurational bias approach. This is because the characteristic sampling time of the innermost oligonucleosome motif scales quadratically with the length of the oligonucleosomes for the end-transfer method while it scales exponentially for the traditional configurational-bias method. Thus, the method we propose can significantly improve performance for global biomolecular applications, especially in condensed systems with weak nonbonded interactions and may be combined with local enhancements to improve local sampling.

  3. Isokinetic strength differences between patients with primary reverse and total shoulder prostheses: muscle strength quantified with a dynamometer.

    PubMed

    Alta, Tjarco D W; Veeger, DirkJan H E J; de Toledo, Joelly M; Janssen, Thomas W J; Willems, W Jaap

    2014-11-01

    Range of motion after total shoulder arthroplasty is better than after reverse shoulder arthroplasty, however with similar clinical outcome. It is unclear if this difference can only be found in the different range of motion or also in the force generating capacity. (1) are isokinetically produced joint torques of reverse shoulder arthroplasty comparable to those of total shoulder arthroplasty? (2) Does this force-generating capacity correlate with functional outcome? Eighteen reverse shoulder arthroplasty patients (71years (SD 9years)) (21 shoulders, follow-up of 21months (SD 10months)) were recruited, 12 total shoulder arthroplasty patients (69years (SD 9years)) (14 shoulders, follow-up of 35months (SD 11months)). Pre- and post-operative Constant-Murley scores were obtained; two isokinetic protocols (ab-/adduction and ex-/internal rotations) at 60°/s were performed. Twelve of 18 reverse shoulder arthroplasty patients generated enough speed to perform the test (13 shoulders). Mean ab-/adduction torques are 16.3Nm (SD 5.6Nm) and 20.4Nm (SD 11.8Nm). All total shoulder arthroplasty patients generated enough speed (14 shoulders). Mean ab-/adduction torques are 32.1Nm (SD 13.3Nm) and 43.1Nm (SD 21.5Nm). Only 8 reverse shoulder arthroplasty patients (9 shoulders) could perform ex-/internal rotation tasks and all total shoulder arthroplasty patients. Mean ex-/internal rotation torques are 9.3Nm (SD 4.7Nm) and 9.2Nm (SD 2.1Nm) for reverse shoulder arthroplasty, and 17.9Nm (SD 7.7Nm) and 23.5Nm (SD 10.6Nm) for total shoulder arthroplasty. Significant correlations between sub-scores: activity, mobility and strength and external rotation torques for reverse shoulder arthroplasty. Moderate to strong correlation for sub-scores: strength in relation to abduction, adduction and internal rotation torques for total shoulder arthroplasty. Shoulders with a total shoulder arthroplasty are stronger. This can be explained by the absence of rotator cuff muscles and (probably) medialized center of rotation in reverse shoulder arthroplasty. The strong correlation between external rotation torques and post-operative Constant-Murley sub-scores demonstrates that external rotation is essential for good clinical functioning in reverse shoulder arthroplasty. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [A microbiological investigation of the effectiveness of Micro Megas E-spray].

    PubMed

    Kardel, K; Hegna, I K; Kardel, M

    1976-06-01

    The disinfecting effect of Micro Megas E-spray was tested using a microbiological technique which also included a practical test. Contra-angels and straight handpieces which were sprayed after being used for treatment on patients, and then dried and incubated in a liquid medium, showed a marked growth of microorganisms. The spray had a weak and barely significant growth inhibiting effect on contaminated, simulated instrument surfaces. using Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as test bacteria. It is concluded that the spray is not suitable for distinfection of contra-angels and straight handpieces.

  5. Memorias del segundo simposio internacional sobre políticas, planificación y economía de los programas de protección contra incendios forestales: una visión global; 2004 Abril 19–22; Córdoba, España

    Treesearch

    Armando González-Cabán

    2008-01-01

    Estas memorias resumen el resultado de un simposio diseñado para discutir los problemas actuales que confrontan las agencias con responsabilidad para la protección contra incendios forestales a nivel federal y estadual en los EE.UU., al igual que agencias en la comunidad internacional. Los temas discutidos en el simposio incluyen economía del fuego, teoría y modelos...

  6. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  7. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.

