Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency
NASA Astrophysics Data System (ADS)
Ebeling, W.; Feistel, R.
2017-06-01
First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Jacobson, David; Metoyer, Jarred
The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.
Van Eerden, E; Van Den Brand, H; Heetkamp, M J W; Decuypere, E; Kemp, B
2006-10-01
This experiment was conducted to investigate whether feed efficiency, as measured by residual feed intake as a phenotypic trait, affects energy partitioning in pullets that have received Salmonella inoculation as an immune challenge. In each of 8 trials, energy partitioning was measured during 5 wk in 15-wk-old efficient (R-) and nonefficient (R+) pullets, which were housed per efficiency group in 2 identical climate respiration chambers. After 1 wk of adaptation, the pullets in 4 trials were orally inoculated with 10(8) cfu of Salmonella enteritidis; pullets in the remaining trials were not inoculated and served as controls. Heat production was calculated from continuous recordings of O(2) consumption and CO(2) production. Energy and N partitioning were recorded on a weekly basis. Blood samples for analyses on thyroid hormones were taken at 16, 17, and 19 wk of age. There were no interactions between efficiency type and Salmonella treatment or Salmonella treatment effects in energy partitioning, except for a short-term increase in heat production in inoculated pullets. Nonefficient pullets had higher gross energy and ME intake, higher estimated ME for maintenance, lower ME:gross energy ratio, and higher total heat production and nonactivity-related heat production compared with R- pullets. Triiodothyronine levels in R+ pullets were higher at 16 and 17 wk but were lower at 19 wk of age compared with R- pullets. Thyroxine levels were higher in R- at 16 wk and showed interactions between efficiency type and Salmonella treatment at 17 and 19 wk of age. Body weights and spleen weights did not differ between efficiency groups. Nonefficient pullets had higher heart, liver, and ovary weights and more large yellow follicles than R- pullets. There were no Salmonella effects on body and organ weights. We conclude that R+ pullets have a faster running energy metabolism and that they put more resources into organ development than R- pullets. Inoculation with Salmonella has a short-term effect on nonactivity-related heat production but does not affect energy partitioning, regardless of efficiency type.
Xue, B; Yan, T; Ferris, C F; Mayne, C S
2011-03-01
Eight Holstein and 8 Jersey-Holstein crossbred dairy cows (all primiparous) were used in a repeated 2 (genotype) × 2 (concentrate level) factorial design study involving a total of 4 periods (each of 6-wk duration), designed to examine the effect of cross-breeding on the efficiency of milk production and energy use. The 4 periods began at 5, 11, 27, and 33 wk of lactation, respectively. Animals were offered a completely mixed diet containing grass silage and concentrates, with the level of concentrate in the diet either 30 or 70% of dry matter (DM). During the final 10 d of each period, ration digestibility and energy use was measured, the latter in indirect open-circuit respiration calorimeters. No significant interaction existed between cow genotype and dietary concentrate level for feed intake, milk production, or any of the energy use parameters measured. Across the 2 genotypes, total DM intake, milk yield, and milk protein and lactose concentrations increased with increasing dietary concentrate level. Thus, cows offered the high-concentrate diet had a higher gross energy (GE) intake, and a higher energy output in feces, urine, milk as heat, and a higher metabolizable energy (ME) intake as a proportion of GE intake and as a proportion of digestible energy intake. Across the 2 levels of concentrates, the Jersey-Holstein cows had a significantly higher total DM intake and body condition score, and produced milk with higher fat, protein, and energy concentrations, compared with those of the Holstein cows. In addition, the Jersey-Holstein cows had a significantly higher GE intake and energy output in urine, methane, and milk. However, crossbreeding had no significant effect on energy digestibility or metabolizability, energy partitioning between milk and body tissue, or the efficiency of ME use for lactation. Relating ME intake to milk energy output and heat production indicated that crossbreeding did not influence ME requirement for maintenance or energy efficiencies. The energy metabolism data were also used to compare energy efficiencies between "early" (data pooled for the first 2 periods) and "late" (data pooled for the second 2 periods) stages of lactation. Stage of lactation had no effect on energy digestibility or metabolizability, whereas increasing stage of lactation increased the rate of energy partitioning into body tissue and reduced the rate of energy partitioning into milk, irrespective of cow genotype. In conclusion, crossbreeding of Holstein dams with Jersey sires had no adverse effects on the overall production efficiency of Holstein dairy cows in terms of milk production, efficiency of ME use for lactation, and energy partitioning between milk and body tissue. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
Energy Efficiency of Higher Education Buildings: A Case Study
ERIC Educational Resources Information Center
Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira
2015-01-01
Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…
Air transportation energy efficiency - Alternatives and implications
NASA Technical Reports Server (NTRS)
Williams, L. J.
1976-01-01
Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.
Financial Planning for Energy Efficiency Investments.
ERIC Educational Resources Information Center
Business Officer, 1984
1984-01-01
Financing options for energy efficiency investments by colleges are outlined by the Energy Task Force of three higher education associations. It is suggested that alternative financing techniques generate a positive cash flow and allow campuses to implement conservation despite fiscal constraints. Since energy conservation saves money, the savings…
Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.
Genc, Ayten; Bakirci, Busra
2015-01-01
The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.
Fleming, Austin; Folsom, Charles; Ban, Heng; ...
2015-11-13
Concentrating solar power (CSP) with thermal energy storage has potential to provide grid-scale, on-demand, dispatachable renewable energy. As higher solar receiver output temperatures are necessary for higher thermal cycle efficiency, current CSP research is focused on high outlet temperature and high efficiency receivers. Here, the objective of this study is to provide a simplified model to analyze the thermal efficiency of multi-cavity concentrating solar power receivers.
Potential for Increasing the Output of Existing Hydroelectric Plants.
1981-06-01
existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or generators; increasing the effective...loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical energy (generator output). The significant practical...opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the energy conversion efficiency of electrical
Absolute calibration of a multichannel plate detector for low energy O, O-, and O+
NASA Astrophysics Data System (ADS)
Stephen, T. M.; Peko, B. L.
2000-03-01
Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.
Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.
Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong
2015-03-01
Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
NASA Technical Reports Server (NTRS)
Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.
2011-01-01
The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.
77 FR 261 - Notice of Request for Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
... small businesses to become more energy efficient and to use renewable energy technologies and resources... colleges and universities or other institutions of higher learning; rural electric cooperatives; public... to improve the energy efficiency of the operations of the agricultural producers and rural small...
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
Highly efficient blazed grating with multilayer coating for tender X-ray energies.
Senf, F; Bijkerk, F; Eggenstein, F; Gwalt, G; Huang, Q; Kruijs, R; Kutz, O; Lemke, S; Louis, E; Mertin, M; Packe, I; Rudolph, I; Schäfers, F; Siewert, F; Sokolov, A; Sturm, J M; Waberski, Ch; Wang, Z; Wolf, J; Zeschke, T; Erko, A
2016-06-13
For photon energies of 1 - 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer d-spacing of 7.3 nm has been adapted to the line distance of 500 nm and the blaze angle of 0.84° in order to provide highest efficiency in the photon energy range between 1.5 keV and 3 keV. Efficiency of the multilayer grating as well as the reflectance of a witness multilayer which were coated simultaneously have been measured. An efficiency of 35% was measured at 2 keV while a maximum efficiency of 55% was achieved at 4 keV. In addition, a strong suppression of higher orders was observed which makes blazed multilayer gratings a favorable dispersing element also for the low X-ray energy range.
Characterization of biomass waste torrefaction under conventional and microwave heating.
Ho, Shih-Hsin; Zhang, Congyu; Chen, Wei-Hsin; Shen, Ying; Chang, Jo-Shu
2018-05-13
To evaluate the potential of microwave heating for biomass torrefaction, the torrefaction performances and energy utilization of coffee grounds and microalga residue, under conventional and microwave heating were investigated and compared with each other. For the two biomass samples, the dehydrogenation of the coffee grounds was more sensitive to torrefaction severity, whereas the microalga residue consumed more energy under the same torrefaction conditions. Microwave heating under lower torrefaction severity had a higher energy efficiency. As regard to the lower solid yields or higher torrefaction severity, the energy efficiency of microwave heating was close to that of conventional heating, irrespective of the feedstocks. This revealed the comparable energy consumption state between the two heating modes. Accordingly, it is concluded that microwave torrefaction is more efficient for biomass upgrading and densification than conventional torrefaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization
Tsoukalas, Lefteri
2018-01-24
In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energy internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.
Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie
2018-05-01
This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.
How to harvest efficient laser from solar light
NASA Astrophysics Data System (ADS)
Zhao, Changming; Guan, Zhe; Zhang, Haiyang
2018-02-01
Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.
75 FR 10873 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... design option to be technologically feasible if it is in use by the respective industry or if research.... Baseline Motor Performance 3. Higher Efficiency Motor Designs a. Electrical Steel b. Thermal Analysis c... a variety of provisions designed to improve energy efficiency. Part A of Title III (42 U.S.C. 6291...
Evaluation of two typical distributed energy systems
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
USE Efficiency: an innovative educational programme for energy efficiency in buildings
NASA Astrophysics Data System (ADS)
Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.
2017-10-01
Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.
Downs, Colleen T; Mqokeli, Babalwa; Singh, Preshnee
2012-03-01
Fruit- and nectar-feeding bats have high energy demands because of the cost of flight, and sugar is a good fuel because it is easily digested and absorbed. This study investigated the digestive efficiency of different sugars at different concentrations in Wahlberg's epauletted fruit bat (Epomophorus wahlbergi). We predicted that the sugar type and concentration would affect the total amount of solution consumed, while the total energy gained and the apparent assimilation efficiency would be high, irrespective of sugar type or concentration. Equicaloric solutions of two sugar types, glucose and sucrose, at low (10%), medium (15%) and high (25%) concentrations were offered in separate trials to bats. Total amount of solution consumed, total energy gained from each solution, and apparent assimilation efficiency, were measured. Bats had higher total volumetric intake of glucose and sucrose at the low concentrations than at the higher concentrations. However, bats maintained similar total energy intake on the respective glucose and sucrose concentrations. Bats were found to have high assimilation efficiencies on both glucose and sucrose irrespective of concentration. As bats used both sugars efficiently to maximize and maintain energy gain, it is expected that they feed opportunistically on fruit in the wild depending on temporal and spatial availability to obtain their energy requirements. Furthermore, fruit with high sucrose or glucose content will be consumed. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui
2015-01-01
Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roby Williams
2012-03-29
The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 wasmore » replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.« less
Sustainability Actions in Higher Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.
NASA Astrophysics Data System (ADS)
Chouhan, A. P. Singh; Yaseen, S.; Pruthi, A.
2017-07-01
Deodar (Cedrus deodara) wood collected from the Kashmir region in India. This study is focused on energy and exergy analysis of cook stove by using deodar wood, demand of a cookstove is higher in rural areas. In ancient time U-shaped and three stone cook stove was used, but they emitted greenhouse gases CO and CO2 in the environment and these toxic emissions are also dangerous for human being and the environment. Sampada model cook stove used for the analysis of energy an exergy by using water boiling test with using deodar wood and bagasse samples and a mixture of wood and bagasse also used. Wood and bagasse characterized for the ultimate, proximate, calorific value before the water boiling test of the cookstove. Results carried out that the efficiency of cook stove with deodar wood was 33.33 % and exergy calculated 2.1 % and energy efficiency and energy efficiency by using bagasse were 23.23 % and 0.43 %, respectively, and wood and bagasse mixture ratio given energy and exergy efficiencies for ratios 75:25 is the best ratio of energy production. These results indicated that deodar wood is more stable because thermal stability of wood is greater than bagasse. Deodar is a suitable source for the combustion purposes of higher energy production.
Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.
Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua
2014-11-28
The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.
Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoukalas, Lefteri
2009-04-29
In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energymore » internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.« less
NASA Astrophysics Data System (ADS)
Kramer, Tobias; Kreisbeck, Christoph; Rodriguez, Mirta; Hein, Birgit
2011-03-01
We study the efficiency of the energy transfer in the Fenna-Matthews-Olson complex solving the non-Markovian hierarchical equations (HE) proposed by Ishizaki and Fleming in 2009, which include properly the reorganization process. We compare it to the Markovian approach and find that the Markovian dynamics overestimates the thermalization rate, yielding higher efficiencies than the HE. Using the high-performance of graphics processing units (GPU) we cover a large range of reorganization energies and temperatures and find that initial quantum beatings are important for the energy distribution, but of limited influence to the efficiency. Our efficient GPU implementation of the HE allows us to calculate nonlinear spectra of the FMO complex. References see www.quantumdynamics.de
Domestic refrigeration appliances in Poland: Potential for improving energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, S.; Schipper, L.; Lebot, B.
1993-08-01
This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the energy consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective potential to increase energy efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that themore » production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.« less
Characterizations of BC501A and BC537 liquid scintillator detectors.
Qin, Jianguo; Lai, Caifeng; Ye, Bangjiao; Liu, Rong; Zhang, Xinwei; Jiang, Li
2015-10-01
Two 2″×2″ liquid scintillator detectors BC537 and BC501A have been characterized for their responses and efficiencies to γ-ray detection. Light output resolution and response functions were derived by least-squares minimization of a simulated response function, fitted to experimental data. The γ-ray response matrix and detection efficiency were simulated with Monte Carlo (MC) methods and validated. For photon energies below 2.4 MeVee, the resolution, as well as the efficiency, of BC501A is better than BC537 scintillator. The situation is reversed when the energy is higher than 2.4 MeVee. BC537 has higher γ-ray detection efficiency than BC501A if the impinging photon energy is more than 2 MeV due to different ratios of C to H/D atoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stucki, J W; Compiani, M; Caplan, S R
1983-09-01
Experimental investigations showed linear relations between flows and forces in some biological energy converters operating far from equilibrium. This observation cannot be understood on the basis of conventional nonequilibrium thermodynamics. Therefore, the efficiencies of a linear and a nonlinear mode of operation of an energy converter (a hypothetical redox-driven H+ pump) were compared. This comparison revealed that at physiological values of the forces and degrees of coupling (1) the force ratio permitting optimal efficiency was much higher in the linear than in the nonlinear mode and (2) the linear mode of operation was at least 10(6)-times more efficient that the nonlinear one. These observations suggest that the experimentally observed linear relations between flows and forces, particularly in the case of oxidative phosphorylation, may be due to a feedback regulation maintaining linear thermodynamic relations far from equilibrium. This regulation may have come about as the consequence of an evolutionary drive towards higher efficiency.
Köck, A; Ledinek, M; Gruber, L; Steininger, F; Fuerst-Waltl, B; Egger-Danner, C
2018-01-01
This study is part of a larger project whose overall objective was to evaluate the possibilities for genetic improvement of efficiency in Austrian dairy cattle. In 2014, a 1-yr data collection was carried out. Data from 6,519 cows kept on 161 farms were recorded. In addition to routinely recorded data (e.g., milk yield, fertility, disease data), data of novel traits [e.g., body weight (BW), body condition score (BCS), lameness score, body measurements] and individual feeding information and feed quality were recorded on each test-day. The specific objective of this study was to estimate genetic parameters for efficiency (related) traits and to investigate their relationships with BCS and lameness in Austrian Fleckvieh, Brown Swiss, and Holstein cows. The following efficiency (related) traits were considered: energy-corrected milk (ECM), BW, dry matter intake (DMI), energy intake (INEL), ratio of milk output to metabolic BW (ECM/BW 0.75 ), ratio of milk output to DMI (ECM/DMI), and ratio of milk energy output to total energy intake (LE/INEL, LE = energy in milk). For Fleckvieh, the heritability estimates of the efficiency (related) traits ranged from 0.11 for LE/INEL to 0.44 for BW. Heritabilities for BCS and lameness were 0.19 and 0.07, respectively. Repeatabilities were high and ranged from 0.30 for LE/INEL to 0.83 for BW. Heritability estimates were generally lower for Brown Swiss and Holstein, but repeatabilities were in the same range as for Fleckvieh. In all 3 breeds, more-efficient cows were found to have a higher milk yield, lower BW, slightly higher DMI, and lower BCS. Higher efficiency was associated with slightly fewer lameness problems, most likely due to the lower BW (especially in Fleckvieh) and higher DMI of the more-efficient cows. Body weight and BCS were positively correlated. Therefore, when selecting for a lower BW, BCS is required as additional information because, otherwise, no distinction between large animals with low BCS and smaller animals with normal BCS would be possible. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Energy savings potential in air conditioners and chiller systems
Kaya, Durmus; Alidrisi, Hisham
2014-01-22
In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less
Constraints on drivers for visible light communications emitters based on energy efficiency.
Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose
2016-05-02
In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).
