Sample records for efficiency curves obtained

  1. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  2. Monte Carlo simulation of the full energy peak efficiency of an HPGe detector.

    PubMed

    Khan, Waseem; Zhang, Qingmin; He, Chaohui; Saleh, Muhammad

    2018-01-01

    This paper presents a Monte Carlo method to obtain the full energy peak efficiency (FEPE) curve for a High Purity Germanium (HPGe) detector, as it is difficult and time-consuming to measure the FEPE curve experimentally. The Geant4 simulation toolkit was adopted to establish a detector model since detector specifications provided by the nominal manufacturer are usually insufficient to calculate the accurate efficiency of a detector. Several detector parameters were optimized. FEPE curves for a given HPGe detectors over the energy range of 59.50-1836keV were obtained and showed good agreements with those measured experimentally. FEPE dependences on detector parameters and source-detector distances were investigated. A best agreement with experimental result was achieved for a certain detector geometry and source-detector distance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Experimental study of the influence of the counter and scintillator on the universal curves in the cross-efficiency method in LSC.

    PubMed

    Cassette, P; Tartès, I

    2014-05-01

    The cross-efficiency method in LSC is one of the approaches proposed for the extension of the Système International de Référence (SIR) to radionuclides emitting no gamma radiation. This method is based on a so-called "universal cross-efficiency curve", establishing a relationship between the detection efficiency of the radionuclide to be measured and the detection efficiency of a suitable tracer. This paper reports a study at LNHB on the influence of the scintillator and of the LS counter on the cross-efficiency curves. This was done by measuring the cross-efficiency curves obtained for (63)Ni and (55)Fe vs. (3)H, using three different commercial LS counters (Guardian 1414, Tricarb 3170 and Quantulus 1220), three different liquid scintillator cocktails (Ultima Gold, Hionic Fluor and PicoFluor 15 from Perkin Elmer(®)), and for chemical and colour-quenched sources. This study shows that these cross-efficiency curves are dependent on the scintillator, on the counter used and on the nature of the quenching phenomenon, and thus cannot definitively be considered as "universal". © 2013 Published by Elsevier Ltd.

  4. Calculation of Coincidence Summing Correction Factors for an HPGe detector using GEANT4.

    PubMed

    Giubrone, G; Ortiz, J; Gallardo, S; Martorell, S; Bas, M C

    2016-07-01

    The aim of this paper was to calculate the True Coincidence Summing Correction Factors (TSCFs) for an HPGe coaxial detector in order to correct the summing effect as a result of the presence of (88)Y and (60)Co in a multigamma source used to obtain a calibration efficiency curve. Results were obtained for three volumetric sources using the Monte Carlo toolkit, GEANT4. The first part of this paper deals with modeling the detector in order to obtain a simulated full energy peak efficiency curve. A quantitative comparison between the measured and simulated values was made across the entire energy range under study. The True Summing Correction Factors were calculated for (88)Y and (60)Co using the full peak efficiencies obtained with GEANT4. This methodology was subsequently applied to (134)Cs, and presented a complex decay scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons.

    PubMed

    Johansson, K Olof; Campbell, Matthew F; Elvati, Paolo; Schrader, Paul E; Zádor, Judit; Richards-Henderson, Nicole K; Wilson, Kevin R; Violi, Angela; Michelsen, Hope A

    2017-06-15

    We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.

  6. Principal curve detection in complicated graph images

    NASA Astrophysics Data System (ADS)

    Liu, Yuncai; Huang, Thomas S.

    2001-09-01

    Finding principal curves in an image is an important low level processing in computer vision and pattern recognition. Principal curves are those curves in an image that represent boundaries or contours of objects of interest. In general, a principal curve should be smooth with certain length constraint and allow either smooth or sharp turning. In this paper, we present a method that can efficiently detect principal curves in complicated map images. For a given feature image, obtained from edge detection of an intensity image or thinning operation of a pictorial map image, the feature image is first converted to a graph representation. In graph image domain, the operation of principal curve detection is performed to identify useful image features. The shortest path and directional deviation schemes are used in our algorithm os principal verve detection, which is proven to be very efficient working with real graph images.

  7. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Stynes, K.

    2010-10-01

    The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust overmore » a range of receiver operating temperatures.« less

  8. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  9. Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis

    NASA Astrophysics Data System (ADS)

    Meng, Xiao; Wang, Lai; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-01-01

    Efficiency droop is currently one of the most popular research problems for GaN-based light-emitting diodes (LEDs). In this work, a differential carrier lifetime measurement system is optimized to accurately determine carrier lifetimes (τ) of blue and green LEDs under different injection current (I). By fitting the τ-I curves and the efficiency droop curves of the LEDs according to the ABC carrier rate equation model, the impact of Auger recombination and carrier leakage on efficiency droop can be characterized simultaneously. For the samples used in this work, it is found that the experimental τ-I curves cannot be described by Auger recombination alone. Instead, satisfactory fitting results are obtained by taking both carrier leakage and carriers delocalization into account, which implies carrier leakage plays a more significant role in efficiency droop at high injection level.

  10. Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons

    DOE PAGES

    Johansson, K. Olof; Campbell, Matthew F.; Elvati, Paolo; ...

    2017-05-18

    We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-sectionmore » curve of 2,5- dimethylfuran.« less

  11. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Stynes, J. K.

    2012-02-01

    The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantagesmore » to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.« less

  12. Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency

    PubMed Central

    Zaboikin, Michail; Freter, Carl

    2018-01-01

    We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734

  13. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates.

    PubMed

    LeDell, Erin; Petersen, Maya; van der Laan, Mark

    In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC.

  14. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates

    PubMed Central

    Petersen, Maya; van der Laan, Mark

    2015-01-01

    In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC. PMID:26279737

  15. Solar cells for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Chernow, F.

    1975-01-01

    The power efficiency curves of photovoltaic solar cells were investigated as a function of the forbidden energy gap (E sub g) and the current-voltage characteristic of the diode. Minority carrier injection, depletion layer recombination, and interface recombination terms were considered in models for the I-V characteristic. The collection efficiency for photons with energy between (E sub g) and an upper energy cutoff (E sub w) was assumed to be 100% and zero otherwise. Results are presented in terms of a single parameter related to the ratio of depletion layer width and minority carrier diffusion length. It was found that increasing depletion layer recombination shifts the efficiency curves to larger values of the energy without changing the shape of the efficiency curve appreciably. It is believed that similar results would be obtained whenever the quality factors in the exponential energy gap and forward bias terms are equal.

  16. SU-F-T-368: Improved HPGe Detector Precise Efficiency Calibration with Monte Carlo Simulations and Radioactive Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y. John

    2016-06-15

    Purpose: To obtain an improved precise gamma efficiency calibration curve of HPGe (High Purity Germanium) detector with a new comprehensive approach. Methods: Both of radioactive sources and Monte Carlo simulation (CYLTRAN) are used to determine HPGe gamma efficiency for energy range of 0–8 MeV. The HPGe is a GMX coaxial 280 cm{sup 3} N-type 70% gamma detector. Using Momentum Achromat Recoil Spectrometer (MARS) at the K500 superconducting cyclotron of Texas A&M University, the radioactive nucleus {sup 24} Al was produced and separated. This nucleus has positron decays followed by gamma transitions up to 8 MeV from {sup 24} Mg excitedmore » states which is used to do HPGe efficiency calibration. Results: With {sup 24} Al gamma energy spectrum up to 8MeV, the efficiency for γ ray 7.07 MeV at 4.9 cm distance away from the radioactive source {sup 24} Al was obtained at a value of 0.194(4)%, by carefully considering various factors such as positron annihilation, peak summing effect, beta detector efficiency and internal conversion effect. The Monte Carlo simulation (CYLTRAN) gave a value of 0.189%, which was in agreement with the experimental measurements. Applying to different energy points, then a precise efficiency calibration curve of HPGe detector up to 7.07 MeV at 4.9 cm distance away from the source {sup 24} Al was obtained. Using the same data analysis procedure, the efficiency for the 7.07 MeV gamma ray at 15.1 cm from the source {sup 24} Al was obtained at a value of 0.0387(6)%. MC simulation got a similar value of 0.0395%. This discrepancy led us to assign an uncertainty of 3% to the efficiency at 15.1 cm up to 7.07 MeV. The MC calculations also reproduced the intensity of observed single-and double-escape peaks, providing that the effects of positron annihilation-in-flight were incorporated. Conclusion: The precision improved gamma efficiency calibration curve provides more accurate radiation detection and dose calculation for cancer radiotherapy treatment.« less

  17. Accelerated pharmacokinetic map determination for dynamic contrast enhanced MRI using frequency-domain based Tofts model.

    PubMed

    Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam

    2014-01-01

    Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.

  18. Color quench correction for low level Cherenkov counting.

    PubMed

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  19. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  20. Utilization of high-frequency Rayleigh waves in near-surface geophysics

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.

    2004-01-01

    Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.

  1. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.

  2. New approach to calibrating bed load samplers

    USGS Publications Warehouse

    Hubbell, D.W.; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.

    1985-01-01

    Cyclic variations in bed load discharge at a point, which are an inherent part of the process of bed load movement, complicate calibration of bed load samplers and preclude the use of average rates to define sampling efficiencies. Calibration curves, rather than efficiencies, are derived by two independent methods using data collected with prototype versions of the Helley‐Smith sampler in a large calibration facility capable of continuously measuring transport rates across a 9 ft (2.7 m) width. Results from both methods agree. Composite calibration curves, based on matching probability distribution functions of samples and measured rates from different hydraulic conditions (runs), are obtained for six different versions of the sampler. Sampled rates corrected by the calibration curves agree with measured rates for individual runs.

  3. Numerical investigation on effect of blade shape for stream water wheel performance.

    NASA Astrophysics Data System (ADS)

    Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.

    2018-04-01

    Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance

  4. Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations

    NASA Astrophysics Data System (ADS)

    Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna

    2014-10-01

    This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).

  5. Preparation and characterization of Tb3+ ions doped zincborophosphate glasses for green emission

    NASA Astrophysics Data System (ADS)

    Bindu, S. Hima; Raju, D. Siva; Krishna, V. Vinay; Raju, Ch. Linga

    2017-06-01

    The present study reports the preparation of various concentrations of Tb3+ ions doped zincborophosphate glasses and analysis by XRD, FTIR, optical, emission and decay curve spectras. The effect of borate groups on the phosphate was evidenced by FTIR spectroscopy. The JO intensity parameters was calculated using Judd-Offlet theory. The fluroscence spectra of Tb3+ doped zincborophosphate glasses revealed the efficient blue and green emissions due to 5D3 and 5D4 excited levels to 7Fj ground state respectively. The decay curves exhibits single exponential curves for all the Tb3+ ion concentrations. Various radiative and fluorescence parameters are calculated using JO intensity parameters. Based on the results obtained in the present study, the Tb3+ ions doped zincborophosphate glasses behaves as a efficient laser active materials for highintensity emissions in the green region.

  6. Strategies for using cellular automata to locate constrained layer damping on vibrating structures

    NASA Astrophysics Data System (ADS)

    Chia, C. M.; Rongong, J. A.; Worden, K.

    2009-01-01

    It is often hard to optimise constrained layer damping (CLD) for structures more complicated than simple beams and plates as its performance depends on its location, the shape of the applied patch, the mode shapes of the structure and the material properties. This paper considers the use of cellular automata (CA) in conjunction with finite element analysis to obtain an efficient coverage of CLD on structures. The effectiveness of several different sets of local rules governing the CA are compared against each other for a structure with known optimum coverage—namely a plate. The algorithm which attempts to replicate most closely known optimal configurations is considered the most successful. This algorithm is then used to generate an efficient CLD treatment that targets several modes of a curved composite panel. To validate the modelling approaches used, results are also presented of a comparison between theoretical and experimentally obtained modal properties of the damped curved panel.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopčić, Nina, E-mail: nkopcic@fkit.hr; Vuković Domanovac, Marija; Kučić, Dajana

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain amore » substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min{sup −1}. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.« less

  8. Aircraft Armor an Empirical Approach to the Efficient Design of Armor for Aircraft

    DTIC Science & Technology

    1944-01-31

    weighted) to projectile corn diameter (e]_/d) equals 0.6 or less, the use of duralumin will produce the maximum protection per unit weight employed, and...pr.’tection (as represented by the curves for different striking validities) may be obtained from a lower value ox («l/d COB 6), c:re efficient use

  9. Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.

    2012-08-01

    This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.

  10. Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens

    NASA Astrophysics Data System (ADS)

    Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria

    2013-08-01

    Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara, E. de; Marti, G. V.; Capurro, O. A.

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{submore » B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.« less

  12. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  13. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al2O3:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.

    2008-12-01

    This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al2O3:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al2O3:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al2O3:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al2O3:C.

  14. Multi-Objective Lake Superior Regulation

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Razavi, S.; Tolson, B.

    2011-12-01

    At the direction of the International Joint Commission (IJC) the International Upper Great Lakes Study (IUGLS) Board is investigating possible changes to the present method of regulating the outflows of Lake Superior (SUP) to better meet the contemporary needs of the stakeholders. In this study, a new plan in the form of a rule curve that is directly interpretable for regulation of SUP is proposed. The proposed rule curve has 18 parameters that should be optimized. The IUGLS Board is also interested in a regulation strategy that considers potential effects of climate uncertainty. Therefore, the quality of the rule curve is assessed simultaneously for multiple supply sequences that represent various future climate scenarios. The rule curve parameters are obtained by solving a computationally intensive bi-objective simulation-optimization problem that maximizes the total increase in navigation and hydropower benefits of the new regulation plan and minimizes the sum of all normalized constraint violations. The objective and constraint values are obtained from a Microsoft Excel based Shared Vision Model (SVM) that compares any new SUP regulation plan with the current regulation policy. The underlying optimization problem is solved by a recently developed, highly efficient multi-objective optimization algorithm called Pareto Archived Dynamically Dimensioned Search (PA-DDS). To further improve the computational efficiency of the simulation-optimization problem, the model pre-emption strategy is used in a novel way to avoid the complete evaluation of regulation plans with low quality in both objectives. Results show that the generated rule curve is robust and typically more reliable when facing unpredictable climate conditions compared to other SUP regulation plans.

  15. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C.

    PubMed

    Yukihara, E G; Gaza, R; McKeever, S W S; Soares, C G

    2004-02-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  16. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.; Soares, C. G.

    2004-01-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  17. Activity measurements of 55Fe by two different methods

    NASA Astrophysics Data System (ADS)

    da Cruz, Paulo A. L.; Iwahara, Akira; da Silva, Carlos J.; Poledna, Roberto; Loureiro, Jamir S.; da Silva, Monica A. L.; Ruzzarin, Anelise

    2018-03-01

    A calibrated germanium detector and CIEMAT/NIST liquid scintillation method were used in the standardization of solution of 55Fe coming from a key-comparison BIPM. Commercial cocktails were used in source preparation for activity measurements in CIEMAT/NIST method. Measurements were performed in Liquid Scintillation Counter. In the germanium counting method standard point sources were prepared for obtaining atomic number versus efficiency curve of the detector in order to obtain the efficiency of 5.9 keV KX-ray of 55Fe by interpolation. The activity concentrations obtained were 508.17 ± 3.56 and 509.95 ± 16.20 kBq/g for CIEMAT/NIST and germanium methods, respectively.

  18. Comparing kinetic curves in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Kurganov, A. A.; Kanat'eva, A. Yu.; Yakubenko, E. E.; Popova, T. P.; Shiryaeva, V. E.

    2017-01-01

    Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t 0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.

  19. High-performance liquid chromatography with fast-scanning fluorescence detection and multivariate curve resolution for the efficient determination of galantamine and its main metabolites in serum.

    PubMed

    Culzoni, María J; Aucelio, Ricardo Q; Escandar, Graciela M

    2012-08-31

    Based on green analytical chemistry principles, an efficient approach was applied for the simultaneous determination of galantamine, a widely used cholinesterase inhibitor for the treatment of Alzheimer's disease, and its major metabolites in serum samples. After a simple serum deproteinization step, second-order data were rapidly obtained (less than 6 min) with a chromatographic system operating in the isocratic regime using ammonium acetate/acetonitrile (94:6) as mobile phase. Detection was made with a fast-scanning spectrofluorimeter, which allowed the efficient collection of data to obtain matrices of fluorescence intensity as a function of retention time and emission wavelength. Successful resolution was achieved in the presence of matrix interferences in serum samples using multivariate curve resolution-alternating least-squares (MCR-ALS). The developed approach allows the quantification of the analytes at levels found in treated patients, without the need of applying either preconcentration or extraction steps. Limits of detection in the range between 8 and 11 ng mL(-1), relative prediction errors from 7 to 12% and coefficients of variation from 4 to 7% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  1. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-04-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.

  2. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-07-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.

  3. Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era

    NASA Astrophysics Data System (ADS)

    Huijse, Pablo; Estévez, Pablo A.; Förster, Francisco; Daniel, Scott F.; Connolly, Andrew J.; Protopapas, Pavlos; Carrasco, Rodrigo; Príncipe, José C.

    2018-05-01

    The Large Synoptic Survey Telescope (LSST) will produce an unprecedented amount of light curves using six optical bands. Robust and efficient methods that can aggregate data from multidimensional sparsely sampled time-series are needed. In this paper we present a new method for light curve period estimation based on quadratic mutual information (QMI). The proposed method does not assume a particular model for the light curve nor its underlying probability density and it is robust to non-Gaussian noise and outliers. By combining the QMI from several bands the true period can be estimated even when no single-band QMI yields the period. Period recovery performance as a function of average magnitude and sample size is measured using 30,000 synthetic multiband light curves of RR Lyrae and Cepheid variables generated by the LSST Operations and Catalog simulators. The results show that aggregating information from several bands is highly beneficial in LSST sparsely sampled time-series, obtaining an absolute increase in period recovery rate up to 50%. We also show that the QMI is more robust to noise and light curve length (sample size) than the multiband generalizations of the Lomb–Scargle and AoV periodograms, recovering the true period in 10%–30% more cases than its competitors. A python package containing efficient Cython implementations of the QMI and other methods is provided.

  4. Modeling and simulation of driver's anticipation effect in a two lane system on curved road with slope

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    The complexity of traffic flow phenomena on curved road with slope is investigated and a new lattice model is presented with the addition of driver's anticipation effect for two lane system. The condition under which the free flow turns into the jammed one, is obtained theoretically by using stability analysis. The results obtained through linear analysis indicates that the stable region increases (decreases) corresponding to uphill (downhill) case due to increasing slope angle for fixed anticipation parameter. It is found that when the vehicular density becomes higher than a critical value, traffic jam appears in the form of kink antikink density waves. Analytically, the kink antikink density waves are described by the solution of mKdV equation obtained from non linear analysis. In addition, the theoretical results has been verified through numerical simulation, which confirm that the slope on a curved highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the anticipation parameter in a two lane lattice model when lane changing is allowed.

  5. Turbine blade profile design method based on Bezier curves

    NASA Astrophysics Data System (ADS)

    Alexeev, R. A.; Tishchenko, V. A.; Gribin, V. G.; Gavrilov, I. Yu.

    2017-11-01

    In this paper, the technique of two-dimensional parametric blade profile design is presented. Bezier curves are used to create the profile geometry. The main feature of the proposed method is an adaptive approach of curve fitting to given geometric conditions. Calculation of the profile shape is produced by multi-dimensional minimization method with a number of restrictions imposed on the blade geometry.The proposed method has been used to describe parametric geometry of known blade profile. Then the baseline geometry was modified by varying some parameters of the blade. The numerical calculation of obtained designs has been carried out. The results of calculations have shown the efficiency of chosen approach.

  6. An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization.

    PubMed

    Jalba, Andrei C; Sobiecki, Andre; Telea, Alexandru C

    2016-01-01

    Computing skeletons of 2D shapes, and medial surface and curve skeletons of 3D shapes, is a challenging task. In particular, there is no unified framework that detects all types of skeletons using a single model, and also produces a multiscale representation which allows to progressively simplify, or regularize, all skeleton types. In this paper, we present such a framework. We model skeleton detection and regularization by a conservative mass transport process from a shape's boundary to its surface skeleton, next to its curve skeleton, and finally to the shape center. The resulting density field can be thresholded to obtain a multiscale representation of progressively simplified surface, or curve, skeletons. We detail a numerical implementation of our framework which is demonstrably stable and has high computational efficiency. We demonstrate our framework on several complex 2D and 3D shapes.

  7. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.

    PubMed

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  8. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    PubMed Central

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120

  9. First-order irreversible thermodynamic approach to a simple energy converter

    NASA Astrophysics Data System (ADS)

    Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.

    2008-01-01

    Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.

  10. Effect of lateral mobility of fluorescent probes in lipid mixing assays of cell fusion.

    PubMed

    Huang, S K; Cheng, M; Hui, S W

    1990-11-01

    Monolayers of human erythrocytes, immobilized on a cover slip, were induced to fuse by polyethylene glycol (mol wt 8,000). The mobility of fluorescent probes, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadizol-4-yl)amino]dodecanoyl] phosphatidyl-choline (C12-NBD-PC), from labeled cells to unlabeled cells was monitored by video-enhanced fluorescence microscopy. A dequenching curve was obtained from the measurement of fluorescence intensities of pairs of fused cells over time. The dequenching curve and the curve obtained from macroscopic measurements of a cell monolayer (described in the preceding article) were compared and discussed. The slow probe transfer rate between a pair of fused cells was explained by a diffusion model based on membrane area conservation and the geometry of the fusion lumen. An equivalent lumen between two fused cells, thought to be the main rate limitation of probe mobility after fusion, was calculated to be approximately 130 nm in diameter. Lumens of 75 nm in diameter were observed by electron microscopy. Thus, the rate of macroscopic fluorescence dequenching depends not only upon the fusion efficiency, but also upon the number of simultaneous fusion partners, the geometry of their contact points, and the lateral mobility of the fluorescent probes through these points. The relative fusion efficiency can be derived only from the saturation dequenching values.

  11. Determination of the content of fatty acid methyl esters (FAME) in biodiesel samples obtained by esterification using 1H-NMR spectroscopy.

    PubMed

    Mello, Vinicius M; Oliveira, Flavia C C; Fraga, William G; do Nascimento, Claudia J; Suarez, Paulo A Z

    2008-11-01

    Three different calibration curves based on (1)H-NMR spectroscopy (300 MHz) were used for quantifying the reaction yield during biodiesel synthesis by esterification of fatty acids mixtures and methanol. For this purpose, the integrated intensities of the hydrogens of the ester methoxy group (3.67 ppm) were correlated with the areas related to the various protons of the alkyl chain (olefinic hydrogens: 5.30-5.46 ppm; aliphatic: 2.67-2.78 ppm, 2.30 ppm, 1.96-2.12 ppm, 1.56-1.68 ppm, 1.22-1.42 ppm, 0.98 ppm, and 0.84-0.92 ppm). The first curve was obtained using the peaks relating the olefinic hydrogens, a second with the parafinic protons and the third curve using the integrated intensities of all the hydrogens. A total of 35 samples were examined: 25 samples to build the three different calibration curves and ten samples to serve as external validation samples. The results showed no statistical differences among the three methods, and all presented prediction errors less than 2.45% with a co-efficient of variation (CV) of 4.66%. 2008 John Wiley & Sons, Ltd.

  12. A Study of Electrochemical Machining of Ti-6Al-4V in NaNO3 solution

    NASA Astrophysics Data System (ADS)

    Li, Hansong; Gao, Chuanping; Wang, Guoqian; Qu, Ningsong; Zhu, Di

    2016-10-01

    The titanium alloy Ti-6Al-4V is used in many industries including aviation, automobile manufacturing, and medical equipment, because of its low density, extraordinary corrosion resistance and high specific strength. Electrochemical machining (ECM) is a non-traditional machining method that allows applications to all kinds of metallic materials in regardless of their mechanical properties. It is widely applied to the machining of Ti-6Al-4V components, which usually takes place in a multicomponent electrolyte solution. In this study, a 10% NaNO3 solution was used to make multiple holes in Ti-6Al-4V sheets by through-mask electrochemical machining (TMECM). The polarization curve and current efficiency curve of this alloy were measured to understand the electrical properties of Ti-6Al-4V in a 10% NaNO3 solution. The measurements show that in a 10% NaNO3 solution, when the current density was above 6.56 A·cm-2, the current efficiency exceeded 100%. According to polarization curve and current efficiency curve, an orthogonal TMECM experiment was conducted on Ti-6Al-4V. The experimental results suggest that with appropriate process parameters, high-quality holes can be obtained in a 10% NaNO3 solution. Using the optimized process parameters, an array of micro-holes with an aperture of 2.52 mm to 2.57 mm and maximum roundness of 9 μm were produced using TMECM.

  13. Laplacian scale-space behavior of planar curve corners.

    PubMed

    Zhang, Xiaohong; Qu, Ying; Yang, Dan; Wang, Hongxing; Kymer, Jeff

    2015-11-01

    Scale-space behavior of corners is important for developing an efficient corner detection algorithm. In this paper, we analyze the scale-space behavior with the Laplacian of Gaussian (LoG) operator on a planar curve which constructs Laplacian Scale Space (LSS). The analytical expression of a Laplacian Scale-Space map (LSS map) is obtained, demonstrating the Laplacian Scale-Space behavior of the planar curve corners, based on a newly defined unified corner model. With this formula, some Laplacian Scale-Space behavior is summarized. Although LSS demonstrates some similarities to Curvature Scale Space (CSS), there are still some differences. First, no new extreme points are generated in the LSS. Second, the behavior of different cases of a corner model is consistent and simple. This makes it easy to trace the corner in a scale space. At last, the behavior of LSS is verified in an experiment on a digital curve.

  14. Study on dynamic performance of SOFC

    NASA Astrophysics Data System (ADS)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  15. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  16. Structural-Vibration-Response Data Analysis

    NASA Technical Reports Server (NTRS)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  17. Non-linear Multidimensional Optimization for use in Wire Scanner Fitting

    NASA Astrophysics Data System (ADS)

    Henderson, Alyssa; Terzic, Balsa; Hofler, Alicia; Center Advanced Studies of Accelerators Collaboration

    2014-03-01

    To ensure experiment efficiency and quality from the Continuous Electron Beam Accelerator at Jefferson Lab, beam energy, size, and position must be measured. Wire scanners are devices inserted into the beamline to produce measurements which are used to obtain beam properties. Extracting physical information from the wire scanner measurements begins by fitting Gaussian curves to the data. This study focuses on optimizing and automating this curve-fitting procedure. We use a hybrid approach combining the efficiency of Newton Conjugate Gradient (NCG) method with the global convergence of three nature-inspired (NI) optimization approaches: genetic algorithm, differential evolution, and particle-swarm. In this Python-implemented approach, augmenting the locally-convergent NCG with one of the globally-convergent methods ensures the quality, robustness, and automation of curve-fitting. After comparing the methods, we establish that given an initial data-derived guess, each finds a solution with the same chi-square- a measurement of the agreement of the fit to the data. NCG is the fastest method, so it is the first to attempt data-fitting. The curve-fitting procedure escalates to one of the globally-convergent NI methods only if NCG fails, thereby ensuring a successful fit. This method allows for the most optimal signal fit and can be easily applied to similar problems.

  18. Analysis of mixed model in gear transmission based on ADAMS

    NASA Astrophysics Data System (ADS)

    Li, Xiufeng; Wang, Yabin

    2012-09-01

    The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains higher precision of results while the calculation process is complex, also it is not easy to converge. Currently, most of the researches are focused on the description of geometric models and the definition of boundary conditions. However, none of them can solve the problems fundamentally. To improve the simulation efficiency while ensure the results with high accuracy, a mixed model method which uses gear tooth profiles to take the place of the solid gear to simulate gear movement is presented under these circumstances. In the process of modeling, build the solid models of the mechanism in the SolidWorks firstly; Then collect the point coordinates of outline curves of the gear using SolidWorks API and create fit curves in Adams based on the point coordinates; Next, adjust the position of those fitting curves according to the position of the contact area; Finally, define the loading conditions, boundary conditions and simulation parameters. The method provides gear shape information by tooth profile curves; simulates the mesh process through tooth profile curve to curve contact and offer mass as well as inertia data via solid gear models. This simulation process combines the two models to complete the gear driving analysis. In order to verify the validity of the method presented, both theoretical derivation and numerical simulation on a runaway escapement are conducted. The results show that the computational efficiency of the mixed model method is 1.4 times over the traditional method which contains solid to solid contact. Meanwhile, the simulation results are more closely to theoretical calculations. Consequently, mixed model method has a high application value regarding to the study of the dynamics of gear mechanism.

  19. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    NASA Astrophysics Data System (ADS)

    Novac, D.; Pantelimon, D.; Popescu, E.

    2010-08-01

    The Index Tests have been used for many years to obtain the optimized cam corellation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole "guaranteed operating range" for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the proppeler curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This coresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  20. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    PubMed

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P < .001). Means of software machine-derived values differed significantly from actual PLT yield, 4.72 × 10 11 vs.6.12 × 10 11 , respectively, (P < .001). The following equation was developed to adjust these values: actual PLT yield= 0.221 + (1.254 × theoretical platelet yield). ROC curve model showed an optimal apheresis device software prediction cut-off of 4.65 × 10 11 to obtain a DP, with a sensitivity of 82.2%, specificity of 93.3%, and an area under the curve (AUC) of 0.909. Trima Accel v6.0 software consistently underestimated PLT yields. Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  1. An efficient micromixer based on multidirectional vortices due to baffles and channel curvature.

    PubMed

    Tsai, Rei-Tang; Wu, Chih-Yang

    2011-02-16

    An efficient planar micromixer based on multidirectional vortices in a curved channel with radial baffles is proposed and examined in this work. The curvature of the microchannel and the radial baffles induce vortices in different directions. The multidirectional vortices and the converging-diverging flow caused by the baffles contribute together to the enhancement of mixing. The micromixer is fabricated with polydimethylsiloxane by a single planar microlithography process and the mixing behaviors are observed by a confocal spectral microscope imaging system to validate the simulation obtained by a commercial code. The simulation and experimental results are in reasonable agreement. The concentration distributions and flow patterns obtained reveal the following trends. (i) The mixing efficiency of the basic C-shaped micromixer with the first baffle attached to the internal cylinder and the second attached to the external cylinder is better than that of the C-shaped micromixer with inverted arrangement of baffles. (ii) When the radius of the curved channel and the width of the passage between the baffle and the cylindrical wall are small enough and the Reynolds number (Re) is large enough, an extra separation vortex develops in the downstream of the second baffle. This phenomenon is one of the reasons of trend (i). (iii) A micromixer consisting of a few basic C-shaped micromixers connected by straight channels may generate a high degree of mixing for the case with a large Re.

  2. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies.

    PubMed

    Makrinich, M; Nimerovsky, E; Goldbourt, A

    2018-04-14

    Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31 P- 79/81 Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13 C- 209 Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi 3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Influence of interface layer preparation on the electrical and spectral characteristics of GaN/Si solar cells

    NASA Astrophysics Data System (ADS)

    Shugurov, K. U.; Mozharov, A. M.; Sapunov, G. A.; Fedorov, V. V.; Bolshakov, A. D.; Mukhin, I. S.

    2018-03-01

    Volt-ampere and spectral characteristics of GaN/Si solar cell samples differing in interface layer preparation are obtained and analyzed. External quantum efficiency curves are experimentally determined via excitation with a 532 nm incident radiation wavelength. It is demonstrated that interface preparation has a significant influence on photovoltaic characteristics of the studied samples.

  4. Evaluation and simplification of the occupational slip, trip and fall risk-assessment test

    PubMed Central

    NAKAMURA, Takehiro; OYAMA, Ichiro; FUJINO, Yoshihisa; KUBO, Tatsuhiko; KADOWAKI, Koji; KUNIMOTO, Masamizu; ODOI, Haruka; TABATA, Hidetoshi; MATSUDA, Shinya

    2016-01-01

    Objective: The purpose of this investigation is to evaluate the efficacy of the occupational slip, trip and fall (STF) risk assessment test developed by the Japan Industrial Safety and Health Association (JISHA). We further intended to simplify the test to improve efficiency. Methods: A previous cohort study was performed using 540 employees aged ≥50 years who took the JISHA’s STF risk assessment test. We conducted multivariate analysis using these previous results as baseline values and answers to questionnaire items or score on physical fitness tests as variables. The screening efficiency of each model was evaluated based on the obtained receiver operating characteristic (ROC) curve. Results: The area under the ROC obtained in multivariate analysis was 0.79 when using all items. Six of the 25 questionnaire items were selected for stepwise analysis, giving an area under the ROC curve of 0.77. Conclusion: Based on the results of follow-up performed one year after the initial examination, we successfully determined the usefulness of the STF risk assessment test. Administering a questionnaire alone is sufficient for screening subjects at risk of STF during the subsequent one-year period. PMID:27021057

  5. High-Redshift SNe with Subaru and HST

    NASA Astrophysics Data System (ADS)

    Rubin, David; Suzuki, Nao; Regnault, Nicolas; Aldering, Gregory; Amanullah, Rahman; Antilogus, Pierre; Astier, Pierre; Barbary, Kyle; Betoule, Marc; Boone, Kyle Robert; Currie, Miles; Deustua, Susana; Doi, Mamoru; Fruchter, Andrew; Goobar, Ariel; Hayden, Brian; Hazenberg, Francois; Hook, Isobel; Huang, Xiaosheng; Jiang, Jian; Kato, Takahiro; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Maeda, Keiichi; Morokuma, Tomoki; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Ruiz-Lapuente, Pilar; Sako, Masao; Myers Saunders, Clare; Spadafora, Anthony L.; Tanaka, Masaomi; Tominaga, Nozomu; Yasuda, Naoki; Yoshida, Naoki

    2018-01-01

    High-redshift type Ia supernovae are crucial for constraining any time variation in dark energy. Here, we present the first discoveries and light curves from the SUbaru Supernovae with Hubble Infrared (SUSHI) program, which combines high-redshift SN discoveries from the Subaru Strategic Program (SSP, as well as other Subaru time) with HST WFC3 IR followup. This program efficiently uses the wide field and high collecting area of Subaru Hyper Suprime-Cam for optical light curves, but still obtains a precision NIR color. We are on track to double the number of well-measured SNe Ia at z > 1.1, triggering on 23 SNe Ia in our first season.

  6. Global determination of rating curves in the Amazon basin from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; Paiva, Rodrigo C. D.; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stéphane; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frédérique

    2014-05-01

    The Amazonian basin is the largest hydrological basin all over the world. Over the past few years, it has experienced an unusual succession of extreme droughts and floods, which origin is still a matter of debate. One of the major issues in understanding such events is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2009. The stage dataset is made of ~900 altimetry series at ENVISAT and Jason-2 virtual stations, sampling the stages over more than a hundred of rivers in the basin. Altimetry series span between 2002 and 2011. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are hydrologicaly meaningful throughout the entire Amazon basin. The rating curve parameters have been computed using an optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best value for the parameters together with their posterior probability distribution, allowing the determination of a credibility interval for calculated discharge. Also the error over discharges estimates from the MGB-IPH model is included in the rating curve determination. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach is more efficient than the determinist one. By using for the parameters prior credible intervals defined by the user, this method provides an estimate of best rating curve estimate without any unlikely parameter. Results were assessed trough the Nash Sutcliffe efficiency coefficient. Ens superior to 0.7 is found for most of the 920 virtual stations . From these results we were able to determinate a fully coherent map of river bed height, mean depth and Manning's roughness coefficient, information that can be reused in hydrological modeling. Bad results found at a few virtual stations are also of interest. For some sub-basins in the Andean piemont, the bad result confirms that the model failed to estimate discharges overthere. Other are found at tributary mouths experiencing backwater effects from the Amazon. Considering mean monthly slope at the virtual station in the rating curve equation, we obtain rated discharges much more consistent with modeled and measured ones, showing that it is now possible to obtain a meaningful rating curve in such critical areas.

  7. Nomogram Method as Means for Resource Potential Efficiency Predicative Aid of Petrothermal Energy

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanova, K. F.; Izmailova, G. R.; Larin, P. A.; Vasilyeva, E. R.; Madjidov, M. A.; Marupov, S. R.

    2018-05-01

    The article describes the innovative approach when predicting the resource potential efficiency of petrothermal energy. Various geothermal gradients representative of Bashkortostan and Tatarstan republics regions were considered. With the help of nomograms, the authors analysed fluid temperature dependency graphs at the outlet and the thermal power versus fluid velocity along the wellbore. From the family of graphs plotted by us, velocities corresponding to specific temperature were found. Then, according to thermal power versus velocity curve, power levels corresponding to these velocities relative to the selected fluid temperature were found. On the basis of two dependencies obtained, nomograms were plotted. The result of determining the petrothermal energy production efficiency is a family of isocline lines that enables one to select the optimum temperature and injection rate to obtain the required amount of heat for a particular depth and geothermal gradient.

  8. Second derivative in the model of classical binary system

    NASA Astrophysics Data System (ADS)

    Abubekerov, M. K.; Gostev, N. Yu.

    2016-06-01

    We have obtained an analytical expression for the second derivatives of the light curve with respect to geometric parameters in the model of eclipsing classical binary systems. These expressions are essentially efficient algorithm to calculate the numerical values of these second derivatives for all physical values of geometric parameters. Knowledge of the values of second derivatives of the light curve at some point provides additional information about asymptotical behaviour of the function near this point and can significantly improve the search for the best-fitting light curve through the use of second-order optimization method. We write the expression for the second derivatives in a form which is most compact and uniform for all values of the geometric parameters and so make it easy to write a computer program to calculate the values of these derivatives.