  8. Einstein contra Aristotle: The sound from the heavens

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-09-01

    In "On the Heavens" Aristotle criticizes the Pythagorean point of view which claims the existence of a cosmic music and a cosmic sound. According to the Pythagorean argument, there exists a cosmic music produced by stars and planets. These celestial bodies generate sound in its movements, and the music appears due to the cosmic harmony. For Aristotle, there is no sound produced by celestial bodies. Then, there is no music as well. However, recently, LIGO (Laser Interferometer Gravitational-Waves Observatory) has detected the gravitational waves predicted by Einstein. In some sense, a sound originated from black holes has been heard. That is, Einstein or the General Relativity and LIGO appear to be with the Pythagoreanism and against the master of the Lyceum.

  9. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Daniel Joseph; Mahaffey, David; Senkov, Oleg

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from anmore » analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.« less

  10. The swimming of a perfect deforming helix

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  11. Financial analysis of early stand treatments in southwest Oregon.

    Treesearch

    Helge Eng; K. Norman Johnson; Roger D. Fight

    1990-01-01

    Management guidelines for economically efficient early stand treatments were developed by identifying treatments that would maximize financial returns over the rotation for coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) in southwest Oregon. Short rotations and low stand densities (trees per acre) gave...

  12. Lift estimation of Half-Rotating Wing in hovering flight

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  13. Piezoelectrically pushed rotational micromirrors using detached PZT actuators for wide-angle optical switch applications

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jin; Cho, Young-Ho; Nam, Hyo-Jin; Bu, Jong Uk

    2008-12-01

    This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators, detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested the prototypes of TMDs for single-axis and dual-axis rotations, respectively. The single-axis TMD generates a static rotational angle of 6.1° at 16 Vdc, which is six times larger than that of the single-axis TMA, 0.9°. However, the rotational response curve of TMD shows hysteresis and zero offset due to the static friction from the initial contact force between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is reduced by eliminating the initial contact force of the PZT actuator. The dual-axis TMD generates static rotational angles of 5.5° and 4.7° in the x-axis and y-axis, respectively, at 16 Vdc. The measured resonant frequencies of the dual-axis TMD are 2.1 ± 0.1 kHz in the x-axis and 1.7 ± 0.1 kHz in the y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by the 16 Vp-p sinusoidal wave signal at room temperature.

  14. A laboratory study of mean flow generation in rotating fluids by Reynolds stress gradients

    NASA Astrophysics Data System (ADS)

    McGuinness, D. S.; Boyer, D. L.; Fernando, H. J. S.

    2001-06-01

    Laboratory experiments were conducted that demonstrate that a mean azimuthal flow can be produced by introducing Reynolds stress gradients to a rotating fluid with zero initial mean flow. This mechanism may play a role in the generation of mean currents in coastal regions. The experiments entail the establishment of turbulence in a thin annular-shaped region centered within a cylindrical test cell through the use of a vertically oscillating grid. This region rests in a horizontal plane perpendicular to the vertical axis of the tank, and the entire system is placed on a turntable to simulate background rotation. Flow visualization techniques are used to depict qualitative features of the resulting flow field. Measurements of the mean and turbulent velocity fields are performed using a two-component laser-Doppler velocimeter. The results show how rectified currents (mean flows) can be generated via Reynolds stress gradients induced by periodic forcing of the grid. In the absence of background rotation, rectified flow is observed in the radial and vertical directions only. The presence of background rotation tends to organize these motions in that the flow tends to move parallel to the turbulent source, i.e., in the azimuthal direction, with the source (strong turbulence) located to the right, facing downstream. The influence of rotation on the Reynolds stresses and their gradients as well as on the ensuing mean flow is evaluated, and the observations are examined by considering individual contributions of the terms in the Reynolds-averaged momentum equations.

  15. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size

    PubMed Central

    2014-01-01

    Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. Conclusions The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion. PMID:24940480

  16. Two-Year Clinical Outcomes of Newer-Generation Drug-Eluting Stent Implantation Following Rotational Atherectomy for Heavily Calcified Lesions.