NASA Astrophysics Data System (ADS)
Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei
2016-09-01
Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.
Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin
2014-10-01
Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.
Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells
Adhyaksa, Gede Widia Pratama; Lee, Ga In; Baek, Se-Woong; Lee, Jung-Yong; Kang, Jeung Ku
2013-01-01
The efficiency of solar cells depends on absorption intensity of the photon collectors. Herein, mobile quantum dots (QDs) functionalized with thiol ligands in electrolyte are utilized into dye–sensitized solar cells. The QDs serve as mediators to receive and re–transmit energy to sensitized dyes, thus amplifying photon collection of sensitizing dyes in the visible range and enabling up–conversion of low-energy photons to higher-energy photons for dye absorption. The cell efficiency is boosted by dispersing QDs in electrolyte, thereby obviating the need for light scattering1 or plasmonic2 structures. Furthermore, optical spectroscopy and external quantum efficiency data reveal that resonance energy transfer due to the overlap between QD emission and dye absorption spectra becomes dominant when the QD bandgap is higher than the first excitonic peak of the dye, while co–sensitization resulting in a fast reduction of oxidized dyes is pronounced in the case of lower QD band gaps. PMID:24048384
Cheng, Yu; Liu, Yun; Wu, Juan; Ofori Donkor, Prince; Li, Ting; Ma, Haile
2017-07-01
The thermodynamics and kinetics of traditional and simultaneous dual frequency energy-gathered ultrasound (SDFU) assisted enzymolysis of potato protein were investigated to get the knowledge of the mechanisms on the SDFU's promoting efficiency during enzymolysis. The concentration of potato protein hydrolysate and parameters of thermodynamic and kinetic during traditional and SDFU assisted enzymolysis were determined. The results showed that potato protein hydrolysate concentration of SDFU assisted enzymolysis was higher than traditional enzymolysis at the hydrolysis time of 60min (p<0.05) whereas not significantly different at 120min (p>0.05). In some cases, SDFU assisted enzymolysis took less hydrolysis time than traditional enzymolysis when the similar conversion rates of potato protein were obtained. The thermodynamic papameters including the energy of activation (E a ), enthalpy of activation (△H), entropy of activation (△S) were reduced by ultrasound pretreatment while Gibbs free energy of activation (△G) increased little (1.6%). Also, kinetic papameters including Michaelis constant (K M ) and catalytic rate constant (k cat ) decreased by ultrasound pretreatment. On the contrary, reaction rate constants (k) of SDFU assisted enzymolysis were higher than that of traditional enzymolysis (p<0.05). It was indicated that the efficiency of SDFU assisted enzymolysis was higher than traditional enzymolysis in a limited time. The higher efficiency of SDFU assisted enzymolysis was related with the decrease of E a and K M by lowering the energy barrier between ground and active state and increasing affinity between substrate and enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation strategy of regenerative braking energy for supercapacitor vehicle.
Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen
2015-03-01
In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.
One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less
The Future of Air Conditioning for Buildings - Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, J.
2016-07-01
The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less
Lichtenberg, Mads; Brodersen, Kasper E.; Kühl, Michael
2017-01-01
We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments. PMID:28400749
Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael
2017-01-01
We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments.
Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.
Hu, Renchong; Cola, Baratunde A; Haram, Nanda; Barisci, Joseph N; Lee, Sergey; Stoughton, Stephanie; Wallace, Gordon; Too, Chee; Thomas, Michael; Gestos, Adrian; Cruz, Marilou E Dela; Ferraris, John P; Zakhidov, Anvar A; Baughman, Ray H
2010-03-10
Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano; LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza; Vigano, Federico, E-mail: federico.vigano@polimi.it
Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papersmore » reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).« less
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
Raman amplification in the coherent wave-breaking regime.
Farmer, J P; Pukhov, A
2015-12-01
In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.
Development of a new method for measurement of neutron detector efficiency up to 20 MeV
Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; ...
2014-09-03
A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less
Efficiency improved turboprop. Technical memo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, W.S.
1982-06-10
Renewed attention has been focused on the efficiency of aircraft propulsion as the cost of fuel has risen. Studies conducted by NASA (1) to obtain fuel efficient aircraft have considered relatively highly-loaded turbo-prop systems. The disc loadings of these propellers are as much as four times higher than those on present turboprop aircraft. The higher disc loadings result in greater slipstream swirl and higher energy losses. Of primary importance is the radial distribution of the energy losses across the slipstream due to the tangential and axial velocities. This study presents the results of analysis defining the various sources of energymore » loss resulting from a swirling slipstream downstream of a propeller. Experimental data are presented demonstrating the presence of such losses and a propeller configuration discussed which offers improved propulsive performance when relatively highly-loaded propellers are employed.« less
Cycling efficiency and energy cost of walking in young and older adults.
Gaesser, Glenn A; Tucker, Wesley J; Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S
2018-02-01
To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg -1 ·m -1 ), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg -1 ·m -1 ) and 65-69 yr (2.20 ± 0.28 J·kg -1 ·m -1 ) age groups, but was significantly ( P < 0.03) higher in the ≥70 yr (2.37 ± 0.33 J·kg -1 ·m -1 ) age group. For subjects >60 yr, net Cw was significantly correlated with age ( R 2 = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.
NASA Technical Reports Server (NTRS)
Maag, W. L.; Bollenbacher, G.
1974-01-01
Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.
High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Soh, Ai Kah; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi
2016-12-02
A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm -2 ) for a single mechanical knock (∼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.
Experiences of a grid connected solar array energy production
NASA Astrophysics Data System (ADS)
Hagymássy, Zoltán; Vántus, András
2015-04-01
Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency of a PV system in general can be defined as the ratio of the output energy of the system to the input energy received on the photovoltaic surface. As an expected, the energy efficiencies of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. Based on our study, in general it can be concluded that the energy efficiency is lower than theoretical.
Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots
Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; ...
2016-11-29
One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less
Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo
2016-01-20
The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.
PIMS: Memristor-Based Processing-in-Memory-and-Storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeanine
Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less
2017-01-01
The residential sector comprises equipment consuming various fuels and providing different end-use services. When replacing equipment, consumers may choose to purchase equipment that meets minimum federal equipment efficiency standards, or they may opt for higher-efficiency equipment, such as equipment that meets or exceeds ENERGY STAR® specifications. Consumers may also choose to purchase or retrofit different types of equipment, which may require additional costs (e.g., for ducts, exhaust vents, natural gas lines, or electrical connections) to install. The stock mix of equipment types, efficiency levels, and fuels consumed directly affects total residential sector energy consumption.
NASA Technical Reports Server (NTRS)
Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David
2012-01-01
Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.
Triplet-triplet annihilation photon-upconversion: towards solar energy applications.
Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper
2014-06-14
Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.
Determinants of energy efficiency across countries
NASA Astrophysics Data System (ADS)
Yao, Guolin
With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.
Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation
Klatt, Judith M.; Polerecky, Lubos
2015-01-01
Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches. PMID:26052315
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.
NASA Technical Reports Server (NTRS)
Corman, J. C.
1976-01-01
A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.
The employment impacts of economy-wide investments in renewable energy and energy efficiency
NASA Astrophysics Data System (ADS)
Garrett-Peltier, Heidi
This dissertation examines the employment impacts of investments in renewable energy and energy efficiency in the U.S. A broad expansion of the use of renewable energy in place of carbon-based energy, in addition to investments in energy efficiency, comprise a prominent strategy to slow or reverse the effects of anthropogenic climate change. This study first explores the literature on the employment impacts of these investments. This literature to date consists mainly of input-output (I-O) studies or case studies of renewable energy and energy efficiency (REEE). Researchers are constrained, however, by their ability to use the I-O model to study REEE, since currently industrial codes do not recognize this industry as such. I develop and present two methods to use the I-O framework to overcome this constraint: the synthetic and integrated approaches. In the former, I proxy the REEE industry by creating a vector of final demand based on the industrial spending patterns of REEE firms as found in the secondary literature. In the integrated approach, I collect primary data through a nationwide survey of REEE firms and integrate these data into the existing I-O tables to explicitly identify the REEE industry and estimate the employment impacts resulting from both upstream and downstream linkages with other industries. The size of the REEE employment multiplier is sensitive to the choice of method, and is higher using the synthetic approach than using the integrated approach. I find that using both methods, the employment level per $1 million demand is approximately three times greater for the REEE industry than for fossil fuel (FF) industries. This implies that a shift to clean energy will result in positive net employment impacts. The positive effects stem mainly from the higher labor intensity of REEE in relation to FF, as well as from higher domestic content and lower average wages. The findings suggest that as we transition away from a carbon-based energy system to more sustainable and low-carbon energy sources, approximately three jobs will be created in clean energy sectors for each job lost in the fossil fuel sector.
NASA Astrophysics Data System (ADS)
Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu
2015-09-01
Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
The NASA Energy Conservation Program
NASA Technical Reports Server (NTRS)
Gaffney, G. P.
1977-01-01
Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.
Effect of compressibility on the hypervelocity penetration
NASA Astrophysics Data System (ADS)
Song, W. J.; Chen, X. W.; Chen, P.
2018-02-01
We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.
From Policy to Compliance: Federal Energy Efficient Product Procurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMates, Laurèn; Scodel, Anna
Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resourcesmore » available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater than $25,000. In 2010, ASE estimated a compliance rate of 46% in 2010, up from an estimate of 12% in 2008. Our work updates and expands on ASE’s 2010 analysis to gauge agency compliance with EEPP requirements.« less
Retrofitting a 1960s Split-Level, Cold-Climate Home
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puttagunta, Srikanth
2015-07-13
National programs such as Home Performance with ENERGY STAR® and numerous other utility air-sealing programs have made homeowners aware of the benefits of energy-efficiency retrofits. Yet these programs tend to focus only on the low-hanging fruit: they recommend air sealing the thermal envelope and ductwork where accessible, switching to efficient lighting and low-flow fixtures, and improving the efficiency of mechanical systems (though insufficient funds or lack of knowledge to implement these improvements commonly prevent the implementation of these higher cost upgrades). At the other end of the spectrum, various utilities across the country are encouraging deep energy retrofit programs. Althoughmore » deep energy retrofits typically seek 50% energy savings, they are often quite costly and are most applicable to gut-rehab projects. A significant potential for lowering energy use in existing homes lies between the lowhanging fruit and deep energy retrofit approaches—retrofits that save approximately 30% in energy compared to the pre-retrofit conditions. The energy-efficiency measures need to be nonintrusive so the retrofit projects can be accomplished in occupied homes.« less
Millisecond newly born pulsars as efficient accelerators of electrons
NASA Astrophysics Data System (ADS)
Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino
2015-09-01
The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.
Energy Advantages for Green Schools
ERIC Educational Resources Information Center
Griffin, J. Tim
2012-01-01
Because of many advantages associated with central utility systems, school campuses, from large universities to elementary schools, have used district energy for decades. District energy facilities enable thermal and electric utilities to be generated with greater efficiency and higher system reliability, while requiring fewer maintenance and…
A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks.
Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen
2016-10-01
In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime.
A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks
Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen
2016-01-01
In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime. PMID:27706079
Schmitz, Rolf; Schnabel, Karina; von Soosten, Dirk; Meyer, Ulrich; Spiekers, Hubert; Rehage, Jürgen; Dänicke, Sven
2018-04-01
The aim of this study was to investigate the effects of different energy supplies from roughage and concentrates on performance, health and energy efficiency during early lactation. For this purpose an experiment was conducted containing 64 pluriparous German Holstein cows from 3 weeks prepartum until 16 weeks postpartum. During dry period all cows received an equal dry cow ration. After calving, cows were assigned in a 2 × 2 factorial arrangement to one of four groups, receiving either a moderate (MR, 6.0 MJ NE L ) or a high (HR, 6.4 MJ NE L ) energy concentration in roughage and furthermore moderate (MC, 150 g/kg energy-corrected milk (ECM)) or high amounts of concentrates (HC, 250 g/kg ECM) on dry matter (DM) basis, which were allocated from an automatic feeding system. Higher allocation of concentrates resulted in an increase of DM intake at expense of roughage intake. HC cows had a higher milk yield than MC cows, whereas ECM was higher in HR cows due to a decrease of milk fat yield in MR groups. Energy balance and body condition score were elevated in HC cows, but no differences occurred in development of subclinical ketosis. Furthermore, energy efficiency variables were lower in HC groups because the greater energy intake was not associated with a considerable elevation of milk yield. Consistency of faeces did not indicate digestive disorders in any of the treatment groups although the faecal manure score was significantly lower in HR groups. Our results underline the importance of a high energy uptake from roughage, which can contribute to an adequate performance and beneficial efficiency, especially at lower amounts of concentrates in ration. Feeding concentrates on an average amount of 9.4 kg/d compared to 6.4 kg/d on DM basis improved the energy balance in our trial, but without consequences for metabolic blood variables and general health of the cows.
Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance
NASA Astrophysics Data System (ADS)
Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.
2014-03-01
Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.
Yang, Lei; Lindblad, Rebecka; Gabrielsson, Erik; Boschloo, Gerrit; Rensmo, Håkan; Sun, Licheng; Hagfeldt, Anders; Edvinsson, Tomas; Johansson, Erik M J
2018-04-11
4- tert-Butylpyridine ( t-BP) is commonly used in solid state dye-sensitized solar cells (ssDSSCs) to increase the photovoltaic performance. In this report, the mechanism how t-BP functions as a favorable additive is investigated comprehensively. ssDSSCs were prepared with different concentrations of t-BP, and a clear increase in efficiency was observed up to a maximum concentration and for higher concentrations the efficiency thereafter decreases. The energy level alignment in the complete devices was measured using hard X-ray photoelectron spectroscopy (HAXPES). The results show that the energy levels of titanium dioxide are shifted further away from the energy levels of spiro-OMeTAD as the t-BP concentration is increased. This explains the higher photovoltage obtained in the devices with higher t-BP concentration. In addition, the electron lifetime was measured for the devices and the electron lifetime was increased when adding t-BP, which can be explained by the recombination blocking effect at the surface of TiO 2 . The results from the HAXPES measurements agree with those obtained from density functional theory calculations and give an understanding of the mechanism for the improvement, which is an important step for the future development of solar cells including t-BP.
High Performance Artificial Muscles Using Nanofiber and Hybrid Yarns
2015-07-14
provide 3.2% energy conversion efficiency (twice that of our CNT fiber muscles and 10X that of conducting polymer muscles ). They maintain stroke without...rubber dielectric muscle layer in twisted fiber drives torsional actuation. (2) One hundred times higher torsional stroke per muscle length...artificial muscles that provide giant stroke, fast response, high force generation, and long cycle life while optimizing energy conversion efficiencies
High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing
2012-07-01
enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.
Minimum color quality standards are necessary, because the light sources most efficient at producing lumens are impractical for use in architectural lighting due to poor color rendition. Thus, accurate measures of color rendition and accompanying performance criteria are essential for helping technology developers and users balance tradeoffs between energy efficiency and lighting quality. Setting higher color-rendition criteria while maintaining use of CRI (e.g., CRI ≥ 90) may filter out some unacceptable light sources, but also filters out many highly desirable light sources and requires a greater tradeoff with energy efficiency. In contrast, specifying color rendition using TM-30 Rf, Rg, andmore » Rcs,h1 has been shown to be effective for differentiating desirable sources while maintaining flexibility for technology development and energy efficiency.« less
7 CFR 4280.121 - Servicing grants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.121 Servicing grants. (a... technical merit score for the project remains the same or is higher. Prior to changing a contractor or...
7 CFR 4280.121 - Servicing grants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.121 Servicing grants. (a... technical merit score for the project remains the same or is higher. Prior to changing a contractor or...
7 CFR 4280.121 - Servicing grants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.121 Servicing grants. (a... technical merit score for the project remains the same or is higher. Prior to changing a contractor or...
NASA Astrophysics Data System (ADS)
Parida, M. K.; Prabakar, K.; Sundari, S. T.