  9. Non-linear Multidimensional Optimization for use in Wire Scanner Fitting

    NASA Astrophysics Data System (ADS)

    Henderson, Alyssa; Terzic, Balsa; Hofler, Alicia; CASA and Accelerator Ops Collaboration

    2013-10-01

    To ensure experiment efficiency and quality from the Continuous Electron Beam Accelerator at Jefferson Lab, beam energy, size, and position must be measured. Wire scanners are devices inserted into the beamline to produce measurements which are used to obtain beam properties. Extracting physical information from the wire scanner measurements begins by fitting Gaussian curves to the data. This study focuses on optimizing and automating this curve-fitting procedure. We use a hybrid approach combining the efficiency of Newton Conjugate Gradient (NCG) method with the global convergence of three nature-inspired (NI) optimization approaches: genetic algorithm, differential evolution, and particle-swarm. In this Python-implemented approach, augmenting the locally-convergent NCG with one of the globally-convergent methods ensures the quality, robustness, and automation of curve-fitting. After comparing the methods, we establish that given an initial data-derived guess, each finds a solution with the same chi-square- a measurement of the agreement of the fit to the data. NCG is the fastest method, so it is the first to attempt data-fitting. The curve-fitting procedure escalates to one of the globally-convergent NI methods only if NCG fails, thereby ensuring a successful fit. This method allows for the most optimal signal fit and can be easily applied to similar problems. Financial support from DoE, NSF, ODU, DoD, and Jefferson Lab.

  10. Effect of flow field on the performance of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jayanti, S.

    2016-03-01

    A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.

  11. Low cost solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephans, J. B. (Inventor)

    1977-01-01

    A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe.

  12. Scaling of angiosperm xylem structure with safety and efficiency.

    PubMed

    Hacke, Uwe G; Sperry, John S; Wheeler, James K; Castro, Laura

    2006-06-01

    We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per vessel (the pit area hypothesis) and evaluated a trade-off between cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse-porous tree, shrub) and family affinity were added to published data predominately from the Rosaceae (29 species total). Two types of vulnerability-to-cavitation curves were found. Ring-porous trees and vines showed an abrupt drop in hydraulic conductivity with increasing negative pressure, whereas hydraulic conductivity in diffuse-porous species generally decreased gradually. The ring-porous type curve was not an artifact of the centrifuge method because it was obtained also with the air-injection technique. A safety versus efficiency trade-off was evident when curves were compared across species: for a given pressure, there was a limited range of optimal vulnerability curves. The pit area hypothesis was supported by a strong relationship (r2 = 0.77) between increasing cavitation resistance and diminishing pit membrane area per vessel (A(P)). Small A(P) was associated with small vessel surface area and hence narrow vessel diameter (D) and short vessel length (L)--consistent with an increase in vessel flow resistance with cavitation resistance. This trade-off was amplified at the tissue level by an increase in xylem/vessel area ratio with cavitation resistance. Ring-porous species were more efficient than diffuse-porous species on a vessel basis but not on a xylem basis owing to higher xylem/vessel area ratios in ring-porous anatomy. Across four orders of magnitude, lumen and end-wall resistivities maintained a relatively tight proportionality with a near-optimal mean of 56% of the total vessel resistivity residing in the end-wall. This was consistent with an underlying scaling of L to D(3/2) across species. Pit flow resistance did not increase with cavitation safety, suggesting that cavitation pressure was not related to mean pit membrane porosity.

  13. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.

    PubMed

    Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M

    2002-10-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.

  14. An efficient micromixer based on multidirectional vortices due to baffles and channel curvature

    PubMed Central

    Tsai, Rei-Tang; Wu, Chih-Yang

    2011-01-01

    An efficient planar micromixer based on multidirectional vortices in a curved channel with radial baffles is proposed and examined in this work. The curvature of the microchannel and the radial baffles induce vortices in different directions. The multidirectional vortices and the converging-diverging flow caused by the baffles contribute together to the enhancement of mixing. The micromixer is fabricated with polydimethylsiloxane by a single planar microlithography process and the mixing behaviors are observed by a confocal spectral microscope imaging system to validate the simulation obtained by a commercial code. The simulation and experimental results are in reasonable agreement. The concentration distributions and flow patterns obtained reveal the following trends. (i) The mixing efficiency of the basic C-shaped micromixer with the first baffle attached to the internal cylinder and the second attached to the external cylinder is better than that of the C-shaped micromixer with inverted arrangement of baffles. (ii) When the radius of the curved channel and the width of the passage between the baffle and the cylindrical wall are small enough and the Reynolds number (Re) is large enough, an extra separation vortex develops in the downstream of the second baffle. This phenomenon is one of the reasons of trend (i). (iii) A micromixer consisting of a few basic C-shaped micromixers connected by straight channels may generate a high degree of mixing for the case with a large Re. PMID:21403848

  15. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique.

    PubMed

    Kimura, T; Kuwayama, Y; Yagi, T

    2014-02-21

    The melting curve of H2O from 49 to 72 GPa was determined by using a laser-heated diamond anvil cell. Double-sided CO2 laser heating technique was employed in order to heat the sample directly. Discontinuous changes of the heating efficiency attributed to the H2O melting were observed between 49 and 72 GPa. The obtained melting temperatures at 49 and 72 GPa are 1200 and 1410 K, respectively. We found that the slope of the melting curve significantly decreases with increasing pressure, only 5 K/GPa at 72 GPa while 44 K/GPa at 49 GPa. Our results suggest that the melting curve does not intersect with the isentropes of Uranus and Neptune, and hence, H2O should remain in the liquid state even at the pressure and temperature conditions found deep within Uranus and Neptune.

  16. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    PubMed Central

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  17. Computational, Experimental and Engineering Foundations of Ionic Channels as Miniaturized Sensors, Devices and Systems

    DTIC Science & Technology

    2003-10-01

    made in an ensemble of channels of unknown orientation and number, preventing quantitative analysis . • Currents have been compared among continuum PNP...microfluidic) analysis of ion channels to obtain fundamental insights into the selectivity, conductivity, and sensitivity of ion channels [19], [6...1.1 Develop fast and efficient simulators for steady-state analysis of continuum model for extraction of I-V curves. 1.2 Create

  18. Electron and proton damage on InGaAs solar cells having an InP window layer

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.

    1995-01-01

    As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.

  19. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste.

    PubMed

    Kopčić, Nina; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-01

    Efficient composting process requires set of adequate parameters among which physical-chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min(-1). During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a "mirror image" of the oxygen concentration curve while the peak values of the temperature were occurred 9.5h after the peak oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting.

    PubMed

    Dung, Van Than; Tjahjowidodo, Tegoeh

    2017-01-01

    B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE) area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the sampled data. The most challenging task in these cases is in the identification of the number of knots and their respective locations in non-uniform space in the most efficient computational cost. This paper presents a new strategy for fitting any forms of curve by B-spline functions via local algorithm. A new two-step method for fast knot calculation is proposed. In the first step, the data is split using a bisecting method with predetermined allowable error to obtain coarse knots. Secondly, the knots are optimized, for both locations and continuity levels, by employing a non-linear least squares technique. The B-spline function is, therefore, obtained by solving the ordinary least squares problem. The performance of the proposed method is validated by using various numerical experimental data, with and without simulated noise, which were generated by a B-spline function and deterministic parametric functions. This paper also discusses the benchmarking of the proposed method to the existing methods in literature. The proposed method is shown to be able to reconstruct B-spline functions from sampled data within acceptable tolerance. It is also shown that, the proposed method can be applied for fitting any types of curves ranging from smooth ones to discontinuous ones. In addition, the method does not require excessive computational cost, which allows it to be used in automatic reverse engineering applications.

  1. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  2. A mathematical function for the description of nutrient-response curve

    PubMed Central

    Ahmadi, Hamed

    2017-01-01

    Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271

  3. High-resolution melting analysis (HRM) for differentiation of four major Taeniidae species in dogs Taenia hydatigena, Taenia multiceps, Taenia ovis, and Echinococcus granulosus sensu stricto.

    PubMed

    Dehghani, Mansoureh; Mohammadi, Mohammad Ali; Rostami, Sima; Shamsaddini, Saeedeh; Mirbadie, Seyed Reza; Harandi, Majid Fasihi

    2016-07-01

    Tapeworms of the genus Taenia include several species of important parasites with considerable medical and veterinary significance. Accurate identification of these species in dogs is the prerequisite of any prevention and control program. Here, we have applied an efficient method for differentiating four major Taeniid species in dogs, i.e., Taenia hydatigena, T. multiceps, T. ovis, and Echinococcus granulosus sensu stricto. High-resolution melting (HRM) analysis is simpler, less expensive, and faster technique than conventional DNA-based assays and enables us to detect PCR amplicons in a closed system. Metacestode samples were collected from local abattoirs from sheep. All the isolates had already been identified by PCR-sequencing, and their sequence data were deposited in the GenBank. Real-time PCR coupled with HRM analysis targeting mitochondrial cox1 and ITS1 genes was used to differentiate taeniid species. Distinct melting curves were obtained from ITS1 region enabling accurate differentiation of three Taenia species and E. granulosus in dogs. The HRM curves of Taenia species and E .granulosus were clearly separated at Tm of 85 to 87 °C. In addition, double-pick melting curves were produced in mixed infections. Cox1 melting curves were not decisive enough to distinguish four taeniids. In this work, the efficiency of HRM analysis to differentiate four major taeniid species in dogs has been demonstrated using ITS1 gene.

  4. Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution

    NASA Astrophysics Data System (ADS)

    Lebrini, Mounim; Bentiss, Fouad; Vezin, Hervé; Lagrenée, Michel

    2005-11-01

    The efficiency of 3,5-bis( n-pyridyl)-1,3,4-oxadiazole ( n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO 4) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO 4. The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR).

  5. Multi-q pattern classification of polarization curves

    NASA Astrophysics Data System (ADS)

    Fabbri, Ricardo; Bastos, Ivan N.; Neto, Francisco D. Moura; Lopes, Francisco J. P.; Gonçalves, Wesley N.; Bruno, Odemir M.

    2014-02-01

    Several experimental measurements are expressed in the form of one-dimensional profiles, for which there is a scarcity of methodologies able to classify the pertinence of a given result to a specific group. The polarization curves that evaluate the corrosion kinetics of electrodes in corrosive media are applications where the behavior is chiefly analyzed from profiles. Polarization curves are indeed a classic method to determine the global kinetics of metallic electrodes, but the strong nonlinearity from different metals and alloys can overlap and the discrimination becomes a challenging problem. Moreover, even finding a typical curve from replicated tests requires subjective judgment. In this paper, we used the so-called multi-q approach based on the Tsallis statistics in a classification engine to separate the multiple polarization curve profiles of two stainless steels. We collected 48 experimental polarization curves in an aqueous chloride medium of two stainless steel types, with different resistance against localized corrosion. Multi-q pattern analysis was then carried out on a wide potential range, from cathodic up to anodic regions. An excellent classification rate was obtained, at a success rate of 90%, 80%, and 83% for low (cathodic), high (anodic), and both potential ranges, respectively, using only 2% of the original profile data. These results show the potential of the proposed approach towards efficient, robust, systematic and automatic classification of highly nonlinear profile curves.

  6. Structural efficiency studies of corrugated compression panels with curved caps and beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Mills, C. T.; Prabhakaran, R.; Jackson, L. R.

    1984-01-01

    Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression.

  7. Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software

    NASA Astrophysics Data System (ADS)

    Badawi, Mohamed S.; Jovanovic, Slobodan I.; Thabet, Abouzeid A.; El-Khatib, Ahmed M.; Dlabac, Aleksandar D.; Salem, Bohaysa A.; Gouda, Mona M.; Mihaljevic, Nikola N.; Almugren, Kholud S.; Abbas, Mahmoud I.

    2017-03-01

    The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.

  8. On the minimum quantum requirement of photosynthesis.

    PubMed

    Zeinalov, Yuzeir

    2009-01-01

    An analysis of the shape of photosynthetic light curves is presented and the existence of the initial non-linear part is shown as a consequence of the operation of the non-cooperative (Kok's) mechanism of oxygen evolution or the effect of dark respiration. The effect of nonlinearity on the quantum efficiency (yield) and quantum requirement is reconsidered. The essential conclusions are: 1) The non-linearity of the light curves cannot be compensated using suspensions of algae or chloroplasts with high (>1.0) optical density or absorbance. 2) The values of the maxima of the quantum efficiency curves or the values of the minima of the quantum requirement curves cannot be used for estimation of the exact value of the maximum quantum efficiency and the minimum quantum requirement. The estimation of the maximum quantum efficiency or the minimum quantum requirement should be performed only after extrapolation of the linear part at higher light intensities of the quantum requirement curves to "0" light intensity.

  9. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  10. A procedure for removing the effect of response bias errors from waterfowl hunter questionnaire responses

    USGS Publications Warehouse

    Atwood, E.L.

    1958-01-01

    Response bias errors are studied by comparing questionnaire responses from waterfowl hunters using four large public hunting areas with actual hunting data from these areas during two hunting seasons. To the extent that the data permit, the sources of the error in the responses were studied and the contribution of each type to the total error was measured. Response bias errors, including both prestige and memory bias, were found to be very large as compared to non-response and sampling errors. Good fits were obtained with the seasonal kill distribution of the actual hunting data and the negative binomial distribution and a good fit was obtained with the distribution of total season hunting activity and the semi-logarithmic curve. A comparison of the actual seasonal distributions with the questionnaire response distributions revealed that the prestige and memory bias errors are both positive. The comparisons also revealed the tendency for memory bias errors to occur at digit frequencies divisible by five and for prestige bias errors to occur at frequencies which are multiples of the legal daily bag limit. A graphical adjustment of the response distributions was carried out by developing a smooth curve from those frequency classes not included in the predictable biased frequency classes referred to above. Group averages were used in constructing the curve, as suggested by Ezekiel [1950]. The efficiency of the technique described for reducing response bias errors in hunter questionnaire responses on seasonal waterfowl kill is high in large samples. The graphical method is not as efficient in removing response bias errors in hunter questionnaire responses on seasonal hunting activity where an average of 60 percent was removed.

  11. 7 CFR 42.142 - Curve for obtaining Operating Characteristic (OC) curve information for skip lot sampling and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... CONDITION OF FOOD CONTAINERS Miscellaneous § 42.142 Curve for obtaining Operating Characteristic (OC) curve...

  12. Investigating Attachment Behaviors of Cryptosporidium Parvum Oocysts Using Collision Efficiency in Laboratory Column Experiments

    NASA Astrophysics Data System (ADS)

    Park, Y.; Hou, L.; Atwill, R.; Packman, A. I.; Harter, T.

    2009-12-01

    Cryptosporidium is one of the most common enteric parasites of humans and domestic animals, and a number of outbreaks of Cryprosporidiosis, a diarrheal disease caused by Cryptosporidium have been reported worldwide. Natural porous media has been demonstrated to be an effective filter for removing Cryptosporidium parvum from contaminated water and the amount of Cryptosporidium filtered is known to be highly dependent on physical and chemical conditions of the porous media and the water. Cryptosporidium deposition in saturated porous media involves two main steps: approach and attachment. In contrast to the approach mechanisms, attachment processes have not been systematically described to predict a priori because theories that represent attachment behavior (colloid stability) such as DLVO are insufficient to explain experimental data. For this reason, attachment efficiency is calculated based on empirical data, typically experimental breakthrough curves in laboratory columns or field experiments. In this study, collision (attachment) efficiencies (α) of C. parvum oocyst were calculated to test the effect of chemical property changes on the association of oocysts with sand grains. The breakthrough curve data obtained from twelve column experiments and three models were employed to calculate single collector efficiency (η) and α. The first ten experiments were conducted by changing ionic strength and pH, and mixing with natural sediments under the same physical properties (same η). Our experiment results show that iron coating or clay/suspended solids mixture drastically enhanced oocyst deposition. The experiments also showed that increase in ionic strength and decrease in pH enhanced the attachment efficiency. However, the experiment with 100mM NaCl resulted in low attachment efficiency and the experiment with pH 8.5 showed similar attachment efficiency to the one at pH 7. Based on the results from two additional experiments with different flow velocities, it appears that attachment efficiency changes when the flow velocity changes, which contradicts CFT. The results prove that predicting attachment efficiency of C. parvum oocyst using ionic strength or pH is inappropriate when non-DLVO interactions are involved. A review of our results and comparison to existing data shows that it is challenging to accurately predict the attachment efficiency using single peak value of breakthrough curve data from geochemical information of porous media.

  13. Quantitative basis for component factors of gas flow proportional counting efficiencies

    NASA Astrophysics Data System (ADS)

    Nichols, Michael C.

    This dissertation investigates the counting efficiency calibration of a gas flow proportional counter with beta-particle emitters in order to (1) determine by measurements and simulation the values of the component factors of beta-particle counting efficiency for a proportional counter, (2) compare the simulation results and measured counting efficiencies, and (3) determine the uncertainty of the simulation and measurements. Monte Carlo simulation results by the MCNP5 code were compared with measured counting efficiencies as a function of sample thickness for 14C, 89Sr, 90Sr, and 90Y. The Monte Carlo model simulated strontium carbonate with areal thicknesses from 0.1 to 35 mg cm-2. The samples were precipitated as strontium carbonate with areal thicknesses from 3 to 33 mg cm-2 , mounted on membrane filters, and counted on a low background gas flow proportional counter. The estimated fractional standard deviation was 2--4% (except 6% for 14C) for efficiency measurements of the radionuclides. The Monte Carlo simulations have uncertainties estimated to be 5 to 6 percent for carbon-14 and 2.4 percent for strontium-89, strontium-90, and yttrium-90. The curves of simulated counting efficiency vs. sample areal thickness agreed within 3% of the curves of best fit drawn through the 25--49 measured points for each of the four radionuclides. Contributions from this research include development of uncertainty budgets for the analytical processes; evaluation of alternative methods for determining chemical yield critical to the measurement process; correcting a bias found in the MCNP normalization of beta spectra histogram; clarifying the interpretation of the commonly used ICRU beta-particle spectra for use by MCNP; and evaluation of instrument parameters as applied to the simulation model to obtain estimates of the counting efficiency from simulated pulse height tallies.

  14. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Li, Ming; Mourrain, Bernard; Rabczuk, Timon; Xu, Jinlan; Bordas, Stéphane P. A.

    2018-01-01

    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.

  15. Online characterization of isomeric/isobaric components in the gas phase of mainstream cigarette smoke by tunable synchrotron radiation vacuum ultraviolet photoionization time-of-flight mass spectrometry and photoionization efficiency curve simulation.

    PubMed

    Pan, Yang; Hu, Yonghua; Wang, Jian; Ye, Lili; Liu, Chengyuan; Zhu, Zhixiang

    2013-12-17

    A newly developed, qualitative and quantitative method based on tunable synchrotron radiation vacuum ultraviolet photoionization time-of-flight mass spectrometry (SR-VUV-PI-TOFMS) and photoionization efficiency (PIE) curve simulation was applied for the online analysis of isomers and isobaric compounds in the gas phase of mainstream cigarette smoke. After blocking the particulate phase components by the Cambridge filter pad, a puff of fresh gas-phase cigarette smoke was immediately introduced into a vacuum ionization chamber through a heated capillary, then was photoionized, and analyzed by a TOF mass spectrometer. The PIE curves for the mass peaks up to m/z = 106 were measured between 8.0 and 10.7 eV. Some components could be directly identified by their discriminated ionization energies (IEs) on the PIE curve. By simulating the PIE curve with the sum of scaled absolute photoionization cross sections (PICSs), complex isomeric/isobaric compounds along with their mole fractions could be obtained when the best-fitting was realized between experimental and simulated PIE curves. A series of reported toxic compounds for quantification, such as 1,3-butadiene (m/z = 54), 1,3-cyclopentadiene (m/z = 66), benzene (m/z = 78), xylene (m/z = 106), 2-propenal (m/z = 56), acetone and propanal (m/z = 58), crotonaldehyde (m/z = 70), furan and isoprene (m/z = 68), were all found to have other isomers and/or isobaric compounds with considerable abundances. Some isomers have never been reported previously in cigarette smoke, like C5H6 isomers 1-penten-3-yne, 3-penten-1-yne, and 1-penten-4-yne at m/z = 66. Isomeric/isobaric compounds characterization for the mass peaks and mole fraction calculations were discussed in detail below 10.7 eV, an energy value covering several conventional used VUV light sources.

  16. The efficiency of combustion turbines with constant-pressure combustion

    NASA Technical Reports Server (NTRS)

    Piening, Werner

    1941-01-01

    Of the two fundamental cycles employed in combustion turbines, namely, the explosion (or constant-volume) cycle and the constant-pressure cycle, the latter is considered more in detail and its efficiency is derived with the aid of the cycle diagrams for the several cases with adiabatic and isothermal compression and expansion strokes and with and without utilization of the exhaust heat. Account is also taken of the separate efficiencies of the turbine and compressor and of the pressure losses and heat transfer in the piping. The results show that without the utilization of the exhaust heat the efficiencies for the two cases of adiabatic and isothermal compression is offset by the increase in the heat supplied. It may be seen from the curves that it is necessary to attain separate efficiencies of at least 80 percent in order for useful results to be obtained. There is further shown the considerable effect on the efficiency of pressure losses in piping or heat exchangers.

  17. Edge detection and mathematic fitting for corneal surface with Matlab software.

    PubMed

    Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na

    2017-01-01

    To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.

  18. The response of covered silicon detectors to monoenergetic gamma rays

    NASA Technical Reports Server (NTRS)

    Reier, M.

    1972-01-01

    Measurements were made of the efficiency in detecting gamma rays of a 0.3-mm, a 3-mm, and a 5-mm silicon detector covered with different absorbers. Calibrated sources covering the range from 279 KeV to 2.75 MeV were used. The need for the absorbers in order to obtain meaningful results, and their contribution to detector response at electron biases from 50 to 200 KeV, are discussed in detail. It is shown that the results are independent of the atomic number of the absorber. In addition, the role of the absorber in increasing the efficiency with increasing photon energy for low bias setting is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.

  19. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    NASA Astrophysics Data System (ADS)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  20. Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor

    NASA Astrophysics Data System (ADS)

    Mahto, Navin Kumar; Choubey, Gautam; Suneetha, Lakka; Pandey, K. M.

    2016-11-01

    The two equation standard k-ɛ turbulence model and the two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length-to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor.

  1. First Results From The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin B.; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael R.; Morley, Caroline; Rauscher, Emily; Showman, Adam P.

    2017-10-01

    Exoplanet phase curves provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that continue to open new doors of scientific inquiry and propel future investigations. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. We will present first results from a 660-hour Spitzer phase curve survey program that is targeting six short-period extrasolar planets. We will compare the measured heat redistribution efficiencies with planet temperature and rotation rate, examine trends in the phase curve peak offset, and discuss cloud coverage constraints. We will conclude with how to move forward with phase curve observations in the era of JWST.

  2. Fabrication of micron and submicron gratings by using plasma treatment on the curved polydimethylsiloxane surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Jiangtao; Tang, Jun; Guo, Hao; Liu, Wenyao; Shen, Chong; Liu, Jun; Qin, Li

    2017-10-01

    Here, a simple and low-cost fabrication strategy to efficiently construct well-ordered micron and submicron gratings on polymeric substrates by oxygen plasma treatment is reported. The Polydimethylsiloxane (PDMS) substrate is prepared on the polyethylene (PET) by spin-coating method, then the curved PDMS-PET substrates are processed in oxygen plasma. After appropriate surface treatment time in plasma the curved substrates are flattened, and well-ordered wrinkling shape gratings are obtained, due to the mechanical buckling instability. It is also demonstrated that changing the curvature radius of PDMS-PET substrates and the time of plasma treatment, the period of the wrinkling patterns and the amplitude of grating also change accordingly. It is found the period of the wrinkling patterns increased with the radius of curvature; while the amplitude decreased with that. It also shows good optical performance in transmittance diffraction testing experiments. Thus the well-ordered grating approach may further develop portable and economical applications and offer a valuable method to fabricate other optical micro strain gauges devices.

  3. Variable Stars in the Field of V729 Aql

    NASA Astrophysics Data System (ADS)

    Cagaš, P.

    2017-04-01

    Wide field instruments can be used to acquire light curves of tens or even hundreds of variable stars per night, which increases the probability of new discoveries of interesting variable stars and generally increases the efficiency of observations. At the same time, wide field instruments produce a large amount of data, which must be processed using advanced software. The traditional approach, typically used by amateur astronomers, requires an unacceptable amount of time needed to process each data set. New functionality, built into SIPS software package, can shorten the time needed to obtain light curves by several orders of magnitude. Also, newly introduced SILICUPS software is intended for post-processing of stored light curves. It can be used to visualize observations from many nights, to find variable star periods, evaluate types of variability, etc. This work provides an overview of tools used to process data from the large field of view around the variable star V729 Aql. and demonstrates the results.

  4. Effects of uncertainties in hydrological modelling. A case study of a mountainous catchment in Southern Norway

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjørn; Steinsland, Ingelin; Johansen, Stian Solvang; Petersen-Øverleir, Asgeir; Kolberg, Sjur

    2016-05-01

    In this study, we explore the effect of uncertainty and poor observation quality on hydrological model calibration and predictions. The Osali catchment in Western Norway was selected as case study and an elevation distributed HBV-model was used. We systematically evaluated the effect of accounting for uncertainty in parameters, precipitation input, temperature input and streamflow observations. For precipitation and temperature we accounted for the interpolation uncertainty, and for streamflow we accounted for rating curve uncertainty. Further, the effects of poorer quality of precipitation input and streamflow observations were explored. Less information about precipitation was obtained by excluding the nearest precipitation station from the analysis, while reduced information about the streamflow was obtained by omitting the highest and lowest streamflow observations when estimating the rating curve. The results showed that including uncertainty in the precipitation and temperature inputs has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Less information in precipitation input resulted in a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions, giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using streamflow observations based on different rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions, the best evaluation scores were not achieved for the rating curve used for calibration, but for rating curves giving smoother streamflow observations. Less information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores by giving both better and worse scores.

  5. Revisiting the Energy Budget of WASP-43b: Enhanced Day-Night Heat Transport

    NASA Astrophysics Data System (ADS)

    Keating, Dylan; Cowan, Nicolas B.

    2017-11-01

    The large day-night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature of 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day-night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.

  6. 76 FR 34192 - Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... 1999. The ADL analysis, ``Energy Consumption Characteristics of Commercial Building HVAC Systems... report for the United Nations (``Motor System Efficiency Supply Curves UNIDO,'' Dec. 2010),\\3\\ also used..., A. and A. Hasanbeigi, ``Motor Systems Efficiency Supply Curves,'' United Nations Industrial...

  7. The effect of different intensity measures and earthquake directions on the seismic assessment of skewed highway bridges

    NASA Astrophysics Data System (ADS)

    Bayat, M.; Daneshjoo, F.; Nisticò, N.

    2017-01-01

    In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is used to perform an Incremental Dynamic Analysis (IDA) for fragility curves. Four different earthquake directions have been considered: -45°, 0°, 22.5°, 45°. A sensitivity analysis on different spectral intensity meas ures is presented; efficiency and practicality of different intensity measures have been studied. The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction. The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.

  8. Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.

  9. A service-based BLAST command tool supported by cloud infrastructures.

    PubMed

    Carrión, Abel; Blanquer, Ignacio; Hernández, Vicente

    2012-01-01

    Notwithstanding the benefits of distributed-computing infrastructures for empowering bioinformatics analysis tools with the needed computing and storage capability, the actual use of these infrastructures is still low. Learning curves and deployment difficulties have reduced the impact on the wide research community. This article presents a porting strategy of BLAST based on a multiplatform client and a service that provides the same interface as sequential BLAST, thus reducing learning curve and with minimal impact on their integration on existing workflows. The porting has been done using the execution and data access components from the EC project Venus-C and the Windows Azure infrastructure provided in this project. The results obtained demonstrate a low overhead on the global execution framework and reasonable speed-up and cost-efficiency with respect to a sequential version.

  10. Soil hydraulic properties estimate based on numerical analysis of disc infiltrometer three-dimensional infiltration curve

    NASA Astrophysics Data System (ADS)

    Latorre, Borja; Peña-Sancho, Carolina; Angulo-Jaramillo, Rafaël; Moret-Fernández, David

    2015-04-01

    Measurement of soil hydraulic properties is of paramount importance in fields such as agronomy, hydrology or soil science. Fundamented on the analysis of the Haverkamp et al. (1994) model, the aim of this paper is to explain a technique to estimate the soil hydraulic properties (sorptivity, S, and hydraulic conductivity, K) from the full-time cumulative infiltration curves. The method (NSH) was validated by means of 12 synthetic infiltration curves generated with HYDRUS-3D from known soil hydraulic properties. The K values used to simulate the synthetic curves were compared to those estimated with the proposed method. A procedure to identify and remove the effect of the contact sand layer on the cumulative infiltration curve was also developed. A sensitivity analysis was performed using the water level measurement as uncertainty source. Finally, the procedure was evaluated using different infiltration times and data noise. Since a good correlation between the K used in HYDRUS-3D to model the infiltration curves and those estimated by the NSH method was obtained, (R2 =0.98), it can be concluded that this technique is robust enough to estimate the soil hydraulic conductivity from complete infiltration curves. The numerical procedure to detect and remove the influence of the contact sand layer on the K and S estimates seemed to be robust and efficient. An effect of the curve infiltration noise on the K estimate was observed, which uncertainty increased with increasing noise. Finally, the results showed that infiltration time was an important factor to estimate K. Lower values of K or smaller uncertainty needed longer infiltration times.

  11. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    NASA Astrophysics Data System (ADS)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  12. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets

    NASA Astrophysics Data System (ADS)

    Maia, Joao; Boromand, Arman

    Using different types of surface-active agents are ubiquitous in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows to produce stable multiphasic systems like foams and emulsions whose stability and shelf-life are directly determined by the efficiency and the type of the surfactant molecules. Moreover, presence and self-assembly of these species on an interface will display complex dynamics and structural evolution under different processing conditions. Analogous to bulk rheology of complex systems, surfactant covered interfaces will response to an external mechanical forces or deformation differently depends on the molecular configuration and topology of the system constituents. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging from both experimental and computational aspects to track efficiency and effectiveness of different surfactant molecules with different molecular geometries on curved interfaces. Using Dissipative Particle Dynamics, we have studies effectiveness and efficiency of different surfactant molecules on a curved interface in equilibrium and far from equilibrium. Interfacial tension is calculated for linear and branched surfactant with different hydrophobic and hydrophilic tail and head groups with different branching densities. Deformation parameter and Taylor plots are obtained for individual surfactant molecules under shear flow.

  13. Software for illustrative presentation of basic clinical characteristics of laboratory tests--GraphROC for Windows.

    PubMed

    Kairisto, V; Poola, A

    1995-01-01

    GraphROC for Windows is a program for clinical test evaluation. It was designed for the handling of large datasets obtained from clinical laboratory databases. In the user interface, graphical and numerical presentations are combined. For simplicity, numerical data is not shown unless requested. Relevant numbers can be "picked up" from the graph by simple mouse operations. Reference distributions can be displayed by using automatically optimized bin widths. Any percentile of the distribution with corresponding confidence limits can be chosen for display. In sensitivity-specificity analysis, both illness- and health-related distributions are shown in the same graph. The following data for any cutoff limit can be shown in a separate click window: clinical sensitivity and specificity with corresponding confidence limits, positive and negative likelihood ratios, positive and negative predictive values and efficiency. Predictive values and clinical efficiency of the cutoff limit can be updated for any prior probability of disease. Receiver Operating Characteristics (ROC) curves can be generated and combined into the same graph for comparison of several different tests. The area under the curve with corresponding confidence interval is calculated for each ROC curve. Numerical results of analyses and graphs can be printed or exported to other Microsoft Windows programs. GraphROC for Windows also employs a new method, developed by us, for the indirect estimation of health-related limits and change limits from mixed distributions of clinical laboratory data.

  14. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform

    USGS Publications Warehouse

    Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.

    2008-01-01

    In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.

  15. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  16. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  17. Emission rate and internal quantum efficiency enhancement in different geometrical shapes of GaN LED

    NASA Astrophysics Data System (ADS)

    Rashid, S.; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Halim, N. S. A. Abdul; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    This work is based on the development of light emitting diode (LED) using different geometry of top surface on GaN p-n junction structure. Three types of LED chips are designed with different top surface to differ whether p-type layer or p contact plays an important role in improving its efficiency. The voltage applied ranges from 0V to 4V. Current-voltage characteristic for all three samples are obtained and analyzed. The results show that dome shaped of p-type layer operating at 4V increases the emission rate and internal quantum efficiency up to 70%, which is two times higher than basic cylindrically LED chip. Moreover, this new design effectively solved the higher forward voltage problem of the usual curve surface of p-contact GaN LED.

  18. The response of covered silicon detectors to monoenergetic gamma rays.

    NASA Technical Reports Server (NTRS)

    Reier, M.

    1972-01-01

    Measurements have been made of the efficiency in detecting gamma rays of a 0.3-mm-, 3-mm-, and 5-mm-thick silicon detector covered with different absorbers. Calibrated sources over the range from 279 keV to 2.75 MeV were used. The need for the absorbers to obtain meaningful results and their contribution to the response of the detectors at electron biases from 50 to 200 keV are discussed in detail. It is shown that the results are virtually independent of the atomic number of the absorber. In addition, the role of the absorber in increasing the efficiency with increasing photon energy for low bias settings is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.

  19. Time-Temperature Superposition to Determine the Stress-Rupture of Aramid Fibres

    NASA Astrophysics Data System (ADS)

    Alwis, K. G. N. C.; Burgoyne, C. J.

    2006-07-01

    Conventional creep testing takes a long time to obtain stress-rupture data for aramid fibres at the low stress levels likely to be used in practical applications. However, the rate of creep of aramid can be accelerated by a thermally activated process to obtain the failure of fibres within a few hours. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve know as a master curve, from which stress-rupture data can be obtained. This technique is known as the time-temperature superposition principle and will be applied to Kevlar 49 yarns. Important questions relating to the techniques needed to obtain smooth master curves will be discussed, as will the validity the resulting curves and the corresponding stress-rupture lifetime.

  20. LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS

    PubMed Central

    Einstein, Daniel R.; Dyedov, Vladimir

    2010-01-01

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546

  1. Search for gravitational-wave bursts in the first year of the fifth LIGO science run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; di Credico, A.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.

    2009-11-01

    We present the results obtained from an all-sky search for gravitational-wave (GW) bursts in the 64-2000 Hz frequency range in data collected by the LIGO detectors during the first year (November 2005—November 2006) of their fifth science run. The total analyzed live time was 268.6 days. Multiple hierarchical data analysis methods were invoked in this search. The overall sensitivity expressed in terms of the root-sum-square (rss) strain amplitude hrss for gravitational-wave bursts with various morphologies was in the range of 6×10-22Hz-1/2 to a few×10-21Hz-1/2. No GW signals were observed and a frequentist upper limit of 3.75 events per year on the rate of strong GW bursts was placed at the 90% confidence level. As in our previous searches, we also combined this rate limit with the detection efficiency for selected waveform morphologies to obtain event rate versus strength exclusion curves. In sensitivity, these exclusion curves are the most stringent to date.

  2. Nonlinear Time Series Analysis in the Absence of Strong Harmonics

    NASA Astrophysics Data System (ADS)

    Stine, Peter; Jevtic, N.

    2010-05-01

    Nonlinear time series analysis has successfully been used for noise reduction and for identifying long term periodicities in variable star light curves. It was thought that good noise reduction could be obtained when a strong fundamental and second harmonic are present. We show that, quite unexpectedly, this methodology for noise reduction can be efficient for data with very noisy power spectra without a strong fundamental and second harmonic. Not only can one obtain almost two orders of magnitude noise reduction of the white noise tail, insight can also be gained into the short time scale of organized behavior. Thus, we are able to obtain an estimate of this short time scale, which is on the order of 1.5 hours in the case of a variable white dwarf.

  3. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  4. A novel model of magnetorheological damper with hysteresis division

    NASA Astrophysics Data System (ADS)

    Yu, Jianqiang; Dong, Xiaomin; Zhang, Zonglun

    2017-10-01

    Due to the complex nonlinearity of magnetorheological (MR) behavior, the modeling of MR dampers is a challenge. A simple and effective model of MR damper remains a work in progress. A novel model of MR damper is proposed with force-velocity hysteresis division method in this study. A typical hysteresis loop of MR damper can be simply divided into two novel curves with the division idea. One is the backbone curve and the other is the branch curve. The exponential-family functions which capturing the characteristics of the two curves can simplify the model and improve the identification efficiency. To illustrate and validate the novel phenomenological model with hysteresis division idea, a dual-end MR damper is designed and tested. Based on the experimental data, the characteristics of the novel curves are investigated. To simplify the parameters identification and obtain the reversibility, the maximum force part, the non-dimensional backbone part and the non-dimensional branch part are derived from the two curves. The maximum force part and the non-dimensional part are in multiplication type add-rule. The maximum force part is dependent on the current and maximum velocity. The non-dominated sorting genetic algorithm II (NSGA II) based on the design of experiments (DOE) is employed to identify the parameters of the normalized shape functions. Comparative analysis is conducted based on the identification results. The analysis shows that the novel model with few identification parameters has higher accuracy and better predictive ability.