    PubMed

    Jinnouchi, Hiroyuki; Kuramitsu, Shoichi; Shinozaki, Tomohiro; Kobayashi, Yohei; Hiromasa, Takashi; Morinaga, Takashi; Mazaki, Toru; Sakakura, Kenichi; Soga, Yoshimitsu; Hyodo, Makoto; Shirai, Shinichi; Ando, Kenji

    2015-01-01

    Clinical outcomes of implantation of the newer-generation drug-eluting stent (DES) following rotational atherectomy for heavily calcified lesions remain unclear in the real-world setting. We enrolled 252 consecutive patients (273 lesions) treated with newer-generation DES following rotational atherectomy. The primary endpoint was the cumulative 2-year incidence of major adverse cardiovascular events (MACE), defined as cardiac death, myocardial infarction, clinically-driven target lesion revascularization, and definite stent thrombosis. Complete clinical follow-up information at 2-year was obtained for all patients. The mean age was 73.2±9.0 years and 155 patients (61.5%) were male. Cumulative 2-year incidence of MACE (cardiac death, myocardial infarction, clinically-driven target lesion revascularization and definite stent thrombosis) was 20.3% (7.0%, 2.1%, 18.1% and 2.1%, respectively). Predictors of MACE were presenting with acute coronary syndrome (hazard ratio [HR]: 3.80, 95% confidence interval [CI]: 1.29-11.2, P=0.02), hemodialysis (HR: 1.93, 95% CI: 1.04-3.56, P=0.04) and previous coronary artery bypass graft (HR: 2.26, 95% CI: 1.02-5.00, P=0.045). PCI for calcified lesions requiring rotational atherectomy is still challenging even in the era of newer-generation DES.

  17. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  18. Efficient utilization of short rotation tree biomass for cooking in India

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Chauhan, S. K.

    2012-04-01

    The human as well as livestock population increase is phenomenal in developing world including India. The survival of this huge population certainly depends on the carrying capacity of the natural systems, which is essentially determined by the nature itself. Present state of the forests can satisfy the needs of certain population and the demand for wood has rapidly outstripped the sustainability of forests. The fuelwood requirements in the developing world is approximately 80 per cent of total wood requirements and is the major cause of forest degradation. Therefore, there is need to maximize the productivity on one hand and protection/extention of the area on another hand. Wood substitution is an option including shifting from fuelwood for cooking to fossil fuels but in the changing climatic situation, this option is short term alternative. There is need to produce more and use the same efficiently to reduce the demands. Millions of households across the country are using crude cooking stoves for their daily needs which are not only energy inefficient but detrimental to women health also. It has been the policy of Government to encourage trees outside forests to minimize the pressure from forests through meeting requirements outside forests, which is possible through intensively managed short rotation forestry and also some initiatives have been taken to increase the fuelwood efficiency through improved cooking stove, which are working successfully. Woodfuel remained the most important source of household energy in India but regular attempts have not been made to improve the efficiency in its use. This paper will focus on potential of short rotation forestry plantations for energy consumption and its efficient use at domestic scale. This has three fold interrelated economic, environmental and social impact. Key words: Short Rotation Forestry, trees outside forests, wood energy, cooking stove

  19. Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice.

    PubMed

    Rahman, Motior M; Islam, Aminul M; Azirun, Sofian M; Boyce, Amru N

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  20. Computer program to simulate Raman scattering

    NASA Technical Reports Server (NTRS)

    Zilles, B.; Carter, R.

    1977-01-01

    A computer program is described for simulating the vibration-rotation and pure rotational spectrum of a combustion system consisting of various diatomic molecules and CO2 as a function of temperature and number density. Two kinds of spectra are generated: a pure rotational spectrum for any mixture of diatomic and linear triatomic molecules, and a vibrational spectrum for diatomic molecules. The program is designed to accept independent rotational and vibrational temperatures for each molecule, as well as number densities.

  1. Evaluation of rotator cuff muscle strength in healthy individuals

    PubMed Central

    Cortez, Paulo José Oliveira; Tomazini, José Elias

    2015-01-01

    OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091

  2. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects

    NASA Technical Reports Server (NTRS)

    DiZio, P.; Lackner, J. R.