2018-03-01
In the present work, Monte Carlo simulations using GEANT4 are carried out to estimate the efficiency of semiconductor neutron detectors with depleted UO2 (DUO2) as converter material, in both planar (direct and indirect) and 3D geometry (cylindrical perforation and trenches structure) configurations. The simulations were conducted for neutrons of variable energy viz., thermal (25 meV) and fast (1 to 10 MeV) that were incident on varying thicknesses (0.25 μm to 1000 μm), diameters (1 μm to 9 μm) and widths (1 μm to 9 μm) along with depths (50 μm to 275 μm) of DUO2 for planar, cylindrical perforated and trench structures, respectively. In the case of direct planar detectors, efficiency was found to increase with the thickness of DUO2 and the rate at which efficiency increased was found to follow the macroscopic fission cross section at the corresponding neutron energy. In the case of indirect planar detector, efficiency was lower as compared to direct configuration and was found to saturate beyond a thickness of ~3 μm. This saturation is explained on the basis of mean free path of neutrons in the DUO2 material. For the 3D perforated silicon detectors of cylindrical (trench) geometry, backfilled with DUO2, the efficiency for detection of thermal neutrons ~25 meV and fast neutrons ~ typical energy of 10 MeV was found to be ~0.0159% (~0.0177%) and ~0.0088% (0.0098%), respectively. These efficiency values were two (one) order values higher than planar indirect detector for thermal (fast) neutrons. Histogram plots were also obtained from the GEANT4 simulations to monitor the energy distribution of fission products in planar (direct and indirect) and 3D geometry (cylindrical and trench) configurations. These plots revealed that, for all the detector configurations, the energy deposited by the fission products are higher as compared to the typical gamma ray background. Thus, for detectors with DUO2 as converter material, higher values of low level discriminator (LLD) can be set, so as to achieve good background discrimination.
Solid oxide fuel cell steam reforming power system
Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.
2013-03-12
The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.
Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis
NASA Astrophysics Data System (ADS)
Tanabe, Katsuaki
2016-06-01
We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.
Choi, Jeongdong; Ahn, Youngho
2015-05-01
Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Orosz, Matthew; Zweibaum, Nicolas; Lance, Tamir; Ruiz, Maritza; Morad, Ratson
2016-05-01
Sunlight to electricity efficiencies of Parabolic Trough Collector (PTC) plants are typically on the order of 15%, while commercial solar Photovoltaic (PV) technologies routinely achieve efficiencies of greater than 20%, albeit with much higher conversion efficiencies of photons at the band gap. Hybridizing concentrating solar power and photovoltaic technologies can lead to higher aggregate efficiencies due to the matching of photons to the appropriate converter based on wavelength. This can be accomplished through spectral filtering whereby photons unusable or poorly utilitized by PV (IR and UV) are passed through to a heat collection element, while useful photons (VIS) are reflected onto a concentrating PV (CPV) receiver. The mechanical design and experimental validation of spectral splitting optics is described in conjunction with system level modeling and economic analysis. The implications of this architecture include higher efficiency, lower cost hybrid CSP-PV power systems, as well as the potential to retrofit existing PTC plants to boost their output by ~ 10% at a projected investment cost of less than 1 per additional net Watt and an IRR of 18%, while preserving the dispatchability of the CSP plant's thermal energy storage.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
Using qualitative methods to understand non-technological aspects of domestic energy efficiency
NASA Astrophysics Data System (ADS)
Ambrose, Aimee Rebecca
The overall aim of the collected published works is to investigate how different policy interventions in the field of energy efficiency (including zero carbon homes, low carbon heat networks, and domestic energy efficiency schemes) are experienced and made sense of by a range of key actors. A further aim is to understand these interventions in the context of existing theories within the field of domestic energy efficiency including socio-technical theory and Actor Network Theory. More specifically, this research advances existing knowledge in the following areas: The nature of the socio-technical challenges encountered in the introduction of more energy efficient buildings, and the importance of achieving a balance between socially acceptable and technically optimal environments. (Papers 2, 3, 4, 6 and 8). The value of qualitative research in gaining a more nuanced understanding of our relationship with the home and the implications of this for domestic energy efficiency interventions and the design of low energy buildings (all papers). The influence of tenure as determinant of access to a more energy efficient home and in particular, the stubborn and complex barriers to achieving higher standards of energy performance within the private rented sector. (Papers 1, 2, 3 and 4). The significance of identity, setting and notions of home in the context of domestic energy efficiency interventions. (Papers 1 and 4). As these themes suggest, this PhD is not just concerned with carbon reduction and energy saving as technical objects, but as a way of life. More specifically, it considers the interactions between the two and contends that technical or policy instruments, no matter how sophisticated, cannot succeed if they are not compatible with our ways of life (and ways of doing businesss) or if our ways of life cannot be reasonably adapted to acoomodate them.
[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
Winkler, Jon; Munk, Jeffrey; Woods, Jason
2018-04-01
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Munk, Jeffrey; Woods, Jason
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
USDA-ARS?s Scientific Manuscript database
Residual feed intake (RFI) is the amount by which the observed and predicted feed intakes differ, given growth and maintenance requirements of an individual animal. In purebred Yorkshire pigs, divergent selection for increased (Low RFI) and decreased (High RFI) feed efficiency was carried out over 1...
Higher mortgages, lower energy bills: The real economics of buying an energy-efficient home
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, E.
1987-02-01
To measure the actual costs and benefits of buying an energy- efficient home, it is necessary to employ a cash-flow model that accounts for mortgage interest and other charges associated with the incremental costs of conservation measures. The ability to make payments gradually over the term of a mortgage, energy savings, and tax benefits contribute to increased cost effectiveness. Conversely, financial benefits are reduced by interest payments, insurance, taxes, and various fees linked to the (higher) sale price of an energy-efficient home. Accounting for these factors can yield a strikingly different picture from those given by commonly used ''engineering'' indicators,more » such as simple payback time, internal rate of return, or net present value (NPV), which are based solely on incremental costs and energy savings. This analysis uses actual energy savings data and incremental construction costs to evaluate the mortgage cash flow for 79 of the 144 energy-efficient homes constructed in Minnesota under the Energy-Efficient Housing Demonstration Program (EEHDP) initiated in 1980 by the Minnesota Housing Finance Agency. Using typical lending terms and fees, we find that the mean mortgage-NPV derived from the homeowners' real cash flow (including construction and financing costs) is 20% lower than the standard engineering-NPV of the conservation investment: $7981 versus $9810. For eight homes, the mortgage-NPV becomes negative once we account for the various mortgage-related effects. Sensitivities to interest rates, down payment, loan term, and marginal tax rate are included to illustrate the often large impact of alternative assumptions about these parameters. The most dramatic effect occurs when the loan term is reduced from 30 to 15 years and the mortgage NPV falls to -$925. We also evaluate the favorable Federal Home Administration (FHA) terms actually applied to the EEHDP homes. 8 refs., 4 figs., 3 tabs.« less
Kim, Y; Kim, H; Hong, Y-C
2016-04-01
Concerns of a growing obesity epidemic have increased since the association between obesity in parents and that in offspring was reported. However, the evidence regarding whether the energy-saving efficiency of obese parents is conveyed to their offspring and the duration of the expression of such transmitted efficiency is limited. We included 7647 matching sets of parent-offspring trios from South Korea. Multiple linear regression models were performed to estimate the energy-saving efficiency, as assessed by the associations between energy intake and obesity-related indices (waist-to-height ratio, waist circumference and body mass index z-score), and to compare the energy-saving efficiency of offspring of obese and non-obese parents. All analyses were based on a complex sample design and were stratified by gender and age. We identified a parental influence on obesity, that is, the more obese the parent, the higher the obesity-related indices of their offspring, in both genders and all age groups. The energy-saving efficiency of child offspring was highest when both parents were obese and lowest when both were non-obese; this difference was significant (P<0.05) with regard to the energy-saving efficiency of all types of intake studied, except fat. However, the energy-saving efficiency of obese and non-obese parents did not differ when their offspring were adolescents and adults. The critical window for transmission of energy-saving efficiency is limited to childhood. These findings suggest that children of obese parents should be more emphatically advised to maintain a balanced diet and to engage in regular physical activity.
Lim, Su Pei; Lim, Yee Seng; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ng, Yun Hau; Ramaraj, Ramasamy; Bien, Daniel Chia Sheng; Abou-Zied, Osama K; Huang, Nay Ming
2017-01-04
In the present investigation, gold-silver@titania (Au-Ag@TiO 2 ) plasmonic nanocomposite materials with different Au and Ag compositions were prepared using a simple one-step chemical reduction method and used as photoanodes in high-efficiency dye-sensitized solar cells (DSSCs). The Au-Ag incorporated TiO 2 photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 7.33%, which is ∼230% higher than the unmodified TiO 2 photoanode (2.22%) under full sunlight illumination (100 mW cm -2 , AM 1.5G). This superior solar energy conversion efficiency was mainly due to the synergistic effect between the Au and Ag, and their surface plasmon resonance effect, which improved the optical absorption and interfacial charge transfer by minimizing the charge recombination process. The influence of the Au-Ag composition on the overall energy conversion efficiency was also explored, and the optimized composition with TiO 2 was found to be Au 75 -Ag 25 . This was reflected in the femtosecond transient absorption dynamics in which the electron-phonon interaction in the Au nanoparticles was measured to be 6.14 ps in TiO 2 /Au 75 :Ag 25 , compared to 2.38 ps for free Au and 4.02 ps for TiO 2 /Au 100 :Ag 0 . The slower dynamics indicates a more efficient electron-hole separation in TiO 2 /Au 75 :Ag 25 that is attributed to the formation of a Schottky barrier at the interface between TiO 2 and the noble metal(s) that acts as an electron sink. The significant boost in the solar energy conversion efficiency with the Au-Ag@TiO 2 plasmonic nanocomposite showed its potential as a photoanode for high-efficiency DSSCs.
NASA Technical Reports Server (NTRS)
1982-01-01
The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.
Energy Factors in Commercial Mortgages: Gaps and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Paul; Coleman, Philip; Wallace, Nancy
2016-09-01
The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body ofmore » research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.« less
Yang, Zhibin; Sun, Hao; Chen, Tao; Qiu, Longbin; Luo, Yongfeng; Peng, Huisheng
2013-07-15
Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.
2017-05-01
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...
2017-05-11
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
Energy consumption by forward osmosis treatment of landfill leachate for water recovery.
Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen
2017-05-01
Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Power Budget Analysis for High Altitude Airships
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Elliott, James R.; King, Glen C.
2006-01-01
The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cloutier, Deborah; Hosseini, Farshid; White, Andrew
Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study tomore » test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.« less
Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting
NASA Astrophysics Data System (ADS)
Yao, Yuhan; Liu, He; Wu, Wei
2014-06-01
We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.
NASA Astrophysics Data System (ADS)
Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-02-01
We have investigated the gate stack scalability and energy efficiency of double-gate negative-capacitance FET (DGNCFET) with a CMOS-compatible ferroelectric HfO2 (FE:HfO2). Analytic model-based simulation is conducted to investigate the impacts of ferroelectric characteristic of FE:HfO2 and gate stack thickness on the I on/I off ratio of DGNCFET. DGNCFET has wider design window for the gate stack where higher I on/I off ratio can be achieved than DG classical MOSFET. Under a process-induced constraint with sub-10 nm gate length (L g), FE:HfO2-based DGNCFET still has a design point for high I on/I off ratio. With an optimized gate stack thickness for sub-10 nm L g, FE:HfO2-based DGNCFET has 2.5× higher energy efficiency than DG classical MOSFET even at ultralow operation voltage of sub-0.2 V.
Excessive Exoergicity Reduces Singlet Exciton Fission Efficiency of Heteroacenes in Solutions.
Zhang, You-Dan; Wu, Yishi; Xu, Yanqing; Wang, Qiang; Liu, Ke; Chen, Jian-Wei; Cao, Jing-Jing; Zhang, Chunfeng; Fu, Hongbing; Zhang, Hao-Li
2016-06-01
The energy difference between a singlet exciton and twice of a triplet exciton, ΔESF, provides the thermodynamic driving force for singlet exciton fission (SF). This work reports a systematic investigation on the effect of ΔESF on SF efficiency of five heteroacenes in their solutions. The low-temperature, near-infrared phosphorescence spectra gave the energy levels of the triplet excitons, allowing us to identify the values of ΔESF, which are -0.58, -0.34, -0.31, -0.32, and -0.34 eV for the thiophene, benzene, pyridine, and two tetrafluorobenzene terminated molecules, respectively. Corresponding SF efficiencies of the five heteroacenes in 0.02 M solutions were determined via femtosecond transient absorption spectroscopy to be 117%, 124%, 140%, 132%, and 135%, respectively. This result reveals that higher ΔESF is not, as commonly expected, always beneficial for higher SF efficiency in solution phase. On the contrary, excessive exoergicity results in reduction of SF efficiency in the heteroacenes due to the promotion of other competitive exciton relaxation pathways. Therefore, it is important to optimize thermodynamic driving force when designing organic materials for high SF efficiency.
Energy Efficiency of Biogas Produced from Different Biomass Sources
NASA Astrophysics Data System (ADS)
Begum, Shahida; Nazri, A. H.
2013-06-01
Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
Acceleration of low-energy ions at parallel shocks with a focused transport model
Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.
2013-04-10
Here, we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of acceleratedmore » particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.« less
NASA Astrophysics Data System (ADS)
Botero, Sergio
2002-01-01
Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users appear to chose a specific energy efficiency option based mostly on obtaining better economic returns, giving low consideration to other criterion that feature differences among the energy efficiency options.
Chausse, Bruno; Solon, Carina; Caldeira da Silva, Camille C; Masselli Dos Reis, Ivan G; Manchado-Gobatto, Fúlvia B; Gobatto, Claudio A; Velloso, Licio A; Kowaltowski, Alicia J
2014-07-01
Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.
Optimized Ion Energy Profiles for Heavy Ion Direct Drive Targets
NASA Astrophysics Data System (ADS)
Hay, Michael J.; Barnard, John J.; Perkins, L. John; Logan, B. Grant
2009-11-01
Recent 1-D implosion calculations [1] have characterized pure-DT targets delivering gains of 50-90 with less than 0.5 MJ of heavy ion direct drive. With a payload fraction of 1/3, these low-aspect ratio targets operate near the peak of rocket efficiency and achieve ˜10% overall coupling efficiencies (vs. the 15-20% efficiencies analytically predicted for less stable, higher-aspect ratio targets). In Ref. 1, the ion energy is ramped directly from a 50 MeV foot pulse to a 500 MeV main pulse. In this paper, we instead tune the ion energy throughout the drive to closely match the beam deposition with the inward progress of the ablation front. We will present the ion energy and intensity time histories that maximize drive efficiency and gain for a single target at constant integrated drive energy. [1] L. J. Perkins, B. G. Logan, J. J. Barnard, and M. J. Hay. ``High Efficiency High Gain Heavy Ion Direct Drive Targets,'' Bulletin of the American Physical Society, vol. 54: DPP, Nov. 2009.
Energy Efficiency Challenges of 5G Small Cell Networks.
Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang
2017-05-01
The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks.
Energy Efficiency Challenges of 5G Small Cell Networks
Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang
2017-01-01
The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks. PMID:28757670
Stoks, Robby; Swillen, Ine; De Block, Marjan
2012-09-01
1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Low Energy Dissipation Nano Device Research
NASA Astrophysics Data System (ADS)
Yu, Jenny
2015-03-01
The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.
NASA Astrophysics Data System (ADS)
Siddiqui, Osamah; Dincer, Ibrahim
2017-12-01
In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.
Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge.
Huiliñir, Cesar; Villegas, Manuel
2015-10-01
The simultaneous effect of initial moisture content (initial Mc) and air-flow rate (AFR) on biodrying performance was evaluated. For the study, a 3(2) factorial design, whose factors were AFR (1, 2 and 3 L/min kg(TS)) and initial Mc (59, 68 and 78% w.b.), was used. Using energy and water mass balance the main routes of water removal, energy use and efficiencies were determined. The results show that initial Mc has a stronger effect on the biodrying than the AFR, affecting the air outlet temperature and improving the water removal, with higher maximum temperatures obtained around 68% and the lowest maximum matrix temperature obtained at initial Mc = 78%.Through the water mass balance it was found that the main mechanism for water removal was the aeration, with higher water removal at intermediate initial Mc (68%) and high AFR (3 L/min kg(TS)). The energy balance indicated that bioreaction is the main energy source for water evaporation, with higher energy produced at intermediate initial Mc (68%). Finally, it was found that low values of initial Mc (59%) improve biodrying efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
A study of the effectiveness and energy efficiency of ultrasonic emulsification.
Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O
2017-12-20
Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.
Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar
2018-03-01
The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy conversion approaches and materials for high-efficiency photovoltaics.
Green, Martin A; Bremner, Stephen P
2016-12-20
The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.