  5. Frontal crashworthiness characterisation of a vehicle segment using curve comparison metrics.

    PubMed

    Abellán-López, D; Sánchez-Lozano, M; Martínez-Sáez, L

    2018-08-01

    The objective of this work is to propose a methodology for the characterization of the collision behaviour and crashworthiness of a segment of vehicles, by selecting the vehicle that best represents that group. It would be useful in the development of deformable barriers, to be used in crash tests intended to study vehicle compatibility, as well as for the definition of the representative standard pulses used in numerical simulations or component testing. The characterisation and selection of representative vehicles is based on the objective comparison of the occupant compartment acceleration and barrier force pulses, obtained during crash tests, by using appropriate comparison metrics. This method is complemented with another one, based exclusively on the comparison of a few characteristic parameters of crash behaviour obtained from the previous curves. The method has been applied to different vehicle groups, using test data from a sample of vehicles. During this application, the performance of several metrics usually employed in the validation of simulation models have been analysed, and the most efficient ones have been selected for the task. The methodology finally defined is useful for vehicle segment characterization, taken into account aspects of crash behaviour related to the shape of the curves, difficult to represent by simple numerical parameters, and it may be tuned in future works when applied to larger and different samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The treatment of idiopathic scoliosis in adolescents: rotation or in situ bending?

    PubMed

    Gennari, J M; Tallet, J M; Hornung, H; Bergoin, M

    1997-12-01

    Rotation alone is not fully efficient in order to correct all types of scoliotic curvatures. We report a series of 30 cases instrumented with the EUROS spine system and analyse reductions obtained with in situ rotation or bending alone or with combined maneuvres. The average age of surgery is 17 years for this series composed of 24 female and 6 male patients. The average follow-up is 2.3 years. The curve patterns are displayed with 6 major thoracic, 5 genuine double major, 4 double major thoracic predominant, 6 double major lumbar predominant and 9 double thoracic curves. Combination of both reduction techniques is advisable and is to be made according to the type of curvature and its reducibility in situ bending is made easier with this system without lockers and by reduced diameter of the rod.

  7. Dielectric Cytometry with Three-Dimensional Cellular Modeling

    PubMed Central

    Katsumoto, Yoichi; Hayashi, Yoshihito; Oshige, Ikuya; Omori, Shinji; Kishii, Noriyuki; Yasuda, Akio; Asami, Koji

    2008-01-01

    We have developed what we believe is an efficient method to determine the electric parameters (the specific membrane capacitance Cm and the cytoplasm conductivity κi) of cells from their dielectric dispersion. First, a limited number of dispersion curves are numerically calculated for a three-dimensional cell model by changing Cm and κi, and their amplitudes Δɛ and relaxation times τ are determined by assuming a Cole-Cole function. Second, regression formulas are obtained from the values of Δɛ and τ and then used for the determination of Cm and κi from the experimental Δɛ and τ. This method was applied to the dielectric dispersion measured for rabbit erythrocytes (discocytes and echinocytes) and human erythrocytes (normocytes), and provided reasonable Cm and κi of the erythrocytes and excellent agreement between the theoretical and experimental dispersion curves. PMID:18567636

  8. Dielectric cytometry with three-dimensional cellular modeling.

    PubMed

    Katsumoto, Yoichi; Hayashi, Yoshihito; Oshige, Ikuya; Omori, Shinji; Kishii, Noriyuki; Yasuda, Akio; Asami, Koji

    2008-09-15

    We have developed what we believe is an efficient method to determine the electric parameters (the specific membrane capacitance C(m) and the cytoplasm conductivity kappa(i)) of cells from their dielectric dispersion. First, a limited number of dispersion curves are numerically calculated for a three-dimensional cell model by changing C(m) and kappa(i), and their amplitudes Deltaepsilon and relaxation times tau are determined by assuming a Cole-Cole function. Second, regression formulas are obtained from the values of Deltaepsilon and tau and then used for the determination of C(m) and kappa(i) from the experimental Deltaepsilon and tau. This method was applied to the dielectric dispersion measured for rabbit erythrocytes (discocytes and echinocytes) and human erythrocytes (normocytes), and provided reasonable C(m) and kappa(i) of the erythrocytes and excellent agreement between the theoretical and experimental dispersion curves.

  9. Revisiting the Energy Budget of WASP-43b: Enhanced Day–Night Heat Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Dylan; Cowan, Nicolas B.

    The large day–night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature ofmore » 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day–night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.« less

  10. Marginal abatement cost curves for NOx incorporating both controls and alternative measures

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the efficient marginal abatement cost level for any aggregate emissions target when a least cost approach is implemented. In order for it to represent the efficient MAC level, all abatement opportunities across all sectors and loc...

  11. A Method for Optimal Allocation between Instream and Offstream Uses in the Maipo River in Central Chile

    NASA Astrophysics Data System (ADS)

    Génova, P. P.; Olivares, M. A.

    2016-12-01

    Minimum instream flows (MIF) have been established in Chile with the aim of protecting aquatic ecosystems. In practice, since current water law only allocates water rights to offstream water uses, MIF becomes the only instrument for instream water allocation. However, MIF do not necessarily maintain an adequate flow for instream uses. Moreover, an efficient allocation of water for instream uses requires the quantification of the benefits obtained from those uses, so that tradeoffs between instream and offstream water uses are properly considered. A model of optimal allocation between instream and offstream uses is elaborated. The proposed method combines two pieces of information. On one hand, benefits of instream use are represented by qualitative recreational benefit curves as a function of instream flow. On the other hand, the opportunity cost given by lost benefits of offstream uses is employed to develop a supply curve for instream flows. We applied this method to the case of the Maipo River, where the main water uses are recreation, hydropower production and drinking water. Based on available information we obtained the qualitative benefits of various recreational activities as a function of flow attributes. Then we developed flow attributes curves as a function of instream flow for a representative number of sections in the river. As a result we obtained the qualitative recreational benefit curve for each section. The marginal cost curve for instream flows was developed from the benefit functions of hydropower production interfering with recreation in the Maipo River. The purpose of this supply curve is to find a range of instream flow that will provide a better quality condition for recreation experience at a lower opportunity cost. Results indicate that offstream uses adversely influence recreational activities in the Maipo River in certain months of the year, significantly decreasing the quality of these in instream uses. As expected, the impact depends of the magnitude of diverted flows, and therefore these impacts can be reduced restricting the amount of water extracted from the river. Accordingly, it is possible to define the optimum amount of water to be allocated to each use for each month such that instream flows are appropriate for recreation and the loss of hydropower production benefits is lowest.

  12. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  13. The impact of direct vertebral rotation (DVR) on radiographic outcome in surgical correction of idiopathic scoliosis.

    PubMed

    Urbanski, Wiktor; Wolanczyk, Michal J; Jurasz, Wojciech; Kulej, Miroslaw; Morasiewicz, Piotr; Dragan, Szymon Lukasz; Sasiadek, Marek; Dragan, Szymon Feliks

    2017-07-01

    Recent developments of spinal instruments allow to address nearly all components of idiopathic scoliosis. Direct vertebral rotation (DVR) maneuver was introduced to correct apical axial vertebral rotation. It is however still not well established how efficiently DVR affects results of scoliosis correction. The object of the study was to evaluate en bloc apical vertebral rotation (DVR) and its impact on coronal and sagittal correction of the spine in patients undergoing surgical scoliosis treatment. Thirty-six consecutive patients who underwent posterior spinal fusion with pedicle screws only constructs for idiopathic scoliosis. Fifteen patients (20 curves) were corrected by rod derotation only and 21 patients (26 curves) had both rod derotation and DVR. Curve measurements were performed on x-rays obtained before and postoperatively-coronal curves, kyphosis (T2-T12, T5-T12). Spine flexibility was assessed on prone bending x-rays. Apical axial rotation was determined on CT scans obtained intraoperatively and postoperatively. Rotation angle (RAsag) was measured according to Aaro and Dahlborn. We observed reduction of RAsag in all patients; however, in DVR group, decrease was greater, by 31.8% comparing to non-DVR group, by 8.6% (p = 0.0003). Mean coronal correction in DVR group was 68.8% and in rod derotation group without DVR 55% (p = 0.002). No significant correlation was found between degree of derotation obtained and coronal correction. In DVR group T2-T12 kyphosis has increased in 28 (65%) patients whereas in non-DVR group in 31 (69%) cases. Mean value of T2-T12 kyphosis growth was 16.7% in DVR and 22.1% in non-DVR group. These differences however did not occur statistically significant. Direct vertebral rotation (DVR) maneuver reduces significantly apical rotation of the spine, enhances ability of coronal correction, and it does not reduce thoracic kyphosis.

  14. Geometrical layout and optics modelling of the surface science beamline station at the SESAME synchrotron radiation facility.

    PubMed

    Salah, Wa'el; Sanchez del Rio, Manuel

    2011-05-01

    The layout and the optical performance of the SGM branch of the D09 bending-magnet beamline, under construction at SESAME, are presented. The beamline is based on the Dragon-type design and delivers photons over the spectral range 15-250 eV. One fixed entrance slit and a movable exit slit are used. The performance of the beamline has been characterized by calculating the mirror reflectivities and the grating efficiencies. The flux and resolution were calculated by ray-tracing using SHADOW. The grating diffraction efficiencies were calculated using the GRADIF code. The results and the overall shapes of the predicted curves are in reasonable agreement with those obtained using an analytical formula.

  15. Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1976-01-01

    Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.

  16. Temperature and speed of testing influence on the densification and recovery of polyurethane foams

    NASA Astrophysics Data System (ADS)

    Apostol, Dragoş Alexandru; Constantinescu, Dan Mihai

    2013-02-01

    Polyurethane foams with densities of 35, 93, and 200 kg/m3 were tested in compression at three levels of temperatures as: -60 °C, 23 °C, and 80 °C. The influence of speed of testing from 2 mm/min up to 6 m/s (0.0014 to 545 s-1) on the response of the foams is analyzed. Testing is done separately on the rise direction and on the in-plane direction of the foams, and differences in their behavior are commented. With interpolation functions which approximate the plateau and densification region, the specific strain energy is calculated together with the energy efficiency and onset strain of densification. A Nagy-type phenomenological strain-rate-dependent model is proposed to generate engineering stress-strain curves and is validated through comparison with experimental stress-strain curves obtained at different speeds of testing. Starting from a reference experimental curve, two material parameters which are density and temperature dependent are established. Foam recovery for each density of the polyurethane foams is analyzed as a function of direction of testing, temperature, and speed of testing.

  17. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    PubMed

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  18. Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.

    2015-05-01

    We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.

  19. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  20. The Ultimate Spitzer Phase Curve Survey: Cross-Planetary Comparison of Heat-Redistribution Efficiencies

    NASA Astrophysics Data System (ADS)

    Fraine, Jonathan D.; Stevenson, Kevin; Bean, Jacob; Deming, Drake; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole K.; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam; Feng, Katherina

    2018-01-01

    Exoplanet phase curves provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that continue to open new doors of scientific inquiry and propel future investigations. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions from 3D atmospheric simulations. We will present preliminary results from a 660-hour Spitzer phase curve survey program that targeted six short-period extrasolar planets. By comparing short periods exoplanets over a range of equilibrium temperatures, we can begin to disentangle the effects of planetary rotation and energy budget on a planet's thermal properties. We will discuss how the measured planet temperature and rotation rate affect the heat redistribution efficiencies, examine trends in the phase curve peak offset, and discuss cloud coverage constraints. Our Spitzer observations will provide valuable information for predicting and interpreting future, JWST-era observations.

  1. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    PubMed

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  2. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  3. High-performance polymeric photovoltaic cells with a gold chloride-treated polyacrylonitrile hole extraction interlayer

    NASA Astrophysics Data System (ADS)

    Jeong, Ji-Ho; Noh, Yong-Jin; Kim, Seok-Soon; Kwon, Sung-Nam; Na, Seok-In

    2018-03-01

    We introduce a high efficiency polymeric photovoltaic cell (PPV) to be obtained by polyacrylonitrile (PAN) hole extraction layer (HEL) modification with gold chloride (AuCl3). The role of PAN HELs with AuCl3 and their effects on solar cell performances were studied with ultraviolet photoemission spectroscopy, atomic force microscopy, internal resistances in PPVs, and current-voltage power curves. The resultant PPVs with AuCl3-treated PAN HELs showed improved cell efficiency compared to PSCs with no interlayer and PAN without AuCl3. Furthermore, with AuCl3-treated PAN, we finally achieved a high efficiency of 6.91%, and a desirable PPV-stability in poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophe-ne-2,6-diyl][3-fluoro-2-[(2-thylhexyl)carbonyl]-thieno[3,4-b]thiophenediyl

  4. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  5. Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr

    2010-03-24

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less

  6. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE PAGES

    Wu, Qin

    2015-01-30

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  7. Effects of questions' repetition and variation on the efficiency of the guilty knowledge test: a reexamination.

    PubMed

    Ben-Shakhar, Gershon; Elaad, Eitan

    2002-10-01

    The effect of question repetition and variation on the efficiency of the Guilty Knowledge Test (GKT), based on electrodermal and respiration measures, was examined in a between-subjects experiment with 3 conditions. Each participant was presented with a sequence of 12 biographical questions. In Condition 1, a single question was repeated 12 times; in Condition 4, each of 4 different questions was repeated 3 times; and in Condition 12, 12 different questions were used. A monotonic relationship between the number of different questions used and detection efficiency was observed only with the electrodermal measure (the areas under the receiver operating characteristic curves, obtained with this measure in Conditions 1, 4, and 12 were .68, .81, and .99, respectively). These results demonstrate that a GKT based on multiple questions is superior to the use of many repetitions of a single or a few questions, and it can reach an almost perfect detection efficiency.

  8. Phase Curve Analysis of Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2018-01-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus, or a bare-rock surface that may come with a tenuous atmosphere like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase curve photometric data around secondary eclipse has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a previously developed semi-analytical framework to fit a physical model to infrared photometric data of host star 55 Cancri from the Spitzer telescope IRAC 2 band at 4.5 μm. The model uses various parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., the ratio between the radiative timescale and advective timescale of the photosphere), and atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hot spot located on the planet surface. We determine the heat redistribution efficiency to be ≈1.47, which implies that the advective timescale is on the same order as the radiative timescale. This requirement from the phase curve cannot be met by the bare-rock planet scenario, because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to a photosphere pressure of ~1.4 bar. The Spitzer IRAC 2 band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  9. Efficiency of aerosol collection on wires exposed in the stratosphere

    NASA Technical Reports Server (NTRS)

    Lem, H. Y.; Farlow, N. H.

    1979-01-01

    The theory of inertial impaction is briefly presented. Stratospheric aerosol research experiments were performed duplicating Wong et al. experiments. The use of the curve of inertial parameters vs particle collection efficiency, derived from Wong et al., was found to be justified. The results show that stratospheric aerosol particles of all sizes are collectible by wire impaction technique. Curves and tables are presented and used to correct particle counts for collection efficiencies less than 100%.

  10. Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage

    NASA Astrophysics Data System (ADS)

    Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana

    2011-12-01

    The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.

  11. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but close to those at the intersections the characteristic power, CP, curves of the thermoelectric materials of the adjacent segments (CP = T(sup 2)Zk and has a unit of W/m). Results also showed that the number of the segments in the n- and p-legs of the STUs optimized for maximum power density are generally fewer than when the same unicouples are optimized for maximum efficiency. These results are obtained using the 1-D optimization model of STUs that is detailed in chapter 2. A three-dimensional model of STUs is developed and incorporated into the ANSYS commercial software (chapter 3). The governing equations are solved, subject to the prescribed

  12. Effect of Pr 3+ concentration on thermoluminescence from K 2Y 1- xPr xF 5 crystals

    NASA Astrophysics Data System (ADS)

    Marcazzo, J.; Santiago, M.; Caselli, E.; Nariyama, N.; Khaidukov, N. M.

    2004-06-01

    Thermoluminescence dosimetric characteristics of K 2YF 5 crystals doped with Pr 3+ are reported for the first time. The efficiency of the 0.5 at.% Pr 3+ doped K 2YF 5 crystal has been found to be maximum for this concentration series and three times higher than that of the commercial dosimeter TLD-700. The thermoluminescence glow curve of this novel phosphor has no appreciable fading. Furthermore, it bears linear dose response and good stability after reutilization. According to these results, K 2YF 5:Pr 3+ appears to be a promising base for developing effective phosphors for TL solid state dosimetry. In this context, the spectral composition of the TL emission is also mentioned along with the values obtained by glow curve deconvolution for the trap parameters characterising electron trap centres involved in thermoluminescence.

  13. Reactive extraction of lactic acid with trioctylamine/methylene chloride/n-hexane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D.H.; Hong, W.H.

    The trioctylamine (TOA)/methylene chloride (MC)/n-hexane system was used as the extraction agent for the extraction of lactic acid. Curves of equilibrium and hydration were obtained at various temperatures and concentrations of TOA. A modified mass action model was proposed to interpret the equilibrium and the hydration curves. The reaction mechanism and the corresponding parameters which best represent the equilibrium data were estimated, and the concentration of water in the organic phase was predicted by inserting the parameters into the simple mathematical equation of the modified model. The concentration of MC and the change of temperature were important factors for themore » extraction and the stripping process. The stripping was performed by a simple distillation which was a combination of temperature-swing regeneration and diluent-swing regeneration. The type of inactive diluent has no influence on the stripping. The stripping efficiencies were about 70%.« less

  14. The optimal thickness of a transmission-mode GaN photocathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Hui; Shi, Feng; Guo, Hui; Hu, Cang-Lu; Cheng, Hong-Chang; Chang, Ben-Kang; Ren, Ling; Du, Yu-Jie; Zhang, Jun-Ju

    2012-08-01

    A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 104 cm·s-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.

  15. Genetic analysis of growth curves for a woody perennial species, Pinus taeda L.

    Treesearch

    D.P. Gwaze; F.E. Bridgwater; C.G. Williams

    2002-01-01

    Inheritance of growth curves is critical for understanding evolutionary change and formulating efficient breeding plans, yet has received limited attention. Growth curves, like other characters that change in concert with development, often have higher heritability than age-specific traits. This study compared genetic parameters of height-growth curves with those of...

  16. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  17. Satellite altimetry based rating curves throughout the entire Amazon basin

    NASA Astrophysics Data System (ADS)

    Paris, A.; Calmant, S.; Paiva, R. C.; Collischonn, W.; Silva, J. S.; Bonnet, M.; Seyler, F.

    2013-05-01

    The Amazonian basin is the largest hydrological basin all over the world. In the recent past years, the basin has experienced an unusual succession of extreme draughts and floods, which origin is still a matter of debate. Yet, the amount of data available is poor, both over time and space scales, due to factor like basin's size, access difficulty and so on. One of the major locks is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2010. The stage dataset is made of ~800 altimetry series at ENVISAT and JASON-2 virtual stations. Altimetry series span between 2002 and 2010. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are consistent throughout the entire Amazon basin. The rating curve parameters have been computed using a parameter optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best parameters for the rating curve, but also their posterior probability distribution, allowing the determination of a credibility interval for the rating curve. Also is included in the rating curve determination the error over discharges estimates from the MGB-IPH model. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach is more efficient than the determinist one. By using for the parameters prior credible intervals defined by the user, this method provides an estimate of best rating curve estimate without any unlikely parameter, and all sites achieved convergence before reaching the maximum number of model evaluations. Results were assessed trough the Nash Sutcliffe efficiency coefficient, applied both to discharge and logarithm of discharges. Most of the virtual stations had good or very good results, showing values of Ens going from 0.7 to 0.98. However, worse results were found at a few virtual stations, unveiling the necessity of investigating possibilities of segmentation of the rating curve, depending on the stage or the rising or recession limb, but also possible errors in the altimetry series.

  18. [Optimization on trehalose loading technique as protective conditioning for lyophilization of human platelets].

    PubMed

    Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang

    2005-08-01

    This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.

  19. Empirical expression for DC magnetization curve of immobilized magnetic nanoparticles for use in biomedical applications

    NASA Astrophysics Data System (ADS)

    Elrefai, Ahmed L.; Sasayama, Teruyoshi; Yoshida, Takashi; Enpuku, Keiji

    2018-05-01

    We studied the magnetization (M-H) curve of immobilized magnetic nanoparticles (MNPs) used for biomedical applications. First, we performed numerical simulation on the DC M-H curve over a wide range of MNPs parameters. Based on the simulation results, we obtained an empirical expression for DC M-H curve. The empirical expression was compared with the measured M-H curves of various MNP samples, and quantitative agreements were obtained between them. We can also estimate the basic parameters of MNP from the comparison. Therefore, the empirical expression is useful for analyzing the M-H curve of immobilized MNPs for specific biomedical applications.

  20. Consideration of the respiratory cycle asymmetry in the numerical modeling of the submicron particles deposition in the human nasal cavity

    NASA Astrophysics Data System (ADS)

    Ganimedov, V. L.; Muchnaya, M. I.

    2017-10-01

    A detailed study of the behavior of the U-shaped curve was conducted, which described deposition efficiency of inhaled particles in human nasal cavity. The particles in the range from 1 nm to 20 µm are considered. Calculations of air flow and particles deposition were carried out for symmetrical (idealized) and asymmetrical (real) breathing cycles at the same volume of inhaled air, which corresponded to calm breathing. The calculations were performed on the base of the mathematical model of the nasal cavity of healthy person using software package ANSYS (FLUENT 12). The comparison of the results was made between these calculations, and also with the results obtained at quasi-stationary statement of the problem for several values of flow rate. The comparison of the results of quasi-stationary calculations with available calculated and experimental data (in vivo i in vitro) was fulfilled previously. Good agreement of the results was obtained. It is shown that the real distribution of deposition efficiency as a function of the particle size can be obtained via a certain combination of the results of quasi-stationary calculations, without the use of laborious and time-consuming non-stationary calculation.

  1. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Park, Won Young; McNeil, Michael A.

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO 2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in themore » future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO 2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast, some of the demonstration technologies are adapted in the mid-term and their penetration levels increase as the prices go down with learning curve. We also observe large penetration of 225kg pulverized coal injection with the presence of learning.« less

  2. High efficiency FET microwave detector design

    NASA Astrophysics Data System (ADS)

    Luglio, Juan; Ishii, Thomas Koryu

    1990-12-01

    The work is based on an assumption that very little microwave power would be consumed at a negatively biased gate of a microwave FET, yet significant detected signals would be obtained at the drain if the bias is given. By analyzing a Taylor-series expansion of the drain-current equation in the vicinity of a fixed gate-bias voltage, the bias voltage is found to maximize the second derivative of the drain current, the gate-bias voltage characteristic curve for the maximum detected drain current under a given fixed drain-bias voltage. Based on these findings, a high-efficiency microwave detector is designed, fabricated, and tested at 8.6 GHz, and it is shown that the audio power over absorbed microwave power ratio of the detector is 135 percent due to the positive gain.

  3. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    PubMed

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  4. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    PubMed Central

    Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio

    2017-01-01

    Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670

  5. An Assessment of Artificial Compressibility and Pressure Projection Methods for Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.

  6. Symmetry Properties of Potentiometric Titration Curves.

    ERIC Educational Resources Information Center

    Macca, Carlo; Bombi, G. Giorgio

    1983-01-01

    Demonstrates how the symmetry properties of titration curves can be efficiently and rigorously treated by means of a simple method, assisted by the use of logarithmic diagrams. Discusses the symmetry properties of several typical titration curves, comparing the graphical approach and an explicit mathematical treatment. (Author/JM)

  7. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhong-Li, E-mail: zl.liu@163.com; Zhang, Xiu-Lu; Cai, Ling-Cang

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curvemore » of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.« less

  8. Analysis of tipping-curve measurements performed at the DSS-13 beam-waveguide antenna at 32.0 and 8.45 GigaHertz

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Skjerve, L.

    1995-01-01

    This article reports on the analysis of the Ka-band Antenna Performance Experiment tipping-curve data acquired at the DSS-13 research and development beam-waveguide (BWG) antenna. By measuring the operating system temperatures as the antenna is moved form zenith to low-elevation angles and fitting a model to the data, one can obtain information on how well the overall temperature model behaves at zenith and approximate the contribution due to the atmosphere. The atmospheric contribution estimated from the data can be expressed in the form of (1) atmospheric noise temperatures that can provide weather statistic information and be compared against those estimated from other methods and (2) the atmospheric loss factor used to refer efficiency measurements to zero atmosphere. This article reports on an analysis performed on a set of 68 8.4-GHz and 67 32-GHz tipping-curve data sets acquired between December 1993 and May 1995 and compares the results with those inferred from a surface model using input meteorological data and from water vapor radiometer (WVR) data. The general results are that, for a selected subset of tip curves, (1) the BWG tipping-curve atmospheric temperatures are in good agreement with those determined from WVR data (the average difference is 0.06 +/- 0.64 K at 32 GHz) and (2) the surface model average values are biased 3.6 K below those of the BWG and WVR at 32 GHz.

  9. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.

    PubMed

    Donia, D; Divizia, M; Pana', A

    2005-06-01

    Armored Enterovirus RNA was used to standardize a real-time reverse transcription (RT)-PCR for environmental testing. Armored technology is a system to produce a robust and stable RNA standard, trapped into phage proteins, to be used as internal control. The Armored Enterovirus RNA protected sequence includes 263 bp of highly conserved sequences in 5' UTR region. During these tests, Armored RNA has been used to produce a calibration curve, comparing three different fluorogenic chemistry: TaqMan system, Syber Green I and Lux-primers. The effective evaluation of three amplifying commercial reagent kits, in use to carry out real-time RT-PCR, and several extraction procedures of protected viral RNA have been carried out. The highest Armored RNA recovery was obtained by heat treatment while chemical extraction may decrease the quantity of RNA. The best sensitivity and specificity was obtained using the Syber Green I technique since it is a reproducible test, easy to use and the cheapest one. TaqMan and Lux-primer assays provide good RT-PCR efficiency in relationship to the several extraction methods used, since labelled probe or primer request in these chemistry strategies, increases the cost of testing.

  10. Symmetric digit sets for elliptic curve scalar multiplication without precomputation

    PubMed Central

    Heuberger, Clemens; Mazzoli, Michela

    2014-01-01

    We describe a method to perform scalar multiplication on two classes of ordinary elliptic curves, namely E:y2=x3+Ax in prime characteristic p≡1mod4, and E:y2=x3+B in prime characteristic p≡1mod3. On these curves, the 4-th and 6-th roots of unity act as (computationally efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width-w-NAF (Non-Adjacent Form) digit expansion of positive integers to the complex base of τ, where τ is a zero of the characteristic polynomial x2−tx+p of the Frobenius endomorphism associated to the curve. We provide a precomputationless algorithm by means of a convenient factorisation of the unit group of residue classes modulo τ in the endomorphism ring, whereby we construct a digit set consisting of powers of subgroup generators, which are chosen as efficient endomorphisms of the curve. PMID:25190900

  11. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    PubMed

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluating the Correlation between Anteroposterior and Mediolateral Compensatory Curves and their Influence on Dentoskeletal Morphology-An In vitro CBCT Study.

    PubMed

    Babu, K Suresh; Kumar, A Nanda; Kommi, Pradeep Babu; Krishnan, P Hari; Kumar, M Senthil; Sabapathy, R Senkutvan; Kumar, V Vijay

    2017-08-01

    To date, many orthodontist corrects malocclusion based on patients aesthetic concern and fails to correct the compensatory curves. This scenario is due to less insight on understanding relationship of compensatory curves and its correlation in treatment prognosis. The purpose of this study was to evaluate the correlation between the curve of Spee, curve of Monson and curve of Wilson, their influence on dentoskeletal morphology and their contribution to occlusal stability. This study included 104 non-orthodontic models. The study casts were subdivided into two groups, Group-I consist 52 non- orthodontic models with Class-I molar relationship and Group-II consist of 52 non- orthodontic models with Class-II molar relationship. Curve of Spee was measured with digital vernier caliper, curve of Monson estimated using specially made sphere (7″inch, 8″ inch and 9″inch) and curve of Wilson was evaluated using Cone Beam Computed Technology (CBCT). Mean value for curve of Spee obtained for Group I and Group II is 1.844 mm and 3.188 mm. For curve of Monson, the mean value obtained for Group I and Group-II is 7.65 inches and 7.40 inches. The mean degree obtained for the curve of Wilson for Group I and Group-II is 12.05 and 16.49. The result showed positive correlation between curve of Spee and curve of Wilson and no correlation between curve of Monson and curve of Wilson and no correlation between curve of Spee and curve of Monson. The Pearson correlation coefficient analysis from the study confirmed these results. The results showed positive correlation between curve of spee and curve of Wilson. The data found in this study can be applied clinically for Class I and Class II malocclusion patients on diagnosis and treatment planning.

  13. Analyzing the Effect of Multi-fuel and Practical Constraints on Realistic Economic Load Dispatch using Novel Two-stage PSO

    NASA Astrophysics Data System (ADS)

    Chintalapudi, V. S.; Sirigiri, Sivanagaraju

    2017-04-01

    In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.

  14. Modeling and measurement of electrostatic micromirror array fabricated with single-layer polysilicon micromachining technology

    NASA Astrophysics Data System (ADS)

    Min, Young-Hoon; Kim, Yong-Kweon

    1998-09-01

    A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.

  15. Real-time quantitative polymerase chain reaction analysis of patients with refractory chronic periodontitis.

    PubMed

    Marconcini, Simone; Covani, Ugo; Barone, Antonio; Vittorio, Orazio; Curcio, Michele; Barbuti, Serena; Scatena, Fabrizio; Felli, Lamberto; Nicolini, Claudio

    2011-07-01

    Periodontitis is a complex multifactorial disease and is typically polygenic in origin. Genes play a fundamental part in each biologic process forming complex networks of interactions. However, only some genes have a high number of interactions with other genes in the network and may, therefore, be considered to play an important role. In a preliminary bioinformatic analysis, five genes that showed a higher number of interactions were identified and termed leader genes. In the present study, we use real-time quantitative polymerase chain reaction (PCR) technology to evaluate the expression levels of leader genes in the leukocytes of 10 patients with refractory chronic periodontitis and compare the expression levels with those of the same genes in 24 healthy patients. Blood was collected from 24 healthy human subjects and 10 patients with refractory chronic periodontitis and placed into heparinized blood collection tubes by personnel trained in phlebotomy using a sterile technique. Blood leukocyte cells were immediately lysed by using a kit for total RNA purification from human whole blood. Complementary DNA (cDNA) synthesis was obtained from total RNA and then real-time quantitative PCR was performed. PCR efficiencies were calculated with a relative standard curve derived from a five cDNA dilution series in triplicate that gave regression coefficients >0.98 and efficiencies >96%. The standard curves were obtained using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and growth factor receptor binding protein 2 (GRB2), casitas B-lineage lymphoma (CBL), nuclear factor-KB1 (NFKB1), and REL-A (gene for transcription factor p65) gene primers and amplified with 1.6, 8, 40, 200, and 1,000 ng/μL total cDNA. Curves obtained for each sample showed a linear relationship between RNA concentrations and the cycle threshold value of real-time quantitative PCR for all genes. Data were expressed as mean ± SE (SEM). The groups were compared to the analysis of variance. A probability value <0.01 was considered statistically significant. The present study agrees with the preliminary bioinformatics analysis. In our experiments, the association of pathology with the genes was statistically significant for GRB2 and CBL (P <0.01), and it was not statistically significant for REL-A and NFKB1. This article lends support to our preliminary hypothesis that assigned an important role in refractory aggressive periodontitis to leader genes.

  16. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified and used to identify the technologies which offer the greatest cumulative sector-level energy savings over a period of 20 years. Preliminary analysis indicates that relatively simple technologies, such as efficient furnaces, will be adopted more quickly and result in greater cumulative energy savings compared to more complex technologies that require process retrofitting, such as advanced control systems.« less

  17. Determining chewing efficiency using a solid test food and considering all phases of mastication.

    PubMed

    Liu, Ting; Wang, Xinmiao; Chen, Jianshe; van der Glas, Hilbert W

    2018-07-01

    Following chewing a solid food, the median particle size, X 50 , is determined after N chewing cycles, by curve-fitting of the particle size distribution. Reduction of X 50 with N is traditionally followed from N ≥ 15-20 cycles when using the artificial test food Optosil ® , because of initially unreliable values of X 50 . The aims of the study were (i) to enable testing at small N-values by using initial particles of appropriate size, shape and amount, and (ii) to compare measures of chewing ability, i.e. chewing efficiency (N needed to halve the initial particle size, N(1/2-Xo)) and chewing performance (X 50 at a particular N-value, X 50,N ). 8 subjects with a natural dentition chewed 4 types of samples of Optosil particles: (1) 8 cubes of 8 mm, border size relative to bin size (traditional test), (2) 9 half-cubes of 9.6 mm, mid-size; similar sample volume, (3) 4 half-cubes of 9.6 mm, and 2 half-cubes of 9.6 mm; reduced particle number and sample volume. All samples were tested with 4 N-values. Curve-fitting with a 2nd order polynomial function yielded log(X 50 )-log(N) relationships, after which N(1/2-Xo) and X 50,N were obtained. Reliable X 50 -values are obtained for all N-values when using half-cubes with a mid-size relative to bin sizes. By using 2 or 4 half-cubes, determination of N(1/2-Xo) or X 50,N needs less chewing cycles than traditionally. Chewing efficiency is preferable over chewing performance because of a comparison of inter-subject chewing ability at the same stage of food comminution and constant intra-subject and inter-subject ratios between and within samples respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Fluorescence tracers as a reference for pesticide transport in wetland systems

    NASA Astrophysics Data System (ADS)

    Lange, Jens; Passeport, Elodie; Tournebize, Julien

    2010-05-01

    Two different fluorescent tracers, Uranine (UR) and Sulforhodamine (SRB), were injected as a pulse into surface flow wetlands. Tracer breakthrough curves were used to document hydraulic efficiencies, peak attenuation and retention capacities of completely different wetland systems. The tracers were used as a reference to mimic photolytic decay (UR) and sorption (SRB) of contaminants, since a real herbicide (Isoproturon, IPU) was injected in parallel to UR and SRB. Analysis costs limited IPU sampling frequency and single samples deviated from the tracer breakthrough curves. Still, a parallel behavior of IPU and SRB could be observed in totally different wetland systems, including underground passage through drainage lines. Similar recovery rates for IPU and SRB confirmed this observation. Hence, SRB was found to be an appropriate reference tracer to mimic the behavior of mobile pesticides (low KOC, without degradation) in wetland systems and the obtained wetland characteristics for SRB may serve as an indication for contaminant retention. Owing to the properties of IPU, the obtained results should be treated as worst case scenarios for highly mobile pesticides. A comparison of six different wetland types suggested that non-steady wetland systems with large variation in water level may temporally store relatively large amounts of tracers (contaminants), partly in areas that are not continuously saturated. This may lead to an efficient attenuation of peak concentrations. However, when large parts of these systems are flushed by natural storm events, tracers (contaminants) may be re-mobilized. In steady systems vegetation density and water depth were found to be the most important factors for tracer/contaminant retention. Illustrated by SRB, sorption on sediments and vegetation was a quick, almost instantaneous process which lead to considerable tracer losses even at high flow velocities and short contact times. Shallow systems with dense vegetation appeared to be the most efficient SRB/contaminant traps. For photolytic decay no reference contaminant was studied, but the results found for UR may serve as a valuable proxy for this process.

  19. VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.

    2015-04-01

    Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).

  20. Learning curves for transapical transcatheter aortic valve replacement in the PARTNER-I trial: Technical performance, success, and safety.

    PubMed

    Suri, Rakesh M; Minha, Sa'ar; Alli, Oluseun; Waksman, Ron; Rihal, Charanjit S; Satler, Lowell P; Greason, Kevin L; Torguson, Rebecca; Pichard, Augusto D; Mack, Michael; Svensson, Lars G; Rajeswaran, Jeevanantham; Lowry, Ashley M; Ehrlinger, John; Mick, Stephanie L; Tuzcu, E Murat; Thourani, Vinod H; Makkar, Raj; Holmes, David; Leon, Martin B; Blackstone, Eugene H

    2016-09-01

    Introduction of hybrid techniques, such as transapical transcatheter aortic valve replacement (TA-TAVR), requires skills that a heart team must master to achieve technical efficiency: the technical performance learning curve. To date, the learning curve for TA-TAVR remains unknown. We therefore evaluated the rate at which technical performance improved, assessed change in occurrence of adverse events in relation to technical performance, and determined whether adverse events after TA-TAVR were linked to acquiring technical performance efficiency (the learning curve). From April 2007 to February 2012, 1100 patients, average age 85.0 ± 6.4 years, underwent TA-TAVR in the PARTNER-I trial. Learning curves were defined by institution-specific patient sequence number using nonlinear mixed modeling. Mean procedure time decreased from 131 to 116 minutes within 30 cases (P = .06) and device success increased to 90% by case 45 (P = .0007). Within 30 days, 354 patients experienced a major adverse event (stroke in 29, death in 96), with possibly decreased complications over time (P ∼ .08). Although longer procedure time was associated with more adverse events (P < .0001), these events were associated with change in patient risk profile, not the technical performance learning curve (P = .8). The learning curve for TA-TAVR was 30 to 45 procedures performed, and technical efficiency was achieved without compromising patient safety. Although fewer patients are now undergoing TAVR via nontransfemoral access, understanding TA-TAVR learning curves and their relationship with outcomes is important as the field moves toward next-generation devices, such as those to replace the mitral valve, delivered via the left ventricular apex. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. Experimental and numerical study of drill bit drop tests on Kuru granite

    NASA Astrophysics Data System (ADS)

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. The full spectrum of AdS5/CFT4 I: representation theory and one-loop Q-system

    NASA Astrophysics Data System (ADS)

    Marboe, Christian; Volin, Dmytro

    2018-04-01

    With the formulation of the quantum spectral curve for the AdS5/CFT4 integrable system, it became potentially possible to compute its full spectrum with high efficiency. This is the first paper in a series devoted to the explicit design of such computations, with no restrictions to particular subsectors being imposed. We revisit the representation theoretical classification of possible states in the spectrum and map the symmetry multiplets to solutions of the quantum spectral curve at zero coupling. To this end it is practical to introduce a generalisation of Young diagrams to the case of non-compact representations and define algebraic Q-systems directly on these diagrams. Furthermore, we propose an algorithm to explicitly solve such Q-systems that circumvents the traditional usage of Bethe equations and simplifies the computation effort. For example, our algorithm quickly obtains explicit analytic results for all 495 multiplets that accommodate single-trace operators in N=4 SYM with classical conformal dimension up to \\frac{13}{2} . We plan to use these results as the seed for solving the quantum spectral curve perturbatively to high loop orders in the next paper of the series.