    2001-01-01

    When reaching movements are made during passive constant velocity body rotation, inertial Coriolis accelerations are generated that displace both movement paths and endpoints in their direction. These findings directly contradict equilibrium point theories of movement control. However, it has been argued that these movement errors relate to subjects sensing their body rotation through continuing vestibular activity and making corrective movements. In the present study, we evaluated the reaching movements of five labyrinthine-defective subjects (lacking both semicircular canal and otolith function) who cannot sense passive body rotation in the dark and five age-matched, normal control subjects. Each pointed 40 times in complete darkness to the location of a just extinguished visual target before, during, and after constant velocity rotation at 10 rpm in the center of a fully enclosed slow rotation room. All subjects, including the normal controls, always felt completely stationary when making their movements. During rotation, both groups initially showed large deviations of their movement paths and endpoints in the direction of the transient Coriolis forces generated by their movements. With additional per-rotation movements, both groups showed complete adaptation of movement curvature (restoration of straight-line reaches) during rotation. The labyrinthine-defective subjects, however, failed to regain fully accurate movement endpoints after 40 reaches, unlike the control subjects who did so within 11 reaches. Postrotation, both groups' movements initially had mirror image curvatures to their initial per-rotation reaches; the endpoint aftereffects were significantly different from prerotation baseline for the control subjects but not for the labyrinthine-defective subjects reflecting the smaller amount of endpoint adaptation they achieved during rotation. The labyrinthine-defective subjects' movements had significantly lower peak velocity, higher peak elevation, lower terminal velocity, and a more vertical touchdown than those of the control subjects. Thus the way their reaches terminated denied them the somatosensory contact cues necessary for full endpoint adaptation. These findings fully contradict equilibrium point theories of movement control. They emphasize the importance of contact cues in adaptive movement control and indicate that movement errors generated by Coriolis perturbations of limb movements reveal characteristics of motor planning and adaptation in both healthy and clinical populations.

  3. Recognition of rotated images using the multi-valued neuron and rotation-invariant 2D Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio

    2012-03-01

    The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.

  4. Unsteady loading of a vertical-axis turbine in the interaction with an upstream deflector

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2014-01-01

    Torque generation and flow distribution of a lift-based vertical-axis turbine with an upstream deflecting plate are investigated in water tunnel experiments. The deployment of a deflector in front of a lift-based turbine is a promising approach to increase local flow velocity and enhance energy conversion efficiency without consideration for complicated control. For the turbine with the deflector, the phase during which the blade passes near the front end of the turbine has a major contribution to torque increase from the case without the deflector. Meanwhile, the deflector can have a negative effect in torque generation at the phase when the blade moves upstream against free stream if the turbine is placed close to the deflector in a crosswise direction. The change of nearby flow distribution by the deflector is also examined to find its correlation with torque generation. When the blade rotates through the near-wake region of the deflector, the blade can collides with the vortical structure shed from the deflector. This interaction causes significant torque fluctuation.

  5. Pulsed EPR measurements on reaction rate constants for addition of photo-generated radicals to double bonds of diethyl fumarate and diethyl maleate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio

    2016-11-01

    Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.

  6. Retaining a Resilient and Enduring Workforce: Examination of Duty/Position Rotational Assignments for Civilian Acquisition Positions

    DTIC Science & Technology

    2015-04-12

    decrease the number of errors due to fatigue” and improve production and efficiency ( Ivancevich , Konopaske, & Matteson, 2014, p. 151). “There are...Services, Ford, and Deloitte Services LP have utilized different forms of job rotation strategy” ( Ivancevich et al., 2014, p. 151). Further research...L. (2005, July). Job rotation. Credit Union Management, 28(7), 50–53. Ivancevich , J. M., Konopaske, R., & Matteson, M. T. (2014). Organizational

  7. SU-F-J-98: Improvement and Evaluation Of Deformation Image Registration On Parotid Glands During Radiation Therapy for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S; PLA General Hospital, Beijing; Wu, Z