Building an Energy-efficient Uplink and Downlink Delay Aware TDM-PON System
NASA Astrophysics Data System (ADS)
Newaz, S. H. Shah; Jang, Min Seok; Alaelddin, Fuad Yousif Mohammed; Lee, Gyu Myoung; Choi, Jun Kyun
2016-05-01
With the increasing concern over the energy expenditure due to rapid ICT expansion and growth of Internet traffic volume, there is a growing trend towards developing energy-efficient ICT solutions. Passive Optical Network (PON), which is regarded as a key enabler to facilitate high speed broadband connection to individual subscribers, is considered as one of the energy-efficient access network technologies. However, an immense amount of research effort can be noticed in academia and industries to make PON more energy-efficient. In this paper, we aim at improving energy saving performance of Time Division Multiplexing (TDM)-PON, which is the most widely deployed PON technology throughout the world. A commonly used approach to make TDM-PON energy-efficient is to use sleep mode in Optical Network Units (ONUs), which are the customer premises equipment of a TDM-PON system. However, there is a strong trade-off relationship between traffic delay performance of an ONU and its energy saving (the longer the sleep interval length of an ONU, the lower its energy consumption, but the higher the traffic delay, and vice versa). In this paper, we propose an Energy-efficient Uplink and Downlink Delay Aware (EUDDA) scheme for TDM-PON system. The prime object of EUDDA is to meet both downlink and uplink traffic delay requirement while maximizing energy saving performance of ONUs as much as possible. In EUDDA, traffic delay requirement is given more priority over energy saving. Even so, it still can improve energy saving of ONUs noticeably. We evaluate performance of EUDDA in front of two existing solutions in terms of traffic delay, jitter, and ONU energy consumption. The performance results show that EUDDA significantly outperforms the other existing solutions.
Systems Analysis of GPS Electrical Power System Redesign
1995-12-01
Table 8 - System Efficiencies & Multipliers for Solar Direct Model (12:102; 15:864) Component Efficiency AMTEC 0.180 Receiver and Thermal Energy Storage...and low temperatures of the working fluid. Extreme high and low temperatures provide a greater efficiency , but require extensive thermal control and...direct conversion category. The Alkali Metal Thermal -to-Electric Converter ( AMTEC ) shows mass and cost savings due to efficiencies significantly higher
1981-07-01
expanding the powerhouse) or uprating existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or...fluid energy loss in flow passage and energy loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical...energy (generator output). The significant practical opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the
Fuel Cell Power Plants Renewable and Waste Fuels
2011-01-13
of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than
Tunable organic distributed feedback dye laser device excited through Förster mechanism
NASA Astrophysics Data System (ADS)
Tsutsumi, Naoto; Hinode, Taiki
2017-03-01
Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.
1W frequency-doubled VCSEL-pumped blue laser with high pulse energy
NASA Astrophysics Data System (ADS)
Van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Xu, Guoyang; Seurin, Jean-Francois; Wang, Qing; Zhou, Delai; Ghosh, Chuni
2015-02-01
We report on a Q-switched VCSEL side-pumped 946 nm Nd:YAG laser that produces high average power blue light with high pulse energy after frequency doubling in BBO. The gain medium was water cooled and symmetrically pumped by three 1 kW 808 nm VCSEL pump modules. More than 1 W blue output was achieved at 210 Hz with 4.9 mJ pulse energy and at 340 Hz with 3.2 mJ pulse energy, with 42% and 36% second harmonic conversion efficiency respectively. Higher pulse energy was obtained at lower repetition frequencies, up to 9.3 mJ at 70 Hz with 52% conversion efficiency.
NASA Astrophysics Data System (ADS)
Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro
2017-08-01
In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.
Public policies, private choices: Consumer desire and the practice of energy efficiency
NASA Astrophysics Data System (ADS)
Deumling, Reuben Alexander
Refrigerator energy consumption has been the subject of regulatory attention in the US for some thirty years. Federal product standards, energy labels, and a variety of programs to get consumers to discard their existing refrigerators sooner and buy new, more energy efficient ones have transformed the refrigerator landscape and changed how many of us think about refrigerators. The results of these policies are celebrated as a successful model for how to combine regulatory objectives and consumer preferences in pursuit of environmental outcomes where everyone wins. Yet per capita refrigerator energy consumption today remains (much) higher in the US than anywhere else, in part because energy efficiency overlooks the ways behavior, habit, emulation, social norms, advertising, and energy efficiency policies themselves shape energy consumption patterns. To understand these dynamics I investigate how people replacing their refrigerators through a state-sponsored energy efficiency program make sense of the choices facing them, and how various types of information designed to aid in this process (Consumer Reports tests, Energy Guide labels, rebate programs) frame the issue of responsible refrigerator consumption. Using interviews and archival research I examine how this information is used to script the choice of a refrigerator, whose priorities shape the form and content of these cues, and what the social meanings generated by and through encounters with refrigerators and energy efficiency are. I also helped build a model for estimating historic refrigerator energy consumption in the US, to measure the repercussions of refrigerator energy inefficiency. My focus in this dissertation is on the ways the pursuit of energy efficiency improvements for domestic refrigerators intersects with and sometimes reinforces escalating demand for energy. My research suggests that the practice of pursuing energy efficiency improvements in refrigerators subordinates the issue of refrigerator energy consumption---what factors influence it, how and why it fluctuated historically, how to take it seriously---in pursuit of increased sales. The a priori assumption that consumers desire certain styles of refrigerator has become a compulsion to trade up. In evaluating the results of energy policies celebrating technical achievements without paying attention to the social dynamics which these regulations encounter is insufficient.
Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Schwam
2012-12-15
This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less
Current Trends in Commercial Energy Codes
ERIC Educational Resources Information Center
Sebesta, James J.; Diemer, Robert; Ierardi, James
2013-01-01
Buildings consume approximately 40 percent of the energy used in the U.S., and efficiency is widely recognized to be the most effective means for containing demand and reducing use. Institutions of higher education make up a significant proportion of building area and annual energy and facility-related costs in the United States. The national…
Commercial Development Of Ovonic Thin Film Solar Cells
NASA Astrophysics Data System (ADS)
Ovshinsky, Stanford R.
1983-09-01
One square foot Ovonic amorphous photovoltaic devices are already in commercial production and are manufactured through a continuous web process. The next levels of commercialization required to achieve a large-volume power market will be discussed, and the device specifications correlated with the chemical and electronic properties of the materials that we are developing to achieve even higher efficiencies. It has been long considered a utopian dream to harness the energy of the sun to create electricity that would be competitive in cost to that produced from the conventional sources of energy such as oil, gas, and uranium. The impact on our society of stand-alone power generators without moving parts using the continually available, ubiquitous energy of the sun could certainly lead to a new age with consequences comparable to the first introduction of electricity which greatly accelerated the Industrial Revolution. Low cost, nonpolluting energy not dependent upon or limited by transmission costs could again make DC electricity a realistic option. The relatively young field of photovoltaics suffers from certain dogmas that are just now being questioned. For example, it is thought by many that solar cells utilizing crys-talline materials have inherently higher efficiencies than those using amorphous materials, and that somehow crystalline solar cells, whether fabricated from single crystals or polycrystalline material, in round or rectangular geometries, grown from the melt or by a rib-bon process, can be reduced in cost sufficiently that the economics become attractive enough for large-scale terrestrial generation of power. In this paper, we shall show that amorphous materials can have much higher efficiencies than do crystalline and that the answer to our power generation needs lies not in crystalline but in amorphous technology. At Energy Conversion Devices, Inc. (ECD), we have designed and built a production machine (described by my colleague, Dr. Izu, in a subsequent paper) which has clearly demonstrated that the basic barrier to low-cost production has been broken through and that one can now speak realistically of delivering power directly from the sun for under a dollar per peak watt merely by making larger versions of this basic continuous web, large-area thin-film machine. We have made one square foot amorphous silicon alloy PIN devices with conversion efficiencies in the range of 7%, and in the laboratory, we have reported smaller area PIN de-vices in the 10% conversion efficiency range. In addition, much higher energy conversion efficiencies can be obtained within the same process by using multi-cell layered or tandem thin-film solar cell structures (see Figure 1). These devices exhibit enhanced efficiency by utilizing a wider range of the solar spectrum. Since the theoretical maximum efficiency for multi-cell structures is over 60%, one can certainly realistically anticipate the pro-duction of thin-film amorphous photovoltaic devices with efficiencies as high as 30%. Our production device is already a two-cell tandem, as we have solved not only the problems of interfacing the individual cell components but also the difficulties associated with a one foot square format deposited on a continuous web. Figure 2 shows a continuous roll of Ovonic solar cells. Realistic calculations for a three-cell tandem thin-film device using amorphous semiconductor alloys with 1.8eV, 1.5eV, and 1.0eV optical band gaps indicate that solar energy conversion efficiencies of 20-30% can be achieved.
Barta, Zsolt; Reczey, Kati; Zacchi, Guido
2010-09-15
Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
2010-01-01
Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330
High efficient waste-to-energy in Amsterdam: getting ready for the next steps.
Murer, Martin J; Spliethoff, Hartmut; de Waal, Chantal M W; Wilpshaar, Saskia; Berkhout, Bart; van Berlo, Marcel A J; Gohlke, Oliver; Martin, Johannes J E
2011-10-01
Waste-to-energy (WtE) plants are traditionally designed for clean and economical disposal of waste. Design for output on the other hand was the guideline when projecting the HRC (HoogRendement Centrale) block of Afval Energie Bedrijf Amsterdam. Since commissioning of the plant in 2007, operation has continuously improved. In December 2010, the block's running average subsidy efficiency for one year exceeded 30% for the first time. The plant can increase its efficiency even further by raising the steam temperature to 480°C. In addition, the plant throughput can be increased by 10% to reduce the total cost of ownership. In order to take these steps, good preparation is required in areas such as change in heat transfer in the boiler and the resulting higher temperature upstream of the super heaters. A solution was found in the form of combining measured data with a computational fluid dynamics (CFD) model. Suction and acoustic pyrometers are used to obtain a clear picture of the temperature distribution in the first boiler pass. With the help of the CFD model, the change in heat transfer and vertical temperature distribution was predicted. For the increased load, the temperature is increased by 100°C; this implies a higher heat transfer in the first and second boiler passes. Even though the new block was designed beyond state-of-the art in waste-to-energy technology, margins remain for pushing energy efficiency and economy even further.
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-01-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-26
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.
Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong
2017-07-01
Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (V OC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of V OC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger V OC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced V OC by 60 mV, reduced V OC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, SH; Yip, NY; Cath, TY
2014-05-06
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, andmore » 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.« less
Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem
2014-05-06
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.
NASA Technical Reports Server (NTRS)
Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.
1976-01-01
The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.
None
2017-12-09
Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%âabout one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%.
Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector
NASA Astrophysics Data System (ADS)
Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.
2017-07-01
The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias
2012-06-01
Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.
NASA Astrophysics Data System (ADS)
Rahimi, Mohammad; D'Angelo, Adriana; Gorski, Christopher A.; Scialdone, Onofrio; Logan, Bruce E.
2017-05-01
Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m-2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m-2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m-3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process.
NASA Astrophysics Data System (ADS)
Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai
2017-10-01
Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deru, Michael
According to the U.S. Energy Information Administration, HVAC accounts for approximately 38 percent of U.S. commercial buildings' primary energy consumption and a slightly higher percentage of their greenhouse-gas emissions. We have seen incredible gains made with lighting, going from incandescent and T12 fluorescent bulbs to high-efficiency LEDS, but there are even greater advances to be made with HVAC. Gains of 20 percent to 30 percent easily can be made by replacing older degraded equipment with new high-efficiency equipment. Even more savings are possible with an integrated engineering approach yielding optimized system designs combined with highly efficient controls.
Experimental investigation on the hydrodynamic performance of a wave energy converter
NASA Astrophysics Data System (ADS)
Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu
2017-06-01
Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.
Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; Park, Hee-Deung; Kim, Taek-Seung; Baquero-Rodriguez, G Andres; Olson, Betty H; Rosso, Diego
2018-10-15
Biofilm formation influences the most energy-demanding process in the waste water treatment cycle. Biofilm growth on the surface of wastewater aeration diffusers in water resource recovery facilities (WRRFs) can increase the energy requirements up to 50% in less than 2 years. The impact of biofilms in aeration diffusers was quantified and assessed for first time using molecular tools (i.e., Energy-dispersive X-ray, Ra and RMS and Pyrosequencing) and state-of-the-art techniques (i.e., EPS quantification, Hydrophobicity and DNA quantification). To provide a better understanding and quantitative connections between biological activity and aeration energy efficiency, two replicates of the most common diffusers were installed and tested in two different operational conditions (higher and lower organic loading rate processes) during 15 months. Different scenarios and conditions provided for first time comprehensive understanding of the major factors contributing to diffuser fouling. The array of analysis suggested that higher loading conditions can promote specialized microbial populations to halve aeration efficiency parameters (i.e., αF) in comparison to lower loading conditions. Biofilms adapted to certain operational conditions can trigger changes in diffuser membrane properties (i.e., biological enhanced roughness and hydrophobicity) and enhance EPS growth rates. Improved understanding of the effects of scaling, biofouling, aging and microbial population shifts on the decrease in aeration efficiency is provided. Copyright © 2018 Elsevier B.V. All rights reserved.
Coradini, M; Rand, J S; Morton, J M; Rawlings, J M
2011-10-01
A low-carbohydrate, high-protein (LCHP) diet is often recommended for the prevention and management of diabetes in cats; however, the effect of macronutrient composition on insulin sensitivity and energetic efficiency for weight gain is not known. The present study compared the effect in adult cats (n 32) of feeding a LCHP (23 and 47 % metabolisable energy (ME)) and a high-carbohydrate, low-protein (HCLP) diet (51 and 21 % ME) on fasting and postprandial glucose and insulin concentrations, and on insulin sensitivity. Tests were done in the 4th week of maintenance feeding and after 8 weeks of ad libitum feeding, when weight gain and energetic efficiency of each diet were also measured. When fed at maintenance energy, the HCLP diet resulted in higher postprandial glucose and insulin concentrations. When fed ad libitum, the LCHP diet resulted in greater weight gain (P < 0.01), and was associated with higher energetic efficiency. Overweight cats eating the LCHP diet had similar postprandial glucose concentrations to lean cats eating the HCLP diet. Insulin sensitivity was not different between the diets when cats were lean or overweight, but glucose effectiveness was higher after weight gain in cats fed the HCLP diet. According to the present results, LCHP diets fed at maintenance requirements might benefit cats with multiple risk factors for developing diabetes. However, ad libitum feeding of LCHP diets is not recommended as they have higher energetic efficiency and result in greater weight gain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diercks, David R., E-mail: ddiercks@mines.edu; Gorman, Brian P.; Kirchhofer, Rita
2013-11-14
The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At themore » lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.« less
Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan
2013-02-01
Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.
Introduction of Nano-seconds Pulsed Discharge Plasma and its Applications
NASA Astrophysics Data System (ADS)
Namihira, Takao; Wang, Douyan; Matsumoto, Takao; Okada, Sho; Akiyama, Hidenori
During the decades, the developments of high power semiconductor switch, magnetic core and etc have allowed us to manufacture the pulsed power source having higher energy transfer efficiency. As the results, the pulsed discharge has been recognized as one of the promised non-thermal plasma to practical use. In this paper, a generation process, electron energy, impedance and a temperature of the pulsed discharge plasma would be explained. In addition, a nano-seconds pulsed discharge plasma would be introduced as the non-thermal plasma processing giving us the highest energy efficiency and be demonstrated it.
NASA Astrophysics Data System (ADS)
Klementich, Eloisa Y.
2011-12-01
Purpose. The purpose of this research was to identify whether a relationship exists between state energy-efficiency policy and innovation in the State of California and to shed light on the impact that energy-efficiency policy can have on supporting statewide economic development goals. Theoretical Framework. The theoretical framework drew from foundations in neoclassical economic theory, technology change theory, and new growth theory. Together these theories formed the basis to describe the impacts caused by the innovations within the market economy. Under this framework, policy-generated innovations are viewed to be translated into efficiency and productivity that propel economic benefits. Methodological Considerations. This study examined various economic indices and efficiency attainment indices affecting four home appliances regulated under Title 20's energy-efficiency standard established by the California Energy Commission, Warren Alquist Act. The multiple regression analysis performed provided an understanding of the relationship between the products regulated, the regulation standard, and the policy as it relates to energy-efficiency regulation. Findings. There is enough evidence to show that strategies embedded in the Warren Alquist Act, Title 20 do drive innovation. Three of the four product categories tested showed statistical significance in the policy standard resulting in an industry efficiency improvement. Conclusively, the consumption of electricity per capita in California has positively diverged over a 35-year period from national trends, even though California had mirrored the nation in income and family size during the same period, the only clear case of divergence is the state's action toward a different energy policy. Conclusions and Recommendations. California's regulations propelled manufacturers to reach higher efficiency levels not otherwise pursued by market forces. The California effort included alliances all working together to make the change financially feasible as well as increasing efficiency levels. The success of the policy is based on the attainment of regulation standards, economic growth within the energy-efficiency industry, and energy-efficiency business savings. The key to the policy was its ability to "level the playing field" for manufacturers who could then choose the technology and design that best fit their products and compliance levels while at the same time lowering the cost of production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolmasquim, M.T.; Szklo, A.S.; Cohen, C.