  3. Dynamics of acoustic-convective drying of sunflower cake

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  4. Resonance energy transfer: Dye to metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: him-lax3@yahoo.com

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  5. General Theory of the Steady Motion of an Airplane

    NASA Technical Reports Server (NTRS)

    De Bothezat, George

    1921-01-01

    The writer points out briefly the history of the method proposed for the study of steady motion of an airplane, which is different from other methods now used. M. Paul Painleve has shown how convenient the drag-lift curve was for the study of airplane steady motion. The author later added to the drift-lift curve the curve called the "speed curve" which permits a direct checking of the speed of the airplane under all flying conditions. But the speed curve was plotted in the same quadrant as the drag-lift curve. Later, with the progressive development of aeronautical science, and with the continually increasing knowledge concerning engines and propellers, the author was brought to add the three other quadrants to the original quadrant, and thus was obtained the steady motion chart which is described in detail in this report. This charts permits one to read directly for a given airplane its horizontal speed at any altitude, its rate of climb at any altitude, its apparent inclination to the horizon at any moment, its ceiling, its propeller thrust, revolutions, efficiency, and power absorbed, that is the complete set of quantities involved in the subject, and to follow the variations of all these quantities both for variable altitude and for variable throttle. The chart also permits one to follow the variation of all of the above in flight as a function of the lift coefficient and of the speed. The author also discusses the interaction of the airplane and propeller through the slipstream and the question of the properties of the engine-propeller system and its dependence upon the properties of the engine considered alone and of the propeller considered alone. There is also a discussion of a standard atmosphere.

  6. Program finds centrifugal compressor operating point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, M.C.M.M.; Rodrigues, P.S.B.

    1990-09-01

    This article presents the Scop program, a computational procedure developed using Fortran 77 language to find the operating point of centrifugal compressors starting from performance curves. Characteristics or performance curves traditionally are employed by manufacturers to inform users about turbocompressor behavior. Usually, these curves have polytropic head, H, and corresponding polytropic efficiency, {eta} plus rotation speed, N, and inlet volumetric flowrate, Q, as parameters. Two families of curves can be identified in this figure. One provides head-flow relationships for several speeds and the other refers to isoefficiency curves.

  7. Calculation of skiving cutter blade

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Lao, Qicheng; Shang, Zhiyi

    2018-05-01

    The gear skiving method is a kind of gear machining technology with high efficiency and high precision. According to the method of gear machining, a method for calculating the blade of skiving cutter in machining an involute gear is proposed. Based on the principle of meshing gear and the kinematic relationship between the machined flank and the gear skiving, the mathematical model of skiving for machining the internal gear is built and the gear tooth surface is obtained by solving the meshing equation. The mathematical model of the gear blade curve of the skiving cutter is obtained by choosing the proper rake face and the cutter tooth surface for intersection. Through the analysis of the simulation of the skiving gear, the feasibility and correctness of the skiving cutter blade design are verified.

  8. Study on validation method for femur finite element model under multiple loading conditions

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  9. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    PubMed Central

    He, Pengbo; Li, Qiang; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin

    2014-01-01

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose rate and improved overall treatment precision were observed compared to conventional free breathing-based, respiratory-gated irradiation. Because breathing guidance curves could be established based on the respective average respiratory period and amplitude for each patient, it may be easier for patients to cooperate using this technique. PMID:25370622

  10. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standardmore » BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose rate and improved overall treatment precision were observed compared to conventional free breathing-based, respiratory-gated irradiation. Because breathing guidance curves could be established based on the respective average respiratory period and amplitude for each patient, it may be easier for patients to cooperate using this technique.« less

  11. Selection of an anti-solvent for efficient and stable cesium-containing triple cation planar perovskite solar cells.

    PubMed

    Xiao, Meng; Zhao, Li; Geng, Min; Li, Yanyan; Dong, Binghai; Xu, Zuxun; Wan, Li; Li, Wenlu; Wang, Shimin

    2018-06-19

    The perovskite layer is a crucial component influencing high-performance perovskite solar cells (PSCs). In the one-step solution method, anti-solvents are important for obtaining smooth and uniform perovskite active layers. This work explored the effect of various anti-solvents on the preparation of triple cation perovskite active layers. In general, anti-solvents with low dielectric constants, low polarity, and low boiling point are suitable for the preparation of perovskite films. Microstructural and elemental analyses of the perovskite films were systematically conducted by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The photoelectric properties, carrier transfer, and recombination process in the PSCs were investigated using photocurrent-voltage characteristic curves and electrochemical impedance spectroscopy. Optimum performance was obtained when the anti-solvent was diethyl ether (DEE) and the ratio of the optimum amount of DEE to the volume of the precursor was 1 : 10. Meanwhile, we found that the partial replacement of formamidinium/methylammonium by cesium could increase the stability of the PSCs and enhance the power conversion efficiency from 15.49% to over 17.38%.

  12. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique

    2016-05-01

    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by Manning's equation to obtain a data set containing the elevations of the river beds throughout the basin. The second advancement is the provision of parameter uncertainties and, therefore, the uncertainties in the rated discharge. The third advancement concerns estimating the discharge while considering backwater effects. We analyzed the Amazon Basin using nearly one thousand series that were obtained from ENVISAT and Jason-2 altimetry for more than 100 tributaries. Discharge values and related uncertainties were obtained from the rain-discharge MGB-IPH model. We used a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework to determine the rating curves. The data were randomly allocated into 80% calibration and 20% validation subsets. A comparison with the validation samples produced a Nash-Sutcliffe efficiency (Ens) of 0.68. When the MGB discharge uncertainties were less than 5%, the Ens value increased to 0.81 (mean). A comparison with the in situ discharge resulted in an Ens value of 0.71 for the validation samples (and 0.77 for calibration). The Ens values at the mouths of the rivers that experienced backwater effects significantly improved when the mean monthly slope was included in the RC. Our RCs were not mission-dependent, and the Ens value was preserved when applying ENVISAT rating curves to Jason-2 altimetry at crossovers. The cease-to-flow parameter of our RCs provided a good proxy for determining river bed elevation. This proxy was validated against Acoustic Doppler current profiler (ADCP) cross sections with an accuracy of more than 90%. Altimetry measurements are routinely delivered within a few days, and this RC data set provides a simple and cost-effective tool for predicting discharge throughout the basin in nearly real time.

  13. Uncertainty Quantification given Discontinuous Climate Model Response and a Limited Number of Model Runs

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Safta, C.; Debusschere, B.; Najm, H.

    2010-12-01

    Uncertainty quantification in complex climate models is challenged by the sparsity of available climate model predictions due to the high computational cost of model runs. Another feature that prevents classical uncertainty analysis from being readily applicable is bifurcative behavior in climate model response with respect to certain input parameters. A typical example is the Atlantic Meridional Overturning Circulation. The predicted maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We outline a methodology for uncertainty quantification given discontinuous model response and a limited number of model runs. Our approach is two-fold. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve shape and location for arbitrarily distributed input parameter values. Then, we construct spectral representations of uncertainty, using Polynomial Chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification. The approach is enabled by a Rosenblatt transformation that maps each side of the discontinuity to regular domains where desirable orthogonality properties for the spectral bases hold. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference - where the latter allows obtaining reasonable expansions without extra forward model runs. The model output, and its associated uncertainty at specific design points, are then computed by taking an ensemble average over PC expansions corresponding to possible realizations of the discontinuity curve. The methodology is tested on synthetic examples of discontinuous model data with adjustable sharpness and structure. This work was supported by the Sandia National Laboratories Seniors’ Council LDRD (Laboratory Directed Research and Development) program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. A "hydrokinematic" method of measuring the glide efficiency of a human swimmer.

    PubMed

    Naemi, Roozbeh; Sanders, Ross H

    2008-12-01

    The aim of this study was to develop and test a method of quantifying the glide efficiency, defined as the ability of the body to maintain its velocity over time and to minimize deceleration through a rectilinear glide. The glide efficiency should be determined in a way that accounts for both the inertial and resistive characteristics of the gliding body as well as the instantaneous velocity. A displacement function (parametric curve) was obtained from the equation of motion of the body during a horizontal rectilinear glide. The values of the parameters in the displacement curve that provide the best fit to the displacement-time data of a body during a rectilinear horizontal glide represent the glide factor and the initial velocity of the particular glide interval. The glide factor is a measure of glide efficiency and indicates the ability of the body to minimize deceleration at each corresponding velocity. The glide efficiency depends on the hydrodynamic characteristic of the body, which is influenced by the body's shape as well as by the body's size. To distinguish the effects of size and shape on the glide efficiency, a size-related glide constant and a shape-related glide coefficient were determined as separate entities. The glide factor is the product of these two parameters. The goodness of fit statistics indicated that the representative displacement function found for each glide interval closely represents the real displacement data of a body in a rectilinear horizontal glide. The accuracy of the method was indicated by a relative standard error of calculation of less than 2.5%. Also the method was able to distinguish between subjects in their glide efficiency. It was found that the glide factor increased with decreasing velocity. The glide coefficient also increased with decreasing Reynolds number. The method is sufficiently accurate to distinguish between individual swimmers in terms of their glide efficiency. The separation of glide factor to a size-related glide constant and a shape-related glide coefficient enabled the effect of size and shape to be quantified.

  15. Studies on graphene zinc-oxide nanocomposites photoanodes for high-efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Effendi, N. A. S.; Samsi, N. S.; Zawawi, S. A.; Hassan, O. H.; Zakaria, R.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-09-01

    A dye-sensitized solar cells (DSSCs) using a nanocomposite (NC) semiconductor film, consisting of graphene layer and ZnO nanosheets (Gr-ZnO) is fabricated by electrodeposition process. The DSSCs based on Gr-ZnO NC were determined via electrochemical impedance spectra (EIS), UV-Visible diffused reflectance spectroscopy (UV-Vis), and photovoltaic performances J-V curves to substantiate the explanations. Impedance spectra shows that a smaller charge transport time constant occurs in DSSCs based on Gr-ZnO NC comparing to ZnO. This improved the electron collecting efficiency significantly, resulting in high open circuit voltage. Moreover, Gr-ZnO NC shows an efficient photoinduced charge separation and transportation can be achieved at the interface thus exhibit excellent potential for photocurrent generation compared with sole ZnO. Gr-ZnO NC obtained a maximum photocurrent response for an open-circuit voltage and a power conversion efficiency of 0.96 V and 7.01% respectively, which is doubled from sole ZnO. The fabricated Gr-ZnO NC cells show better performances compared to conventional ZnO structure reference cell.

  16. Effects of structural parameters on fluid flow and mixing performance in a curved microchannel with gaps and baffles

    NASA Astrophysics Data System (ADS)

    Li, Jian; Xia, Guodong; Li, Yifan; Tian, Xinping

    2013-07-01

    We provide three-dimensional numerical simulations of mixing performance in a newly proposed micromixer with different structural parameters. The same amount of gaps and baffles are arranged along the curved channel within a certain distance. The effects of their structural parameters on mixing efficiency are presented, which include either the position and feature size of gaps and baffles, or the curvature radius of curved channel. The high efficiency mixing mechanism of the curved channel with gaps and baffles can attribute to the interaction of the increased contact area for premixed liquids, the jet and throttling effect over every unit of gap and baffle, the developing of the multidirectional vortices along the curved channel. The mixing index is sensitive to the width of the gaps and baffles for some Reynolds number ranges, but is not sensitive to the curvature radius of the curved channel. The characteristic of the pressure drop depending on Reynolds number is also investigated in order to keep an appropriate balance with mixing property.

  17. A Systematic Method for the Condition Assessment of Central Heating Plants in Air Force Logistics Command

    DTIC Science & Technology

    1990-09-01

    Oil Combustion/Fuel System 59 Derivation of HTHW Plant Condition Indices ...... ................. .. 65 Distribution System . ........ .. 66 HTHW...with Load ..... ............... .. 54 3. Boiler Efficiency Curve for Gas Combustion . 61 4. Boiler Efficiency Curve for Oil Combustion . 62 v List of...147 6. Round One Relative Responses for Gas and Oil Combustion/Fue System .... ............ . 147 7. Round One Relative Responses for Coal - Combustion

  18. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    NASA Astrophysics Data System (ADS)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  19. Versatile and efficient pore network extraction method using marker-based watershed segmentation

    NASA Astrophysics Data System (ADS)

    Gostick, Jeff T.

    2017-08-01

    Obtaining structural information from tomographic images of porous materials is a critical component of porous media research. Extracting pore networks is particularly valuable since it enables pore network modeling simulations which can be useful for a host of tasks from predicting transport properties to simulating performance of entire devices. This work reports an efficient algorithm for extracting networks using only standard image analysis techniques. The algorithm was applied to several standard porous materials ranging from sandstone to fibrous mats, and in all cases agreed very well with established or known values for pore and throat sizes, capillary pressure curves, and permeability. In the case of sandstone, the present algorithm was compared to the network obtained using the current state-of-the-art algorithm, and very good agreement was achieved. Most importantly, the network extracted from an image of fibrous media correctly predicted the anisotropic permeability tensor, demonstrating the critical ability to detect key structural features. The highly efficient algorithm allows extraction on fairly large images of 5003 voxels in just over 200 s. The ability for one algorithm to match materials as varied as sandstone with 20% porosity and fibrous media with 75% porosity is a significant advancement. The source code for this algorithm is provided.

  20. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  1. Importance of a 3D forward modeling tool for surface wave analysis methods

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville

    2016-04-01

    Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward problem for the inversion of dispersion curves.

  2. Bioelectro-Claus processes using MFC technology: Influence of co-substrate.

    PubMed

    Raschitor, A; Soreanu, G; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Cretescu, I; Rodrigo, M A

    2015-01-01

    This work is focused on the removal of sulphide from wastewater using a two chamber microbial fuel cell, seeded with activated sludge and operated in semi-continuous mode. Two co-substrates were used in order to provide the system for carbon and nutrient source: actual urban wastewater and synthetic wastewater. Results show that sulphide is efficiency depleted (removals over 94%) and that electricity is efficiently produced (maximum power density is 150 mW m(-2)) meanwhile COD is also oxidised (removals higher than 60%). Sulphur and sulphate are obtained as the final products of the oxidation and final speciation depends on the type of co-substrate used. The start-up of the system is very rapid and production of electricity and polarisation curves do not depend on the co-substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loading. 2; Curtiss 838-1C2-18R1 Four-Blade Propeller

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Sorin, Solomon M.

    1946-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the performance of a Curtiss propeller with four 838-lC2-lSRl blades on a YP-47M airplane at high blade loadings and engine powers. The study was made for a range of power coefficients between 0.30 and 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio, inasmuch as corrections for the effects of tunnel-wall constriction on the installation have not been applied. Slip-stream pressure surveys across the propeller disk are presented to illustrate blade thrust load distribution for several operating conditions. At a free-stream Mach number of 0.40, nearly constant peak efficiencies were obtained at power coefficients from 0.30 to 0.70. A change in power coefficient from 0.70 to 0.90 reduced the peak efficiency about 5 percent. Blade stall at the tip sections became evident for a power coefficient of 0.91 when the advance-diameter ratio was reduced to 1.87. At a free-stream Mach number of 0.50, the highest propeller efficiencies were obtained for power coefficients from 0.80 to 1.00 at advance-diameter ratios above 2.90. At advance-diameter ratios below 2.90, the highest efficiencies were obtained for power coefficients of 0.60 and 0.70. The envelope of the efficiency curves decreased about 12 percent between advance-diameter ratios of 2.60 and 4.20. Local compressibility effects became evident for a power coefficient of 0.40 when the advance-diameter ratio was decreased to 1.75.

  4. Analysis of the curve of Spee and the curve of Wilson in adult Indian population: A three-dimensional measurement study.

    PubMed

    Surendran, Sowmya Velekkatt; Hussain, Sharmila; Bhoominthan, S; Nayar, Sanjna; Jayesh, Ragavendra

    2016-01-01

    When reconstructing the occlusal curvatures dentists often use a 4-inch radii arc as a rough standard based on Monson spherical theory. The use of an identical radius for the curve of Spee for all patients may not be appropriate because each patient is individually different. The validity of application of this theory in the Indian population and the present study has been undertaken. This study is an attempt to evaluate the curve of Spee and curve of Wilson in young Indian population using three dimensional analysis. This study compared the radius and the depth of right and left, maxillary and mandibular curves of Spee and the radius of maxillary and mandibular curves of Wilson in males and females. The cusp tips of canines, buccal cusp tips of premolars and molars and palatal/lingual cusp tips of second molars of 60 maxillary and 60 mandibular casts were obtained. Three-dimensional (x, y, z) coordinates of the cusp tips of the molars, premolars, and canines of the right and left sides of the maxilla and mandible were obtained with three dimensional coordinate measuring machine. The radius and the depth of right and left, maxillary and mandibular curves of Spee and the radius of maxillary and mandibular curves of Wilson were measured by means of computer software Metrologic-XG. Pearson's correlation test and Independent t-test were used to test the statistical significance (α=.05). The values of curve of Spee and curve of Wilson in Indian population obtained from this study were higher than the 4 inch (100 mm) radius proposed by Monson. These findings suggest ethnic differences in the radius of curve of Spee and curve of Wilson.

  5. A weakly nonlinear theory for wave-vortex interactions in curved channel flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Erlebacher, Gordon; Zang, Thomas A.

    1992-01-01

    A weakly nonlinear theory is developed to study the interaction of Tollmien-Schlichting (TS) waves and Dean vortices in curved channel flow. The predictions obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. Some discrepancies in the results of a previous theory with direct numerical simulations are resolved.

  6. Bedload Rating and Flow Competence Curves Vary With Watershed and Bed Material Parameters

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.

    2003-12-01

    Bedload transport rating curves and flow competence curves (largest bedload size for specified flow) are usually not known for streams unless a large number of bedload samples has been collected and analyzed. However, this information is necessary for assessing instream flow needs and stream responses to watershed effects. This study therefore analyzed whether bedload transport rating and flow competence curves were related to stream parameters. Bedload transport rating curves and flow competence curves were obtained from extensive bedload sampling in six gravel- and cobble-bed mountain streams. Samples were collected using bedload traps and a large net sampler, both of which provide steep and relatively well-defined bedload rating and flow competence curves due to a long sampling duration, a large sampler opening and a large sampler capacity. The sampled streams have snowmelt regimes, steep (1-9%) gradients, and watersheds that are mainly forested and relatively undisturbed with basin area sizes of 8 to 105 km2. The channels are slightly incised and can contain flows of more than 1.5 times bankfull with little overbank flow. Exponents of bedload rating and flow competence curves obtained from these measurements were found to systematically increase with basin area size and decrease with the degree of channel armoring. By contrast, coefficients of bedload rating and flow competence curves decreased with basin size and increased with armoring. All of these relationships were well-defined (0.86 < r2 < 0.99). Data sets from other studies in coarse-bedded streams fit the indicated trend if the sampling device used allows measuring bedload transport rates over a wide range and if bedload supply is somewhat low. The existence of a general positive trend between bedload rating curve exponents and basin area, and a negative trend between coefficients and basin area, is confirmed by a large data set of bedload rating curves obtained from Helley-Smith samples. However, in this case, the trends only become visible as basin area sizes span a wide range (1 - 10,000 km2). The well-defined relationships obtained from the bedload trap and the large net sampler suggest that exponents and coefficients of bedload transport rating curves (and flow competence curves) are predictable from an easily obtainable parameter such as basin size. However, the relationships of bedload rating curve exponents and coefficients with basin size and armoring appear to be influenced by the sampling device used and the watershed sediment production.

  7. Research of X-ray curved crystals analyzer

    NASA Astrophysics Data System (ADS)

    Xiao, Shali; Xong, Xian-cai; Qian, Jia-yu; Zhong, Xian-xin; Yan, Guo-hong; Liu, Zhong-li; Ding, Yong-kun

    2005-08-01

    X-ray spectrograph has long been used as a means of diagnosing conditions of laser-produced plasmas, as information concerning both the temperature and density can be extracted from the emitted radiation. For the measurement of X-ray lines in the energy range of 0.6-6 keV, A curved crystal X-ray spectrometer of reflection type elliptical geometry is required. In order to obtain both high resolution and collection efficiency the elliptical geometry is more advantageous than the flat configurations. Elliptical curved crystals spectrograph with a relatively wide spectral range are of particular use for deducing electron temperatures by measurement of the ratios of lines associated with different charge states. Curved crystals analyzer was designed and manufactured for use on an experiment to investigate the properties of laser produced plasmas. The spectrograph has 1350mm focal length and for these measurements, utilized PET, LIF, KAP and MICA crystal bent onto an elliptical substrate. This crystal analyzer covers the Bragg angel range from 30 to 67.5. The analyzer based on elliptically geometrical principle, which has self-focusing characteristics. The experiment was carried out on Shanghai Shengguang-II Facility and aimed to investigate the characteristics of a high density plasma. Experimental results using Curved crystal analyzer are described which show spectrum of Ti, Au laser-plasma. The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal. Spectra showing the main resonance line were recorded with X-ray CCD and with laser energies 150J laser wavelength 350nm. The calculated wavelength resolution is about 500-1000.

  8. Establishing the Learning Curve of Robotic Sacral Colpopexy in a Start-up Robotics Program.

    PubMed

    Sharma, Shefali; Calixte, Rose; Finamore, Peter S

    2016-01-01

    To determine the learning curve of the following segments of a robotic sacral colpopexy: preoperative setup, operative time, postoperative transition, and room turnover. A retrospective cohort study to determine the number of cases needed to reach points of efficiency in the various segments of a robotic sacral colpopexy (Canadian Task Force II-2). A university-affiliated community hospital. Women who underwent robotic sacral colpopexy at our institution from 2009 to 2013 comprise the study population. Patient characteristics and operative reports were extracted from a patient database that has been maintained since the inception of the robotics program at Winthrop University Hospital and electronic medical records. Based on additional procedures performed, 4 groups of patients were created (A-D). Learning curves for each of the segment times of interest were created using penalized basis spline (B-spline) regression. Operative time was further analyzed using an inverse curve and sequential grouping. A total of 176 patients were eligible. Nonparametric tests detected no difference in procedure times between the 4 groups (A-D) of patients. The preoperative and postoperative points of efficiency were 108 and 118 cases, respectively. The operative points of proficiency and efficiency were 25 and 36 cases, respectively. Operative time was further analyzed using an inverse curve that revealed that after 11 cases the surgeon had reached 90% of the learning plateau. Sequential grouping revealed no significant improvement in operative time after 60 cases. Turnover time could not be assessed because of incomplete data. There is a difference in the operative time learning curve for robotic sacral colpopexy depending on the statistical analysis used. The learning curve of the operative segment showed an improvement in operative time between 25 and 36 cases when using B-spline regression. When the data for operative time was fit to an inverse curve, a learning rate of 11 cases was appreciated. Using sequential grouping to describe the data, no improvement in operative time was seen after 60 cases. Ultimately, we believe that efficiency in operative time is attained after 30 to 60 cases when performing robotic sacral colpopexy. The learning curve for preoperative setup and postoperative transition, which is reflective of anesthesia and nursing staff, was approximately 110 cases. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  9. A robust damage-detection technique with environmental variability combining time-series models with principal components

    NASA Astrophysics Data System (ADS)

    Lakshmi, K.; Rama Mohan Rao, A.

    2014-10-01

    In this paper, a novel output-only damage-detection technique based on time-series models for structural health monitoring in the presence of environmental variability and measurement noise is presented. The large amount of data obtained in the form of time-history response is transformed using principal component analysis, in order to reduce the data size and thereby improve the computational efficiency of the proposed algorithm. The time instant of damage is obtained by fitting the acceleration time-history data from the structure using autoregressive (AR) and AR with exogenous inputs time-series prediction models. The probability density functions (PDFs) of damage features obtained from the variances of prediction errors corresponding to references and healthy current data are found to be shifting from each other due to the presence of various uncertainties such as environmental variability and measurement noise. Control limits using novelty index are obtained using the distances of the peaks of the PDF curves in healthy condition and used later for determining the current condition of the structure. Numerical simulation studies have been carried out using a simply supported beam and also validated using an experimental benchmark data corresponding to a three-storey-framed bookshelf structure proposed by Los Alamos National Laboratory. Studies carried out in this paper clearly indicate the efficiency of the proposed algorithm for damage detection in the presence of measurement noise and environmental variability.

  10. EXPERIMENTAL MEASUREMENT AND INTERPRETATION OF VOLT-AMPERE CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingrich, J.E.; Warner, C.; Weeks, C.C.

    1962-07-01

    Cylindrical and parallel-plane cesium vapor thermionic converters were used for obtaining volt-ampere curves for systematic variations of emitter, collector, and cesium reservoir temperatures, with electrode spacings ranging from a few to many mean free paths, and with space charge conditions varying from electron-rich to ion-rich. The resulting curves exhibit much variety. The saturation currents agree well with the data of Houston and Aamodt for the space charge neutralized, few-mean-free-path cases. Apparent'' saturation currents for space charge limited cases were observed and were always less than the currents predicted by Houston and Aamodt. Several discontinuities in slope were observed in themore » reverse current portion of the curves and these have tentatively been identified with volume ionization of atoms in both the ground and excited states. Similar processes may be important for obtaining the ignited mode. The methods used to measure static and dynamic volt-ampere curves are described. The use of a controlled-current load has yielded a negative resistance'' region in the curves which show the ignited mode. The curves obtained with poor current control do not show this phenomenon. Extinction is considered from the standpoint of Kaufmann' s criterion for stability. (auth)« less

  11. UV extinction properties of carina nebular dust

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1993-01-01

    I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.

  12. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.

    PubMed

    Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J

    2018-04-13

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  13. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    NASA Astrophysics Data System (ADS)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  14. Neodymium: yttrium-aluminum-garnet long impulse laser for the elimination of superfluous hair: experiences and considerations from 3 years of activity.

    PubMed

    Ferraro, G A; Perrotta, A; Rossano, F; D'Andrea, F

    2004-01-01

    This study examined the results obtained with a modern apparatus for laser hair removal (neodymium: yttrium-aluminum-garnet [Nd:YAG] laser at long impulses with a wave-length of 1,064 nm; Q-switched laser) over a follow-up period of 3 years. A large heterogeneous group of 480 patients was taken into consideration. These patients were treated according to a standard protocol with monthly checkups and a personalized protocol at deferred appointments. The results, discovered by means of the most objective procedure possible, were retrieved and put into a graph showing two different curves for the repopulation of hair. In their clinical travels, the authors observed an average variable regrowth of 40% to 65%, allowing them to affirm that laser hair removal using Nd:YAG at long impulses is decisively efficient in obtaining long-term results. The use of a protocol (denominated "prolonged monthly checkup") with laser sessions at ever-decreasing periods permits, among other things, more outstanding and advantageous results for the patient. Thanks to more efficiently synchronized phases of the biologic hair cycle, this shortens and moves the telegenic phases closer and also renders the anagenic phases (those in which the selective photoermolysis on the pilipheric follicle proves to be efficient) more efficient. Personalization of the treatment relative to the monthly health checkup sessions is of fundamental importance to the scope of obtaining the best results in terms of cost-benefit rate, provided submassimal fluxes are (i.e., those well-tolerated by the patient) used. All this allows hair removal that is not definitive, but which becomes progressively permanent (i.e., characterized by ever-growing periods of lack of hair sustained by sporadic maintenance laser sessions based on the individual's necessity).

  15. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles.

    PubMed

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion-diffusion-evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.

  16. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles

    PubMed Central

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity. PMID:29066891

  17. Thermodynamic Investigation of the Eutectic Mixture of the LiNO3-NaNO3-KNO3-Ca(NO3)2 System

    NASA Astrophysics Data System (ADS)

    Peng, Qiang; Ding, Jing; Wei, Xiaolan; Jiang, Gan

    2017-09-01

    Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the LiNO3-NaNO3-KNO3-Ca(NO3)2 system is determined by conformal ionic solution theory according to the solid-liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is 93.17 {°}C, which is close to the experimental value of 93.22 {°}C obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches 50 {°}C, and the degree of melting increases with temperature. The mixture is completely melted at 130 {°}C. The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.

  18. Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters.

    PubMed

    Pérez, Rocío L; Escandar, Graciela M

    2014-07-04

    Following the green analytical chemistry principles, an efficient strategy involving second-order data provided by liquid chromatography (LC) with diode array detection (DAD) was applied for the simultaneous determination of estriol, 17β-estradiol, 17α-ethinylestradiol and estrone in natural water samples. After a simple pre-concentration step, LC-DAD matrix data were rapidly obtained (in less than 5 min) with a chromatographic system operating isocratically. Applying a second-order calibration algorithm based on multivariate curve resolution with alternating least-squares (MCR-ALS), successful resolution was achieved in the presence of sample constituents that strongly coelute with the analytes. The flexibility of this multivariate model allowed the quantification of the four estrogens in tap, mineral, underground and river water samples. Limits of detection in the range between 3 and 13 ng L(-1), and relative prediction errors from 2 to 11% were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    NASA Astrophysics Data System (ADS)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  20. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.

  1. The sales learning curve.

    PubMed

    Leslie, Mark; Holloway, Charles A

    2006-01-01

    When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.

  2. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  3. Fast dynamic ventilation MRI of hyperpolarized 129Xe using spiral imaging

    PubMed Central

    Matin, Tahreema N.; Mcintyre, Anthony; Burns, Brian; Schulte, Rolf F.; Gleeson, Fergus V.; Bulte, Daniel

    2017-01-01

    Purpose To develop and optimize a rapid dynamic hyperpolarized 129Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal‐time curves in human lungs. Theory and Methods Spiral k‐space trajectories were designed with the number of interleaves N int = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas‐flow phantom to investigate the ability of N int = 1, 2, 4, and 8 to capture signal‐time curves. A finite element model was constructed to investigate gas‐flow dynamics corroborating the experimental signal‐time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). Results DXeV images and numerical modelling of signal‐time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two‐interleaved spiral (N int = 2) was found to be the most time‐efficient to obtain DXeV images and signal‐time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal‐time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P < 0.05). Conclusion The N int = 2 spiral demonstrates the successful acquisition of DXeV images and signal‐time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597–2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28921655

  4. Myocardium tracking via matching distributions.

    PubMed

    Ben Ayed, Ismail; Li, Shuo; Ross, Ian; Islam, Ali

    2009-01-01

    The goal of this study is to investigate automatic myocardium tracking in cardiac Magnetic Resonance (MR) sequences using global distribution matching via level-set curve evolution. Rather than relying on the pixelwise information as in existing approaches, distribution matching compares intensity distributions, and consequently, is well-suited to the myocardium tracking problem. Starting from a manual segmentation of the first frame, two curves are evolved in order to recover the endocardium (inner myocardium boundary) and the epicardium (outer myocardium boundary) in all the frames. For each curve, the evolution equation is sought following the maximization of a functional containing two terms: (1) a distribution matching term measuring the similarity between the non-parametric intensity distributions sampled from inside and outside the curve to the model distributions of the corresponding regions estimated from the previous frame; (2) a gradient term for smoothing the curve and biasing it toward high gradient of intensity. The Bhattacharyya coefficient is used as a similarity measure between distributions. The functional maximization is obtained by the Euler-Lagrange ascent equation of curve evolution, and efficiently implemented via level-set. The performance of the proposed distribution matching was quantitatively evaluated by comparisons with independent manual segmentations approved by an experienced cardiologist. The method was applied to ten 2D mid-cavity MR sequences corresponding to ten different subjects. Although neither shape prior knowledge nor curve coupling were used, quantitative evaluation demonstrated that the results were consistent with manual segmentations. The proposed method compares well with existing methods. The algorithm also yields a satisfying reproducibility. Distribution matching leads to a myocardium tracking which is more flexible and applicable than existing methods because the algorithm uses only the current data, i.e., does not require a training, and consequently, the solution is not bounded to some shape/intensity prior information learned from of a finite training set.

  5. Controlling Surface Plasmons Through Covariant Transformation of the Spin-Dependent Geometric Phase Between Curved Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining

    2018-06-01

    General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.

  6. LCMS analysis of fingerprints, the amino acid profile of 20 donors.

    PubMed

    de Puit, Marcel; Ismail, Mahado; Xu, Xiaoma

    2014-03-01

    The analysis of amino acids present in fingerprints has been studied several times. In this paper, we report a method for the analysis of amino acids using an fluorenylmethyloxycarbonyl chloride-derivatization for LC separation and MS detection. We have obtained good results with regard to the calibration curves and the limit of detection and LOQ for the target compounds. The extraction of the amino acids from the substrates used proved to be very efficient. Analysis of the derivatized amino acids enabled us to obtain full amino acid profiles for 20 donors. The intervariability is as expected rather large, with serine as the most abundant constituent, and when examining the total profile of the amino acids per donor, a characteristic pattern can be observed. Some amino acids were not detected in some donors, or fell out of the range of the calibration curve, where others showed a surprisingly high amount of material in the deposition analyses. Further investigations will have to address the intravariability of the amino acid profiles of the fingerprints from donors. By the development of the analytical method and the application to the analysis of fingerprints, we were able to gain insight in the variability of the constituents of fingerprints between the donors. © 2013 American Academy of Forensic Sciences.

  7. Multiobjective optimisation of bogie suspension to boost speed on curves

    NASA Astrophysics Data System (ADS)

    Milad Mousavi-Bideleh, Seyed; Berbyuk, Viktor

    2016-01-01

    To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5 m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.

  8. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, G. F.; Deatherage Kaiser, B. L.; Amidan, B. G.

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest formore » vinyl tile (50.8% with BAS and 40.2% with BG) and the highest for glass (92.8% with BAS and 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG; values increased as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent article.« less

  9. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Hutchison, Janine R.; Kaiser, Brooke L. D.

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest formore » vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results are discussed in a separate report.« less

  10. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Hutchison, Janine R.; Deatherage Kaiser, Brooke L

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in. × 2 in.) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest formore » vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm 2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent report.« less

  11. Solar updraft power generator with radial and curved vanes

    NASA Astrophysics Data System (ADS)

    Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi

    2018-02-01

    Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.

  12. Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium.

    PubMed

    de Marchin, Thomas; Erpicum, Michel; Franck, Fabrice

    2015-12-10

    Two outdoor open thin-layer cascade systems operated as batch cultures with the alga Scenedesmus obliquus were used to compare the productivity and photosynthetic acclimations in control and CO2 supplemented cultures in relation with the outdoor light irradiance. We found that the culture productivity was limited by CO2 availability. In the CO2 supplemented culture, we obtained a productivity of up to 24gdwm(-2)day(-1) and found a photosynthetic efficiency (value based on the PAR solar radiation energy) of up to 5%. In the CO2 limited culture, we obtained a productivity of up to 10gdwm(-2)day(-1) while the photosynthetic efficiency was up to 3.3% and decreased to 2.1% when the integrated daily PAR increased. Fluorescence and oxygen evolution measurements showed that ETR and oxygen evolution light saturation curves, as well as light-dependent O2 uptake were similar in algal samples from both cultures when the CO2 limitation was removed. In contrast, we found that CO2 limitation conducted to a decreased PSII photochemical efficiency and an increased light-induced heat-dissipation in the control culture compared to the CO2 supplemented culture. These features are in line with a lower light use efficiency and may therefore contribute to the lower productivity observed in absence of CO2 supplementation in outdoor mass cultures of S. obliquus. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.

    PubMed

    Młynarski, Wiktor

    2015-05-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a "panoramic" code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding.

  14. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    DOEpatents

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  15. JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.

    PubMed

    Grimes, Joshua; Uribe, Carlos; Celler, Anna

    2013-07-01

    The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.

  16. Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

    PubMed Central

    Han, Fang; Wang, Zhijie; Fan, Hong

    2017-01-01

    This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760

  17. Lattice Boltzmann Method for 3-D Flows with Curved Boundary

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi

    2002-01-01

    In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.

  18. A repetitive S-band long-pulse relativistic backward-wave oscillator.

    PubMed

    Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong

    2011-08-01

    This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.

  19. Dissociation Energies of the Alkaline Earth Monofluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLUE, GARY D.; GREEN, JOHN W.; EHLERT, THOMAS C.

    1963-08-24

    New results and theoretical calculations are presented that indicate consistently high dissocintion energies for all the alkaline earth monofluorides. Experimental results were obtained by utilizing a mass spectrometer to analyze the vapors from a heated Ta Knudsen cell containing an alkaline earth fluoride salt with Al present as a reducing agent. Ionization efficiency curves were obtained and temperature dependence investigations were made to determine the molecular precursor of the ions observed. Values of the equilibrium constants at different temperatures were used together with the free-energy functions to calculate the third law heats of reaction at 298 deg K. Data aremore » tabulated for the heats of various reactions for Al--MF2 systems with M = Mg, Ca, Sr, and Ba, and dissociation energies of MF molecules by various methods for Be, Mg, Ca, Sr, and Ba. (C.H.)« less

  20. The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam

    2016-08-01

    Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.

  1. Thermoluminscence of irradiated herbs and spices

    NASA Astrophysics Data System (ADS)

    Mamoon, A.; Abdul-Fattah, A. A.; Abulfaraj, W. H.