    2016-06-15

    Purpose: To quantitatively evaluate the strategic innovation and accuracy variation of deformation registration algorithm for parotid glands using the similarity Dice coefficient during the course of radiation therapy (RT) for nasopharyngeal cancer (NPC). Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions. Two kinds of contours for parotid glands on daily MVCTs were obtained by populating these contours from planning CTs to the daily CTs via rigid-body registration with ormore » without the rotation shifts using the in-house tools and the Adaptive plan software (Adaptive Plan, TomoTherapy), and were edited manually if necessary. The diffeomorphic Demons algorithm developed in the in-house tool was used to propagate the parotid structures from the daily CTs to planning CTs. The differences of the mapped parotid contours in two methods were evaluated using Dice similarity index (DSI). Two-tailed t-test analysis was carried out to compare the DSI changes during the course of RT. Results: For 10 patient plans, the accuracy of deformation image registration (DIR) with the rotation shift was obviously better than those without the rotation shift. The Dice scores of the ipsi- and contra-lateral parotids for with and without the rotation shifts were found to be correlated with each other [0.904±0.031 vs 0.919±0.030 (p<0.001); 0.900±0.031 vs 0.910±0.032 (p<0.001)]. The Dice scores for the parotids have shown the reduction with the changes of parotid volumes during RT. The DSI values between the first and last fraction were 0.932±0.020 vs 0.899±0.030 in 10 patient plans. Conclusion: DIR was successfully improved using the strategic innovation for ART. And the decrease of DIR accuracy has also been found during the delivery of fractionated radiotherapy. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11105225).« less

  8. Effect of spaceflight on the spatial orientation of the vestibulo-ocular reflex during eccentric roll rotation: A case report.

    PubMed

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-01-01

    Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.

  9. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.

  10. Trirotron: triode rotating beam radio frequency amplifier

    DOEpatents

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  11. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    PubMed

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  12. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  13. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    PubMed

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  14. The Rotational Excitation Temperature of the 6614 DIB Carrier

    NASA Technical Reports Server (NTRS)

    Cami, J.; Salama, F.; Jimenez-Vicente, J.; Galazutdinov, G.; Krelowski, J.

    2004-01-01

    Analysis of high spectral resolution observations of the lambda6614 DIB line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations can only be understood in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is of the order 10-40 K - much lower than the gas kinetic temperature - indicating that for this particular DIB carrier angular momentum buildup is not very efficient. The rotational constant indicates that the carrier of this DIB is smaller than previously assumed:7-22 C atoms, depending on the geometry.

  15. Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces.

    PubMed

    Zhang, Wei; Gordon, Andrew M; Fu, Qiushi; Santello, Marco

    2010-06-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180 degrees about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations.

  16. Manipulation After Object Rotation Reveals Independent Sensorimotor Memory Representations of Digit Positions and Forces

    PubMed Central

    Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi

    2010-01-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064

  17. Combining Automatic Item Generation and Experimental Designs to Investigate the Contribution of Cognitive Components to the Gender Difference in Mental Rotation

    ERIC Educational Resources Information Center

    Arendasy, Martin E.; Sommer, Markus; Gittler, Georg

    2010-01-01

    Marked gender differences in three-dimensional mental rotation have been broadly reported in the literature in the last few decades. Various theoretical models and accounts were used to explain the observed differences. Within the framework of linking item design features of mental rotation tasks to cognitive component processes associated with…

  18. Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors

    DTIC Science & Technology

    2016-03-31

    resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3    Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically

  19. Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor

    PubMed Central

    Nakamura, Shuichi; Kami-ike, Nobunori; Yokota, Jun-ichi P.; Minamino, Tohru; Namba, Keiichi

    2010-01-01

    The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-driven flagellar motor of Salmonella also rotates with 26 steps per revolution but symmetrical in both CCW and CW directions with occasional smaller backward steps in both directions. Occasional shift in the stepping positions is also observed, suggesting the frequent exchange of stators in one of the 11–12 possible anchoring positions around the rotor. These observations indicate that the elementary process of torque generation by the cyclic association/dissociation of the stator with every FliG subunit along the circumference of the rotor is symmetric in CCW and CW rotation even though the structure of FliG is highly asymmetric and suggests a 180° rotation of a FliG domain for the rotor-stator interaction to reverse the direction of rotation. PMID:20876126

  20. Hip and upper extremity kinematics in youth baseball pitchers.

    PubMed

    Holt, Taylor; Oliver, Gretchen D

    2016-01-01

    The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, P = 0.002) and at ball release (r = 0.536, P = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.

Top