This paper presents the development of energy consumption in the Brazilian industrial sector and energy efficiency potential based on the analysis undertaken through a model developed in the Energy Planning Program at COPPE/UFRJ, known as the Integrated Energy Planning Model (IEPM). The study starts by presenting the IEPM, which is a technical and economic parameter-based model designed to forecast energy supplies and consumption for all economic sectors in Brazil, within three scenarios. Outlines of all three scenarios are presented, as they were constructed according to certain specific assumptions. The industrial sector was broken down into eleven sub-sectors: food and beverages,more » ceramics, cement, iron and steel, mining and pelletizing, ferroalloys, non-ferrous metals and others (metallurgy), chemicals, pulp and paper, textiles and other industries (MME, 1998). All these sub-sectors will also be presented as well as the results of the scenario forecasts. Results deriving from these forecasts come from very specific studies that analyze all process steps in each sub-sector in order to propose energy replacements, efficiency improvements of structural production alterations that result in major potential energy consumption reductions. Last but not least, this paper gives the development forecasts deriving from the three scenarios over ten years, with their contributions to energy efficiency in the Brazilian industrial sector, showing that the authors can reduce energy consumption in the Brazilian industrial sector by: substituting less efficient processes by more efficient ones, through the conversion of final energy into usable energy, basically, in the cement and aluminum industries; replacing equipment and energy sources; modifying product mix of several industries (pulp and paper), assigning top priority to producing goods with higher added value that are less energy intensive, and, finally, reducing the share held by some energy intensive sectors in the industrial output.« less
High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd
2007-01-01
A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.
NASA Astrophysics Data System (ADS)
Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt
2017-01-01
Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.
Zhang, Fang; LaBarge, Nicole; Yang, Wulin; Liu, Jia; Logan, Bruce E
2015-03-01
A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72 °C produced a power density of 236 ± 8 Wm(-2), with a linear decrease in power to 95 ± 5 Wm(-2) at 23 °C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Wh m(-3) at a discharge energy efficiency of 54% and a temperature of 37 °C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coyle, Peter C; Pugliese, Jenifer M; Sions, J Megan; Eskander, Mark S; Schrack, Jennifer A; Hicks, Gregory E
2018-04-23
To investigate the impact that the presence of chronic low back pain with radiculopathy (CLBPR) may have on 1) energy efficiency and 2) energy capacity among community-dwelling older adults. Matched case-control study. Clinical research laboratory. 38 community-dwelling older adults (60-85 years) with (n=19) and without (n=19) CLBPR were included in this analysis. Participants were matched between-groups on age (± 5 years), sex, and diabetic status. Not applicable. Energy cost of walking at self-selected speed (i.e. energy efficiency) and Peak Walking VO2 (i.e. energy capacity). Older adults with CLBPR had a higher energy cost of walking at self-selected speed (p=.009) and lower Peak Walking VO2 (p=.050), compared to those without pain. Older adults with CLBPR may benefit from specific rehabilitative interventions that target these potentially modifiable energetic outcomes, thereby reducing the risk of mobility decline. Future studies should identify which mechanisms specifically contribute to diminished energy efficiency and capacity among older adults with CLBPR. Copyright © 2018. Published by Elsevier Inc.
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Lamba, Ravita; Manikandan, S.; Kaushik, S. C.
2018-06-01
A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.
Solar updraft power generator with radial and curved vanes
NASA Astrophysics Data System (ADS)
Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi
2018-02-01
Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.
Excitation of lowest electronic states of thymine by slow electrons
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.
2013-11-01
Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.
Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin
This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less
NASA Astrophysics Data System (ADS)
Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin
2010-07-01
Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.
Factors affecting energy and nitrogen efficiency of dairy cows: a meta-analysis.
Phuong, H N; Friggens, N C; de Boer, I J M; Schmidely, P
2013-01-01
A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan
2017-06-01
Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jun; Niu, Hai-jun; Wen, Hai-lin
2013-03-15
Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less
Marginalization of end-use technologies in energy innovation for climate protection
NASA Astrophysics Data System (ADS)
Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.
2012-11-01
Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.
Best Practices Manual, 2002 Edition.
ERIC Educational Resources Information Center
Collaborative for High Performance Schools, CA.
The goal of this manual is to create a new generation of high performance school facilities in California. The focus is on public schools and levels K-12, althoughmany of the design principals apply to private schools and higher education facilities as well. High performance schools are healthy, comfortable, energy efficient, resource efficient,…
Process Performances of 2 ns Pulsed Discharge Plasma
NASA Astrophysics Data System (ADS)
Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori
2011-08-01
Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.
NASA Astrophysics Data System (ADS)
Ren, Zhao-Yu; Xu, Xiao-Ming; Wang, Shui-Cai; Xin, Yue-Yong; He, Jun-Fang; Hou, Xun
2003-10-01
A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wild-type rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wild-type. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.
Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.
2017-12-01
Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.
A bio-inspired study on tidal energy extraction with flexible flapping wings.
Liu, Wendi; Xiao, Qing; Cheng, Fai
2013-09-01
Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.
Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants
Shabat, Sheerli Kruger Ben; Sasson, Goor; Doron-Faigenboim, Adi; Durman, Thomer; Yaacoby, Shamay; Berg Miller, Margret E; White, Bryan A; Shterzer, Naama; Mizrahi, Itzhak
2016-01-01
Ruminants have the remarkable ability to convert human-indigestible plant biomass into human-digestible food products, due to a complex microbiome residing in the rumen compartment of their upper digestive tract. Here we report the discovery that rumen microbiome components are tightly linked to cows' ability to extract energy from their feed, termed feed efficiency. Feed efficiency was measured in 146 milking cows and analyses of the taxonomic composition, gene content, microbial activity and metabolomic composition was performed on the rumen microbiomes from the 78 most extreme animals. Lower richness of microbiome gene content and taxa was tightly linked to higher feed efficiency. Microbiome genes and species accurately predicted the animals' feed efficiency phenotype. Specific enrichment of microbes and metabolic pathways in each of these microbiome groups resulted in better energy and carbon channeling to the animal, while lowering methane emissions to the atmosphere. This ecological and mechanistic understanding of the rumen microbiome could lead to an increase in available food resources and environmentally friendly livestock agriculture. PMID:27152936
Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei
2017-03-01
In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants.
Shabat, Sheerli Kruger Ben; Sasson, Goor; Doron-Faigenboim, Adi; Durman, Thomer; Yaacoby, Shamay; Berg Miller, Margret E; White, Bryan A; Shterzer, Naama; Mizrahi, Itzhak
2016-12-01
Ruminants have the remarkable ability to convert human-indigestible plant biomass into human-digestible food products, due to a complex microbiome residing in the rumen compartment of their upper digestive tract. Here we report the discovery that rumen microbiome components are tightly linked to cows' ability to extract energy from their feed, termed feed efficiency. Feed efficiency was measured in 146 milking cows and analyses of the taxonomic composition, gene content, microbial activity and metabolomic composition was performed on the rumen microbiomes from the 78 most extreme animals. Lower richness of microbiome gene content and taxa was tightly linked to higher feed efficiency. Microbiome genes and species accurately predicted the animals' feed efficiency phenotype. Specific enrichment of microbes and metabolic pathways in each of these microbiome groups resulted in better energy and carbon channeling to the animal, while lowering methane emissions to the atmosphere. This ecological and mechanistic understanding of the rumen microbiome could lead to an increase in available food resources and environmentally friendly livestock agriculture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, M. H.; Tirawat, R.; Kessinger, K. A.
The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less
Gray, M. H.; Tirawat, R.; Kessinger, K. A.; ...
2015-05-01
The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less
Novel bamboo structured TiO2 nanotubes for energy storage/production applications
NASA Astrophysics Data System (ADS)
Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.
2018-04-01
Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.
Higher-harmonics suppressor for soft x rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, I.; Hirai, Y.; Momose, A.
We have developed an apparatus for suppressing higher harmonics contained in the soft x-ray output beam of grazing-incidence grating monochromators. It consists of eight pairs of total-reflection mirrors. Each pair serves as a low-pass filter with the cutoff energy different from one another. The eight pairs are designed to cover an energy range of 80--1600 eV with an efficiency of harmonic suppression better than 97%, while transmitting more than 50% of the fundamental photons. We have tested its preliminary performance on the soft x-ray beamline BL-8A at the Photon Factory. We present the observed transmission efficiencies and the effects ofmore » the harmonic suppressor on measurements of reflectivity and fluorescence spectra.« less
NASA Astrophysics Data System (ADS)
Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan
2015-10-01
In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.
Improved Heat-of-Fusion Energy Storage
NASA Technical Reports Server (NTRS)
Chen, K. H.; Manvi, R.
1982-01-01
Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.
The latest developments and outlook for hydrogen liquefaction technology
NASA Astrophysics Data System (ADS)
Ohlig, K.; Decker, L.
2014-01-01
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.
El-Khatib, A H; He, Y; Esteban-Fernández, D; Linscheid, M W
2017-08-01
1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives are applied in quantitative proteomics owing to their ability to react with different functional groups, to harbor lanthanoides and hence their compatibility with molecular and elemental mass spectrometry. The new DOTA derivatives, namely Ln-MeCAT-Click and Ln-DOTA-Dimedone, allow efficient thiol labeling and targeting sulfenation as an important post-translational modification, respectively. Quantitative applications require the investigation of fragmentation behavior of these reagents. Therefore, the fragmentation behavior of Ln-MeCAT-Click and Ln-DOTA-Dimedone was studied using collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD) and higher-energy collision dissociation (HCD) using different energy levels, and the efficiency of reporter ion production was estimated. The efficiency of characteristic fragment formation was in the order IRMPD > HCD (normal energy level) > CID. On the other hand, the application of HCD at high energy levels (HCD@HE; NCE > 250%) resulted in a significant increase in reporter ion production (33-54%). This new strategy was successfully applied to generate label-specific reporter ions for DOTA amino labeling at the N-termini and in a quantitative fashion for the estimation of amino:thiol ratio in peptides. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Public perceptions of energy consumption and savings
Attari, Shahzeen Z.; DeKay, Michael L.; Davidson, Cliff I.; Bruine de Bruin, Wändi
2010-01-01
In a national online survey, 505 participants reported their perceptions of energy consumption and savings for a variety of household, transportation, and recycling activities. When asked for the most effective strategy they could implement to conserve energy, most participants mentioned curtailment (e.g., turning off lights, driving less) rather than efficiency improvements (e.g., installing more efficient light bulbs and appliances), in contrast to experts’ recommendations. For a sample of 15 activities, participants underestimated energy use and savings by a factor of 2.8 on average, with small overestimates for low-energy activities and large underestimates for high-energy activities. Additional estimation and ranking tasks also yielded relatively flat functions for perceived energy use and savings. Across several tasks, participants with higher numeracy scores and stronger proenvironmental attitudes had more accurate perceptions. The serious deficiencies highlighted by these results suggest that well-designed efforts to improve the public's understanding of energy use and savings could pay large dividends. PMID:20713724
NASA Astrophysics Data System (ADS)
Cai, Jiaxiang; Liang, Hua; Zhang, Chun
2018-06-01
Based on the multi-symplectic Hamiltonian formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-preserving scheme are proposed. To improve the accuracy of the solution, we apply the composition technique to the obtained schemes to develop high-order schemes which are also multi-symplectic and energy-preserving respectively. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results verify that all the proposed schemes have satisfactory performance in providing accurate solution and preserving the discrete mass and energy invariants. Numerical results also show that although each basic time step is divided into several composition steps, the computational efficiency of the composition schemes is much higher than that of the non-composite schemes.
Kavitha, S; Jayashree, C; Adish Kumar, S; Kaliappan, S; Rajesh Banu, J
2014-12-01
In this investigation, an effort was made to pretreat surplus waste activated sludge (WAS) inexpensively by a novel combined process involving thermo chemical disperser pretreatment. This pretreatment was found to be efficient at a specific energy (SE) consumption of 3360.94 kJ/kg TS, with the chemical oxygen demand (COD) solubilization of 20%. This was comparatively higher than thermo chemically treated sludge where the solubilization was found to be 15.5% at a specific energy consumption of 10,330 kJ/kg TS respectively. Higher production of volatile fatty acids (VFA) (675 mg/L) in anaerobic fermentation of pretreated WAS indicates better hydrolysis performance. The biogas production potential of sludge pretreated through this combined technique was found to be 0.455 (L/gVS) and comparatively higher than thermo chemically pretreated sludge. Economic investigation provides 90% net energy savings in this combined pretreatment. Therefore, this combined process was considered to be potentially effective and economical in sludge disintegration. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngirmang, Gregory K., E-mail: ngirmang.1@osu.edu; Orban, Chris; Feister, Scott
We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution;more » the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.« less
Zehe, Erwin; Blume, Theresa; Blöschl, Günter
2010-01-01
Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy. PMID:20368256
Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler
Liu, Manzhi; Shen, Bo; Han, Yafeng; ...
2015-08-01
Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out ofmore » 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.« less
Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude.
Hulatt, Chris J; Thomas, David N
2011-06-01
This work examined the energetic performance of a 6-month semi-continuous cultivation of Scenedesmus obliquus in an outdoor photobioreactor at mid-temperate latitude, without temperature control. By measuring the seasonal biomass production (mean 11.31, range 1.39-23.67 g m(-2)d(-1)), higher heating value (22.94 kJ g(-1)) and solar irradiance, the mean seasonally-averaged photosynthetic efficiency (2.18%) and gross energy productivity (0.27 MJ m(-2) d(-1)) was calculated. When comparing the solar energy conversion efficiency to the energy investment for culture circulation, significant improvements in reactor energy input must be made to make the system viable. Using the data collected to model the energetic performance of a substitute photobioreactor design, we conclude that sustainable photobioreactor cultivation of microalgae in similar temperate climates requires a short light path and low power input, only reasonably obtained by flat-panel systems. However, temperature control was not necessary for effective long-term cultivation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Heuvel, Ruurd; van Franeker, Jacobus J; Janssen, René A J
2017-03-01
Six poly(phenylene- alt -dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The best performance is found for the polymer-fullerene combination with distinct phase separation and crystalline domains. This improves the maximum external quantum efficiency for charge formation and collection to 66%. The resulting higher photocurrent compensates for the relatively large energy loss per photon ( E loss = 0.97 eV) in achieving a high PCE. By contrast, the poly-mer that provides a reduced energy loss ( E loss = 0.49 eV) gives a lower photocurrent and a reduced PCE of 1.8% because the external quantum efficiency of 17% is limited by a suboptimal morphology and a reduced driving force for charge transfer.
After Five Warm and Stormy Years, Higher Ed Leaders Keep Commitment to Confront Climate Change
ERIC Educational Resources Information Center
Dyer, Georges
2012-01-01
Leaders in higher education are standing up to the greatest challenge today by providing education for sustainability, preparing graduates to create a sustainable economy. They are providing the opportunity for more students to access higher education by reigning in costs through energy efficiency and smart building. And by demonstrating…
Electromagnetic machines with Nd-Fe-B magnets
NASA Astrophysics Data System (ADS)
Hanitsch, Rolf
1989-08-01
Permanent magnet motors are now becoming more accepted for general use in industrial fixed and variable speed drives. With the application of high-energy permanent magnets, such as Nd-Fe-B, the new motors offer higher efficiency and reduced size and weight compared with wound field energy converters of the same rating.
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
Yao, Lingmin; Pan, Zhongbin; Liu, Shaohui; Zhai, Jiwei; Chen, Haydn H D
2016-10-05
A novel inorganic/polymer nanocomposite, using 1-dimensional TiO 2 nanorod array as fillers (TNA) and poly(vinylidene fluoride) (PVDF) as matrix, has been successfully synthesized for the first time. A carefully designed process sequence includes several steps with the initial epitaxial growth of highly oriented TNA on the fluorine-doped tin oxide (FTO) conductive glass. Subsequently, PVDF is embedded into the nanorods by the spin-coating method followed by annealing and quenching processes. This novel structure with dispersive fillers demonstrates a successful compromise between the electric displacement and breakdown strength, resulting in a dramatic increase in the electric polarization which leads to a significant improvement on the energy density and discharge efficiency. The nanocomposites with various height ratios of fillers between the TNA and total film thickness were investigated by us. The results show that nanocomposite with 18% height ratio fillers obtains maximum increase in the energy density (10.62 J cm -3 ) at a lower applied electric field of 340 MV m -1 , and it also illustrates a higher efficiency (>85%) under the electric field less than 100 MV m -1 . Even when the electric field reached 340 MV m -1 , the efficiency of nanocomposites can still maintained at ∼70%. This energy density exceeds most of the previously reported TiO 2 -based nanocomposite values at such a breakdown strength, which provides another promising design for the next generation of dielectric nanocomposite material, by using the highly oriented nanorod array as fillers for the higher energy density capacitors. Additionally, the finite element simulation has been employed to analyze the distribution of electric fields and electric flux density to explore the inherent mechanism of the higher performance of the TNA/PVDF nanocomposites.