    1994-07-01

    Several types of herbs and spices from the local market were irradiated with different doses of γ radiations. Doses varied from a few kilograys to 10 kilograys. Thermoluminescence of the irradiated samples and their controls was investigated. For the same type of herb or spice glow curves of different magnitudes, corresponding somewhat to the doses given, were obtained from the irradiated samples. Most control samples gave little or insignificant glow. Glow curves from different herbs and spices irradiated with the same doses were not similar in the strength of the glow signal given. Samples of the black pepper obtained from different packages sometimes give glow curves of very different intensities. Samples from irradiated black pepper were found to show little fading of their glow curves even at 9 months postirradiation. All irradiations were done under the same experimental conditions and at a dose rate of approximately 1 kGy h-1. The glow curves were obtained using a heating rate of about 9°C s-1 and a constant nitrogen flow rate.

  2. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  3. Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.

    2009-12-01

    Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.

  4. Evaluation of carotid plaque echogenicity based on the integral of the cumulative probability distribution using gray-scale ultrasound images.

    PubMed

    Huang, Xiaowei; Zhang, Yanling; Meng, Long; Abbott, Derek; Qian, Ming; Wong, Kelvin K L; Zheng, Rongqing; Zheng, Hairong; Niu, Lili

    2017-01-01

    Carotid plaque echogenicity is associated with the risk of cardiovascular events. Gray-scale median (GSM) of the ultrasound image of carotid plaques has been widely used as an objective method for evaluation of plaque echogenicity in patients with atherosclerosis. We proposed a computer-aided method to evaluate plaque echogenicity and compared its efficiency with GSM. One hundred and twenty-five carotid plaques (43 echo-rich, 35 intermediate, 47 echolucent) were collected from 72 patients in this study. The cumulative probability distribution curves were obtained based on statistics of the pixels in the gray-level images of plaques. The area under the cumulative probability distribution curve (AUCPDC) was calculated as its integral value to evaluate plaque echogenicity. The classification accuracy for three types of plaques is 78.4% (kappa value, κ = 0.673), when the AUCPDC is used for classifier training, whereas GSM is 64.8% (κ = 0.460). The receiver operating characteristic curves were produced to test the effectiveness of AUCPDC and GSM for the identification of echolucent plaques. The area under the curve (AUC) was 0.817 when AUCPDC was used for training the classifier, which is higher than that achieved using GSM (AUC = 0.746). Compared with GSM, the AUCPDC showed a borderline association with coronary heart disease (Spearman r = 0.234, p = 0.050). Our experimental results suggest that AUCPDC analysis is a promising method for evaluation of plaque echogenicity and predicting cardiovascular events in patients with plaques.

  5. Holonomy transformations and application in the curved structure of graphene

    NASA Astrophysics Data System (ADS)

    de M. Carvalho, Alexandre M.; de Lima Ribeiro, Carlos A.; Moraes, Fernando; Furtado, Claudio

    2013-06-01

    In this contribution we show that holonomy transformations are an efficient method to describe some geometrical characteristics. This approach is an alternative proceeding the Gauss-Bonnet theorem to get the deficit angle and it also permits to obtain the phase factor acquired by a vector which was parallel transported through a medium with topological defects. We have applied the holonomy transformation to the system described by González and Herrero formed by two sheets of graphene connected by a carbon nanotube. The result confirms that the angle endowed is equivalent to 12 heptagonal carbon rings, which was shown by the authors.

  6. 134Cs emission probabilities determination by gamma spectrometry

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Poledna, R.; Delgado, J. U.; Silva, R. L.; Araujo, M. T. F.; da Silva, C. J.

    2018-03-01

    The National Laboratory for Ionizing Radiation Metrology (LNMRI/IRD/CNEN) of Rio de Janeiro performed primary and secondary standardization of different radionuclides reaching satisfactory uncertainties. A solution of 134Cs radionuclide was purchased from commercial supplier to emission probabilities determination of some of its energies. 134Cs is a beta gamma emitter with 754 days of half-life. This radionuclide is used as standard in environmental, water and food control. It is also important to germanium detector calibration. The gamma emission probabilities (Pγ) were determined mainly for some energies of the 134Cs by efficiency curve method and the Pγ absolute uncertainties obtained were below 1% (k=1).

  7. High-efficient full-duplex WDM-RoF system with sub-central station

    NASA Astrophysics Data System (ADS)

    Liu, Anliang; Yin, Hongxi; Wu, Bin

    2018-05-01

    With an additional sub-central station (S-CS), a high-efficient full-duplex radio-over-fiber (RoF) system compatible with the wavelength-division-multiplexing technology is proposed and experimentally demonstrated in this paper. To improve the dispersion tolerance of the RoF system, the baseband data format for the downlink and an all-optical down-conversion approach for the uplink are employed. In addition, this RoF system can not only make full use of the fiber link resources but also realize the upstream transmission without any local light sources at remote base stations (BSs). A 10-GHz RoF experimental system with a 1.25-Gb/s rate bidirectional transmission is established based on the S-CS structure. The feasibility and reliability of this RoF system are verified through eye diagrams and bit error rate (BER) curves experimentally obtained.

  8. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    NASA Astrophysics Data System (ADS)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  9. Dependence of hydrogen arcjet operation on electrode geometry

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.

    1992-01-01

    The dependence of 2kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and electrode agreed with Paschen curves for hydrogen. Preliminary characterization of the dependence of hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.

  10. Yb:Lu2SiO5 crystal : characterization of the laser emission along the three dielectric axes

    NASA Astrophysics Data System (ADS)

    Toci, Guido; Pirri, Angela; Beitlerova, Alena; Shoji, Yasuhiro; Yoshikawa, Akira; Hybler, Jiri; Nikl, Martin; Vannini, Matteo

    2015-05-01

    Yb:doped Lu2SiO5 (Lutetium orthosilicate, LSO) is an optically biaxial crystal with laser emission in the range 1000- 1100 nm. It features different absorption and emission spectra for polarization along its three dielectric axes. In this work we have characterized the laser emission properties of Yb:LSO along all the three dielectric axis, evidencing differences that can be exploited in the design of ultrafast laser sources. The material was tested in a longitudinally pumped laser cavity. The laser emission efficiency was found similar along all the three dielectric axes, with slope efficiencies around 90% in most cases. Regarding the tuning range, for the most favourable polarization direction we obtained a continuously tunable emission between 993 and 1088 nm (i. e. 95 nm) peaked at 1040 nm. The tuning curves along the three dielectric axes spanned similar ranges but with relevant differences in the shape.

  11. Biochip Which Examines Hepatic Function by Employing Colorimetric Method

    NASA Astrophysics Data System (ADS)

    Oki, Akio; Ogawa, Hiroki; Takamura, Yuzuru; Horiike, Yasuhiro

    2003-03-01

    A biochip that is able to quickly analyze hepatic function from the bedside or at home was investigated. The chip essentially consisted of two chips, one that mixed the substrate buffer solution with serums using a centrifugal method and a chip that measured the amounts of γ-glutamyltranspeptidase (γ-GTP), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in the serums employing a colorimetric method. The chip should be inexpensive and disposable. Therefore the mixing and measurement channels were fabricated by molding their reverse patterns onto a poly (ethylene terephthalate) (PET) plate. Furthermore, a hydrophobic treatment was performed on the inner wall of the measurement channel to efficiently propagate the light efficiently in the channel. Subsequently, calibration curves were obtained for γ-GTP, GOT and GPT activity levels based on an endpoint method for the γ-GTP and a rate assay for GOT and GPT.

  12. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaunak, S.K.; Soni, B.K.

    With research interests shifting away from primarily military or industrial applications to more environmental applications, the area of ocean modelling has become an increasingly popular and exciting area of research. This paper presents a CIPS (Computation Field Simulation) system customized for the solution of oceanographic problems. This system deals primarily with the generation of simple, yet efficient grids for coastal areas. The two primary grid approaches are both structured in methodology. The first approach is a standard approach which is used in such popular grid generation softwares as GE-NIE++, EAGLEVIEW, and TIGER, where the user defines boundaries via points, lines,more » or curves, varies the distribution of points along these boundaries and then creates the interior grid. The second approach is to allow the user to interactively select points on the screen to form the boundary curves and then create the interior grid from these spline curves. The program has been designed with the needs of the ocean modeller in mind so that the modeller can obtain results in a timely yet elegant manner. The modeller performs four basic steps in using the program. First, he selects a region of interest from a popular database. Then, he creates a grid for that region. Next, he sets up boundary and input conditions and runs a circulation model. Finally, the modeller visualizes the output.« less

  14. Experimental and numerical study of drill bit drop tests on Kuru granite.

    PubMed

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-28

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  15. Experimental and numerical study of drill bit drop tests on Kuru granite

    PubMed Central

    Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit–rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist–Johnson–Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956511

  16. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  17. Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norgaard, J.V.; Olsen, D.; Springer, N.

    1995-12-31

    A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less

  18. A Case for an Atmosphere on Super-Earth 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  19. Tensile stress-strain behavior of boron/aluminum laminates

    NASA Technical Reports Server (NTRS)

    Sova, J. A.; Poe, C. C., Jr.

    1978-01-01

    The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.

  20. Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures.

    PubMed

    Wang, Maocai; Dai, Guangming; Choo, Kim-Kwang Raymond; Jayaraman, Prem Prakash; Ranjan, Rajiv

    2016-01-01

    Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user's public key based on the user's identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al.

  1. Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures

    PubMed Central

    Dai, Guangming

    2016-01-01

    Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user’s public key based on the user’s identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al. PMID:27564373

  2. Photoionization studies with molecular beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to themore » excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.« less

  3. VizieR Online Data Catalog: WASP-22, WASP-41, WASP-42, WASP-55 (Southworth+, 2016)

    NASA Astrophysics Data System (ADS)

    Southworth, J.; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D. F.; Gu, S.-H.; Herrera-Cordova, A.; Hinse, T. C.; Jorgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Figuera Jaimes, R.; Haugbolle, T.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Liebig, C.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Starkey, D.; Surdej, J.; Vilela, C.; von Essen, C.; Wang, Y.

    2018-05-01

    17 light curves of transits of the extrasolar planetary systems WASP-22, WASP-41, WASP-42 and WASP-55 are presented. 13 of the light curves were obtained using the Danish 1.54m telescope at ESO La Silla, Chile, in the Bessell R or Bessell I passbands. The other 4 light curves were obtained using the 84cm telescope at Observatorio Cerro Armazones, Chile, using either an R filter or no filter. The errorbars for each transit have been scaled so the best-fitting model (obtained using the JKTEBOP code) has a reduced chi-squared value of 1.0. (4 data files).

  4. Development of growth and yield models for southern hardwoods: site index determinations

    Treesearch

    John Paul McTague; Daniel J. Robison; David O' Loughlin; Joseph Roise; Robert Kellison

    2006-01-01

    Growth and yield data from across 13 southern States, collected from 1967 to 2004 from fully-stocked even-aged southern hardwood forests on a variety of site types, was used to calculate site index curves. These derived curves provide an efficient means to evaluate the productivity-age relation which varies across many sites. These curves were derived for mixed-species...

  5. A room-temperature phase transition in maximum microcline - Heat capacity measurements

    USGS Publications Warehouse

    Openshaw, R.E.; Hemingway, B.S.; Robie, R.A.; Krupka, K.M.

    1979-01-01

    The thermal hysteresis in heat capacity measurements recently reported (Openshaw et al., 1976) for a maximum microcline prepared from Amelia albite by fused-salt ion-exchange is described in detail. The hysteresis is characterized by two limiting and reproducible curves which differ by 1% of the measured heat capacities. The lower curve, denoted curve B, represents the values obtained before the sample had been cooled below 300 K. Measurements made immediately after cooling the sample below 250 K followed a second parallel curve, curve A, to at least 370 K. Values intermediate to the two limiting curves were also obtained. The transitions from the B to the A curve were rapid and observed to occur three times. The time required to complete the transition from the A to the B curve increased from 39 h to 102 h in the two times it was observed to occur. The hysteresis is interpreted as evidence of a phase change in microcline at 300??10 K The heat effect associated with the phase change has not been evaluated. ?? 1979 Springer-Verlag.

  6. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    PubMed Central

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.

    2015-01-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  7. Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils.

    PubMed

    Rodríguez-Cruz, M S; Sánchez-Martín, M J; Andrades, M S; Sánchez-Camazano, M

    2007-01-10

    In this work, the efficiency of reactive clay barriers in the immobilisation of organic pesticides in a sandy soil was studied. Reactive barriers were prepared by modification of montmorillonite, kaolinite and palygorskite clay minerals, and of a clayey soil with the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Percolation curves of the pesticides linuron, atrazine and metalaxyl of different hydrophobic character, were obtained in columns packed with a natural sandy soil with these barriers intercalated under saturated flow conditions. The cumulative curves in the unmodified soil indicated a leaching of pesticides greater than 85% of the total amount of compound added. After barrier intercalation, the breakthrough curves (BTC) indicated a dramatic decrease in the amounts of linuron leached in all columns and a significant modification of the leaching kinetics of atrazine and metalaxyl. Retardation factors, R, of the pesticides in the columns were significantly correlated with the organic matter content (OM) derived from the ODTMA of the organo clay/soil barriers (r2>or=0.78). Significant correlations were also found between these R factors and the pore volume values corresponding to the maximum peaks of the BTCs (r2=0.83; p<0.01) or the total volumes leached (r2=0.44; p<0.05) for the pesticides atrazine and metalaxyl. The results obtained point to the interest in the use of reactive clay barriers for almost complete immobilisation of hydrophobic pesticides or for decreasing the leaching of moderately hydrophobic pesticides coming from point-like sources of pollution. These barriers would avoid the generation of elevated concentrations of these compounds in the soils due to their rapid washing.

  8. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors.

    PubMed

    Becker, W; Su, B; Holub, O; Weisshart, K

    2011-09-01

    Photon counting detectors currently used in fluorescence lifetime microscopy have a number of deficiencies that result in less-than-ideal signal-to-noise ratio of the lifetimes obtained: either the quantum efficiency is unsatisfactory or the active area is too small, and afterpulsing or tails in the temporal response contribute to overall timing inaccuracy. We have therefore developed a new FLIM detector based on a GaAsP hybrid photomultiplier. Compared with conventional PMTs and SPADs, GaAsP hybrid detectors have a number of advantages: The detection quantum efficiency reaches or surpasses the efficiency of fast SPADs, and the active area is on the order of 5 mm², compared with 2.5 10⁻³ mm² for a SPAD. The TCSPC response is clean, without the bumps and the diffusion tails typical for PMTs and SPADs. Most important, the hybrid detector is intrinsically free of afterpulsing. FLIM results are therefore free of signal-dependent background, and FCS curves are free of the known afterpulsing peak. We demonstrate the performance of the new detector for multiphoton NDD FLIM and for FCS. Copyright © 2010 Wiley-Liss, Inc.

  9. The heat rate index indicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasasso, M.; Runyan, B.; Napoli, J.

    1995-06-01

    This paper describes a method of tracking unit performance through the use of a reference number called the Heat Rate Index Indicator. The ABB Power Plant Controls OTIS performance monitor is used to determine when steady load conditions exist and then to collect controllable and equipment loss data which significantly impact thermal efficiency. By comparing these loss parameters to those found during the previous heat balance, it is possible to develop a new adjusted heat rate curve. These impacts on heat rate are used to changes the shape of the tested heat rate curve by the appropriate percentages over amore » specified load range. Mathcad is used to determine the Heat Rate Index by integrating for the areas beneath the adjusted heat rate curve and a heat rate curve that represents the unit`s ideal heat rate curve is the Heat Rate Index. An index of 1.0 indicates that the unit is operating at an ideal efficiency, while an index of less than 1.0 indicates that the unit is operating at less than ideal conditions. A one per cent change in the Heat Rate Index is equivalent to a one percent change in heat rate. The new shape of the adjusted heat rate curve and the individual curves generated from the controllable and equipment loss parameters are useful for determining performance problems in specific load ranges.« less

  10. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  11. Direct recording of cardiac output- and venous return-curves in the dog heart-lung preparation for a graphical analysis of the effects of cardioactive drugs.

    PubMed

    Ishikawa, N; Taki, K; Hojo, Y; Hagino, Y; Shigei, T

    1978-09-01

    The dog heart-lung preparations were prepared. The "equilibrium point", which could be defined as the point at which the cardiac output (CO)-curve and the venous return (VR)-curve crossed, when the CO and VR were plotted against the right atrial pressure, was recorded directly by utilizing an X-Y recorder. The CO-curve was obtained, as a locus of the equilibrium point, by raising and lowering the level of blood in the venous reservoir (competence test). The meaning of the procedure was shown to increase or decrease the mean systemic pressure, and to cause the corresponding parallel shift in the VR-curve. The VR-curve was obtained by changing myocardial contractility. When heart failure was induced by pentobarbital or by chloroform, the equilibrium point shifted downwards to the right, depicting the VR-curve. During development of the failure, the slopes of CO-curves decreased gradually. Effects of cinobufagin and norepinephrine were also analyzed. Utilization of the X-Y recorder enabled us to settle the uniform experimental conditions more easily, and to follow the effects of drugs continuously on a diagram equating the CO- and VR-curves (Gyton's scheme).

  12. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  13. Analysis of Flatness Deviations for Austenitic Stainless Steel Workpieces after Efficient Surface Machining

    NASA Astrophysics Data System (ADS)

    Nadolny, K.; Kapłonek, W.

    2014-08-01

    The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations

  14. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, David; Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996; Mathews, Jay

    2016-05-15

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measuredmore » concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.« less

  15. Importance of nasal clipping in screening investigations of flow volume curve.

    PubMed

    Yanev, I

    1992-01-01

    Comparative analysis of some basic lung indices obtained from a screening investigation of the flow volume curve by using two techniques, with a nose clip and without a nose clip, was made on a cohort of 86 workers in a factory shop for the production of bearings. We found no statistically significant differences between the indices obtained by the two techniques. Our study showed that the FVC and FEV1 obtained in workers without using nose clips were equal to or better than those obtained using nose clips in 60% of the workers. The reproducibility of the two methods was similar. The analysis of the data has shown that the flow volume curve investigation gives better results when performed without a nose clip, especially in industrial conditions.

  16. Plastometric tests for plasticine as physical modelling material

    NASA Astrophysics Data System (ADS)

    Wójcik, Łukasz; Lis, Konrad; Pater, Zbigniew

    2016-12-01

    This paper presents results of plastometric tests for plasticine, used as material for physical modelling of metal forming processes. The test was conducted by means of compressing by flat dies of cylindrical billets at various temperatures. The aim of the conducted research was comparison of yield stresses and course of material flow curves. Tests were made for plasticine in black and white colour. On the basis of the obtained experimental results, the influence of forming parameters change on flow curves course was determined. Sensitivity of yield stresses change in function of material deformation, caused by forging temperature change within the scope of 0&C ÷ 20&C and differentiation of strain rate for ˙ɛ = 0.563; ˙ɛ = 0.0563; ˙ɛ = 0.0056s-1,was evaluated. Experimental curves obtained in compression test were described by constitutive equations. On the basis of the obtained results the function which most favourably describes flow curves was chosen.

  17. A systematic methodology for creep master curve construction using the stepped isostress method (SSM): a numerical assessment

    NASA Astrophysics Data System (ADS)

    Miranda Guedes, Rui

    2018-02-01

    Long-term creep of viscoelastic materials is experimentally inferred through accelerating techniques based on the time-temperature superposition principle (TTSP) or on the time-stress superposition principle (TSSP). According to these principles, a given property measured for short times at a higher temperature or higher stress level remains the same as that obtained for longer times at a lower temperature or lower stress level, except that the curves are shifted parallel to the horizontal axis, matching a master curve. These procedures enable the construction of creep master curves with short-term experimental tests. The Stepped Isostress Method (SSM) is an evolution of the classical TSSP method. Higher reduction of the required number of test specimens to obtain the master curve is achieved by the SSM technique, since only one specimen is necessary. The classical approach, using creep tests, demands at least one specimen per each stress level to produce a set of creep curves upon which TSSP is applied to obtain the master curve. This work proposes an analytical method to process the SSM raw data. The method is validated using numerical simulations to reproduce the SSM tests based on two different viscoelastic models. One model represents the viscoelastic behavior of a graphite/epoxy laminate and the other represents an adhesive based on epoxy resin.

  18. PSA discriminator influence on (222)Rn efficiency detection in waters by liquid scintillation counting.

    PubMed

    Stojković, Ivana; Todorović, Nataša; Nikolov, Jovana; Tenjović, Branislava

    2016-06-01

    A procedure for the (222)Rn determination in aqueous samples using liquid scintillation counting (LSC) was evaluated and optimized. Measurements were performed by ultra-low background spectrometer Quantulus 1220™ equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with (226)Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide precise spectra separation. Improvement of calibration procedure was done through investigation of PSA discriminator level and, consequentially, the activity of (226)Ra calibration standard influence on (222)Rn efficiency detection. Quench effects on generated spectra i.e. determination of radon efficiency detection were also investigated with quench calibration curve obtained. Radon determination in waters based on modified procedure according to the activity of (226)Ra standard used, dependent on PSA setup, was evaluated with prepared (226)Ra solution samples and drinking water samples with assessment of measurement uncertainty variation included. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS

    NASA Astrophysics Data System (ADS)

    Sawicka-Chudy, Paulina; Sibiński, Maciej; Wisz, Grzegorz; Rybak-Wilusz, Elżbieta; Cholewa, Marian

    2018-05-01

    In the presented work, the Cu2O/TiO2 and CuO/TiO2 heterojunction solar cells have been analyzed by the help of Solar Cell Capacitance Simulator (SCAPS). The effects of various layer parameters like thickness and defect density on the cell performance have been studied in details. Numerical analysis showed how the absorber (CuO, Cu2O) and buffer (TiO2) layers thickness influence the short-circuit current density (Jsc) and efficiency (η) of solar cells. Optimized solar cell structures of Cu2O/TiO2 and CuO/TiO2 showed a potential efficiency of ∼9 and ∼23%, respectively, under the AM1.5G spectrum. Additionally, external quantum efficiency (EQE) curves of the CuO/TiO2 and Cu2O/TiO2 solar cells for various layers thickness of TiO2 were calculated and the optical band gap (Eg) for CuO and Cu2O was obtained. Finally, we examined the effects of defect density on the photovoltaic parameters.

  20. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  1. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  2. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel.

    PubMed

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  3. Harmonic multiplication using resonant tunneling

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Correa, C. A.

    1988-01-01

    This paper demonstrates the use of resonant-tunneling diodes as varistors for harmonic multiplication. It is shown that efficient odd-harmonic conversion is possible and that even harmonics do not appear because of the antisymmetry of the current-voltage (I-V) curve. It is also shown that, with the proper choice of resonant-tunneling structure and pump amplitude, most of the harmonic output power can be confined to a single odd-harmonic frequency. Fifth-harmonic multiplication was demonstrated with an output at 21.75 GHz and a power conversion efficiency of 0.5 percent, and a fifth-harmonic efficiency of 2.7 percent was achieved in a circuit simulation using an improved I-V curve.

  4. Effect of O2 plasma treatment on density-of-states in a-IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Huang, Fei; Li, Sheng; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    This work reports an efficient route for enhancing the performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFT). The mobility was greatly improved by about 38% by means of O2 plasma treatment. Temperature-stress was carried out to investigate the stability and extract the parameters related to activation energy ( E a) and density-of-states (DOS). The DOS was calculated on the basis of the experimentally obtained E a, which can explain the experimental observation. A lower activation energy ( E a, 0.72 eV) and a smaller DOS were obtained in the O2 plasma treatment TFT based on the temperature-dependent transfer curves. The results showed that temperature stability and electrical properties enhancements in a-IGZO thin film transistors were attributed to the smaller DOS. [Figure not available: see fulltext.

  5. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns.

    PubMed

    Op de Beeck, Jeff; De Malsche, Wim; Vangelooven, Joris; Gardeniers, Han; Desmet, Gert

    2010-09-24

    We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 microm and an interpillar distance of 2.5 microm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm). The reduced plate height curves that were obtained for the different investigated markers all overlapped very well, and attained a minimum value of about h(min)=0.3 (reduction based on the pillar diameter), corresponding to 1.6 microm in absolute value and giving good prospects for high efficiency separations. The obtained reduced retention time values were in fair agreement with that predicted by the Di Marzio and Guttman model for a flow between flat plates, using the minimal interpillar distance as characteristic interplate distance. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  7. Geometrically nonlinear analysis of layered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1983-01-01

    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.

  8. A relativistic coupled-cluster interaction potential and rovibrational constants for the xenon dimer

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Smits, Odile; Pahl, Elke; Schwerdtfeger, Peter

    2018-01-01

    An accurate potential energy curve has been derived for the xenon dimer using state-of-the-art relativistic coupled-cluster theory up to quadruple excitations accounting for both basis set superposition and incompleteness errors. The data obtained is fitted to a computationally efficient extended Lennard-Jones potential form and to a modified Tang-Toennies potential function treating the short- and long-range part separately. The vibrational spectrum of Xe2 obtained from a numerical solution of the rovibrational Schrödinger equation and subsequently derived spectroscopic constants are in excellent agreement with experimental values. We further present solid-state calculations for xenon using a static many-body expansion up to fourth-order in the xenon interaction potential including dynamic effects within the Einstein approximation. Again we find very good agreement with the experimental (face-centred cubic) lattice constant and cohesive energy.

  9. Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space

    NASA Astrophysics Data System (ADS)

    Khadjiev, Djavvat; Ören, Idri˙s; Pekşen, Ömer

    Let E2 be the 2-dimensional Euclidean space, LSim(2) be the group of all linear similarities of E2 and LSim+(2) be the group of all orientation-preserving linear similarities of E2. The present paper is devoted to solutions of problems of global G-equivalence of paths and curves in E2 for the groups G = LSim(2),LSim+(2). Complete systems of global G-invariants of a path and a curve in E2 are obtained. Existence and uniqueness theorems are given. Evident forms of a path and a curve with the given global invariants are obtained.

  10. Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation.

    PubMed

    Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica

    2016-01-01

    Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined "time of detection." With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis , and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation.

  11. Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation

    PubMed Central

    Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica

    2016-01-01

    Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined “time of detection.” With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation. PMID:27799925

  12. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  13. Hydraulic performance improvement of the bidirectional pit pump installation based on CFD

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Zhou, D. Q.

    2013-12-01

    At present, the efficiency of bidirectional pit pump installation with lift under 2m is still low because of lack of research on it in the past. In the paper, the CFD numerical method and experimental test were applied to study flow characteristic of bidirectional pit pump installation under positive and reverse condition. Through changing airfoil type and position of blade and stay vane, the comprehensive performance of improved model were obtained by calculating many different models. The results showed that when improved model is obtained with type A runner with 4 blades that is 0.7D away from pit exit and unsymmetrical guide vane 0.25dh which away from the impeller outlet, and the flow pattern of the improved solution is steady with high efficiency. Compared with the original scheme, the efficiency of positive and reverse design condition reach to 67.23% and 58.32% respectively, which is increased 6% more than original model on the design condition and 5% on the optimum operating condition, and it achieved the purpose of improvement. According to the runner blade angle of the optimization solution, model synthetic characteristic curve was drawn and internal flow field characteristics was analyzed under optimal positive and reverse conditions. The numerical calculation shows that owing to the lack of stay vane to recycle the energy in outlet runner chamber, the water flow regime is not steady enough in the outlet passage, and that is the main reason for lower efficiency at reverse condition than that at positive condition.

  14. Estimation of Uncertainties in Stage-Discharge Curve for an Experimental Himalayan Watershed

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sen, S.

    2016-12-01

    Various water resource projects developed on rivers originating from the Himalayan region, the "Water Tower of Asia", plays an important role on downstream development. Flow measurements at the desired river site are very critical for river engineers and hydrologists for water resources planning and management, flood forecasting, reservoir operation and flood inundation studies. However, an accurate discharge assessment of these mountainous rivers is costly, tedious and frequently dangerous to operators during flood events. Currently, in India, discharge estimation is linked to stage-discharge relationship known as rating curve. This relationship would be affected by a high degree of uncertainty. Estimating the uncertainty of rating curve remains a relevant challenge because it is not easy to parameterize. Main source of rating curve uncertainty are errors because of incorrect discharge measurement, variation in hydraulic conditions and depth measurement. In this study our objective is to obtain best parameters of rating curve that fit the limited record of observations and to estimate uncertainties at different depth obtained from rating curve. The rating curve parameters of standard power law are estimated for three different streams of Aglar watershed located in lesser Himalayas by maximum-likelihood estimator. Quantification of uncertainties in the developed rating curves is obtained from the estimate of variances and covariances of the rating curve parameters. Results showed that the uncertainties varied with catchment behavior with error varies between 0.006-1.831 m3/s. Discharge uncertainty in the Aglar watershed streams significantly depend on the extent of extrapolation outside the range of observed water levels. Extrapolation analysis confirmed that more than 15% for maximum discharges and 5% for minimum discharges are not strongly recommended for these mountainous gauging sites.

  15. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting.

    PubMed

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-09-01

    The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.

  16. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  17. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  18. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  19. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  20. Measurements of electron detection efficiencies in solid state detectors.

    NASA Technical Reports Server (NTRS)

    Lupton, J. E.; Stone, E. C.

    1972-01-01

    Detailed laboratory measurement of the electron response of solid state detectors as a function of incident electron energy, detector depletion depth, and energy-loss discriminator threshold. These response functions were determined by exposing totally depleted silicon surface barrier detectors with depletion depths between 50 and 1000 microns to the beam from a magnetic beta-ray spectrometer. The data were extended to 5000 microns depletion depth using the results of previously published Monte Carlo electron calculations. When the electron counting efficiency of a given detector is plotted as a function of energy-loss threshold for various incident energies, the efficiency curves are bounded by a smooth envelope which represents the upper limit to the detection efficiency. These upper limit curves, which scale in a simple way, make it possible to easily estimate the electron sensitivity of solid-state detector systems.

  1. Transformation-invariant and nonparametric monotone smooth estimation of ROC curves.

    PubMed

    Du, Pang; Tang, Liansheng

    2009-01-30

    When a new diagnostic test is developed, it is of interest to evaluate its accuracy in distinguishing diseased subjects from non-diseased subjects. The accuracy of the test is often evaluated by receiver operating characteristic (ROC) curves. Smooth ROC estimates are often preferable for continuous test results when the underlying ROC curves are in fact continuous. Nonparametric and parametric methods have been proposed by various authors to obtain smooth ROC curve estimates. However, there are certain drawbacks with the existing methods. Parametric methods need specific model assumptions. Nonparametric methods do not always satisfy the inherent properties of the ROC curves, such as monotonicity and transformation invariance. In this paper we propose a monotone spline approach to obtain smooth monotone ROC curves. Our method ensures important inherent properties of the underlying ROC curves, which include monotonicity, transformation invariance, and boundary constraints. We compare the finite sample performance of the newly proposed ROC method with other ROC smoothing methods in large-scale simulation studies. We illustrate our method through a real life example. Copyright (c) 2008 John Wiley & Sons, Ltd.

  2. Interactive contour delineation and refinement in treatment planning of image‐guided radiation therapy

    PubMed Central

    Zhou, Wu

    2014-01-01

    The accurate contour delineation of the target and/or organs at risk (OAR) is essential in treatment planning for image‐guided radiation therapy (IGRT). Although many automatic contour delineation approaches have been proposed, few of them can fulfill the necessities of applications in terms of accuracy and efficiency. Moreover, clinicians would like to analyze the characteristics of regions of interests (ROI) and adjust contours manually during IGRT. Interactive tool for contour delineation is necessary in such cases. In this work, a novel approach of curve fitting for interactive contour delineation is proposed. It allows users to quickly improve contours by a simple mouse click. Initially, a region which contains interesting object is selected in the image, then the program can automatically select important control points from the region boundary, and the method of Hermite cubic curves is used to fit the control points. Hence, the optimized curve can be revised by moving its control points interactively. Meanwhile, several curve fitting methods are presented for the comparison. Finally, in order to improve the accuracy of contour delineation, the process of the curve refinement based on the maximum gradient magnitude is proposed. All the points on the curve are revised automatically towards the positions with maximum gradient magnitude. Experimental results show that Hermite cubic curves and the curve refinement based on the maximum gradient magnitude possess superior performance on the proposed platform in terms of accuracy, robustness, and time calculation. Experimental results of real medical images demonstrate the efficiency, accuracy, and robustness of the proposed process in clinical applications. PACS number: 87.53.Tf PMID:24423846

  3. Fast and robust curve skeletonization for real-world elongated objects

    USDA-ARS?s Scientific Manuscript database

    We consider the problem of extracting curve skeletons of three-dimensional, elongated objects given a noisy surface, which has applications in agricultural contexts such as extracting the branching structure of plants. We describe an efficient and robust method based on breadth-first search that ca...

  4. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    NASA Astrophysics Data System (ADS)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  5. Curved-flow, rolling-flow, and oscillatory pure-yawing wind-tunnel test methods for determination of dynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.; Lutze, F. H.

    1981-01-01

    The test capabilities of the Stability Wind Tunnel of the Virginia Polytechnic Institute and State University are described, and calibrations for curved and rolling flow techniques are given. Oscillatory snaking tests to determine pure yawing derivatives are considered. Representative aerodynamic data obtained for a current fighter configuration using the curved and rolling flow techniques are presented. The application of dynamic derivatives obtained in such tests to the analysis of airplane motions in general, and to high angle of attack flight conditions in particular, is discussed.

  6. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.

  7. Screening Magnetic Resonance Imaging-Based Prediction Model for Assessing Immediate Therapeutic Response to Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids.

    PubMed

    Kim, Young-sun; Lim, Hyo Keun; Park, Min Jung; Rhim, Hyunchul; Jung, Sin-Ho; Sohn, Insuk; Kim, Tae-Joong; Keserci, Bilgin

    2016-01-01

    The aim of this study was to fit and validate screening magnetic resonance imaging (MRI)-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation. Informed consent from all subjects was obtained for our institutional review board-approved study. A total of 240 symptomatic uterine fibroids (mean diameter, 6.9 cm) in 152 women (mean age, 43.3 years) treated with MR-HIFU ablation were retrospectively analyzed (160 fibroids for training, 80 fibroids for validation). Screening MRI parameters (subcutaneous fat thickness [mm], x1; relative peak enhancement [%] in semiquantitative perfusion MRI, x2; T2 signal intensity ratio of fibroid to skeletal muscle, x3) were used to fit prediction models with regard to ablation efficiency (nonperfused volume/treatment cell volume, y1) and ablation quality (grade 1-5, poor to excellent, y2), respectively, using the generalized estimating equation method. Cutoff values for achievement of treatment intent (efficiency >1.0; quality grade 4/5) were determined based on receiver operating characteristic curve analysis. Prediction performances were validated by calculating positive and negative predictive values. Generalized estimating equation analyses yielded models of y1 = 2.2637 - 0.0415x1 - 0.0011x2 - 0.0772x3 and y2 = 6.8148 - 0.1070x1 - 0.0050x2 - 0.2163x3. Cutoff values were 1.312 for ablation efficiency (area under the curve, 0.7236; sensitivity, 0.6882; specificity, 0.6866) and 4.019 for ablation quality (0.8794; 0.7156; 0.9020). Positive and negative predictive values were 0.917 and 0.500 for ablation efficiency and 0.978 and 0.600 for ablation quality, respectively. Screening MRI-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MR-HIFU ablation were fitted and validated, which may reduce the risk of unsuccessful treatment.

  8. A comparative study of electric load curve changes in an urban low-voltage substation in Spain during the economic crisis (2008-2013).

    PubMed

    Lara-Santillán, Pedro M; Mendoza-Villena, Montserrat; Fernández-Jiménez, L Alfredo; Mañana-Canteli, Mario

    2014-01-01

    This paper presents a comparative study of the electricity consumption (EC) in an urban low-voltage substation before and during the economic crisis (2008-2013). This low-voltage substation supplies electric power to near 400 users. The EC was measured for an 11-year period (2002-2012) with a sampling time of 1 minute. The study described in the paper consists of detecting the changes produced in the load curves of this substation along the time due to changes in the behaviour of consumers. The EC was compared using representative curves per time period (precrisis and crisis). These representative curves were obtained after a computational process, which was based on a search for days with similar curves to the curve of a determined (base) date. This similitude was assessed by the proximity on the calendar, day of the week, daylight time, and outdoor temperature. The last selection parameter was the error between the nearest neighbour curves and the base date curve. The obtained representative curves were linearized to determine changes in their structure (maximum and minimum consumption values, duration of the daily time slot, etc.). The results primarily indicate an increase in the EC in the night slot during the summer months in the crisis period.

  9. Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Kobayashi, Ikuo

    2015-07-01

    For X-ray diagnosis, the proper management of the entrance skin dose (ESD) is important. Recently, a small-type optically stimulated luminescence dosimeter (nanoDot OSL dosimeter) was made commercially available by Landauer, and it is hoped that it will be used for ESD measurements in clinical settings. Our objectives in the present study were to propose a method for calibrating the ESD measured with the nanoDot OSL dosimeter and to evaluate its accuracy. The reference ESD is assumed to be based on an air kerma with consideration of a well-known back scatter factor. We examined the characteristics of the nanoDot OSL dosimeter using two experimental conditions: a free air irradiation to derive the air kerma, and a phantom experiment to determine the ESD. For evaluation of the ability to measure the ESD, a calibration curve for the nanoDot OSL dosimeter was determined in which the air kerma and/or the ESD measured with an ionization chamber were used as references. As a result, we found that the calibration curve for the air kerma was determined with an accuracy of 5 %. Furthermore, the calibration curve was applied to the ESD estimation. The accuracy of the ESD obtained was estimated to be 15 %. The origin of these uncertainties was examined based on published papers and Monte-Carlo simulation. Most of the uncertainties were caused by the systematic uncertainty of the reading system and the differences in efficiency corresponding to different X-ray energies.

  10. a Point Cloud Classification Approach Based on Vertical Structures of Ground Objects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.; Hu, W.

    2018-04-01

    This paper proposes a novel method for point cloud classification using vertical structural characteristics of ground objects. Since urbanization develops rapidly nowadays, urban ground objects also change frequently. Conventional photogrammetric methods cannot satisfy the requirements of updating the ground objects' information efficiently, so LiDAR (Light Detection and Ranging) technology is employed to accomplish this task. LiDAR data, namely point cloud data, can obtain detailed three-dimensional coordinates of ground objects, but this kind of data is discrete and unorganized. To accomplish ground objects classification with point cloud, we first construct horizontal grids and vertical layers to organize point cloud data, and then calculate vertical characteristics, including density and measures of dispersion, and form characteristic curves for each grids. With the help of PCA processing and K-means algorithm, we analyze the similarities and differences of characteristic curves. Curves that have similar features will be classified into the same class and point cloud correspond to these curves will be classified as well. The whole process is simple but effective, and this approach does not need assistance of other data sources. In this study, point cloud data are classified into three classes, which are vegetation, buildings, and roads. When horizontal grid spacing and vertical layer spacing are 3 m and 1 m respectively, vertical characteristic is set as density, and the number of dimensions after PCA processing is 11, the overall precision of classification result is about 86.31 %. The result can help us quickly understand the distribution of various ground objects.

  11. Boiling process modelling peculiarities analysis of the vacuum boiler

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  12. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  13. Using nonlinear least squares to assess relative expression and its uncertainty in real-time qPCR studies.

    PubMed

    Tellinghuisen, Joel

    2016-03-01

    Relative expression ratios are commonly estimated in real-time qPCR studies by comparing the quantification cycle for the target gene with that for a reference gene in the treatment samples, normalized to the same quantities determined for a control sample. For the "standard curve" design, where data are obtained for all four of these at several dilutions, nonlinear least squares can be used to assess the amplification efficiencies (AE) and the adjusted ΔΔCq and its uncertainty, with automatic inclusion of the effect of uncertainty in the AEs. An algorithm is illustrated for the KaleidaGraph program. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. High quality ion acceleration through the interaction of two matched counterpropagating transversely polarized Gaussian lasers with a flat foil target

    NASA Astrophysics Data System (ADS)

    Zhou, Weijun; Hong, Xueren; Xie, Baisong; Yang, Yang; Wang, Li; Tian, Jianmin; Tang, Rongan; Duan, Wenshan

    2018-02-01

    In order to generate high quality ion beams through a relatively uniform radiation pressure acceleration (RPA) of a common flat foil, a new scheme is proposed to overcome the curve of the target while being radiated by a single transversely Gaussian laser. In this scheme, two matched counterpropagating transversely Gaussian laser pulses, a main pulse and an auxiliary pulse, impinge on the foil target at the meantime. It is found that in the two-dimensional (2D) particle-in-cell (PIC) simulation, by the restraint of the auxiliary laser, the curve of the foil can be effectively suppressed. As a result, a high quality monoenergetic ion beam is generated through an efficient RPA of the foil target. For example, two counterpropagating transversely circularly polarized Gaussian lasers with normalized amplitudes a1=120 and a2=30 , respectively, impinge on the foil target at the meantime, a 1.3 GeV monoenergetic proton beam with high collimation is obtained finally. Furthermore, the effects on the ions acceleration with different parameters of the auxiliary laser are also investigated.

  15. An efficient user-oriented method for calculating compressible flow in an about three-dimensional inlets. [panel method

    NASA Technical Reports Server (NTRS)

    Hess, J. L.; Mack, D. P.; Stockman, N. O.

    1979-01-01

    A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented.

  16. Constraints on Planetary Companions in the Magnification A=256 Microlensing Event OGLE-2003-BLG-423

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; DePoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Gould, A.; Han, C.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Park, B.-G.; Pogge, R. W.; Mu Fun Collaboration; Szymański, M. K.; Udalski, A.; Szewczyk, O.; Kubiak, M.; Żebruń, K.; Pietrzyński, G.; Soszyński, I.; Wyrzykowski, Ł.; OGLE Collaboration

    2004-12-01

    We develop a new method of modeling microlensing events based on a Monte Carlo simulation that incorporates both a Galactic model and the constraints imposed by the observed characteristics of the event. The method provides an unbiased way to analyze the event, especially when parameters are poorly constrained by the observed light curve. We apply this method to search for planetary companions of the lens in OGLE-2003-BLG-423, whose maximum magnification Amax=256+/-43 (or Amax=400+/-115 from the light-curve data alone) is the highest among single-lens events ever recorded. The method permits us for the first time to place constraints directly in the planet mass-projected physical separation plane rather than in the mass ratio-Einstein radius plane as was done previously. For example, Jovian-mass companions of main-sequence stars at 2.5 AU are excluded with 80% efficiency. Based in part on observations obtained with the 1.3 m Warsaw Telescope at the Las Campanas Observatory of the Carnegie Institution of Washington.

  17. Fast dynamic ventilation MRI of hyperpolarized 129 Xe using spiral imaging.

    PubMed

    Doganay, Ozkan; Matin, Tahreema N; Mcintyre, Anthony; Burns, Brian; Schulte, Rolf F; Gleeson, Fergus V; Bulte, Daniel

    2018-05-01

    To develop and optimize a rapid dynamic hyperpolarized 129 Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal-time curves in human lungs. Spiral k-space trajectories were designed with the number of interleaves N int  = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas-flow phantom to investigate the ability of N int  = 1, 2, 4, and 8 to capture signal-time curves. A finite element model was constructed to investigate gas-flow dynamics corroborating the experimental signal-time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). DXeV images and numerical modelling of signal-time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two-interleaved spiral (N int  = 2) was found to be the most time-efficient to obtain DXeV images and signal-time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal-time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P < 0.05). The N int  = 2 spiral demonstrates the successful acquisition of DXeV images and signal-time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597-2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  18. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  19. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening.

    PubMed

    Lovell, Charles R; Decker, Peter V; Bagwell, Christopher E; Thompson, Shelly; Matsui, George Y

    2008-05-01

    Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.

  20. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part II. Changes in Sampling Efficiency

    PubMed Central

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin

    2015-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232–1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form. PMID:24064963

  1. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    PubMed

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.

  2. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  3. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    NASA Astrophysics Data System (ADS)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  4. Recession curve analysis for groundwater levels: case study in Latvia

    NASA Astrophysics Data System (ADS)

    Gailuma, A.; Vītola, I.; Abramenko, K.; Lauva, D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z.

    2012-04-01

    Recession curve analysis is powerful and effective analysis technique in many research areas related with hydrogeology where observations have to be made, such as water filtration and absorption of moisture, irrigation and drainage, planning of hydroelectric power production and chemical leaching (elution of chemical substances) as well as in other areas. The analysis of the surface runoff hydrograph`s recession curves, which is performed to conceive the after-effects of interaction of precipitation and surface runoff, has approved in practice. The same method for analysis of hydrograph`s recession curves can be applied for the observations of the groundwater levels. There are manually prepared hydrograph for analysis of recession curves for observation wells (MG2, BG2 and AG1) in agricultural monitoring sites in Latvia. Within this study from the available monitoring data of groundwater levels were extracted data of declining periods, splitted by month. The drop-down curves were manually (by changing the date) moved together, until to find the best match, thereby obtaining monthly drop-down curves, representing each month separately. Monthly curves were combined and manually joined, for obtaining characterizing drop-down curves of the year for each well. Within the process of decreased recession curve analysis, from the initial curve was cut out upward areas, leaving only the drops of the curve, consequently, the curve is transformed more closely to the groundwater flow, trying to take out the impact of rain or drought periods from the curve. Respectively, the drop-down curve is part of the data, collected with hydrograph, where data with the discharge dominates, without considering impact of precipitation. Using the recession curve analysis theory, ready tool "A Visual Basic Spreadsheet Macro for Recession Curve Analysis" was used for selection of data and logarithmic functions matching (K. Posavec et.al., GROUND WATER 44, no. 5: 764-767, 2006), as well as functions were developed by manual processing of data. For displaying data the mathematical model of data equalization was used, finding the corresponding or closest logarithmic function of the recession for the graph. Obtained recession curves were similar but not identical. With full knowledge of the fluctuations of ground water level, it is possible to indirectly (without taking soil samples) determine the filtration coefficient: more rapid decline in the recession curve correspond for the better filtration conditions. This research could be very useful in construction planning, road constructions, agriculture etc. Acknowledgments The authors gratefully acknowledge the funding from ESF Project "Establishment of interdisciplinary scientist group and modeling system for groundwater research" (Agreement No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060EF7)

  5. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel

    PubMed Central

    Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin. PMID:29515651

  6. Fabrication of multilayer TiO{sub 2} thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ho; Chen, Wei-An; Su, Hung-Ting

    2010-01-15

    This research coats a commercial TiO{sub 2} nanoparticle Degussa P25 with good roundness and size uniformity on an indium tin oxide (ITO) glass substrate and to be photoelectrical electrode by electrophoresis deposition. It combined with dye N719, electrolyte I{sup -}/ I{sub 3}{sup -} and counter-electrode of Pt layer to produce dye-sensitized solar cells (DSSCs). Through the electrophoretic technique, a multilayer film of an appropriate thickness is deposited in the suspension containing TiO{sub 2} nanoparticles and isopropanol. In this process, electric current, voltage, and the number of deposition cycles are well controlled to obtain a single TiO{sub 2} film of aroundmore » 3.3 {mu}m thick. Stacking is then performed to obtain a multilayer-typed TiO{sub 2} film of around 12 {mu}m thick. As the sintering temperature reaches 400 C, the prepared multilayer TiO{sub 2} film with a good compactness can increase the dye adsorption capability of the thin film and enhance its adsorption percentage. In addition, the heat treatment will transfer a portion of the rutile crystalline into the anatase crystalline, resulting in better material properties for DSSCs application. DSSCs produced are exposed to metal halide lamp and their energy conversion efficiency is measured. The I-V curve of the produced DSSCs shows that it has an excellent energy conversion efficiency of 6.9%. (author)« less

  7. CCD photometry of 2060 Chiron, 1991 January

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Marcialis, R. L.; Howell, E. S.; Nolan, M. C.

    1991-01-01

    Observations of 2060 Chiron was performed on 7 to 8 Jan. 1991 with the Mt. Palomar 1.52 m telescope in the Gunn-R passband. On-chip field stars were used to perform differential reductions. The repeatability of the 5.9 hour light curve was excellent, both within a night and from night to night. No evidence for short-term secular variations similar to those seen last year by both Luu and Jewitt (1990) and Buratti and Dunbar (1991) is seen in the new light curve. Chiron's rotational light curve appears strikingly similar to that obtained a year earlier by Luu and Jewitt (1990), both in amplitude and shape. Both light curves show strongly correlated changes over a timescale of perhaps 15 minutes. These same features were marginally visible in the 1986 light curve. Such behavior is believed to be evidence that Chiron may be more aspherical than the 4 percent intensity variation might otherwise indicate, and favors a viewing geometry where the subearth latitude is rather low. Chiron was much fainter in 1985, when a partial light curve was obtained by Marcialis. Due to the lower sampling rate of these early data, no conclusions can be made regarding the high-frequency light curve structure back then. All three of these light curves differ significantly from that obtained by Buratti and Dunbar (1991), one week before the observations of Luu and Jewitt. The Chiron field was calibrated using Landolt standards on Ut 15 Mar. 1991. A mean R-magnitude of 15.6 + or - 0.1 was found. Variability of 2060 Chiron was demonstrated over timescales of minutes, hours, and years. An intense campaign was urged to monitor the photometric behavior of Chiron throughout the 1990s.

  8. CSI 2264: Characterizing Young Stars In NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    DTIC Science & Technology

    2015-04-01

    curve (it was not observed by CoRoT in 2008). We have subsequently obtained optical and IR spectra of it from SOAR (see Appendix) that indicate a spectral...CoRoT light curve. We also obtained a SOAR optical spectrum of Mon-1131. Based on measures of the depths of the TiO bands in that spectrum, we...scales in Table 4, one from Table 6 of Pecaut & Mamajek (2013; PM13), and one from Cohen & Kuhi ( 1979 ; CK79). For many of the stars, the calculation

  9. On measuring the scattering coefficient in a nondiffuse sound field

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2017-11-01

    The laws of sound decay in a cubic room, one wall of which is absorbing and the other scattering, are obtained. It is shown that under certain conditions, sound decay in a room occurs nonexponentially and the shape of the decay curve depends on the scattering coefficient of the walls. This makes it possible to suggest a method for measuring the scattering coefficient by the analysis the decay curve when the walls have sound-scattering materials and structures. Expressions are obtained for approximating the measured decay curve, and the boundaries of the method's applicability are determined.

  10. A single-phase Ba{sub 9}Lu{sub 2}Si{sub 6}O{sub 24}:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor with tunable full-color emission for NUV-based white LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Changhua; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Liu, Yongfu, E-mail: liuyongfu@nimte.ac.cn

    Highlights: • A single phase Ba{sub 9}Lu{sub 2}Si{sub 6}O{sub 24}:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor with full-color emission was obtained by solid-state reactions. • Eu{sup 2+}, Ce{sup 3+}, and Mn{sup 2+} acts as blue, green, and red luminescence centers, respectively. • The BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor shows a high quantum efficient of ∼62% and a good color stability. • Combining this single phosphor with a 395 nm NUV-chip, an ideal white LED with a high CRI of 85 and a CCT of 6300 K was obtained. - Abstract: We obtained a single phase BLS:Eu{sup 2+}, Ce{supmore » 3+}, Mn{sup 2+} phosphor by solid-state reactions. Eu{sup 2+}, Ce{sup 3+}, and Mn{sup 2+} gives rise to the blue, green, and red emission, respectively. The Mn{sup 2+} red emission can be effectively enhanced via energy transfers from both Eu{sup 2+} and Ce{sup 3+}. Thus a tunable full color emission from 410 to 750 nm was realized in this single phosphor. The Eu{sup 2+} → Mn{sup 2+} energy transfer mechanism was investigated by the fluorescence decay curves. This single phosphor exhibits an efficient excitation band covering from 390 to 410 nm, which matches well with the emission light of the efficient NUV chips. The optimized BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor shows a high quantum efficient of ∼62% and a good color stability. When this single phosphor was combined with a 395 nm NUV-chip, an ideal white LED with a high color render index (CRI) of 85 and a correlated color temperature (CCT) of 6300 K was obtained. This demonstrates the promising application of the BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} single phosphor for the NUV-based white LEDs.« less

  11. Modeling of light dynamic cone penetration test - Panda 3 ® in granular material by using 3D Discrete element method

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Anh; Chevalier, Bastien; Benz, Miguel; Breul, Pierre; Gourvès, Roland

    2017-06-01

    The recent technological developments made on the light dynamic penetration test Panda 3 ® provide a dynamic load-penetration curve σp - sp for each impact. This curve is influenced by the mechanical and physical properties of the investigated granular media. In order to analyze and exploit the load-penetration curve, a numerical model of penetration test using 3D Discrete Element Method is proposed for reproducing tests in dynamic conditions in granular media. All parameters of impact used in this model have at first been calibrated by respecting mechanical and geometrical properties of the hammer and the rod. There is a good agreement between experimental results and the ones obtained from simulations in 2D or 3D. After creating a sample, we will simulate the Panda 3 ®. It is possible to measure directly the dynamic load-penetration curve occurring at the tip for each impact. Using the force and acceleration measured in the top part of the rod, it is possible to separate the incident and reflected waves and then calculate the tip's load-penetration curve. The load-penetration curve obtained is qualitatively similar with that obtained by experimental tests. In addition, the frequency analysis of the measured signals present also a good compliance with that measured in reality when the tip resistance is qualitatively similar.

  12. Soil Conservation Service Curve Number method: How to mend a wrong soil moisture accounting procedure?

    NASA Astrophysics Data System (ADS)

    Michel, Claude; Andréassian, Vazken; Perrin, Charles

    2005-02-01

    This paper unveils major inconsistencies in the age-old and yet efficient Soil Conservation Service Curve Number (SCS-CN) procedure. Our findings are based on an analysis of the continuous soil moisture accounting procedure implied by the SCS-CN equation. It is shown that several flaws plague the original SCS-CN procedure, the most important one being a confusion between intrinsic parameter and initial condition. A change of parameterization and a more complete assessment of the initial condition lead to a renewed SCS-CN procedure, while keeping the acknowledged efficiency of the original method.

  13. MRTD: man versus machine

    NASA Astrophysics Data System (ADS)

    van Rheenen, Arthur D.; Taule, Petter; Thomassen, Jan Brede; Madsen, Eirik Blix

    2018-04-01

    We present Minimum-Resolvable Temperature Difference (MRTD) curves obtained by letting an ensemble of observers judge how many of the six four-bar patterns they can "see" in a set of images taken with different bar-to-background contrasts. The same images are analyzed using elemental signal analysis algorithms and machine-analysis based MRTD curves are obtained. We show that by adjusting the minimum required signal-to-noise ratio the machine-based MRTDs are very similar to the ones obtained with the help of the human observers.

  14. Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule.

    PubMed

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi

    2016-01-15

    The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Efficient Implementation of the Pairing on Mobilephones Using BREW

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Motoi; Takagi, Tsuyoshi; Kiyomoto, Shinsaku; Tanaka, Toshiaki

    Pairing based cryptosystems can accomplish novel security applications such as ID-based cryptosystems, which have not been constructed efficiently without the pairing. The processing speed of the pairing based cryptosystems is relatively slow compared with the other conventional public key cryptosystems. However, several efficient algorithms for computing the pairing have been proposed, namely Duursma-Lee algorithm and its variant ηT pairing. In this paper, we present an efficient implementation of the pairing over some mobilephones. Moreover, we compare the processing speed of the pairing with that of the other standard public key cryptosystems, i. e. RSA cryptosystem and elliptic curve cryptosystem. Indeed the processing speed of our implementation in ARM9 processors on BREW achieves under 100 milliseconds using the supersingular curve over F397. In addition, the pairing is more efficient than the other public key cryptosystems, and the pairing can be achieved enough also on BREW mobilephones. It has become efficient enough to implement security applications, such as short signature, ID-based cryptosystems or broadcast encryption, using the pairing on BREW mobilephones.

  16. A Comparative Study of Electric Load Curve Changes in an Urban Low-Voltage Substation in Spain during the Economic Crisis (2008–2013)

    PubMed Central

    Lara-Santillán, Pedro M.; Mendoza-Villena, Montserrat; Fernández-Jiménez, L. Alfredo; Mañana-Canteli, Mario

    2014-01-01

    This paper presents a comparative study of the electricity consumption (EC) in an urban low-voltage substation before and during the economic crisis (2008–2013). This low-voltage substation supplies electric power to near 400 users. The EC was measured for an 11-year period (2002–2012) with a sampling time of 1 minute. The study described in the paper consists of detecting the changes produced in the load curves of this substation along the time due to changes in the behaviour of consumers. The EC was compared using representative curves per time period (precrisis and crisis). These representative curves were obtained after a computational process, which was based on a search for days with similar curves to the curve of a determined (base) date. This similitude was assessed by the proximity on the calendar, day of the week, daylight time, and outdoor temperature. The last selection parameter was the error between the nearest neighbour curves and the base date curve. The obtained representative curves were linearized to determine changes in their structure (maximum and minimum consumption values, duration of the daily time slot, etc.). The results primarily indicate an increase in the EC in the night slot during the summer months in the crisis period. PMID:24895677

  17. Gene Scanning of an Internalin B Gene Fragment Using High-Resolution Melting Curve Analysis as a Tool for Rapid Typing of Listeria monocytogenes

    PubMed Central

    Pietzka, Ariane T.; Stöger, Anna; Huhulescu, Steliana; Allerberger, Franz; Ruppitsch, Werner

    2011-01-01

    The ability to accurately track Listeria monocytogenes strains involved in outbreaks is essential for control and prevention of listeriosis. Because current typing techniques are time-consuming, cost-intensive, technically demanding, and difficult to standardize, we developed a rapid and cost-effective method for typing of L. monocytogenes. In all, 172 clinical L. monocytogenes isolates and 20 isolates from culture collections were typed by high-resolution melting (HRM) curve analysis of a specific locus of the internalin B gene (inlB). All obtained HRM curve profiles were verified by sequence analysis. The 192 tested L. monocytogenes isolates yielded 15 specific HRM curve profiles. Sequence analysis revealed that these 15 HRM curve profiles correspond to 18 distinct inlB sequence types. The HRM curve profiles obtained correlated with the five phylogenetic groups I.1, I.2, II.1, II.2, and III. Thus, HRM curve analysis constitutes an inexpensive assay and represents an improvement in typing relative to classical serotyping or multiplex PCR typing protocols. This method provides a rapid and powerful screening tool for simultaneous preliminary typing of up to 384 samples in approximately 2 hours. PMID:21227395

  18. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively.

  19. Shell and small particles; evaluation of new column technology.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin

    2009-01-15

    The performance of 5 cm long columns packed with shell particles was compared to totally porous sub-2 microm particles in gradient and isocratic elution separations of hormones (dienogest, finasteride, gestodene, levonorgestrel, estradiol, ethinylestradiol, noretistherone acetate, bicalutamide and tibolone). Peak capacities around 140-150 could be achieved in 25 min with the 5 cm long columns. The Ascentis Express column (packed with 2.7 microm shell particles) showed similar efficiency to sub-2 microm particles under gradient conditions. Applying isocratic separation, the column of 2.7 microm shell particles had a reduced plate height minimum of approximately h=1.6. It was much smaller than obtained with totally porous particles (h approximately = 2.8). The impedance time also proved more favorable with 2.7 microm shell particles than with totally porous particles. The influence of extra-column volume on column efficiency was investigated. The extra-column dispersion of the chromatographic system may cause a shift of the HETP curves.

  20. The dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, P.; Benitez, P.; Li, Y.; Miñano, J. C.; Mendes-Lopes, J.; Araki, K.

    2012-10-01

    Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg = 1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP*=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  1. Skin Effect Modeling in Conductors of Arbitrary Shape Through a Surface Admittance Operator and the Contour Integral Method

    NASA Astrophysics Data System (ADS)

    Patel, Utkarsh R.; Triverio, Piero

    2016-09-01

    An accurate modeling of skin effect inside conductors is of capital importance to solve transmission line and scattering problems. This paper presents a surface-based formulation to model skin effect in conductors of arbitrary cross section, and compute the per-unit-length impedance of a multiconductor transmission line. The proposed formulation is based on the Dirichlet-Neumann operator that relates the longitudinal electric field to the tangential magnetic field on the boundary of a conductor. We demonstrate how the surface operator can be obtained through the contour integral method for conductors of arbitrary shape. The proposed algorithm is simple to implement, efficient, and can handle arbitrary cross-sections, which is a main advantage over the existing approach based on eigenfunctions, which is available only for canonical conductor's shapes. The versatility of the method is illustrated through a diverse set of examples, which includes transmission lines with trapezoidal, curved, and V-shaped conductors. Numerical results demonstrate the accuracy, versatility, and efficiency of the proposed technique.

  2. Marginal abatement cost curves for NOx that account for renewable electricity, energy efficiency, and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  3. Regional and sectoral marginal abatement cost curves for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  4. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  5. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their rela...

  6. Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap

    NASA Astrophysics Data System (ADS)

    E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei

    2017-10-01

    Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.

  7. Designing an artificial neural network using radial basis function to model exergetic efficiency of nanofluids in mini double pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-06-01

    The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.

  8. Experimental study of a generic high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Belton, Pamela S.; Campbell, Richard L.

    1992-01-01

    An experimental study of generic high-speed civil transport was conducted in the NASA Langley 8-ft Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wingtip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wingtip shape, while the second model has a more conventional straight wingtip shape. The study was conducted at Mach numbers from 0.30 to 1.19. Force data were obtained on both the straight wingtip model and the curved wingtip model. Only the curved wingtip model was instrumented for measuring pressures. Selected longitudinal, lateral, and directional data are presented for both models. Selected pressure distributions for the curved wingtip model are also presented.

  9. Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves

    PubMed Central

    Joshi, Shantanu H.; Klassen, Eric; Srivastava, Anuj; Jermyn, Ian

    2011-01-01

    This paper illustrates and extends an efficient framework, called the square-root-elastic (SRE) framework, for studying shapes of closed curves, that was first introduced in [2]. This framework combines the strengths of two important ideas - elastic shape metric and path-straightening methods - for finding geodesics in shape spaces of curves. The elastic metric allows for optimal matching of features between curves while path-straightening ensures that the algorithm results in geodesic paths. This paper extends this framework by removing two important shape preserving transformations: rotations and re-parameterizations, by forming quotient spaces and constructing geodesics on these quotient spaces. These ideas are demonstrated using experiments involving 2D and 3D curves. PMID:21738385

  10. Optimization of ACC system spacing policy on curved highway

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Qian, Kun; Gong, Zaiyan

    2017-05-01

    The paper optimizes the original spacing policy when adopting VTH (Variable Time Headway), proposes to introduce the road curve curvature K to the spacing policy to cope with following the wrong vehicle or failing to follow the vehicle owing to the radar limitation of curve in ACC system. By utilizing MATLAB/Simulink, automobile longitudinal dynamics model is established. At last, the paper sets up such three common cases as the vehicle ahead runs at a uniform velocity, an accelerated velocity and hits the brake suddenly, simulates these cases on the curve with different curvature, analyzes the curve spacing policy in the perspective of safety and vehicle following efficiency and draws the conclusion whether the optimization scheme is effective or not.

  11. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  12. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  13. Triple-Label β Liquid Scintillation Counting

    PubMed Central

    Bukowski, Thomas R.; Moffett, Tyler C.; Revkin, James H.; Ploger, James D.; Bassingthwaighte, James B.

    2010-01-01

    The detection of radioactive compounds by liquid scintillation has revolutionized modern biology, yet few investigators make full use of the power of this technique. Even though multiple isotope counting is considerably more difficult than single isotope counting, many experimental designs would benefit from using more than one isotope. The development of accurate isotope counting techniques enabling the simultaneous use of three β-emitting tracers has facilitated studies in our laboratory using the multiple tracer indicator dilution technique for assessing rates of transmembrane transport and cellular metabolism. The details of sample preparation, and of stabilizing the liquid scintillation spectra of the tracers, are critical to obtaining good accuracy. Reproducibility is enhanced by obtaining detailed efficiency/quench curves for each particular set of tracers and solvent media. The numerical methods for multiple-isotope quantitation depend on avoiding error propagation (inherent to successive subtraction techniques) by using matrix inversion. Experimental data obtained from triple-label β counting illustrate reproducibility and good accuracy even when the relative amounts of different tracers in samples of protein/electrolyte solutions, plasma, and blood are changed. PMID:1514684

  14. On the cost of approximating and recognizing a noise perturbed straight line or a quadratic curve segment in the plane. [central processing units

    NASA Technical Reports Server (NTRS)

    Cooper, D. B.; Yalabik, N.

    1975-01-01

    Approximation of noisy data in the plane by straight lines or elliptic or single-branch hyperbolic curve segments arises in pattern recognition, data compaction, and other problems. The efficient search for and approximation of data by such curves were examined. Recursive least-squares linear curve-fitting was used, and ellipses and hyperbolas are parameterized as quadratic functions in x and y. The error minimized by the algorithm is interpreted, and central processing unit (CPU) times for estimating parameters for fitting straight lines and quadratic curves were determined and compared. CPU time for data search was also determined for the case of straight line fitting. Quadratic curve fitting is shown to require about six times as much CPU time as does straight line fitting, and curves relating CPU time and fitting error were determined for straight line fitting. Results are derived on early sequential determination of whether or not the underlying curve is a straight line.

  15. The Welfare Effects of Monopoly versus Competition: A Clarification of Textbook Presentations.

    ERIC Educational Resources Information Center

    Lamdin, Douglas J.

    1992-01-01

    Addresses effects of monopoly and competition on societal welfare. Discusses inadequacy of economics textbooks. Concludes that most texts fail to explain the shape of monopolists' underlying cost curves. Argues that the monopolist's long run marginal cost curve cannot be obtained by horizontal summation of the long run marginal cost curves of…

  16. Extracting information from S-curves of language change

    PubMed Central

    Ghanbarnejad, Fakhteh; Gerlach, Martin; Miotto, José M.; Altmann, Eduardo G.

    2014-01-01

    It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period and slow end). In this paper, we analyse how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g. the Bass dynamics on complex networks), we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism. PMID:25339692

  17. Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.

    PubMed

    Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco

    2016-12-07

    Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.

  18. Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine

    PubMed Central

    Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L.; Balleteros, Francisco

    2016-01-01

    Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets. PMID:27941604

  19. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the polycrystalline microstructure. The specific objectives of this work are 1) the development of etching techniques and electron backscatter diffraction strategies to characterize ferrite and martensite phases in steel; 2) the uncovering of a relationship between strength/ductility and material microstructure, 3) a statistical description to quantify the spatial distributions of these phases; and finally 4) the simulation of the microstructural evolution using parameters obtained from the experiments.

  20. Preparation of AgInS2 nanoparticles by a facile microwave heating technique; study of effective parameters, optical and photovoltaic characteristics

    NASA Astrophysics Data System (ADS)

    Tadjarodi, Azadeh; Cheshmekhavar, Amir Hossein; Imani, Mina

    2012-12-01

    In this work, AgInS2 (AIS) semiconductor nanoparticles were synthesized by an efficient and facile microwave heating technique using several sulfur sources and solvents in the different reaction times. The SEM images presented the particle morphology for all of the obtained products in the arranged reaction conditions. The particle size of 70 nm was obtained using thioacetamide (TAA), ethylene glycol (EG) as the sulfur source and solvent, respectively at the reaction time of 5 min. It was found that the change of the mentioned parameters lead to alter on the particle size of the resulting products. The average particle size was estimated using a microstructure measurement program and Minitab statistical software. The optical band gap energy of 1.96 eV for the synthesized AIS nanoparticles was determined by the diffuse reflectance spectroscopy (DRS). AgInS2/CdS/CuInSe2 heterojunction solar cell was constructed and photovoltaic parameters, i.e., open-circuit voltage (Voc), short-circuit current (Jsc) and fill factor (FF) were estimated by photocurrent-voltage (I-V) curve. The calculated fill factor of 30% and energy conversion efficiency of 1.58% revealed the capability of AIS nanoparticles to use in the solar cell devices.

  1. Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation.

    PubMed

    Kukke, Sahana N; Paine, Rainer W; Chao, Chi-Chao; de Campos, Ana C; Hallett, Mark

    2014-06-01

    The purpose of this study is to develop a method to reliably characterize multiple features of the corticospinal system in a more efficient manner than typically done in transcranial magnetic stimulation studies. Forty transcranial magnetic stimulation pulses of varying intensity were given over the first dorsal interosseous motor hot spot in 10 healthy adults. The first dorsal interosseous motor-evoked potential size was recorded during rest and activation to create recruitment curves. The Boltzmann sigmoidal function was fit to the data, and parameters relating to maximal motor-evoked potential size, curve slope, and stimulus intensity leading to half-maximal motor-evoked potential size were computed from the curve fit. Good to excellent test-retest reliability was found for all corticospinal parameters at rest and during activation with 40 transcranial magnetic stimulation pulses. Through the use of curve fitting, important features of the corticospinal system can be determined with fewer stimuli than typically used for the same information. Determining the recruitment curve provides a basis to understand the state of the corticospinal system and select subject-specific parameters for transcranial magnetic stimulation testing quickly and without unnecessary exposure to magnetic stimulation. This method can be useful in individuals who have difficulty in maintaining stillness, including children and patients with motor disorders.

  2. Efficiency turns the table on neural encoding, decoding and noise.

    PubMed

    Deneve, Sophie; Chalk, Matthew

    2016-04-01

    Sensory neurons are usually described with an encoding model, for example, a function that predicts their response from the sensory stimulus using a receptive field (RF) or a tuning curve. However, central to theories of sensory processing is the notion of 'efficient coding'. We argue here that efficient coding implies a completely different neural coding strategy. Instead of a fixed encoding model, neural populations would be described by a fixed decoding model (i.e. a model reconstructing the stimulus from the neural responses). Because the population solves a global optimization problem, individual neurons are variable, but not noisy, and have no truly invariant tuning curve or receptive field. We review recent experimental evidence and implications for neural noise correlations, robustness and adaptation. Copyright © 2016. Published by Elsevier Ltd.

  3. ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps

    USGS Publications Warehouse

    Zhan, X.; Huang, M.-L.

    2004-01-01

    The development and the application of ArcCN-Runoff tool, an extension of ESRI@ ArcGIS software, are reported. This tool can be applied to determine curve numbers and to calculate runoff or infiltration for a rainfall event in a watershed. Implementation of GIS techniques such as dissolving, intersecting, and a curve-number reference table improve efficiency. Technical processing time may be reduced from days, if not weeks, to hours for producing spatially varied curve number and runoff maps. An application example for a watershed in Lyon County and Osage County, Kansas, USA, is presented. ?? 2004 Elsevier Ltd. All rights reserved.

  4. Limits on passivating defects in semiconductors: the case of Si edge dislocations.

    PubMed

    Chan, Tzu-Liang; West, D; Zhang, S B

    2011-07-15

    By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.

  5. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    PubMed

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na(+) and K(+) currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism.

  6. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism. PMID:26074810

  7. Adapting Shape Parameters for Cubic Bezier Curves

    NASA Technical Reports Server (NTRS)

    Isacoff, D.; Bailey, M. J.

    1985-01-01

    Bezier curves are an established tool in Computer Aided Geometric Design. One of the drawbacks of the Bezier method is that the curves often bear little resemblance to their control polygons. As a result, it becomes increasingly difficult to obtain anything but a rough outline of the desired shape. One possible solution is tomanipulate the curve itself instead of the control polygon. The standard cubic Bezier curve form has introduced into it two shape parameters, gamma 1 and 2. These parameters give the user the ability to manipulate the curve while the control polygon retains its original form, thereby providing a more intuitive feel for the necessary changes to the curve in order to achieve the desired shape.

  8. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    PubMed Central

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  9. Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo; Paternò, Gianfranco; Bellucci, Valerio; Guidi, Vincenzo

    2014-12-01

    (311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35 % with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33 %. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code.

  10. Experimental study of a fuel cell power train for road transport application

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.

    The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.

  11. Application of the Fourier pseudospectral time-domain method in orthogonal curvilinear coordinates for near-rigid moderately curved surfaces.

    PubMed

    Hornikx, Maarten; Dragna, Didier

    2015-07-01

    The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A transform from the physical coordinate system to the curvilinear coordinate system has been applied to solve more arbitrary geometries. For applicability of this method near the boundaries, the acoustic velocity variables are solved for their curvilinear components. The performance of the curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propagation over an impedance strip for various types of shapes. Accuracy is shown to be related to the maximum grid stretching ratio and deformation of the boundary shape and computational efficiency is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilinear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate and efficient results for sound propagation over smoothly varying ground surfaces with high impedances can be obtained.

  12. Non-parametric transient classification using adaptive wavelets

    NASA Astrophysics Data System (ADS)

    Varughese, Melvin M.; von Sachs, Rainer; Stephanou, Michael; Bassett, Bruce A.

    2015-11-01

    Classifying transients based on multiband light curves is a challenging but crucial problem in the era of GAIA and Large Synoptic Sky Telescope since the sheer volume of transients will make spectroscopic classification unfeasible. We present a non-parametric classifier that predicts the transient's class given training data. It implements two novel components: the use of the BAGIDIS wavelet methodology - a characterization of functional data using hierarchical wavelet coefficients - as well as the introduction of a ranked probability classifier on the wavelet coefficients that handles both the heteroscedasticity of the data in addition to the potential non-representativity of the training set. The classifier is simple to implement while a major advantage of the BAGIDIS wavelets is that they are translation invariant. Hence, BAGIDIS does not need the light curves to be aligned to extract features. Further, BAGIDIS is non-parametric so it can be used effectively in blind searches for new objects. We demonstrate the effectiveness of our classifier against the Supernova Photometric Classification Challenge to correctly classify supernova light curves as Type Ia or non-Ia. We train our classifier on the spectroscopically confirmed subsample (which is not representative) and show that it works well for supernova with observed light-curve time spans greater than 100 d (roughly 55 per cent of the data set). For such data, we obtain a Ia efficiency of 80.5 per cent and a purity of 82.4 per cent, yielding a highly competitive challenge score of 0.49. This indicates that our `model-blind' approach may be particularly suitable for the general classification of astronomical transients in the era of large synoptic sky surveys.

  13. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T

    2015-05-01

    Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments.

    PubMed

    Jaime, R; Serichol, C; Alcántara, J M; Rey, P J

    2014-03-01

    During photosynthesis, respiration and transpiration, gas exchange occurs via the stomata and so plants face a trade-off between maximising photosynthesis while minimising transpiration (expressed as water use efficiency, WUE). The ability to cope with this trade-off and regulate photosynthetic rate and stomatal conductance may be related to niche differentiation between closely related species. The present study explored this as a possible mechanism for habitat differentiation in Iberian columbines. The roles of irradiance and water stress were assessed to determine niche differentiation among Iberian columbines via distinct gas exchange processes. Photosynthesis-irradiance curves (P-I curves) were obtained for four taxa, and common garden experiments were conducted to examine plant responses to water and irradiance stress, by measuring instantaneous gas exchange and plant performance. Gas exchange was also measured in ten individuals using two to four field populations per taxon. The taxa had different P-I curves and gas exchange in the field. At the species level, water stress and irradiance explained habitat differentiation. Within each species, a combination of irradiance and water stress explained the between-subspecies habitat differentiation. Despite differences in stomatal conductance and CO2 assimilation, taxa did not have different WUE under field conditions, which suggests that the environment equally modifies photosynthesis and transpiration. The P-I curves, gas exchange in the field and plant responses to experimental water and irradiance stresses support the hypothesis that habitat differentiation is associated with differences among taxa in tolerance to abiotic stress mediated by distinct gas exchange responses. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  16. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  17. Low work function silicon collector for thermionic converters

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  18. Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine

    NASA Astrophysics Data System (ADS)

    Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun

    CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.