Conceptual design of a high real-estate gradient cavity for a SRF ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng
2017-10-01
The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).
Conceptual design of a high real-estate gradient cavity for a SRF ERL
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...
2017-07-19
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Transformation of general binary MRF minimization to the first-order case.
Ishikawa, Hiroshi
2011-06-01
We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.
Hughes, Alec; Huang, Yuexi; Schwartz, Michael L; Hynynen, Kullervo
2018-05-14
To analyze clinical data indicating a reduction in the induced energy-temperature efficiency relationship during transcranial focused ultrasound (FUS) Essential Tremor (ET) thalamotomy treatments at higher acoustic powers, establish its relationship with the spatial distribution of the focal temperature elevation, and explore its cause. A retrospective observational study of patients (n = 19) treated between July 2015 and August 2016 for (ET) by FUS thalamotomy was performed. These data were analyzed to compare the relationships between the applied power, the applied energy, the resultant peak temperature achieved in the brain, and the dispersion of the focal volume. Full ethics approval was received and all patients provided signed informed consent forms before the initiation of the study. Computer simulations, animal experiments, and clinical system tests were performed to determine the effects of skull heating, changes in brain properties and transducer acoustic output, respectively. All animal procedures were approved by the Animal Care and Use Committee and conformed to the guidelines set out by the Canadian Council on Animal Care. MATLAB was used to perform statistical analysis. The reduction in the energy efficiency relationship during treatment correlates with the increase in size of the focal volume at higher sonication powers. A linear relationship exists showing that a decrease in treatment efficiency correlates positively with an increase in the focal size over the course of treatment (P < 0.01), supporting the hypothesis of transient skull and tissue heating causing acoustic aberrations leading to a decrease in efficiency. Changes in thermal conductivity, perfusion, absorption rates in the brain, as well as ultrasound transducer acoustic output levels were found to have minimal effects on the observed reduction in efficiency. The reduction in energy-temperature efficiency during high-power FUS treatments correlated with observed increases in the size of the focal volume and is likely caused by transient changes in the tissue and skull during heating. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, M.J.; Ketoff, A.; Masera, O.
1992-10-01
This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowingmore » the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.« less
Plug-Load Control and Behavioral Change Research in GSA Office Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Cutler, D.; Sheppy, M.
2012-10-01
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less
An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems
NASA Astrophysics Data System (ADS)
Imanaka, Takeo
In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.
Yang, Xiaoyi; Wang, Xin; Wang, Lei
2010-04-01
For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feibel, C.E.
This study uses multiple data collection and research methods including in depth interviews, 271 surveys of shared taxi and minibus operators, participant observation, secondary sources, and the literature on public transport from low, medium, and high-income countries. Extensive use is also made of a survey administered in Istanbul in 1976 to 1935 paratransit operators. Primary findings are that private buses are more efficient than public buses on a cost per passenger-km basis, and that private minibuses are as efficient as public buses. In terms of energy efficiency, minibuses are almost as efficient as public and private buses using actual-occupancy levels.more » Large shared taxis are twice as cost and energy efficient as cars, and small shared taxis 50% more efficient. In terms of investment cost per seat, large shared taxis have the lowest cost followed by smaller shared taxis, minibuses, and buses. Considering actual occupancy levels, minibuses are only slightly less effective in terms of congestion than buses, and large and small shared taxis are twice as effective as cars. It is also shown that minibuses and shared taxis have better service quality than buses because of higher frequencies and speeds, and because they provide a much higher probability of getting a seat than buses. Analysis of regulation and policy suggests that there are many unintended cost of public-transport regulations.« less
Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.
Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne
2017-04-18
An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.
Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.
Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J
2015-11-01
Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Essays on equity-efficiency trade offs in energy and climate policies
NASA Astrophysics Data System (ADS)
Sesmero, Juan P.
Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences and technology increasing efficiency requires greater transfers to low income households the higher the effect of these transfers on the price of permits and the lower their effect on the price of consumption goods. This denotes market conditions under which efficiency and equity are complementary goals.
Singh, Raman Jeet; Ahlawat, I P S
2015-05-01
Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat. Application of 50 kg N ha(-1) to wheat maintained the least carbon footprint (0.091) followed by 100 kg N ha(-1) (0.100). Our study indicates that system productivity as well as energy and carbon use efficiencies of transgenic cotton-wheat production system can be enhanced by inclusion of peanut as an intercrop in cotton and substitution of 25% RDN of cotton through FYM, as well as application of 100 kg N ha(-1) to succeeding wheat crop.
Field testing of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.; Allen, R. D.
1984-03-01
Results of field and laboratory studies of aquifer thermal energy storage (ATES) indicate both the problems and promise of the concept. Geohydrothermal modeling and field testing demonstrated the ability to recover substantial quantities of aquifer stored energy. However, the local hydrologic conditions play an important role in determining the recovery temperature and storage efficiency. Geochemistry is also an important factor, particularly for higher temperature ATES systems.
Effects of recent energy system changes on CO2 projections for the United States.
Lenox, Carol S; Loughlin, Daniel H
2017-09-21
Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.
NASA Astrophysics Data System (ADS)
Ha, P. T. H.
2018-04-01
The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.
Mixed H2/H∞-Based Fusion Estimation for Energy-Limited Multi-Sensors in Wearable Body Networks
Li, Chao; Zhang, Zhenjiang; Chao, Han-Chieh
2017-01-01
In wireless sensor networks, sensor nodes collect plenty of data for each time period. If all of data are transmitted to a Fusion Center (FC), the power of sensor node would run out rapidly. On the other hand, the data also needs a filter to remove the noise. Therefore, an efficient fusion estimation model, which can save the energy of the sensor nodes while maintaining higher accuracy, is needed. This paper proposes a novel mixed H2/H∞-based energy-efficient fusion estimation model (MHEEFE) for energy-limited Wearable Body Networks. In the proposed model, the communication cost is firstly reduced efficiently while keeping the estimation accuracy. Then, the parameters in quantization method are discussed, and we confirm them by an optimization method with some prior knowledge. Besides, some calculation methods of important parameters are researched which make the final estimates more stable. Finally, an iteration-based weight calculation algorithm is presented, which can improve the fault tolerance of the final estimate. In the simulation, the impacts of some pivotal parameters are discussed. Meanwhile, compared with the other related models, the MHEEFE shows a better performance in accuracy, energy-efficiency and fault tolerance. PMID:29280950
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... innovation and drivers of regional economic growth. The E-RIC should leverage the region's unique competitive... investment boards, institutions of higher education including community colleges, and other public and... activities, or a consortium of political subdivisions; (iv) institution of higher education or a consortium...
High efficiency CsI(Tl)/HgI{sub 2} gamma ray spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.
CsI(Tl)/HgI{sub 2} gamma-ray spectrometers have been constructed using 0.5 inch diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV {sup 137}Cs gamma-ray photons. Further efforts have been focused on optimization of larger size ({ge} 1 inch diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However, the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of includingmore » nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may be necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection for various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top-2 inch, bottom-1 inch, 2 inch high) CsI(Tl) scintillator coupled with a 1 inch HgI{sub 2} PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum.« less
Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.
Wasserscheid, Peter; Seiler, Matthias
2011-04-18
One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems
NASA Technical Reports Server (NTRS)
Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.
1987-01-01
Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.
2016-06-15
Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less
Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M
2016-06-01
High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.
Mechanical energy patterns in nordic walking: comparisons with conventional walking.
Pellegrini, Barbara; Peyré-Tartaruga, Leonardo Alexandre; Zoppirolli, Chiara; Bortolan, Lorenzo; Savoldelli, Aldo; Minetti, Alberto Enrico; Schena, Federico
2017-01-01
The use of poles during Nordic Walking (NW) actively engages the upper body to propel the body forward during walking. Evidence suggests that NW leads to a longer stride and higher speed, and sometimes to increased ground reaction forces with respect to conventional walking (W). The aim of this study was to investigate if NW is associated with different changes in body centre of mass (COM) motion and limbs energy patterns, mechanical work and efficiency compared to W. Eight experienced Nordic Walkers performed 5-min W and NW trials on a treadmill at 4kmh -1 . Steady state oxygen consumption and movements of body segments and poles were measured during each trial. We found greater fluctuation of kinetic (KE) and potential (PE) energy associated with COM displacement for NW compared to W. An earlier increase of KE for NW than for W, probably due to the propulsive action of poles, modified the synchronization between PE and KE oscillations so that a 10.9% higher pendular recovery between these energies was found in NW. The 10.2% higher total mechanical work found for NW was mainly due to the greater work required to move upper limbs and poles. NW was 20% less efficient and was metabolically more demanding than W, this difference could be ascribed to isometric contraction and low efficiency of upper musculature. Concluding, NW can be considered a highly dynamic gait, with distinctive mechanical features compared to conventional gait, due to pole propulsion and arm/pole swing. Copyright © 2016 Elsevier B.V. All rights reserved.
Global energy consumption and production in 2000
NASA Astrophysics Data System (ADS)
Allen, E. L.; Davison, C.; Dougher, R.; Edmonds, J. A.; Reilly, J.
1981-02-01
This study anticipates that global energy demand will continue to expand through 2000, although at a slower pace than in 1965 to 1978. Growth of supply is expected to be largely in conventional, nonrenewable fuels - coal, oil, uranium, and natural gas. Energy growth is also expected to slow down in terms of energy consumption per unit of output as a consequence of continuing efficiency improvements, which, in turn, result from higher energy prices. Slower rates of economic growth are expected in all groups of countries, developed and underdeveloped.
Evaluating architecture impact on system energy efficiency
Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317
Evaluating architecture impact on system energy efficiency.
Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.
High-temperature, high-power-density thermionic energy conversion for space
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.
Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.
Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun
2018-04-23
Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ran, Niva A.; Roland, Steffen; Love, John A.; ...
2017-07-19
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
Song, Chong-Lin; Bin, Feng; Tao, Ze-Min; Li, Fang-Cheng; Huang, Qi-Fei
2009-07-15
The main target of this work is to characterize the abatements of particulate matter (PM), hydrocarbons (HC) and nitrogen oxides (NO(x)) from an actual diesel exhaust using dielectric barrier discharge technology (DBD). The effects of several parameters, such as peak voltage, frequency and engine load, on the contaminant removals have been investigated intensively. The present study shows that for a given frequency, the removals of PM and HC are enhanced with the increase of peak voltage and level off at higher voltage, while in the range of higher voltages a decline of NO(x) removal efficiency is observed. For a given voltage, the maximums of specific energy density (SED) and removal efficiency are attained at resonance point. The increase of peak voltage will result in a significant decrease of energy utilization efficiency of DBD at most engine loads. Alkanes in soluble organic fraction (SOF) are more readily subjected to removals than polycyclic aromatic hydrocarbons (PAHs).
Control of electrothermal heating during regeneration of activated carbon fiber cloth.
Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J
2011-01-15
Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.
Migliniene, Ieva; Ostasevicius, Vytautas; Gaidys, Rimvydas; Dauksevicius, Rolanas; Janusas, Giedrius; Jurenas, Vytautas; Krasauskas, Povilas
2017-12-12
This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric transducer, thereby providing a means to improve the energy conversion efficiency and power output. A rational configuration of the energy harvester is proposed and it is demonstrated that the new design retains essential modal characteristics of the optimal microcantilever structures, further providing the added benefit of less costly fabrication. The effects of structural dynamics associated with advantageous exploitation of higher vibration modes are analyzed experimentally by means of laser vibrometry as well as numerically via transient simulations of microcantilever response to random excitation. Electrical characterization results indicate that the proposed harvester outperforms its conventional counterpart (based on the microcantilever of the constant cross-section) in terms of generated electrical output. Reported results may serve for the development of impact-type micropower generators with harvesting performance that is enhanced by virtue of self-excitation of large intensity higher-order mode responses when the piezoelectric transducer is subjected to relatively low-frequency excitation with strongly variable vibration magnitudes.
NASA Astrophysics Data System (ADS)
Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.
2007-07-01
We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.
ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study
NASA Technical Reports Server (NTRS)
Warshay, M.
1978-01-01
This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.
Energy-efficient container handling using hybrid model predictive control
NASA Astrophysics Data System (ADS)
Xin, Jianbin; Negenborn, Rudy R.; Lodewijks, Gabriel
2015-11-01
The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of three key interacting machines for carrying out the so-called bay handling task, involving transporting containers between a vessel and the stacking area in an automated container terminal. The behaviours of the interacting machines are modelled as a collection of interconnected hybrid systems. Hybrid model predictive control (MPC) is proposed to achieve optimal performance, balancing the handling capacity and energy consumption. The underlying control problem is hereby formulated as a mixed-integer linear programming problem. Simulation studies illustrate that a higher penalty on energy consumption indeed leads to improved sustainability using less energy. Moreover, simulations illustrate how the proposed energy-efficient hybrid MPC controller performs under different types of uncertainties.
Phase Offsets and the Energy Budgets of Hot Jupiters
NASA Astrophysics Data System (ADS)
Schwartz, Joel C.; Kashner, Zane; Jovmir, Diana; Cowan, Nicolas B.
2017-12-01
Thermal phase curves of short-period planets on circular orbits provide joint constraints on the fraction of incoming energy that is reflected (Bond albedo) and the fraction of absorbed energy radiated by the night hemisphere (heat recirculation efficiency). Many empirical studies of hot Jupiters have implicitly assumed that the dayside is the hottest hemisphere and the nightside is the coldest hemisphere. For a given eclipse depth and phase amplitude, an orbital lag between a planet’s peak brightness and its eclipse—a phase offset—implies that planet’s nightside emits greater flux. To quantify how phase offsets impact the energy budgets of short-period planets, we compile all infrared observations of the nine planets with multi-band eclipse depths and phase curves. Accounting for phase offsets shifts planets to lower Bond albedo and greater day-night heat transport, usually by ≲1σ. For WASP-12b, the published phase variations have been analyzed in two different ways, and the inferred energy budget depends sensitively on which analysis one adopts. Our fiducial scenario supports a Bond albedo of {0.27}-0.13+0.12, significantly higher than the published optical geometric albedo, and a recirculation efficiency of {0.03}-0.02+0.07, following the trend of larger day-night temperature contrast with greater stellar irradiation. If instead we adopt the alternative analysis, then WASP-12b has a Bond albedo consistent with zero and a much higher recirculation efficiency. To definitively determine the energy budget of WASP-12b, new observational analyses will be necessary.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-01-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
NASA Astrophysics Data System (ADS)
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-05-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R
2016-05-19
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting
NASA Astrophysics Data System (ADS)
Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin
2016-11-01
Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.
Novel approach for solid state cryocoolers.
Volpi, Azzurra; Di Lieto, Alberto; Tonelli, Mauro
2015-04-06
Laser cooling in solids is based on anti-Stokes luminescence, via the annihilation of lattice phonons needed to compensate the energy of emitted photons, higher than absorbed ones. Usually the anti-Stokes process is obtained using a rare-earth active ion, like Yb. In this work we demonstrate a novel approach for optical cooling based not only to Yb anti-Stokes cycle but also to virtuous energy-transfer processes from the active ion, obtaining an increase of the cooling efficiency of a single crystal LiYF(4) (YLF) doped Yb at 5at.% with a controlled co-doping of 0.0016% Thulium ions. A model for efficiency enhancement based on Yb-Tm energy transfer is also suggested.
Arrieta, E M; Cuchietti, A; Cabrol, D; González, A D
2018-06-01
Of all human activities, agriculture has one of the highest environmental impacts, particularly related to Greenhouse Gas (GHG) emissions, energy use and land use change. Soybean and maize are two of the most commercialized agricultural commodities worldwide. Argentina contributes significantly to this trade, being the third major producer of soybeans, the first exporter of soymeal and soybean oil, and the third exporter of maize. Despite the economic importance of these crops and the products derived, there are very few studies regarding GHG emissions, energy use and efficiencies associated to Argentinean soybean and maize production. Therefore, the aim of this work is to determine the carbon and energy footprint, as well as the carbon and energy efficiencies, of soybeans and maize produced in Argentina, by analyzing 18 agronomic zones covering an agricultural area of 1.53millionkm 2 . Our results show that, for both crops, the GHG and energy efficiencies at the Pampean region were significantly higher than those at the extra-Pampean region. The national average for production of soybeans in Argentina results in 6.06ton/ton CO 2 -eq emitted to the atmosphere, while 0.887ton of soybean were produced per GJ of energy used; and for maize 5.01ton/ton CO 2 -eq emitted to the atmosphere and 0.740ton of maize were produced per each GJ of energy used. We found that the large differences on yields, GHGs and energy efficiencies between agronomic regions for soybean and maize crop production are mainly driven by climate, particularly mean annual precipitation. This study contributes for the first time to understand the carbon and energy footprint of soybean and maize production throughout several agronomic zones in Argentina. The significant differences found in the productive efficiencies questions on the environmental viability of expanding the agricultural frontier to less suitable lands for crop production. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, J.; Hallett, K.; DeWolfe, J.