  19. Transforming reflectance spectra into Munsell color space by using prime colors.

    PubMed

    Romney, A Kimball; Fulton, James T

    2006-10-17

    Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.

  20. Particle effects on ultraviolet disinfection of coliform bacteria in recycled water.

    PubMed

    Jolis, D; Lam, C; Pitt, P

    2001-01-01

    Pilot- and bench-scale coliform inactivation tests with UV irradiation were used to show how suspended solids remaining in filtered secondary effluent affect the efficiency of the UV disinfection process. Observed kinetic inactivation rates decreased with increasing suspended particle sizes of 7 microm or larger present in tertiary effluent. First-order inactivation rates estimated from collimated beam dose-response curves for discrete ranges of UV doses were substantially different, which should caution researchers not to compare inactivation data obtained with largely dissimilar UV doses or suspended particle distributions. A dose of approximately 800 J/m2 was identified as the minimum dose that will consistently meet the California wastewater reclamation coliform criterion when applied to in-line filtration effluent.

  1. 40 CFR Appendix A to Subpart I of... - Alternative Procedures for Measuring Point-of-Use Abatement Device Destruction or Removal Efficiency

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... native AOI concentration (ppm) of the effluent during stable conditions. (14) Post-test calibration. At... or removal efficiencies must be determined while etching a substrate (product, dummy, or test). For... curves for the subsequent destruction or removal efficiency tests. (8) Mass location calibration. A...

  2. Segmentation of neuronal structures using SARSA (λ)-based boundary amendment with reinforced gradient-descent curve shape fitting.

    PubMed

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong

    2014-01-01

    The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging features related to brain diseases.

  3. Segmentation of Neuronal Structures Using SARSA (λ)-Based Boundary Amendment with Reinforced Gradient-Descent Curve Shape Fitting

    PubMed Central

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong

    2014-01-01

    The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging features related to brain diseases. PMID:24625699

  4. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement with experiment by incorporating an appropriate value of the standard state chemical potential in the Henry Law convention.

  5. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  6. Resistance Curves in the Tensile and Compressive Longitudinal Failure of Composites

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Catalanotti, Giuseppe; Davila, Carlos G.; Lopes, Claudio S.; Bessa, Miguel A.; Xavier, Jose C.

    2010-01-01

    This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites. These crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the analytical and numerical simulation of fracture in composite materials. The method proposed is based on the identification of the crack tip location by the use of Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates. It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using FEM-based methods in compact tension carbon-epoxy specimens. However, it is also shown that the Digital Image Correlation based technique can be used to extract crack resistance curves in compact compression tests for which FEM-based techniques are inadequate.

  7. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests.

    PubMed

    Wu, John Z; Cutlip, Robert G; Welcome, Daniel; Dong, Ren G

    2006-01-01

    Knowledge of viscoelastic properties of soft tissues is essential for the finite element modelling of the stress/strain distributions in finger-pad during vibratory loading, which is important in exploring the mechanism of hand-arm vibration syndrome. In conventional procedures, skin and subcutaneous tissue have to be separated for testing the viscoelastic properties. In this study, a novel method has been proposed to simultaneously determine the viscoelastic properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. A mathematical approach has been derived to obtain the creep and relaxation characteristics of skin and subcutaneous tissue using uniaxial stress relaxation data of skin/subcutaneous composite specimens. The micro-structures of collagen fiber networks in the soft tissue, which underline the tissue mechanical characteristics, will be intact in the proposed method. Therefore, the viscoelastic properties of soft tissues obtained using the proposed method would be more physiologically relevant than those obtained using the conventional method. The proposed approach has been utilized to measure the viscoelastic properties of soft tissues of pig. The relaxation curves of pig skin and subcutaneous tissue obtained in the current study agree well with those in literature. Using the proposed approach, reliable material properties of soft tissues can be obtained in a cost- and time-efficient manner, which simultaneously improves the physiological relevance.

  8. Photometric followup investigations on LAMOST survey target Ly And

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Pi, Qing-feng; Wang, Dai-mei

    2017-02-01

    We present a low-dispersion spectrum and two sets of CCD photometric light curves of the eclipsing binary LY And for the first time. The spectrum of LY And was classified as G2. We derived an updated ephemeris based on all previously available and our newly acquired minimum light times. Our analyses of LY And light curve minimum times reveals that the differences between calculated and observed minimum times for LY And can be represented by an upward parabolic curve, which means its orbital period is increasing with a rate of 1.88 (± 0.13) × 10-7 days/year. This increase in orbital period may be interpreted as mass transfer from the primary component to the secondary component, with a rate of dM1/dt = -4.54 × 10-8M⊙/year. By analyzing our CCD photometric light curves obtained in 2015, we obtained its photometric solution with the Wilson-Devinney program. This photometric solution also fits very well our light curves obtained in 2014. Our photometric solution shows that LY And is a contact eclipsing binary and its contact factor is f = (17.8 ± 1.9)%. Furthermore, both our spectroscopic and photometric data show no obvious chromospheric activity of LY And.

  9. A Primer on the Statistical Modelling of Learning Curves in Health Professions Education

    ERIC Educational Resources Information Center

    Pusic, Martin V.; Boutis, Kathy; Pecaric, Martin R.; Savenkov, Oleksander; Beckstead, Jason W.; Jaber, Mohamad Y.

    2017-01-01

    Learning curves are a useful way of representing the rate of learning over time. Features include an index of baseline performance (y-intercept), the efficiency of learning over time (slope parameter) and the maximal theoretical performance achievable (upper asymptote). Each of these parameters can be statistically modelled on an individual and…

  10. Further Results on the Production of Neutral Mesons by Photons

    DOE R&D Accomplishments Database

    Panofsky, W. K. H.; Steinberger, J.; Steller, J.

    1951-10-01

    Further measurements have been made on the photoproduction of neutral mesons using the gamma-gamma coincidence technique. New data have been obtained on the gamma-gamma correlation curves in beryllium. The angular distribution of the photo mesons in Be has been determined and found to be strongly peaked forward. The dependence on the atomic number A of production has been found to obey an A{sup 2/3} law. Some data obtained for production in hydrogen show that the pi-zero and pi-plus production cross sections are comparable and that the pi-zero excitation curve starts more slowly from threshold than does the pi-plus photo excitation curve.

  11. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.

  12. Motor efficiency: compare apples to apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keinz, J.R.

    1982-08-01

    The efficiency differences between electric motors are now a significant cost consideration for many companies, but evaluating motor efficiency is not as straightforward as it should be. The buyer must look beyond the manufacturer's designated efficiency, which is too generalized, and the results of independent tests, which vary because of the difficulty in establishing standard conditions. Manufacturers may be following established testing procedures, but not labeling in accordance with the standards. Manufacturers should also supply efficiency versus load-curve data. (DCK)

  13. Experimental study of a generic high-speed civil transport: Tabulated data

    NASA Technical Reports Server (NTRS)

    Belton, Pamela S.; Campbell, Richard L.

    1992-01-01

    An experimental study of a generic high-speed civil transport was conducted in LaRC's 8-Foot Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wing tip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wing tip shape while the second model has a more conventional straight wing tip shape. The study was conducted at Mach numbers from 0.30-1.19. Force data were obtained on both the straight and curved wing tip models. Only the curved wing tip model was instrumented for measuring pressures. Longitudinal and lateral-directional aerodynamic data are presented without analysis in tabulated form. Pressure coefficients for the curved wing tip model are also presented in tabulated form.

  14. Application of Curved MPR Algorithm to High Resolution 3 Dimensional T2 Weighted CISS Images for Virtual Uncoiling of Membranous Cochlea as an Aid for Cochlear Morphometry.

    PubMed

    Kumar, Joish Upendra; Kavitha, Y

    2017-02-01

    With the use of various surgical techniques, types of implants, the preoperative assessment of cochlear dimensions is becoming increasingly relevant prior to cochlear implantation. High resolution CISS protocol MRI gives a better assessment of membranous cochlea, cochlear nerve, and membranous labyrinth. Curved Multiplanar Reconstruction (MPR) algorithm provides better images that can be used for measuring dimensions of membranous cochlea. To ascertain the value of curved multiplanar reconstruction algorithm in high resolution 3-Dimensional T2 Weighted Gradient Echo Constructive Interference Steady State (3D T2W GRE CISS) imaging for accurate morphometry of membranous cochlea. Fourteen children underwent MRI for inner ear assessment. High resolution 3D T2W GRE CISS sequence was used to obtain images of cochlea. Curved MPR reconstruction algorithm was used to virtually uncoil the membranous cochlea on the volume images and cochlear measurements were done. Virtually uncoiled images of membranous cochlea of appropriate resolution were obtained from the volume data obtained from the high resolution 3D T2W GRE CISS images, after using curved MPR reconstruction algorithm mean membranous cochlear length in the children was 27.52 mm. Maximum apical turn diameter of membranous cochlea was 1.13 mm, mid turn diameter was 1.38 mm, basal turn diameter was 1.81 mm. Curved MPR reconstruction algorithm applied to CISS protocol images facilitates in getting appropriate quality images of membranous cochlea for accurate measurements.

  15. On the analytical determination of relaxation modulus of viscoelastic materials by Prony's interpolation method

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.

    1986-01-01

    A computer implementation to Prony's curve fitting by exponential functions is presented. The method, although more than one hundred years old, has not been utilized to its fullest capabilities due to the restriction that the time range must be given in equal increments in order to obtain the best curve fit for a given set of data. The procedure used in this paper utilizes the 3-dimensional capabilities of the Interactive Graphics Design System (I.G.D.S.) in order to obtain the equal time increments. The resultant information is then input into a computer program that solves directly for the exponential constants yielding the best curve fit. Once the exponential constants are known, a simple least squares solution can be applied to obtain the final form of the equation.

  16. Detection and quantification of a toxic salt substitute (LiCl) by using laser induced breakdown spectroscopy (LIBS).

    PubMed

    Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı

    2018-01-01

    The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R 2 and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R 2 of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R 2 of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.

  17. An efficient algorithm for choosing the degree of a polynomial to approximate discrete nonoscillatory data

    NASA Technical Reports Server (NTRS)

    Hedgley, D. R.

    1978-01-01

    An efficient algorithm for selecting the degree of a polynomial that defines a curve that best approximates a data set was presented. This algorithm was applied to both oscillatory and nonoscillatory data without loss of generality.

  18. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.

  19. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  20. Measurement of the Rate of Stellar Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    van Velzen, Sjoert; Farrar, Glennys R.

    2014-09-01

    We report an observational estimate of the rate of stellar tidal disruption flares (TDFs) in inactive galaxies based on a successful search for these events among transients in galaxies using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82). This search yielded 186 nuclear flares in galaxies, 2 of which are excellent TDF candidates. Because of the systematic nature of the search, the very large number of galaxies, the long time of observation, and the fact that non-TDFs were excluded without resorting to assumptions about TDF characteristics, this study provides an unparalleled opportunity to measure the TDF rate. To compute the rate of optical stellar tidal disruption events, we simulate our entire pipeline to obtain the efficiency of detection. The rate depends on the light curves of TDFs, which are presently still poorly constrained. Using only the observed part of the SDSS light curves gives a model-independent upper limit to the optical TDF rate, \\dot{N}<2\\times 10^{-4}\\,yr^{-1}\\,galaxy^{-1} (90% CL), under the assumption that the SDSS TDFs are representative examples. We develop three empirical models of the light curves based on the two SDSS light curves and two more recent and better-sampled Pan-STARRS TDF light curves, leading to our best estimate of the rate: \\dot{N}_TDF = (1.5{--}2.0)_{-1.3}^{+2.7} \\times 10^{-5} \\,yr^{-1}\\, galaxy^{-1}. We explore the modeling uncertainties by considering two theoretically motivated light curve models, as well as two different relationships between black hole mass and galaxy luminosity, and two different treatments of the cutoff in the visibility of TDFs at large M BH. From this we conclude that these sources of uncertainty are not significantly larger than the statistical ones. Our results are applicable for galaxies hosting black holes with mass in the range of a few 106-108 M ⊙, and translates to a volumetric TDF rate of (4-8) × 10-8 ± 0.4 yr-1 Mpc-3, with the statistical uncertainty in the exponent.

  1. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  2. Extracting transient Rayleigh wave and its application in detecting quality of highway roadbed

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Luo, Y.; Li, X.; Xu, S.; ,

    2004-01-01

    This paper first explains the tau-p mapping method of extracting Rayleigh waves (LR waves) from field shot gathers. It also explains a mathematical model of physical character parameters of quality of high-grade roads. This paper then discusses an algorithm of computing dispersion curves using adjacent channels. Shear velocity and physical character parameters are obtained by inversion of dispersion curves. The algorithm using adjacent channels to calculating dispersion curves eliminates average effects that exist by using multi-channels to obtain dispersion curves so that it improves longitudinal and transverse resolution of LR waves and precision of non-invasive detection, and also broadens its application fields. By analysis of modeling results of detached computation of the ground roll and real examples of detecting density and pressure strength of a high-grade roadbed, and by comparison of shallow seismic image method with borehole cores, we concluded that: 1 the abnormal scale and configuration obtained by LR waves are mostly the same as the result of shallow seismic image method; 2 an average relative error of density obtained from LR waves inversion is 1.6% comparing with borehole coring; 3 transient LR waves in detecting density and pressure strength of a high-grade roadbed is feasible and effective.

  3. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells.

    PubMed

    Lai, Bin; Wang, Peng; Li, Haoran; Du, Zhuwei; Wang, Lijuan; Bi, Sichao

    2013-03-01

    A new type of carbon-nitrogen-metal catalyst, PANI-Fe-C, was synthesized by calcination process. According to the results of FT-IR and XPS analysis, polyaniline chain was broken by calcination. Small nitrogen-contained molecular fragments were gasified during calcination process, while the remaining nitrogen atoms were enchased in the new produced multiple carbon rings by C-N and CN bonds and performed as the catalytic active sites and the covalent centers for soluble iron components. Calculated from the polarization curves, a maximum power density of 10.17W/m(3) for the MFC with the synthetic catalyst was obtained, which was slightly higher than the MFC with Pt/C catalyst of 9.56W/m(3). All the results obtained in this paper proved that the newly synthetic nitrogen-carbon-metal catalyst would be a potential alternative to the expensive Pt/C catalyst in the field of MFC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Sun, Lina; Yuan, Peixin

    2009-07-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  5. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo

    2008-03-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  6. An E-plane analysis of aperture-matched horn antennas using the moment method and the uniform geometrical theory of diffraction

    NASA Technical Reports Server (NTRS)

    Heedy, D. J.; Burnside, W. D.

    1984-01-01

    The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.

  7. Phytochemical compounds and anti-corrosion activity of Veronica rosea.

    PubMed

    Ouache, Rachid; Harkat, Hassina; Pale, Patrick; Oulmi, Kafia

    2018-05-16

    The aim of this work is the phytochemical study of the butanolic extract of the aerial parts of Veronica rosea. Four compounds 1-4 have been isolated using different chromatographic methods. The structures of these compounds were determined by NMR spectral analysis and mass spectroscopy. The adsorption and anticorrosion effects of this extract were investigated towards the corrosion of copper in 1 M HNO 3 aqueous by the weight loss technique and potentiodynamic polarization. The results showed that the butanolic extract is a good inhibitor and the inhibition efficiency increases with increasing of concentration of the inhibitor. The adsorption of this extract on the copper specimen surface was spontaneous and obeyed the Langmuir's adsorption isotherm. Large value of adsorption equilibrium Constant (K ads  = 35 L g -1 ) was obtained. The polarization experiments confirmed the data obtained by gravimetric weight-loss. Tafel plot of polarization curves indicates that the extract acts as a mixed type inhibitor.

  8. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  9. Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents.

    PubMed

    Shi, Yan; Xia, Xueying; Li, Jingdan; Wang, Jing; Zhao, Tiantian; Yang, Hongmin; Jiang, Jianchun; Jiang, Xiaoxiang

    2016-12-01

    The solvolysis behavior and reaction kinetics of the three components of biomass (cellulose, hemicelluloses and lignin) liquefied in polyhydric alcohols (PEG 400 or glycerol) were investigated in this paper. Three stages were observed during the solvolysis process and the main degradation stage could be further divided into two zones. The influences of solvents on the liquefaction process of three main components were compared. Based on Starink and Malek methods, kinetic parameters and mechanism functions were obtained. The derived average activation energy of cellulose, hemicellulose and lignin were 108.73, 95.66 and 94.13kJmol -1 in PEG 400, while the values were 102.16, 77.43 and 89.10kJmol -1 in glycerol, respectively. Higher efficiency was observed when using glycerol as solvent, which could be ascribed to the higher polarity value of glycerol. The conversion curves calculated with obtained mechanism models and kinetic parameters were in good agreement with the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. X-ray variability in active galaxy nuclei and quasars in less than one day

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Feigelson, E.; Griffiths, R. E.; Henry, J. P.; Tananbaum, H.

    1980-01-01

    Data obtained from the Einstein Observatory demonstrating variations in X-ray emission from the nuclei of active galaxies and quasars on time scales of hours rather than previously observed days or years is presented. Light curves obtained from the Einstein imaging proportional counter for the Seyfert 1 galaxy NGC 6814 and from the High Resolution Imager for the quasars OX 169 and 3C 273 are illustrated, and variations by factors greater than two on time scales less than 20,000 sec for the first two objects and by a factor of 10% on a time scale over 50,000 sec for 3C 273 are pointed out. The measurements are also used to determine that thermal bremsstrahlung cannot be the cause of the intensity decay in OX 169, and that, in the absence of relativistic effects, the efficiency for energy release in the matter involved in the emission of 3C 273 is at least 0.1.

  11. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    PubMed

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  12. The Cluster AgeS Experiment (CASE). Detecting Aperiodic Photometric Variability with the Friends of Friends Algorithm

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Narloch, W.; Pietrukowicz, P.; Thompson, I. B.; Pych, W.; Poleski, R.

    2018-03-01

    We adapt the friends of friends algorithm to the analysis of light curves, and show that it can be succesfully applied to searches for transient phenomena in large photometric databases. As a test case we search OGLE-III light curves for known dwarf novae. A single combination of control parameters allows us to narrow the search to 1% of the data while reaching a ≍90% detection efficiency. A search involving ≍2% of the data and three combinations of control parameters can be significantly more effective - in our case a 100% efficiency is reached. The method can also quite efficiently detect semi-regular variability. In particular, 28 new semi-regular variables have been found in the field of the globular cluster M22, which was examined earlier with the help of periodicity-searching algorithms.

  13. Light-curve Analysis of Neon Novae

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2016-01-01

    We analyzed light curves of five neon novae, QU Vul, V351 Pup, V382 Vel, V693 CrA, and V1974 Cyg, and determined their white dwarf (WD) masses and distance moduli on the basis of theoretical light curves composed of free-free and photospheric emission. For QU Vul, we obtained a distance of d ˜ 2.4 kpc, reddening of E(B - V) ˜ 0.55, and WD mass of MWD = 0.82-0.96 {M}⊙ . This suggests that an oxygen-neon WD lost a mass of more than ˜ 0.1 {M}⊙ since its birth. For V351 Pup, we obtained d˜ 5.5 {{kpc}}, E(B-V)˜ 0.45, and {M}{{WD}}=0.98-1.1 {M}⊙ . For V382 Vel, we obtained d˜ 1.6 {{kpc}}, E(B-V)˜ 0.15, and {M}{{WD}}=1.13-1.28 {M}⊙ . For V693 CrA, we obtained d˜ 7.1 {{kpc}}, E(B-V)˜ 0.05, and {M}{{WD}}=1.15-1.25 {M}⊙ . For V1974 Cyg, we obtained d˜ 1.8 {{kpc}}, E(B-V)˜ 0.30, and {M}{{WD}}=0.95-1.1 {M}⊙ . For comparison, we added the carbon-oxygen nova V1668 Cyg to our analysis and obtained d˜ 5.4 {{kpc}}, E(B-V)˜ 0.30, and {M}{{WD}}=0.98-1.1 {M}⊙ . In QU Vul, photospheric emission contributes 0.4-0.8 mag at most to the optical light curve compared with free-free emission only. In V351 Pup and V1974 Cyg, photospheric emission contributes very little (0.2-0.4 mag at most) to the optical light curve. In V382 Vel and V693 CrA, free-free emission dominates the continuum spectra, and photospheric emission does not contribute to the optical magnitudes. We also discuss the maximum magnitude versus rate of decline relation for these novae based on the universal decline law.

  14. The relationship between sleep and glucagon-like peptide 1 in patients with abnormal glucose tolerance.

    PubMed

    Reutrakul, Sirimon; Sumritsopak, Rungtip; Saetung, Sunee; Chanprasertyothin, Suwannee; Anothaisintawee, Thunyarat

    2017-12-01

    Glucagon-like peptide 1 plays a role in glucose regulation. Sleep disturbances (obstructive sleep apnea, insufficient or poor sleep quality) have been shown to adversely affect glucose metabolism. This study aimed to explore the relationship between sleep and glucagon-like peptide 1 regulation in patients with abnormal glucose tolerance. Seventy-one adults with haemoglobin A1c levels between 5.7% and < 6.5% and no history of diabetes participated. Habitual sleep duration and efficiency were obtained from 7-day actigraphy recordings. Obstructive sleep apnea was assessed using an overnight home monitor. Glucagon-like peptide 1 levels were measured during a 75-g glucose tolerance. The area under the curve of glucagon-like peptide 1 was calculated. The mean age (SD) was 55.1 (8.3) years and median (interquartile range) haemoglobin A1c was 5.97% (5.86, 6.23). There was no relationship between sleep duration or efficiency and fasting or area under the curve glucagon-like peptide 1. Glucagon-like peptide 1 levels did not differ among those sleeping ≤ 5.75, > 5.75-< 6.5 or ≥ 6.5 h per night. Increasing apnea-hypopnea index, an indicator of obstructive sleep apnea severity, correlated with lower area under the curve glucagon-like peptide 1 (B -0.242, P = 0.045), but not with fasting glucagon-like peptide 1 (B -0.213, P = 0.079). After adjusting for sex, haemoglobin A1c and body mass index, increasing apnea-hypopnea index was negatively associated with having area under the curve glucagon-like peptide 1 in the highest quartile (odds ratio 0.581, P = 0.028, 95% CI 0.359, 0.942). This study demonstrated that increasing obstructive sleep apnea severity was associated with lower glucagon-like peptide 1 response to glucose challenge. This could possibly be an additional mechanism by which obstructive sleep apnea affects glucose metabolism. Whether raising glucagon-like peptide 1 levels in patients with abnormal glucose tolerance with more severe obstructive sleep apnea will be beneficial should be explored. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  15. The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.

    PubMed

    Smith, D J; Schulte, M; Bischof, J C

    1998-10-01

    Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled volume values for Lpg and ELp were very similar, but the overall fit was considered worse than for the individual volume parameters. A unique way of presenting the curve-fitting results supports a clear trend of reduction of both biophysical parameters in the presence of DMSO, and no clear trend in cooling rate dependence of the biophysical parameters. In addition, these results suggest that close proximity of the experimental cell volume data to the equilibrium volume curve may significantly reduce the efficiency of the curve-fitting process.

  16. Early vertical correction of the deep curve of Spee.

    PubMed

    Martins, Renato Parsekian

    2017-01-01

    Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially.

  17. Organic Model of Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Inagaki, T.; Kawabe, T.; Wada, K.

    1987-04-01

    Extinction efficiency of grains is calculated from the Mie formula on the premise that the grains are of organic composition. The optical constants adopted for the calculations are those of E. coli, polystyrene and bovine albumin. The grain radius a is assumed to obey a distribution of the form N(a) ∝ a-α and the value of α is chosen so as to make the calculated extinction curve match the observed interstellar extinction curve. Although the calculated curve gives a reasonably good fit to the observed extinction curve for wavelengths less than 2100 Å, at longer wavelength regions, agreement is poor. It is concluded that another component is required for the organic model to be viable.

  18. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    PubMed

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  19. Optimization of Composite Structures with Curved Fiber Trajectories

    NASA Astrophysics Data System (ADS)

    Lemaire, Etienne; Zein, Samih; Bruyneel, Michael

    2014-06-01

    This paper studies the problem of optimizing composites shells manufactured using Automated Tape Layup (ATL) or Automated Fiber Placement (AFP) processes. The optimization procedure relies on a new approach to generate equidistant fiber trajectories based on Fast Marching Method. Starting with a (possibly curved) reference fiber direction defined on a (possibly curved) meshed surface, the new method allows determining fibers orientation resulting from a uniform thickness layup. The design variables are the parameters defining the position and the shape of the reference curve which results in very few design variables. Thanks to this efficient parameterization, maximum stiffness optimization numerical applications are proposed. The shape of the design space is discussed, regarding local and global optimal solutions.

  20. Robust estimation of pulse wave transit time using group delay.

    PubMed

    Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C

    2014-03-01

    To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.

  1. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing.

    PubMed

    Zhang, Yifan; Dai, Yifan; Tie, Guipeng; Hu, Hao

    2016-10-10

    As a kind of important nonlinear optical element, KDP crystal has great demand in the inertial confinement fusion system. Based on the dissolution mechanism of solid materials, the factors that affect the material removal rate of KDP crystal in magnetorheological (MR) water-dissolution polishing are investigated to improve the machining efficiency. It is found that the material removal rate is proportional to the product of the saturation concentration and diffusion coefficient, and the relationship between the removal efficiency and the temperature meets the unilateral Gaussian function. Polishing experiments are carried out on a magnetorheological finishing (MRF) machine with self-designed MRF fluid heating devices. The experimental results show that practical efficiency-temperature curve is consistent with the theoretical curve, and the maximum machining efficiency increases by about 50% with the rise of temperature from 294 to 302 K. Meanwhile, when the MR fluid temperature is lower than 308 K, the crystal surface quality and surface roughness in different processing temperatures have no remarkable difference with constant crystal temperature (294 K). This research indicates that it is feasible to drastically improve KDP crystal MRF efficiency by controlling the processing temperature.

  2. Relative loading on biplane wings

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1934-01-01

    Recent improvements in stress analysis methods have made it necessary to revise and to extend the loading curves to cover all conditions of flight. This report is concerned with a study of existing biplane data by combining the experimental and theoretical data to derive a series of curves from which the lift curves of the individual wings of a biplane may be obtained.

  3. VizieR Online Data Catalog: K2-141 b radial velocity and light curve (Barragan+, 2018)

    NASA Astrophysics Data System (ADS)

    Barragan, O.; Gandolfi, D.; Dai, F.; Livingston, J.; Persson, C. M.; Hirano, T.; Narita, N.; Csizmadia, Sz.; Winn, J. N.; Nespral, D.; Prieto-Arranz, J.; Smith, A. M. S.; Nowak, G.; Albrecht, S.; Antoniciello, G.; Bo Justesen, A.; Cabrera, J.; Cochran, W. D.; Deeg, H..; Eigmuller, P.; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E.; Hatzes, A. P.; Hidalgo, D.; Johnson, M. C.; Korth, J.; Palle, E.; Patzold, M.; Rauer, H.; Tanaka, Y.; van Eylen, V.

    2018-01-01

    Light curve and radial velocities for K2-141 (EPIC 246393474). Light curve comes from campaing 12 of the extended Kepler mission, K2. Radial velocity data was obtained with HARPS at th3 3.6m telescope, ESO. FIES data comes from observations at the Nordic Optical Telescope (NOT). (3 data files).

  4. Extracting information from S-curves of language change.

    PubMed

    Ghanbarnejad, Fakhteh; Gerlach, Martin; Miotto, José M; Altmann, Eduardo G

    2014-12-06

    It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period and slow end). In this paper, we analyse how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g. the Bass dynamics on complex networks), we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Modeling the impact of spatial relationships on horizontal curve safety.

    PubMed

    Findley, Daniel J; Hummer, Joseph E; Rasdorf, William; Zegeer, Charles V; Fowler, Tyler J

    2012-03-01

    The curved segments of roadways are more hazardous because of the additional centripetalforces exerted on a vehicle, driver expectations, and other factors. The safety of a curve is dependent on various factors, most notably by geometric factors, but the location of a curve in relation to other curves is also thought to influence the safety of those curves because of a driver's expectation to encounter additional curves. The link between an individual curve's geometric characteristics and its safety performance has been established, but spatial considerations are typically not included in a safety analysis. The spatial considerations included in this research consisted of four components: distance to adjacent curves, direction of turn of the adjacent curves, and radius and length of the adjacent curves. The primary objective of this paper is to quantify the spatial relationship between adjacent horizontal curves and horizontal curve safety using a crash modification factor. Doing so enables a safety professional to more accurately estimate safety to allocate funding to reduce or prevent future collisions and more efficiently design new roadway sections to minimize crash risk where there will be a series of curves along a route. The most important finding from this research is the statistical significance of spatial considerations for the prediction of horizontal curve safety. The distances to adjacent curves were found to be a reliable predictor of observed collisions. This research recommends a model which utilizes spatial considerations for horizontal curve safety prediction in addition to current Highway Safety Manual prediction capabilities using individual curve geometric features. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Calculation of the Local Free Energy Landscape in the Restricted Region by the Modified Tomographic Method.

    PubMed

    Chen, Changjun

    2016-03-31

    The free energy landscape is the most important information in the study of the reaction mechanisms of the molecules. However, it is difficult to calculate. In a large collective variable space, a molecule must take a long time to obtain the sufficient sampling during the simulation. To save the calculation quantity, decreasing the sampling region and constructing the local free energy landscape is required in practice. However, the restricted region in the collective variable space may have an irregular shape. Simply restricting one or more collective variables of the molecule cannot satisfy the requirement. In this paper, we propose a modified tomographic method to perform the simulation. First, it divides the restricted region by some hyperplanes and connects the centers of hyperplanes together by a curve. Second, it forces the molecule to sample on the curve and the hyperplanes in the simulation and calculates the free energy data on them. Finally, all the free energy data are combined together to form the local free energy landscape. Without consideration of the area outside the restricted region, this free energy calculation can be more efficient. By this method, one can further optimize the path quickly in the collective variable space.

  7. Cocaine self-administration under variable-dose schedules in squirrel monkeys.

    PubMed

    Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W

    2006-06-01

    Squirrel monkeys self-administered cocaine under a variable-dose schedule, with the dose varied from injection to injection. As in earlier studies with rats, post-injection pauses varied as a monotonic function of dose, allowing a cocaine dose-effect curve to be obtained during each session. These curves were shifted by pretreatment with dopamine antagonists, demonstrating that this procedure may provide an efficient means of evaluating treatments that affect drug self-administration. However, drug intake eventually became "dysregulated" after extensive training (100-300 sessions), with relatively short pauses following all doses. Dose-sensitivity was restored by adding a 60-s timeout period after each injection, suggesting that dysregulation occurred because the monkeys developed a tendency to self-administer another injection before the previous injection had been adequately distributed. Finally, when the response requirement under the variable-dose schedule was increased from 1 to 10, both the post-injection pause and the rate of responding following the pause ("run rates") were found to vary with dose. The dose-dependency of run rates suggests that post-injection pauses reflect not only motivational factors, such as satiety, but also the direct effects of cocaine on leverpressing.

  8. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua

    2015-12-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.

  9. Development and pilot line production of lithium doped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payne, P. A.

    1972-01-01

    Scaling up the BCl3 without O2 diffusion beyond 30 to 40 cells was investigated by using a 100 cell capacity diffusion boat which held the cells vertically. Sheet resistances and I-V curves were uniform with 10 to 20 cells spaced along the entire boat, so the quantity was increased to 40 and then 60 cells per diffusion. There was no change in cell output and uniformity going from 20 to 40 cells per diffusion; however only half the lithium cells fabricated from slices diffused in the 60 cell diffusion had efficiencies of 11% or better. Although uniform sheet resistances and I-V characteristic curves were obtained with up to 60 cells in the BCl3 with O2 diffusion, the short circuit currents were approximately 15% lower than the anticipated 135 to 140 mA. Consequently, work on this diffusion process has been aimed solely at increasing the short circuit current. The diffusion temperature was lowered from 1055 to 1000 and 950 C, and at each of these temperatures variations in diffusion time were investigated. At 1000 C short circuit currents were approximately 10 mA higher, 130 rather than 120 mA average.

  10. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    NASA Astrophysics Data System (ADS)

    Candefjord, Stefan; Nyberg, Morgan; Jalkanen, Ville; Ramser, Kerstin; Lindahl, Olof A.

    2010-12-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard--histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization.

  11. Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Paulson, J. W., Jr.

    1977-01-01

    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps.

  12. Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay

    PubMed Central

    Yuan, Yahong; Liu, Bin; Wang, Ling; Yue, Tianli

    2015-01-01

    An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice. PMID:26488469

  13. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy.

    PubMed

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  14. Substructure analysis using NICE/SPAR and applications of force to linear and nonlinear structures. [spacecraft masts

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia; Prasad, Venkatesh; Darbhamulla, Siva Prasad; Bhati, Ravinder; Lin, Cai

    1987-01-01

    Parallel computing studies are presented for a variety of structural analysis problems. Included are the substructure planar analysis of rectangular panels with and without a hole, the static analysis of space mast, using NICE/SPAR and FORCE, and substructure analysis of plane rigid-jointed frames using FORCE. The computations are carried out on the Flex/32 MultiComputer using one to eighteen processors. The NICE/SPAR runstream samples are documented for the panel problem. For the substructure analysis of plane frames, a computer program is developed to demonstrate the effectiveness of a substructuring technique when FORCE is enforced. Ongoing research activities for an elasto-plastic stability analysis problem using FORCE, and stability analysis of the focus problem using NICE/SPAR are briefly summarized. Speedup curves for the panel, the mast, and the frame problems provide a basic understanding of the effectiveness of parallel computing procedures utilized or developed, within the domain of the parameters considered. Although the speedup curves obtained exhibit various levels of computational efficiency, they clearly demonstrate the excellent promise which parallel computing holds for the structural analysis problem. Source code is given for the elasto-plastic stability problem and the FORCE program.

  15. Satellite-derived land covers for runoff estimation using SCS-CN method in Chen-You-Lan Watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Yan; Lin, Chao-Yuan

    2017-04-01

    The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.

  16. The complex phase gradient method applied to leaky Lamb waves.

    PubMed

    Lenoir, O; Conoir, J M; Izbicki, J L

    2002-10-01

    The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.

  17. A supernova origin for dust in a high-redshift quasar.

    PubMed

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  18. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves

    PubMed Central

    Surendranath, Yogesh; Bediako, D. Kwabena; Nocera, Daniel G.

    2012-01-01

    An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf. PMID:22689962

  19. Planned Missing Designs to Optimize the Efficiency of Latent Growth Parameter Estimates

    ERIC Educational Resources Information Center

    Rhemtulla, Mijke; Jia, Fan; Wu, Wei; Little, Todd D.

    2014-01-01

    We examine the performance of planned missing (PM) designs for correlated latent growth curve models. Using simulated data from a model where latent growth curves are fitted to two constructs over five time points, we apply three kinds of planned missingness. The first is item-level planned missingness using a three-form design at each wave such…

  20. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    NASA Astrophysics Data System (ADS)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  1. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  2. Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method

    NASA Astrophysics Data System (ADS)

    Verachtert, R.; Lombaert, G.; Degrande, G.

    2018-03-01

    This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.

  3. On the reduction of occultation light curves. [stellar occultations by planets

    NASA Technical Reports Server (NTRS)

    Wasserman, L.; Veverka, J.

    1973-01-01

    The two basic methods of reducing occultation light curves - curve fitting and inversion - are reviewed and compared. It is shown that the curve fitting methods have severe problems of nonuniqueness. In addition, in the case of occultation curves dominated by spikes, it is not clear that such solutions are meaningful. The inversion method does not suffer from these drawbacks. Methods of deriving temperature profiles from refractivity profiles are then examined. It is shown that, although the temperature profiles are sensitive to small errors in the refractivity profile, accurate temperatures can be obtained, particularly at the deeper levels of the atmosphere. The ambiguities that arise when the occultation curve straddles the turbopause are briefly discussed.

  4. MM Herculis - An eclipsing binary of the RS CVn

    NASA Technical Reports Server (NTRS)

    Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.

    1983-01-01

    V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.

  5. [Kinematics Modeling and Analysis of Central-driven Robot for Upper Limb Rehabilitation after Stroke].

    PubMed

    Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping

    2015-12-01

    The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.

  6. Photometric and spectroscopic investigation of the oscillating Algol type binary: EW Boo

    NASA Astrophysics Data System (ADS)

    Doğruel, Mustafa Burak; Gürol, Birol

    2015-10-01

    We obtained the physical and geometrical parameters of the EW Boo system, which exhibits short period and small amplitude pulsations as well as brightness variations due to orbital motion of components. Towards this end we carried out photometric observations at Ankara University Kreiken Observatory (AUKO) as well as spectroscopic observations at TUBITAK National Observatory (TNO). The light and radial velocity curves obtained from these observations have been simultaneously analyzed with PHOEBE and the absolute parameters of the system along with the geometric parameters of the components have been determined. Using model light curves of EW Boo, light curve regions in which the pulsations are active have been determined and as a result of analyses performed in the frequency region, characteristic parameters of pulsations have been obtained. We find that the results are compatible with current parameters of similar systems in the literature. The evolutionary status of the components is propounded and discussed.

  7. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  8. Estimation of the uncertainty of analyte concentration from the measurement uncertainty.

    PubMed

    Brown, Simon; Cooke, Delwyn G; Blackwell, Leonard F

    2015-09-01

    Ligand-binding assays, such as immunoassays, are usually analysed using standard curves based on the four-parameter and five-parameter logistic models. An estimate of the uncertainty of an analyte concentration obtained from such curves is needed for confidence intervals or precision profiles. Using a numerical simulation approach, it is shown that the uncertainty of the analyte concentration estimate becomes significant at the extremes of the concentration range and that this is affected significantly by the steepness of the standard curve. We also provide expressions for the coefficient of variation of the analyte concentration estimate from which confidence intervals and the precision profile can be obtained. Using three examples, we show that the expressions perform well.

  9. CURV 3: Characteristics and mission applications

    NASA Astrophysics Data System (ADS)

    Perkins, W. W.; Brady, L. K.

    1984-03-01

    The Cable-Controlled Underwater Recovery Vehicle (CURV) program was begun by NOSC for the specific purpose of developing economical systems to recover test ordnance at NOSC's Long Beach and San Clemente Island test ranges. CURV 3 is the latest in this series of tethered, unmanned, remotely controlled vehicles and its present capabilities far exceed the original CURV 1. Originally conceived for use as a search and recovery vehicle, CURV has evolved into a versatile and easily adaptable multipurpose work vehicle capable of performing search and recovery tasks as well as pursuing test, evaluation, exploration, and work projects. Basically, CURV is a composite of integrated subsystems including such items as propulsion, search and navigation, optics, hydraulics, and tools. Because it is unmanned and does not require life support or other complex support systems, CURV is able to perform most undersea tasks more economically and efficiently than maned systems. Also, since it is powered and controlled from the surface, CURV has a continuous, unlimited operating capability. Under emergency conditions, the vehicle can operate to 10,000-foot depths. CURV can be easily transported to any spot in the world. Upon arrival of the vehicle, control van, cable, and support gear can be mounted on a suitable ship of opportunity.

  10. Dislocation based controlling of kinematic hardening contribution to simulate primary and secondary stages of uniaxial ratcheting

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.

    2017-07-01

    The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.

  11. Optimization and validation of moving average quality control procedures using bias detection curves and moving average validation charts.

    PubMed

    van Rossum, Huub H; Kemperman, Hans

    2017-02-01

    To date, no practical tools are available to obtain optimal settings for moving average (MA) as a continuous analytical quality control instrument. Also, there is no knowledge of the true bias detection properties of applied MA. We describe the use of bias detection curves for MA optimization and MA validation charts for validation of MA. MA optimization was performed on a data set of previously obtained consecutive assay results. Bias introduction and MA bias detection were simulated for multiple MA procedures (combination of truncation limits, calculation algorithms and control limits) and performed for various biases. Bias detection curves were generated by plotting the median number of test results needed for bias detection against the simulated introduced bias. In MA validation charts the minimum, median, and maximum numbers of assay results required for MA bias detection are shown for various bias. Their use was demonstrated for sodium, potassium, and albumin. Bias detection curves allowed optimization of MA settings by graphical comparison of bias detection properties of multiple MA. The optimal MA was selected based on the bias detection characteristics obtained. MA validation charts were generated for selected optimal MA and provided insight into the range of results required for MA bias detection. Bias detection curves and MA validation charts are useful tools for optimization and validation of MA procedures.

  12. Prediction of ttt curves of cold working tool steels using support vector machine model

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  13. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    PubMed

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Aleatory Uncertainty and Scale Effects in Computational Damage Models for Failure and Fragmentation

    DTIC Science & Technology

    2014-09-01

    larger specimens, small specimens have, on average, higher strengths. Equivalently, because curves for small specimens fall below those of larger...the material strength associated with each realization parameter R in Equation (7), and strength distribution curves associated with multiple...effects in brittle media [58], which applies micromorphological dimensional analysis to obtain a universal curve which closely fits rate-dependent

  15. Perceptibility curve test for digital radiographs before and after correction for attenuation and correction for attenuation and visual response.

    PubMed

    Li, G; Welander, U; Yoshiura, K; Shi, X-Q; McDavid, W D

    2003-11-01

    Two digital image processing methods, correction for X-ray attenuation and correction for attenuation and visual response, have been developed. The aim of the present study was to compare digital radiographs before and after correction for attenuation and correction for attenuation and visual response by means of a perceptibility curve test. Radiographs were exposed of an aluminium test object containing holes ranging from 0.03 mm to 0.30 mm with increments of 0.03 mm. Fourteen radiographs were exposed with the Dixi system (Planmeca Oy, Helsinki, Finland) and twelve radiographs were exposed with the F1 iOX system (Fimet Oy, Monninkylä, Finland) from low to high exposures covering the full exposure ranges of the systems. Radiographs obtained from the Dixi and F1 iOX systems were 12 bit and 8 bit images, respectively. Original radiographs were then processed for correction for attenuation and correction for attenuation and visual response. Thus, two series of radiographs were created. Ten viewers evaluated all the radiographs in the same random order under the same viewing conditions. The object detail having the lowest perceptible contrast was recorded for each observer. Perceptibility curves were plotted according to the mean of observer data. The perceptibility curves for processed radiographs obtained with the F1 iOX system are higher than those for originals in the exposure range up to the peak, where the curves are basically the same. For radiographs exposed with the Dixi system, perceptibility curves for processed radiographs are higher than those for originals for all exposures. Perceptibility curves show that for 8 bit radiographs obtained from the F1 iOX system, the contrast threshold was increased in processed radiographs up to the peak, while for 12 bit radiographs obtained with the Dixi system, the contrast threshold was increased in processed radiographs for all exposures. When comparisons were made between radiographs corrected for attenuation and corrected for attenuation and visual response, basically no differences were found. Radiographs processed for correction for attenuation and correction for attenuation and visual response may improve perception, especially for 12 bit originals.

  16. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve

    NASA Astrophysics Data System (ADS)

    Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  17. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  18. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawding, Dan; Hillson, Todd D.

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The fivemore » assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch marks and lack of secondary studies made it difficult to test Jolly-Seber assumptions, necessary for unbiased estimates. We recommend that individual tags be applied to carcasses to provide a statistical basis for goodness of fit tests and ultimately model selection. Secondary or double marks should be applied to assess tag loss and male and female chum salmon carcasses should be enumerated separately. Carcass tagging population estimates at the two other sites were biased low due to limited sampling. The Area-Under-the-Curve escapement estimates at all three sites were 36% to 76% of Jolly-Seber estimates. Area-Under-the Curve estimates are likely biased low because previous assumptions that observer efficiency is 100% and residence time is 10 days proved incorrect. If managers continue to rely on Area-Under-the-Curve to estimate mainstem Columbia River spawners, a methodology is provided to develop annual estimates of observer efficiency and residence time, and to incorporate uncertainty into the Area-Under-the-Curve escapement estimate.« less

  19. Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Hasanirokh, K.; Asgari, A.

    2018-07-01

    In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.

  20. Comparison of Spatiotemporal Mapping Techniques for Enormous Etl and Exploitation Patterns

    NASA Astrophysics Data System (ADS)

    Deiotte, R.; La Valley, R.

    2017-10-01

    The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, advanced military sensors, wearables, automotive tracking, etc. However, current methods of spatiotemporal encoding and exploitation simultaneously limit the use of that information and increase computing complexity. Current spatiotemporal encoding methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano's 1890 space filling curve, for spatial hashing and interleaving temporal hashes to generate a spatiotemporal encoding. However, there exist other space-filling curves, and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential to map spatiotemporal data without interleaving. The concatenation of Niemeyer's and Usher's techniques provide a highly efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, and utility. This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides a comparison of the methods.

  1. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  2. Options for reducing carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.; Price, Lynn

    1992-03-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.

  3. A FEM-based method to determine the complex material properties of piezoelectric disks.

    PubMed

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is considered in the adjustment procedure, the obtained material properties allow simulating the displacement amplitude accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.

    PubMed Central

    Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1992-01-01

    In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full occupancy of high-affinity binding sites. Therefore our data provide evidence for a lack of spare high-affinity insulin receptors in skeletal muscle. PMID:1323279

  5. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.

    PubMed

    Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1992-08-01

    In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full occupancy of high-affinity binding sites. Therefore our data provide evidence for a lack of spare high-affinity insulin receptors in skeletal muscle.

  6. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  7. Studies of excited states of HeH by the multi-reference configuration-interaction method

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Woo; Gim, Yeongrok

    2013-11-01

    The excited states of a HeH molecule for an n of up to 4 are studied using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. The advantages of using two different ways of locating Rydberg orbitals, either on the atomic nucleus or at the charge centre of molecules, are exploited by limiting their application to different ranges of R. Using this method, the difference between the experimental binding energies of the lower Rydberg states obtained by Ketterle and the ab initio results obtained by van Hemert and Peyerimhoff is reduced from a few hundreds of wave numbers to a few tens of wave numbers. A substantial improvement in the accuracy allows us to obtain quantum defect curves characterized by the correct behaviour. We obtain several Rydberg series that have more than one member, such as the ns series (n = 2, 3 and 4), npσ series (n = 3 and 4), npπ (n = 2, 3, 4) series and ndπ (n = 3, 4) series. These quantum defect curves are compared to the quantum defect curves obtained by the R-matrix or the multichannel quantum defect theory methods.

  8. Quenching And Luminescence Efficiency Of Nd3+ In YAG

    NASA Astrophysics Data System (ADS)

    Lupei, Voicu; Lupei, Aurelia; Georgescu, Serban; Ionescu, Christian I.; Yen, William M.

    1989-05-01

    The effect of the concentration luminescence quenching of the 4F 3/2, level of Nd3+ in YAG on the relative efficiency is presented. Based on the analysis of the decay curves in terms of the energy transfer theory, an analytical expression for the relative luminescence efficiency is obtained. In the low concentration range (up to q,1.5 at % Nd3+), the efficiency linearly decreases when Nd3+ concentration increases. It is also stressed that pairs quenching contribute about 20 % to the nonradiative energy transfer losses. Quantum efficiency of luminescence is an important parameter for the characterization of laser active media; its lowering is due to either multiphonon relaxation or energy transfer processes. The multiphonon non-radiative probability depends on the energy gap between levels, on the phonon energy and temperature; usually at low activator doping it is practically independent on concentration. On the other hand, energy transfer losses show a marked dependence on activator concentration, a fact that severely limits the range of useful con-centration of active centers in some laser crystals. In the YAG:Nd case the minimum energy gap between the Stark components of the 4F,I.) and the next lower level 4F15/2 is of about 4700 cm-1. Since in YAG tree phonons most effdbtively coupled to the Rare pi.th ions have an energy of 1, 700 cm-1, the probability for multiphonon relaxation from the 'F3/, level, even at room temperature, is very low and therefore for low Nd 3+ concentrations quantum efficiency is expected to be close to 1.

  9. Efficiency measurement and uncertainty discussion of an electric engine powered by a ``self-breathing'' and ``self-humidified'' proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H2 high heating value (HHV), a tank-to-wheel integral efficiency of (18.2±0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5±1.3)% in complete dead-end operation mode.

  10. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.

    PubMed

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode.

  11. First archaeointensity catalogue and intensity secular variation curve for Iberia spanning the last 3000 years

    NASA Astrophysics Data System (ADS)

    Molina-Cardín, Alberto; Campuzano, Saioa A.; Rivero, Mercedes; Osete, María Luisa; Gómez-Paccard, Miriam; Pérez-Fuentes, José Carlos; Pavón-Carrasco, F. Javier; Chauvin, Annick; Palencia-Ortas, Alicia

    2017-04-01

    In this work we present the first archaeomagnetic intensity database for the Iberian Peninsula covering the last 3 millennia. In addition to previously published archaeointensities (about 100 data), we present twenty new high-quality archaeointensities. The new data have been obtained following the Thellier and Thellier method including pTRM-checks and have been corrected for the effect of the anisotropy of thermoremanent magnetization upon archaeointensity estimates. Importantly, about 50% of the new data obtained correspond to the first millennium BC, a period for which there was not possible to develop an intensity palaeosecular variation curve before due to the lack of high-quality archaeointensity data. The different qualities of the data included in the Iberian dataset have been evaluated following different palaeomagnetic criteria, such as the number of specimens analysed, the laboratory protocol applied and the kind of material analysed. Finally, we present the first intensity palaeosecular variation curve for the Iberian Peninsula centred at Madrid for the last 3000 years. In order to obtain the most reliable secular variation curve, it has been generated using only selected high-quality data from the catalogue.

  12. Stretching a Curved Surface in a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Sajid, M.; N., Ali; T., Javed; Z., Abbas

    2010-02-01

    This work is concerned with the viscous flow due to a curved stretching sheet. The similarity solution of the problem is obtained numerically by a shooting method using the Runge-Kutta algorithm. The physical quantities of interest like the fluid velocity and skin friction coefficient are obtained and discussed under the influence of dimensionless curvature. It is evident from the results that dimensionless curvature causes an increase in boundary layer thickness and a decrease in the skin friction coefficient.

  13. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  14. Photomechanical model of tooth enamel ablation by Er-laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Shatilova, K. V.; Skrypnik, A. V.; Vostryakov, R. G.; Maykapar, N. O.

    2012-03-01

    The photomechanical model of ablation of human tooth enamel is described in this work. It takes into account the structural peculiarities of enamel: free water in the enamel pores or cracks. We consider the photomechanical destruction of the enamel rods of hydroxyapatite by the pressure of water contained in the enamel pores and heated by laser radiation. This model takes into account attenuation by the Lambert-Beer law when radiation passes through the tissue and the fact that the tissue removal occurs when a unit volume of water was heated to the critical temperature. Decreasing logarithmic dependence of the enamel removal efficiency on the energy density was obtained as a result of the calculations. The shape of this function follows the shape of the experimental curve.

  15. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Zhigang, Fang

    2017-03-01

    This paper focused on two rhodamine chemosensors for cysteine optical sensing. To minimize their photobleaching caused by excitation light, up-conversion NaYF4:Yb3 +/Er3 + nanocrystals were prepared and used as excitation host. Photophysical measurement on this host and the two chemosensors suggested that chemosensor absorption matched well with host emission. An efficient energy transfer between them was discussed and confirmed by their spectral analysis and emission lifetime comparison. Job's plot suggested that our chemosensors followed a simple recognition mechanism towards cysteine with binding stoichiometry of 1:1. Both chemosensors showed emission "off-on" effect triggered by cysteine and good photostability. Linear working curves with maximum sensitivity of 2.61 were obtained. S substituent was positive to improve selectivity.

  16. I-V Curves from Photovoltaic Modules Deployed in Tucson

    NASA Astrophysics Data System (ADS)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  17. Early vertical correction of the deep curve of Spee

    PubMed Central

    Martins, Renato Parsekian

    2017-01-01

    ABSTRACT Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially. PMID:28658363

  18. Dehydrated Carbon Coupled with Laser-Induced Breakdown Spectrometry (LIBS) for the Determination of Heavy Metals in Solutions.

    PubMed

    Niu, Guanghui; Shi, Qi; Xu, Mingjun; Lai, Hongjun; Lin, Qingyu; Liu, Kunping; Duan, Yixiang

    2015-10-01

    In this article, a novel and alternative method of laser-induced breakdown spectroscopy (LIBS) analysis for liquid sample is proposed, which involves the removal of metal ions from a liquid to a solid substrate using a cost-efficient adsorbent, dehydrated carbon, obtained using a dehydration reaction. Using this new technique, researchers can detect trace metal ions in solutions qualitatively and quantitatively, and the drawbacks of performing liquid analysis using LIBS can be avoided because the analysis is performed on a solid surface. To achieve better performance using this technique, we considered parameters potentially influencing both adsorption performance and LIBS analysis. The calibration curves were evaluated, and the limits of detection obtained for Cu(2+), Pb(2+), and Cr(3+) were 0.77, 0.065, and 0.46 mg/L, respectively, which are better than those in the previous studies. In addition, compared to other absorbents, the adsorbent used in this technique is much cheaper in cost, easier to obtain, and has fewer or no other elements other than C, H, and O that could result in spectral interference during analysis. We also used the recommended method to analyze spiked samples, obtaining satisfactory results. Thus, this new technique is helpful and promising for use in wastewater analysis and management.

  19. Transonic Drag Prediction Using an Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Levy, David W.

    2001-01-01

    This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.

  20. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  1. High pressure melting curve of platinum up to 35 GPa

    NASA Astrophysics Data System (ADS)

    Patel, Nishant N.; Sunder, Meenakshi

    2018-04-01

    Melting curve of Platinum (Pt) has been measured up to 35 GPa using our laboratory based laser heated diamond anvil cell (LHDAC) facility. Laser speckle method has been employed to detect onset of melting. High pressure melting curve of Pt obtained in the present study has been compared with previously reported experimental and theoretical results. The melting curve measured agrees well within experimental error with the results of Kavner et al. The experimental data fitted with simon equation gives (∂Tm/∂P) ˜25 K/GPa at P˜1 MPa.

  2. The Designs of Fins Air-Cooled Cylinders

    DTIC Science & Technology

    1939-06-28

    4 (a). EMer part of figure 4 clearly shows that, for one pnir of values of s and t, the heat transfer is a maximum. The peak values of the curves of...specified s” curves. Similarly, the peak values of the curves of constant values of t shown in &ure 4 (b) and of similar cwwes plotted for othm values of... picking the values of optimum g and t from these curves: PIots of tk type shown in figure 4 were obtained for - other \\ralues of M and Aplpa,/m by means

  3. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weiqun, E-mail: weiqunliu@home.swjtu.edu.cn; Liu, Congzhi; Ren, Bingyu

    2016-07-25

    A nonlinear wideband generator architecture by clamping the cantilever beam generator with a curve fixture is proposed. Devices with different nonlinear stiffness can be obtained by properly choosing the fixture curve according to the design requirements. Three available generator types are presented and discussed for polynomial curves. Experimental investigations show that the proposed mechanism effectively extends the operation bandwidth with good power performance. Especially, the simplicity and easy feasibility allow the mechanism to be widely applied for vibration generators in different scales and environments.

  4. Empirical constraints on closure temperatures from a single diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Lee, J. K. W.

    The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [lnÊRT^c vs. Tc*/TM] derived from these curves. When these parameters are plotted for known argon diffusion data and for a given diffusion size and cooling rate, it is found that the resultant curves are almost identical for all of the commonly dated K-Ar minerals - biotite, phlogopite, muscovite, hornblende and orthoclase - in spite of differences in their diffusion parameters. A common curve for Ar diffusion can be derived by least-squares fitting of all the Ar diffusion data and provides a way of predicting a ``model'' closure temperature Tcm from a single diffusion coefficient DM at temperature TM. Preliminary diffusion data for a labradorite lead to a Tcm of 507+/-17°C and a corresponding activation energy of about 65kcal/mol, given a grain size of 200μm and a cooling rate of 5°C/Ma. Curves for He diffusion in silicates (augite, quartz and sanidine) also overlap to a significant degree, both among themselves and with the Ar model curve, suggesting that a single model curve may be a good representation of noble gas closure temperatures in silicates. An analogous model curve for a selection of 18O data can also be constructed, but this curve differs from the Ar model curve. A single model curve for cationic species does not appear to exist, however, suggesting that chemical bonding relationships between the ionic size/charge and crystal structure may influence the closure temperatures of diffusing cations. An indication of the degree of overlap among the various curves for Ar, He, 18O and cations is also obtained by considering the dimensionless parameter E/RTc*; for the noble gases and 18O, E/RTc* values for the respective minerals are very similar, whereas for cations, there is significant dispersion. Given these constraints, this may be a potential method of estimating closure temperatures for certain diffusing species when there are limited diffusion data.

  5. Effects of Uncertainties in Hydrological Modelling. A Case Study of a Mountainous Catchment in Southern Norway

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Steinsland, Ingelin

    2016-04-01

    The aim of this study is to investigate how the inclusion of uncertainties in inputs and observed streamflow influence the parameter estimation, streamflow predictions and model evaluation. In particular we wanted to answer the following research questions: • What is the effect of including a random error in the precipitation and temperature inputs? • What is the effect of decreased information about precipitation by excluding the nearest precipitation station? • What is the effect of the uncertainty in streamflow observations? • What is the effect of reduced information about the true streamflow by using a rating curve where the measurement of the highest and lowest streamflow is excluded when estimating the rating curve? To answer these questions, we designed a set of calibration experiments and evaluation strategies. We used the elevation distributed HBV model operating on daily time steps combined with a Bayesian formulation and the MCMC routine Dream for parameter inference. The uncertainties in inputs was represented by creating ensembles of precipitation and temperature. The precipitation ensemble were created using a meta-gaussian random field approach. The temperature ensembles were created using a 3D Bayesian kriging with random sampling of the temperature laps rate. The streamflow ensembles were generated by a Bayesian multi-segment rating curve model. Precipitation and temperatures were randomly sampled for every day, whereas the streamflow ensembles were generated from rating curve ensembles, and the same rating curve was always used for the whole time series in a calibration or evaluation run. We chose a catchment with a meteorological station measuring precipitation and temperature, and a rating curve of relatively high quality. This allowed us to investigate and further test the effect of having less information on precipitation and streamflow during model calibration, predictions and evaluation. The results showed that including uncertainty in the precipitation and temperature input has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Reduced information in precipitation input resulted in a and a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using wrong rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions obtained using a wrong rating curve, the evaluation scores varies depending on the true rating curve. Generally, the best evaluation scores were not achieved for the rating curve used for calibration, but for a rating curves giving low variance in streamflow observations. Reduced information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores giving both better and worse scores. This case study shows that estimating the water balance is challenging since both precipitation inputs and streamflow observations have pronounced systematic component in their uncertainties.

  6. Understand Centrifugal Compressor stage curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, E.L.

    1986-08-01

    Multistage Centrifugal Compressor Performance is generally presented in the form of a composite curve showing discharge pressure and bhp plotted as a function of capacity. This composite curve represents the cumulative performance of each stage performance curve. A simple yet quite accurate means of measuring compressor total performance is to test each stage as a single-stage compressor, usually on air with atmospheric inlets. Stage curves are then generated from the test data and three important variables are plotted: head coefficient, work coefficient and adiabatic efficiency. These variables are plotted against a normalized flow coefficient, Q/N, which is inlet volume flowmore » (cfm) divided by impeller speed (rpm). The nomenclature used to define these stage variables changes from manufacturer to manufacturer; however, the parameters presented are the same. An understanding of each parameter's theoretical derivation and determination from test data will help the engineer reviewing test curves to be more cognizant of the interrelationships between these variables; specifically, how they affect overall machine pressure rise and power consumption.« less

  7. On the shape of the hospital industry long run average cost curve.

    PubMed Central

    Finkler, S A

    1979-01-01

    Empirical studies of the hospital industry have produced conflicting results with respect to the shape of the industry's long run average cost (LRAC) curve. Some of the studies have found a classical U-shaped curve. Others have produced results indicating that the LRAC curve is much closer to being L-shaped. Some theoretical support exists for both sets of findings. While classical theory predicts that the LRAC curve will be U-shaped, Alchian has presented theoretical arguments explaining why such curves would be L-shaped. This paper reconciles the results of these studies. The basis for the reconciliation is recognition of the failure of individual hospitals to produce all their individual product lines at efficient volumes. Such inefficient production is feasible and perhaps common, given the incentive structure which exists under current cost reimbursement systems. The implication of this paper is that large hospitals may have a greater potential for scale economies than has previously been recognized. PMID:528221

  8. On the shape of the hospital industry long run average cost curve.

    PubMed

    Finkler, S A

    1979-01-01

    Empirical studies of the hospital industry have produced conflicting results with respect to the shape of the industry's long run average cost (LRAC) curve. Some of the studies have found a classical U-shaped curve. Others have produced results indicating that the LRAC curve is much closer to being L-shaped. Some theoretical support exists for both sets of findings. While classical theory predicts that the LRAC curve will be U-shaped, Alchian has presented theoretical arguments explaining why such curves would be L-shaped. This paper reconciles the results of these studies. The basis for the reconciliation is recognition of the failure of individual hospitals to produce all their individual product lines at efficient volumes. Such inefficient production is feasible and perhaps common, given the incentive structure which exists under current cost reimbursement systems. The implication of this paper is that large hospitals may have a greater potential for scale economies than has previously been recognized.

  9. Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film.

    PubMed

    Sartori, Elen Romão; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2011-12-15

    The modification of a glassy carbon electrode with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film for the development of a biosensor is proposed. This approach provides an efficient method used to immobilize polyphenol oxidase (PPO) obtained from the crude extract of sweet potato (Ipomoea batatas (L.) Lam.). The principle of the analytical method is based on the inhibitory effect of sulfite on the activity of PPO, in the reduction reaction of o-quinone to catechol and/or the reaction of o-quinone with sulfite. Under the optimum experimental conditions using the differential pulse voltammetry technique, the analytical curve obtained was linear in the concentration of sulfite in the range from 0.5 to 22 μmol L(-1) with a detection limit of 0.4 μmol L(-1). The biosensor was applied for the determination of sulfite in white and red wine samples with results in close agreement with those results obtained using a reference iodometric method (at a 95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Photosensitivity of layered semiconductor propolis heterocontact

    NASA Astrophysics Data System (ADS)

    Drapak, Stepan I.; Orletskii, Volodymyr B.; Bahtinov, Anatolii P.; Kovalyuk, Zakhar D.; Fotiy, Vasyl D.

    2003-03-01

    Room temperature photosensitivity and its spectral distribution are investigated for a hetercontact between a layered semiconductor (p-InSe) and a biological entity (propolis). The obtained heterocontacts has a maximum photosensitivity >= 10^4 V/W. It is shown that the form of spectral sensitivity curve depends on the way of the heterocontact preparation. The long-wave edge of relative quantum efficiency varies from hν =1.2 eV (the energy gap for InSe at T=300 K) to 1.6 eV depending on a state of aggregation of propolis. The maximum photosensitivity in the long-wave spectral range takes place when the propolis layer is under illumination. The obtained peculiarities of the photoelectrical properties cannot be explained in the framework of the classical description of photosensitivity spectral description (the window effect) what follows from the optical absorption measurements for InSe and propolis in the range hν <= 1.2 eV. Impurity states in the energy gap of InSe and states at the heterocontact interface (a classical case of isotype p-p heterojunction) also do not give an appropriate explanation. To interpret the obtained results the complexity of the chemical composition of propolis, a product from honey bee, must be taken into account.

  11. Measurement of regional cerebral blood flow with copper-62-PTSM and a three-compartment model.

    PubMed

    Okazawa, H; Yonekura, Y; Fujibayashi, Y; Mukai, T; Nishizawa, S; Magata, Y; Ishizu, K; Tamaki, N; Konishi, J

    1996-07-01

    We evaluated quantitatively 62Cu-labeled pyruvaldehyde bis(N4-methylthiosemicarbazone) copper II (62Cu-PTSM) as a brain perfusion tracer for positron emission tomography (PET). For quantitative measurement, the octanol extraction method is needed to correct for arterial radioactivity in estimating the lipophilic input function, but the procedure is not practical for clinical studies. To measure regional cerebral blood flow (rCBF) by 62Cu-PTSM with simple arterial blood sampling, a standard curve of the octanol extraction ratio and a three-compartment model were applied. We performed both 15O-labeled water PET and 62 Cu-PTSM PET with dynamic data acquisition and arterial sampling in six subjects. Data obtained in 10 subjects studied previously were used for the standard octanol extraction curve. Arterial activity was measured and corrected to obtain the true input function using the standard curve. Graphical analysis (Gjedde-Patlak plot) with the data for each subject fitted by a straight regression line suggested that 62Cu-PTSM can be analyzed by the three-compartment model with negligible K4. Using this model, K1-K3 were estimated from curve fitting of the cerebral time-activity curve and the corrected input function. The fractional uptake of 62Cu-PTSM was corrected to rCBF with the individual extraction at steady state calculated from K1-K3. The influx rates (Ki) obtained from three-compartment model and graphical analyses were compared for the validation of the model. A comparison of rCBF values obtained from 62Cu-PTSM and 150-water studies demonstrated excellent correlation. The results suggest the potential feasibility of quantitation of cerebral perfusion with 62Cu-PTSM accompanied by dynamic PET and simple arterial sampling.

  12. Reverberation Mapping of the Kepler-Field AGN KA1858+4850

    NASA Technical Reports Server (NTRS)

    Pei, Liuyi; Barth, Aaron J.; Aldering, Greg S.; Briley, Michael M.; Carroll, Carla J.; Carson, Daniel J.; Cenko, S., Bradley; Clubb, Kelsey I.; Cohen, Daniel P.; Cucchiara, Antonino; hide

    2014-01-01

    KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies monitored by the Kepler mission. We have carried out a reverberation mapping campaign designed to measure the broad-line region size and estimate the mass of the black hole in this galaxy. We obtained 74 epochs of spectroscopic data using the Kast Spectrograph at the Lick 3-m telescope from February to November of 2012, and obtained complementary V-band images from five other ground-based telescopes. We measured the Hbeta light curve lag with respect to the V-band continuum light curve using both cross-correlation techniques (CCF) and continuum light curve variability modeling with the JAVELIN method, and found rest-frame lags of tCCF = 13.53+2.03 -2.32 days and tJAVELIN = 13.15+1.08 -1.00 days. The Hbeta root-mean-square line profile has a width of sigma line = 770 +/- 49 km s(exp -1). Combining these two results and assuming a virial scale factor of f = 5.13, we obtained a virial estimate of M(sub BH) = 8.06+1.59 -1.72 ×10(exp 6) solar mass for the mass of the central black hole and an Eddington ratio of L/L(sub Edd) (is) approx. 0.2. We also obtained consistent but slightly shorter emission-line lags with respect to the Kepler light curve. Thanks to the Kepler mission, the light curve of KA1858+4850 has among the highest cadences and signal-to-noise ratios ever measured for an active galactic nucleus; thus, our black hole mass measurement will serve as a reference point for relations between black hole mass and continuum variability characteristics in active galactic nuclei.

  13. Reverberation Mapping of the KEPLER Field AGN KA1858+4850

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi; Barth, Aaron J.; Aldering, Greg S.; Briley, Michael M.; Carroll, Carla J.; Carson, Daniel J.; Cenko, S. Bradley; Clubb, Kelsey I.; Cohen, Daniel P.; Cucchiara, Antonino; Desjardins, Tyler D.; Edelson, Rick; Fang, Jerome J.; Fedrow, Joseph M.; Filippenko, Alexei V.; Fox, Ori D.; Furniss, Amy; Gates, Elinor L.; Gregg, Michael; Gustafson, Scott; Horst, J. Chuck; Joner, Michael D.; Kelly, Patrick L.; Lacy, Mark; Laney, C. David; Leonard, Douglas C.; Li, Weidong; Malkan, Matthew A.; Margon, Bruce; Neeleman, Marcel; Nguyen, My L.; Prochaska, J. Xavier; Ross, Nathaniel R.; Sand, David J.; Searcy, Kinchen J.; Shivvers, Isaac S.; Silverman, Jeffrey M.; Smith, Graeme H.; Suzuki, Nao; Smith, Krista Lynne; Tytler, David; Werk, Jessica K.; Worseck, Gábor

    2014-11-01

    KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies monitored by the Kepler mission. We have carried out a reverberation mapping campaign designed to measure the broad-line region size and estimate the mass of the black hole in this galaxy. We obtained 74 epochs of spectroscopic data using the Kast Spectrograph at the Lick 3 m telescope from 2012 February to November, and obtained complementary V-band images from five other ground-based telescopes. We measured the Hβ light curve lag with respect to the V-band continuum light curve using both cross-correlation techniques (CCF) and continuum light curve variability modeling with the JAVELIN method and found rest-frame lags of τ CCF = 13.53+2.03-2.32 days and τ JAVELIN = 13.15+1.08-1.00 days. The Hβ rms line profile has a width of σline = 770 ± 49 km s-1. Combining these two results and assuming a virial scale factor of f = 5.13, we obtained a virial estimate of M{BH} = 8.06+1.59-1.72 × 106 {M}⊙ for the mass of the central black hole and an Eddington ratio of L/L Edd ≈ 0.2. We also obtained consistent but slightly shorter emission-line lags with respect to the Kepler light curve. Thanks to the Kepler mission, the light curve of KA1858+4850 has among the highest cadences and signal-to-noise ratios ever measured for an active galactic nucleus; thus, our black hole mass measurement will serve as a reference point for relations between black hole mass and continuum variability characteristics in active galactic nuclei.

  14. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    PubMed

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  15. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves.

    PubMed

    Sprouffske, Kathleen; Wagner, Andreas

    2016-04-19

    Plate readers can measure the growth curves of many microbial strains in a high-throughput fashion. The hundreds of absorbance readings collected simultaneously for hundreds of samples create technical hurdles for data analysis. Growthcurver summarizes the growth characteristics of microbial growth curve experiments conducted in a plate reader. The data are fitted to a standard form of the logistic equation, and the parameters have clear interpretations on population-level characteristics, like doubling time, carrying capacity, and growth rate. Growthcurver is an easy-to-use R package available for installation from the Comprehensive R Archive Network (CRAN). The source code is available under the GNU General Public License and can be obtained from Github (Sprouffske K, Growthcurver sourcecode, 2016).

  16. Localized Principal Component Analysis based Curve Evolution: A Divide and Conquer Approach

    PubMed Central

    Appia, Vikram; Ganapathy, Balaji; Yezzi, Anthony; Faber, Tracy

    2014-01-01

    We propose a novel localized principal component analysis (PCA) based curve evolution approach which evolves the segmenting curve semi-locally within various target regions (divisions) in an image and then combines these locally accurate segmentation curves to obtain a global segmentation. The training data for our approach consists of training shapes and associated auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly correlated variations locally which may be rather independent of the variations in the distant parts of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data set. We then use a parametric model to implicitly represent each localized segmentation curve as a combination of the local shape priors obtained by representing the training shapes and the masks as a collection of signed distance functions. We also propose a parametric model to combine the locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we combine the evolution of these semilocal and global parameters to minimize an objective energy function. The resulting algorithm thus provides a globally accurate solution, which retains the local variations in shape. We present some results to illustrate how our approach performs better than the traditional approach with fully global PCA. PMID:25520901

  17. Photoluminescence properties and energy transfer of color tunable MgZn₂(PO₄)₂:Ce³⁺,Tb³⁺ phosphors.

    PubMed

    Xu, Mengjiao; Wang, Luxiang; Jia, Dianzeng; Zhao, Hongyang

    2015-11-21

    A series of Ce(3+)/Tb(3+) co-doped MgZn2(PO4)2 phosphors have been synthesized by the co-precipitation method. Their structure, morphology, photoluminescence properties, decay lifetime, thermal stability and luminous efficiency were investigated. The possible energy transfer mechanism was proposed based on the experimental results and detailed luminescence spectra and decay curves of the phosphors. The critical distance between Ce(3+) and Tb(3+) ions was calculated by both the concentration quenching method and the spectral overlap method. The energy transfer mechanism from the Ce(3+) to Tb(3+) ion was determined to be dipole-quadrupole interaction, and the energy transfer efficiency was 85%. By utilizing the principle of energy transfer and appropriate tuning of Ce(3+)/Tb(3+) contents, the emission color of the obtained phosphors can be tuned from blue to green light. The MgZn2(PO4)2:Ce(3+),Tb(3+) phosphor is proved to be a promising UV-convertible material capable of green light emitting in UV-LEDs due to its excellent thermal stability and luminescence properties.

  18. Analysis of each branch current of serial solar cells by using an equivalent circuit model

    NASA Astrophysics Data System (ADS)

    Yi, Shi-Guang; Zhang, Wan-Hui; Ai, Bin; Song, Jing-Wei; Shen, Hui

    2014-02-01

    In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ish1 and Ish2), diode currents (ID1 and ID2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.

  19. Comparison of dental maturity in children of different ethnic origins: international maturity curves for clinicians.

    PubMed

    Chaillet, Nils; Nyström, Marjatta; Demirjian, Arto

    2005-09-01

    Dental maturity was studied with 9577 dental panoramic tomograms of healthy subjects from 8 countries, aged between 2 and 25 years of age. Demirjian's method based on 7 teeth was used for determining dental maturity scores, establishing gender-specific tables of maturity scores and development graphs. The aim of this study was to give dental maturity standards when the ethnic origin is unknown and to compare the efficiency and applicability of this method to forensic sciences and dental clinicians. The second aim was to compare the dental maturity of these different populations. We noted an high efficiency for International Demirjian's method at 99% CI (0.85% of misclassified and a mean accuracy between 2 to 18 years +/- 2.15 years), which makes it useful for forensic purposes. Nevertheless, this international method is less accurate than Demirjian's method developed for a specific country, because of the inter-ethnic variability obtained by the addition of 8 countries in the dental database. There are inter-ethnic differences classified in three major groups. Australians have the fastest dental maturation and Koreans have the slowest.

  20. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.

    PubMed

    Kwon, Oh Oun; Kim, Eui Jin; Lee, Jae Hyeok; Kim, Tae Young; Park, Kyung Hee; Kim, Sang Yook; Suh, Hwa Jin; Lee, Hyo Jung; Lee, Jae Wook

    2015-02-05

    To improve the photovoltaic conversion efficiency in dye-sensitized solar cells (DSSCs), TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent was successfully formulated on nanoporous TiO2 surface. Adsorption and desorption properties of crude gardenia yellow solution on a macroporous resin, XAD-1600, were investigated to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. To this end, adsorption equilibrium and kinetic data were measured and fitted using adsorption isotherms and kinetic models. Adsorption and desorption breakthrough curves in a column packed with XAD-1600 resin was obtained to optimize the separation process of gardenia yellow. The photovoltaic performance of the photo-electrode adsorbed with the crude and purified gardenia yellow in DSSCs was compared from current-voltage measurements. The results showed that the photovoltaic conversion efficiency was highly dependent on how to separate and purify gardenia yellow as a photosensitizer. Copyright © 2014 Elsevier B.V. All rights reserved.

Top