2012-01-01
Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less
Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage
NASA Astrophysics Data System (ADS)
Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner
2017-10-01
Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.
A Robust and Energy-Efficient Transport Protocol for Cognitive Radio Sensor Networks
Salim, Shelly; Moh, Sangman
2014-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. CRSNs benefit from cognitive radio capabilities such as dynamic spectrum access and transmission parameters reconfigurability; but cognitive radio also brings additional challenges and leads to higher energy consumption. Motivated to improve the energy efficiency in CRSNs, we propose a robust and energy-efficient transport protocol (RETP). The novelties of RETP are two-fold: (I) it combines distributed channel sensing and channel decision with centralized schedule-based data transmission; and (II) it differentiates the types of data transmission on the basis of data content and adopts different acknowledgment methods for different transmission types. To the best of our knowledge, no transport layer protocols have yet been designed for CRSNs. Simulation results show that the proposed protocol achieves remarkably longer network lifetime and shorter event-detection delay compared to those achieved with a conventional transport protocol, while simultaneously preserving event-detection reliability. PMID:25333288
NASA Astrophysics Data System (ADS)
Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.
2014-07-01
The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.
Optimal pitching axis location of flapping wings for efficient hovering flight.
Wang, Q; Goosen, J F L; van Keulen, F
2017-09-01
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.
Optimizing the ionization and energy absorption of laser-irradiated clusters
NASA Astrophysics Data System (ADS)
Kundu, M.; Bauer, D.
2008-03-01
It is known that rare-gas or metal clusters absorb incident laser energy very efficiently. However, due to the intricate dependencies on all the laser and cluster parameters, it is difficult to predict under which circumstances ionization and energy absorption are optimal. With the help of three-dimensional particle-in-cell simulations of xenon clusters (up to 17256 atoms), it is shown that for a given laser pulse energy and cluster, an optimum wavelength exists that corresponds to the approximate wavelength of the transient, linear Mie-resonance of the ionizing cluster at an early stage of negligible expansion. In a single ultrashort laser pulse, the linear resonance at this optimum wavelength yields much higher absorption efficiency than in the conventional, dual-pulse pump-probe setup of linear resonance during cluster expansion.
Rapid charging of thermal energy storage materials through plasmonic heating.
Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao
2014-09-01
Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.
Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating
Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao
2014-01-01
Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
Graph cuts for curvature based image denoising.
Bae, Egil; Shi, Juan; Tai, Xue-Cheng
2011-05-01
Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.
Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward
2014-01-01
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.
Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward
2014-01-01
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197
Horizontal-axis clothes washer market poised for expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, K.L.
1994-12-31
The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less
NASA Astrophysics Data System (ADS)
Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko
2015-06-01
Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
Potential of thin-film solar cell module technology
NASA Technical Reports Server (NTRS)
Shimada, K.; Ferber, R. R.; Costogue, E. N.
1985-01-01
During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.
Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate
NASA Astrophysics Data System (ADS)
Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY
2017-12-01
The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.
Performance and Safety of Lithium Ion Cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Smart, M. C.; Whitcanack, L.; Surampudi, S.; Marsh, R.
2001-01-01
This report evaluates the performance and safety of Lithium Ion (Li-Ion) cells when used in batteries. Issues discussed include the cycle life, energy efficiency, tolerance to higher charge voltage, tolerance to extended tapered charge voltage, charge on cycling, specific energy, low temperature discharge, low temperature charge, various charge characteristics, storage characteristics, and more of Li-Ion cells.
Extinction cross-section suppression and active acoustic invisibility cloaking
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-10-01
Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kressner, A.
1995-12-01
The area of office technology is the fastest growing use of electricity in the fastest growing sector-the commercial sector. More than 10% of energy used by the commercial sector is being used in office technology. The U.S. Environmental Protection Agency`s Energy Star Program is a manufacturer`s voluntary program and is, in effect, non-regulatory compliance. Energy efficiency in office technology is the basis for many benefits that result because the equipment inherently is more efficient in terms of its energy use. The old 486 computer processors, as they increased in MHz, required bigger fans. In fact, some of the high-end 486-machinesmore » came with two fans. Energy efficiency reduces the amount of cooling required, which can potentially reduce the fan requirements, if that feature is properly incorporated into the design by the manufacturer. Because the equipment is more energy efficient, the components can be placed in the equipment more closely-there could be a higher density of components so that the box becomes smaller. On the desktop, that infrastructure is the most expensive real estate, so a small footprint could be a very valuable feature. Also, because it`s more efficient, it rejects less heat, a benefit customers would identify. An added benefit is that the equipment saves energy. Class B office buildings, which are office buildings built `long ago,` don`t have the fundamental energy facilitating infrastructure for information technology, and retrofitting that technology becomes increasingly more expensive. There have been enormous strides in improving energy use in lighting, a major component of energy use in commercial buildings. In fact, energy use has been reduced from 2.5 to 3 W/sq ft to 1.5 W/sq ft, and potentially to below 1 W/sq ft. The plug load typically had been in the 0.3 to 0.5 W/sq ft range and has increased to 1 W/sq ft. Great value has been achieved because of the plug load, so this technology creates value far in excess of its energy use.« less
Energy harvesting: an integrated view of materials, devices and applications.
Radousky, H B; Liang, H
2012-12-21
Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.
Energy harvesting: an integrated view of materials, devices and applications
NASA Astrophysics Data System (ADS)
Radousky, H. B.; Liang, H.
2012-12-01
Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.
Jin, Xin; Li, Zifu; Xie, Lanlan; Zhao, Yuan; Wang, Tingting
2013-11-01
The ultraviolet (UV) disinfection efficiency is often affected by suspended solids (SS). Given their high concentration or large particle size, SS can scatter UV light and provide shielding for bacteria. Thus, ultrasound is often employed as a pre-treatment process to improve UV disinfection. This work investigated the synergistic effect of ultrasound combined with UV for secondary effluent disinfection. Bench-scale experiments were conducted in using samples obtained from secondary sedimentation tanks. These tanks belonged to three wastewater treatment plants in Beijing that use different kinds of biological treatment methods. Several parameters may contribute to the changes in the efficiency of ultrasound and UV disinfection. Thus, the frequency and energy density of ultrasound, as well as the SS, were investigated. Results demonstrated that samples which have relatively higher SS concentrations or higher percentages of larger particles have less disinfection efficiency using UV disinfection alone. However, the presence of ultrasound could improve the disinfection efficiency because it has synergistic effect. Changes in the particle size distribution and SS concentration notably affected the efficiency of UV disinfection. The efficiency of Escherichia coli elimination can be decreased by 1.2 log units as the SS concentration increases from 16.9 mg/l to 25.4 mg/l at a UV energy density of 40 mJ/cm(2). UV disinfection alone reduced the E. coli population by 3.4 log units. However, the synergistic disinfection of ultrasound and UV could reach 5.4 log units during the reduction of E. coli at a 40 kHz frequency and an energy density of 2.64 kJ/l. The additional synergistic effect is 1.1 log units. Copyright © 2013 Elsevier B.V. All rights reserved.
Recent Developments in Niobium Containing Austenitic Stainless Steels for Thermal Power Plants
NASA Astrophysics Data System (ADS)
de Oliveira, Mariana Perez; Zhang, Wei; Yu, Hongyao; Bao, Hansheng; Xie, Xishan
The challenge of growing continuously in a sustainable way is the main driver to improve efficiency in the use of natural resources. The increasing demand for energy has made thermal power based countries to set audacious programs to increase efficiency of thermal power generation. In China, coal-burning accounts nowadays for approximately 65% of the total primary energy supply being responsible for around 25% of the countries' CO2 emission, this coal-based energy supply scenario is believed to continue until 2020. Therefore, the country has invested strongly in the last years in the construction of more efficient power plants. To attend higher operating temperatures and steam pressures, the application of higher performance materials is mandatory, presenting improved mechanical resistance — to stand the higher pressures applied — and having sufficient high temperature and corrosion resistance with the best cost-benefit relation possible. The present work addresses some research developments made in niobium containing austenitic stainless steels for super heaters and re-heater tubes in the past years as a joint effort between industry and academia to understand mechanisms and optimize the steel chemical composition, improving its performance. Niobium role has been studied in detail in heat resistant stainless steels TP347H, Super 304 and HR3C, a summary of such studies is presented in this paper. Niobium improves high temperature properties as it precipitates as nano-size MX and NbCrN, well dispersed in the matrix, hindering dislocation movement, increasing precipitation strengthening and creep resistance.
NASA Astrophysics Data System (ADS)
Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A. M. P.; Purwanti, E.
2018-03-01
The study was conducted to evaluate the feed efficiency of quail diets containing different concentrations of metabolizable energy (ME) and crude protein (CP) with constant ratio and supplemented with methionine. Four hundred laying quails (Coturnix coturnix japonica) were randomly assigned to four experimental diets in a 2×2 factorial arrangement. Each dietary treatment used 5 replicates of 20 quails. Two basal diets were formulated to contain 2,800 kcal kg-1 ME and 18.7% CP (High ME-CP) and 2,600 kcal kg-1 ME and 17.3% CP (Low ME-CP). Each basal diet was supplemented with 0 and 0.12% methionine. The High ME-CP diets generated lower feed consumption but higher egg mass and feed efficiency (P<0.01) compared with the Low ME-CP. Furthermore, supplementation of methionine increased egg mass, feed efficiency, energy efficiency ratio and protein efficiency ratio (P<0.01). The High ME-CP supplemented with methionine resulted the highest feed efficiency followed by the Low ME-CP supplemented with methionine, while both High ME-CP and Low ME-CP without methionine supplementation resulted the lowest feed efficiency (P<0.05). In addition, ME and CP consumption of the birds were not influenced by the treatments. Thus, feeding High ME-CP supplemented with 0.12% methionine provided benefit to improve the feed efficiency in laying quails.
Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J
2015-02-01
The United Kingdom (UK) has one of the highest prevalence of asthma in the world, which represents a significant economic and societal burden. Reduced ventilation resulting from increased energy efficiency measures acts as a modifier for mould contamination and risk of allergic diseases. To our knowledge no previous study has combined detailed asset management property and health data together to assess the impact of household energy efficiency (using the UK Government's Standard Assessment Procedure) on asthma outcomes in an adult population residing in social housing. Postal questionnaires were sent to 3867 social housing properties to collect demographic, health and environmental information on all occupants. Detailed property data, residency periods, indices of multiple deprivation (IMD) and household energy efficiency ratings were also investigated. Logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same location. Eighteen percent of our target social housing population were recruited into our study. Adults had a mean age of 59 (SD±17.3) years and there was a higher percentage of female (59%) and single occupancy (58%) respondents. Housing demographic characteristics were representative of the target homes. A unit increase in household Standard Assessment Procedure (SAP) rating was associated with a 2% increased risk of current asthma, with the greatest risk in homes with SAP >71. We assessed exposure to mould and found that the presence of a mouldy/musty odour was associated with a two-fold increased risk of asthma (OR 2.2 95%; CI 1.3-3.8). A unit increase in SAP led to a 4-5% reduction in the risk of visible mould growth and a mouldy/musty odour. In contrast to previous research, we report that residing in energy efficient homes may increase the risk of adult asthma. We report that mould contamination increased the risk of asthma, which is in agreement with existing knowledge. Exposure to mould contamination could not fully explain the association between increased energy efficiency and asthma. Our findings may be explained by increased energy efficiency combined with the provision of inadequate heating, ventilation, and increased concentrations of other biological, chemical and physical contaminants. This is likely to be modified by a complex interaction between occupant behaviours and changes to the built environment. Our findings may also be confounded by our response rate, demographic and behavioural differences between those residing in low versus high energy efficient homes, and use of self-reported exposures and outcomes. Energy efficiency may increase the risk of current adult asthma in a population residing in social housing. This association was not significantly modified by the presence of visible mould growth, although further research is needed to investigate the interaction between other demographic and housing characteristic risk factors, especially the impact of fuel poverty on indoor exposures and health outcomes. A multidisciplinary approach is required to assess the interaction between energy efficiency measures and fuel poverty behaviours on health outcomes prior to the delivery of physical interventions aimed at improving the built environment. Policy incentives are required to address fuel poverty issues alongside measures to achieve SAP ratings of 71 or greater, which must be delivered with the provision of adequate heating and ventilation strategies to minimise indoor dampness. Changes in the built environment without changes in behaviour of domicile residents may lead to negative health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Consonni, Stefano; Viganò, Federico
2011-01-01
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei
2014-06-15
A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density atmore » 170–206 Hz.« less
Jia, Luqiang; Tu, Tingyong; Huai, Qiangqiang; Sun, Jiaowen; Chen, Shanshan; Li, Xin; Ding, Jian
2017-01-01
In heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers. However, the methanol/energy regulation mechanisms are seldom reported. We theoretically analyzed the methanol/energy metabolisms in protein expression process with the strategies of initiating induction at higher or lower cells concentrations, using monellin production as a prototype. When initiating induction at lower cells concentration and controlling induction temperature at 30°C, monellin concentration reached the highest levels of 2.62~2.71 g/L, which was 2.5~4.9 fold of those obtained with the strategy of initiating induction at higher cells concentration. With the desired induction strategy, 1) carbon metabolism ratio directing into the precursors synthesis route for monellin production reached the highest level of 65%, carbon metabolism ratios towards to precursors synthesis and ATP regeneration routes were regulated at relatively balanced levels; 2) monellin synthesis was completely cell growth associated, with the largest associated coefficient and higher specific growth rate; 3) theoretical NADH (energy) utilization efficiency η was the highest, and η stayed high levels (≥0.8) during most period (89%) within induction phase to supply sufficient energy in supporting monellin synthesis. PMID:28981536
Jia, Luqiang; Tu, Tingyong; Huai, Qiangqiang; Sun, Jiaowen; Chen, Shanshan; Li, Xin; Shi, Zhongping; Ding, Jian
2017-01-01
In heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers. However, the methanol/energy regulation mechanisms are seldom reported. We theoretically analyzed the methanol/energy metabolisms in protein expression process with the strategies of initiating induction at higher or lower cells concentrations, using monellin production as a prototype. When initiating induction at lower cells concentration and controlling induction temperature at 30°C, monellin concentration reached the highest levels of 2.62~2.71 g/L, which was 2.5~4.9 fold of those obtained with the strategy of initiating induction at higher cells concentration. With the desired induction strategy, 1) carbon metabolism ratio directing into the precursors synthesis route for monellin production reached the highest level of 65%, carbon metabolism ratios towards to precursors synthesis and ATP regeneration routes were regulated at relatively balanced levels; 2) monellin synthesis was completely cell growth associated, with the largest associated coefficient and higher specific growth rate; 3) theoretical NADH (energy) utilization efficiency η was the highest, and η stayed high levels (≥0.8) during most period (89%) within induction phase to supply sufficient energy in supporting monellin synthesis.
[Promoting efficiency of microbial extracellular electron transfer by synthetic biology].
Li, Feng; Song, Hao
2017-03-25
Electroactive bacteria, including electrigenic bacteria (exoelectrogens) and electroautotrophic bacteria, implement microbial bioelectrocatalysis processes via bi-directional exchange of electrons and energy with environments, enabling a wide array of applications in environmental and energy fields, including microbial fuel cells (MFC), microbial electrolysis cells (MEC), microbial electrosynthesis (MES) to produce electricity and bulk fine chemicals. However, the low efficiency in the extracellular electron transfer (EET) of exoelectrogens and electrotrophic microbes limited their industrial applications. Here, we reviewed synthetic biology approaches to engineer electroactive microorganisms to break the bottleneck of their EET pathways, to achieve higher efficiency of EET of a number of electroactive microorganisms. Such efforts will lead to a breakthrough in the applications of these electroactive microorganisms and microbial electrocatalysis systems.
Multiregion apodized photon sieve with enhanced efficiency and enlarged pinhole sizes.
Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng
2015-08-20
A novel multiregion structure apodized photon sieve is proposed. The number of regions, the apodization window values, and pinhole sizes of each pinhole ring are all optimized to enhance the energy efficiency and enlarge the pinhole sizes. The design theory and principle are thoroughly proposed and discussed. Two numerically designed apodized photon sieves with the same diameter are given as examples. Comparisons have shown that the multiregion apodized photon sieve has a 25.5% higher energy efficiency and the minimum pinhole size is enlarged by 27.5%. Meanwhile, the two apodized photon sieves have the same form of normalized intensity distribution at the focal plane. This method could improve the flexibility of the design and the fabrication the apodized photon sieve.
Gross efficiency and energy expenditure in kayak ergometer exercise.
Gomes, B B; Mourão, L; Massart, A; Figueiredo, P; Vilas-Boas, J P; Santos, A M C; Fernandes, R J
2012-08-01
We purposed to study energy expenditure, power output and gross efficiency during kayak ergometer exercise in 12 elite sprint kayakers. 6 males (age 24.2±4.8 years, height 180.4±4.8 cm, body mass 79.7±8.5 kg) and 6 females (age 24.3±4.5 years, height 164.5±3.9 cm, body mass 65.4±3.5 kg), performed an incremental intermittent protocol on kayak ergometer with VO2 and blood lactate concentration assessment, a non-linear increase between power output and energy expenditure being observed. Paddling power output, energy expenditure and gross efficiency corresponding to VO2max averaged 199.92±50.41 W, 75.27±6.30 ml.kg - 1.min - 1, and 10.10±1.08%. Male kayakers presented higher VO2max, power output and gross efficiency at the VO2max, and lower heart rate and maximal lactate concentration than females, but no differences were found between genders regarding energy expenditure at VO2max. Aerobic and anaerobic components of energy expenditure evidenced a significant contribution of anaerobic energy sources in sprint kayak performance. Results also suggested the dependence of the gross efficiency on the changes in the amount of the aerobic and anaerobic contributions, at heavy and severe intensities. The inter-individual variance of the relationship between energy expenditure and the corresponding paddling power output revealed a relevant tracking for females (FDγ=0.73±0.06), conversely to the male group (FDγ=0.27±0.08), supporting that some male kayakers are more skilled in some paddling intensities than others. © Georg Thieme Verlag KG Stuttgart · New York.
ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
POLLIS, REBECCA
2014-10-17
The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the community’s rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systemsmore » in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.« less
Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R
2017-11-01
Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.
Energy saving and recovery measures in integrated urban water systems
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Sambito, Mariacrocetta
2017-11-01
The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).
NASA Astrophysics Data System (ADS)
Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng
2018-03-01
The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yunzhi; Gowri, Krishnan
2011-02-28
This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% tomore » 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.« less
Power inversion design for ocean wave energy harvesting
NASA Astrophysics Data System (ADS)
Talebani, Anwar N.
The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.
Li, Yongfang
2012-05-15
Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole (DTS), or indacenodithiophene (IDT) donor unit and benzothiadiazole (BT), thienopyrrole-dione (TPD), or thiazolothiazole (TTz) acceptor units. The BDT unit with two thienyl conjugated side chains is a highly promising unit in constructing high-efficiency copolymer donor materials. The electron-withdrawing groups of ester, ketone, fluorine, or sulfonyl can effectively tune the HOMO energy levels downward. To improve the performance of fullerene derivative acceptors, researchers will need to strengthen absorption in the visible spectrum, upshift the LUMO (the lowest unoccupied molecular orbital) energy level, and increase the electron mobility. [6,6]-Phenyl-C(71)-butyric acid methyl ester (PC(70)BM) is superior to [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) because C(70) absorbs visible light more efficiently. Indene-C(60) bisadduct (ICBA) and Indene-C(70) bisadduct (IC(70)BA) show 0.17 and 0.19 eV higher LUMO energy levels, respectively, than PCBM, due to the electron-rich character of indene and the effect of bisadduct. ICBA and IC(70)BA are excellent acceptors for the P3HT-based PSCs.
Rotating assembly working group summary
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.
1984-01-01
The feasibility of a fail safe flywheel system was demonstrated. Three of the major advantages of flywheel systems are: longer operational life, higher electrical efficiency, and higher system energy density. The use of composite material flywheels is important to realize these advantages. Rotor design and dynamics, rotor materials and fabrication, safety, nondestructive testing, and systems operation loads and environment, are outlined.
Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT) Technique
NASA Astrophysics Data System (ADS)
Wiedjaja, A.; Harta, S.; Josses, L.; Winardi; Rinda, H.
2014-03-01
Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT), particularly the perturb and observe (P&O) algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression.
Liu, Tinghao; Sui, Zhan; Chen, Lin; Li, Zhupeng; Liu, Qiang; Gong, Mali; Fu, Xing
2017-09-04
Experimental amplification of 10-ns pulses to an energy of 12.2 J at the repetition rate of 1-10 Hz is reported from a diode-pumped room-temperature distributed active mirror amplifier chain (DAMAC) based on Nd:YAG slabs. Efficient power scaling at the optical-optical efficiency of 20.6% was achieved by suppressing the transverse parasitic oscillation with ASE absorbers. To the best of our knowledge, this is the first demonstration of a diode-pumped Nd:YAG active-mirror laser with nanosecond pulse energy beyond 10 joules. The verified DAMAC concept holds the promise of scaling the energy to a 50 J level and higher by adding 10-12 more pieces of active mirror in the chain.
Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.
2008-01-01
The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082
Design and Development of a Residential Gas-Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac
2017-01-01
Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less
Solar fed DC-DC single ended primary inductance converter for low power applications
NASA Astrophysics Data System (ADS)
Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.
2017-11-01
This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.
Hackel, Richard P.
1992-01-01
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.
High Efficiency Solar Integrated Roof Membrane Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partyka, Eric; Shenoy, Anil
2013-05-15
This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.
NASA Astrophysics Data System (ADS)
Stapel, D.; Brox, O.; Benninghoven, A.
1999-02-01
The influence of primary ion energy, mass and composition on sputtering and secondary ion emission of arachidic acid Langmuir-Blodgett mono- and multilayers, deposited on gold substrates, has been investigated. Ga +, Ar +, 129Xe+ and SF 5+ in the energy range 5-25 keV were used as primary ions. Yields Y, damage cross-sections σ, and ion formation efficiencies E have been determined for selected secondary ions, characterizing the molecular overlayer, the overlayer substrate interface and the substrate. We found a strong influence of layer thickness and of primary ion energy, mass and composition on Y, σ and E. Information depth increases with increasing ion energy and decreasing mass of primary ions, being higher for SF 5+ than for Xe +. Y, σ and E increase with increasing primary ion mass. They are considerably higher for a molecular (SF 5+) than for atomic ions of comparable mass ( 129Xe+). The experimental results supply information on the extension of impact cascades, generated in different substrate materials by different primary ion species and different energies. They demonstrate that in analytical SIMS application information depths can be minimized and yields and ion formation efficiencies can be maximized by the use of molecular primary ions.
Microgrid Study: Energy Security for DoD Installations
2012-06-18
security, efficiency, and the incorporation of renewable and distributed energy resources into microgrids, as well as the factors that might facilitate...better understand how different environmental factors affected the choice of optimal microgrid architecture. Environmental factors in this context...lower costs—Networking generation assets allow for load sharing, allowing fewer generators to run at higher load factors and therefore with greater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart
We study the impact of achieving technology innovation goals, representing significant technology cost reductions and performance improvements, in both the electric power and end-use sectors by comparing outputs from four energy-economic models through the year 2050. We harmonize model input assumptions and then compare results in scenarios that vary natural gas prices, technology cost and performance metrics, and the implementation of a representative national electricity sector carbon dioxide (CO 2) policy. Achieving the representative technology innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more costmore » competitive. For the models that include domestic natural gas markets, achieving the technology innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices but fewer coal capacity retirements. Some of the models include energy efficiency improvements as part of achieving the high-technology goals. Absent these energy efficiency improvements, low-cost electricity facilitates greater electricity consumption. The effect of implementing a representative electricity sector CO 2 policy differs considerably depending on the cost and performance of generating and end-use technologies. The CO 2 policy influences electric sector evolution in the cases with reference technology assumptions but has little to no influence in the cases that achieve the technology innovation goals. This outcome implies that meeting the representative technology innovation goals achieves a generation mix with similar CO 2 emissions to the representative CO 2 policy but with smaller increases to wholesale electricity prices. Finally, higher natural gas prices, achieving the representative technology innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
Mao, Ruixin; Guo, Shuangsheng
2018-06-01
The effect of mixed light quality with red, blue, and green LED lamps on the growth of Arthrospira platensis was studied, so as to lay the theoretical and technical basis for establishing a photo-bioreactor lighting system for application in space. Meanwhile, indexes, like morphology, growth rate, photosynthetic pigment compositions, energy efficiency, and main nutritional components, were measured respectively. The results showed that the blue light combined with red light could decrease the tightness of filament, and the effect of green light was opposite. The combination of blue light or green light with red light induced the filaments to get shorter in length. The 8R2B treatment could promote the growth of Arthrospira platensis significantly, and its dry weight reached 1.36 g L -1 , which was 25.93% higher than the control. What's more, 8R2B treatment had the highest contents of carbohydrate and lipid, while 8R2G was rich in protein. 8R0.5G1.5B had the highest efficiency of biomass production, which was 161.53 mg L -1 kW -1 h -1 . Therefore, the combination of red and blue light is more conducive to the growth of Arthrospira platensis, and a higher biomass production and energy utilization efficiency can be achieved simultaneously under the mixed light quality with the ratio of 8R0.5G1.5B.
Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo
2011-01-01
A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.
Energy release for the actuation and deployment of muscle-inspired asymmetrically multistable chains
NASA Astrophysics Data System (ADS)
Kidambi, Narayanan; Zheng, Yisheng; Harne, Ryan L.; Wang, K. W.
2018-03-01
Animal locomotion and movement requires energy, and the elastic potential energy stored in skeletal muscle can facilitate movements that are otherwise energetically infeasible. A significant proportion of this energy is captured and stored in the micro- and nano-scale constituents of muscle near the point of instability between asymmetric equilibrium states. This energy may be quickly released to enable explosive macroscopic motions or to reduce the metabolic cost of cyclic movements. Inspired by these behaviors, this research explores modular metastructures of bistable element chains and develops methods to release the energy stored in higher-potential system configurations. Quasi-static investigations reveal the role of state-transition pathways on the overall efficiency of the deployment event. It is shown that sequential, local release of energy from the bistable elements is more efficient than concurrent energy release achieved by applying a force at the free end of the structure. From dynamic analyses and experiments, it is shown that that the energy released from one bistable element can be used to activate the release of energy from subsequent links, reducing the actuation energy required to extend or deploy the chain below that required for quasi-static deployment. This phenomenon is influenced by the level of asymmetry in the bistable constituents and the location of the impulse that initiates the deployment of the structure. The results provide insight into the design and behavior of asymmetrically multistable chains that can leverage stored potential energy to enable efficient and effective system deployment and length change.
Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals
2017-01-01
The efficiency with which individuals extract energy from their environment defines their survival and reproductive success, and thus their selective contribution to the population. Individuals that forage more efficiently (i.e., when energy gained exceeds energy expended) are likely to be more successful at raising viable offspring than individuals that forage less efficiently. Our goal was to test this prediction in large long-lived mammals under free-ranging conditions. To do so, we equipped 20 lactating Antarctic fur seals (Arctocephalus gazella) breeding on Kerguelen Island in the Southern Ocean with tags that recorded GPS locations, depth and tri-axial acceleration to determine at-sea behaviours and detailed time-activity budgets during their foraging trips. We also simultaneously measured energy spent at sea using the doubly-labeled water (DLW) method, and estimated the energy acquired while foraging from 1) type and energy content of prey species present in scat remains, and 2) numbers of prey capture attempts determined from head acceleration. Finally, we followed the growth of 36 pups from birth until weaning (of which 20 were the offspring of our 20 tracked mothers), and used the relative differences in body mass of pups at weaning as an index of first year survival and thus the reproductive success of their mothers. Our results show that females with greater foraging efficiencies produced relatively bigger pups at weaning. These mothers achieved greater foraging efficiency by extracting more energy per minute of diving rather than by reducing energy expenditure. This strategy also resulted in the females spending less time diving and less time overall at sea, which allowed them to deliver higher quality milk to their pups, or allowed their pups to suckle more frequently, or both. The linkage we demonstrate between reproductive success and the quality of individuals as foragers provides an individual-based quantitative framework to investigate how changes in the availability and accessibility of prey can affect fitness of animals. PMID:28453563
Arend, Matthias G; Franke, Thomas
2017-03-01
The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO 2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.
High efficiency novel window air conditioner
Bansal, Pradeep
2015-07-24
This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less
High efficiency novel window air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep
This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less
Energy-efficient ovens for unpolluted balady bread
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadalla, M.A.; Mansour, M.S.; Mahdy, E.
A new bread oven has been developed, tested and presented in this work for local balady bread. The design has the advantage of being efficient and producing unpolluted bread. An extensive study of the conventional and available designs has been carried out in order to help developing the new design. Evaluation of the conventional design is based on numerous tests and measurements. A computer code utilizing the indirect method has been developed to evaluate the thermal performance of the tested ovens. The present design achieves higher thermal efficiency of about 50% than the conventional ones. In addition, its capital costmore » is much cheaper than other imported designs. Thus, the present design achieves higher efficiency, pollutant free products and less cost. Moreover, it may be modified for different types of bread baking systems.« less
Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard
NASA Astrophysics Data System (ADS)
Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.
2014-12-01
Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available for further slip and for subsequent earthquakes. This suite of models reveals that efficiency may be a useful tool for determining the relative seismic hazard of different segmented fault systems, while accounting for coseismic damage zone production is critical in assessing fault interactions and the associated energy budgets of specific systems.
Fei, Zhuping; Eisner, Flurin D; Jiao, Xuechen; Azzouzi, Mohammed; Röhr, Jason A; Han, Yang; Shahid, Munazza; Chesman, Anthony S R; Easton, Christopher D; McNeill, Christopher R; Anthopoulos, Thomas D; Nelson, Jenny; Heeney, Martin
2018-02-01
A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB-T. The resulting blend with C8-ITIC shows an impressive PCE up to 13.2% as a result of the higher open-circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB-T/C8-ITIC-based cells exhibiting a small energy loss of 0.6 eV combined with a high J SC of 19.6 mA cm -2 . © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Indian scenario on renewable and sustainable energy sources with emphasis on algae.
Hemaiswarya, S; Raja, Rathinam; Carvalho, Isabel S; Ravikumar, R; Zambare, Vasudeo; Barh, Debmalya
2012-12-01
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India's economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368
Numerical study on air turbines with enhanced techniques for OWC wave energy conversion
NASA Astrophysics Data System (ADS)
Cui, Ying; Hyun, Beom-Soo; Kim, Kilwon
2017-10-01
In recent years, the oscillating water column (OWC) wave energy converter, which can capture wave energy from the ocean, has been widely applied all over the world. As the essential part of the OWC system, the impulse and Wells turbines are capable of converting the low pressure pneumatic energy into the mechanical shaft power. As an enhanced technique, the design of endplate or ring attached to the blade tip is investigated numerically in this paper. 3D numerical models based on a CFD-software FLUENT 12.0 are established and validated by the corresponding experimental results from the reports of Setoguchi et al. (2004) and Takao et al. (2001). Then the flow fields and non-dimensional evaluating coefficients are calculated and analyzed under steady conditions. Results show that the efficiency of impulse turbine with ring can reach up to 0.49 when ϕ=1, which is 4% higher than that in the cases for the endplate-type and the original one. And the ring-type Wells turbine with fixed guide vanes shows the best performance with the maximal efficiency of 0.55, which is 22% higher than that of the original one. In addition, the quasi-steady analysis is used to calculate the mean efficiency and output-work of a wave cycle under sinusoidal flow condition. Taking all together, this study provides support for structural optimization of impulse turbine and Wells turbine in the future.
High-performance thermoelectric nanocomposites from nanocrystal building blocks
Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu
2016-01-01
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987
High-performance thermoelectric nanocomposites from nanocrystal building blocks.
Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu
2016-03-07
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Niva A.; Roland, Steffen; Love, John A.
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
NASA Astrophysics Data System (ADS)
Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao
An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the vapor compression cycle, the performance of the cycle can be greatly improved. Until now, the performance of the vapor compression cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the vapor compression cycle with the ejector and investigates the performance of that cycle by the simulation. Working fluids are ammonia and CO2. As a result, in case of the ejector efficiency 90%, COP of the vapor compression cycle using ammonia with the ejector is 5% higher than that of the conventional cycle and COP using CO2 with the ejector is 22% higher than that of the conventional cycle.
Agrawal, Rakesh; Singh, Navneet R
2010-01-01
In a solar economy, sustainably available biomass holds the potential to be an excellent nonfossil source of high energy density transportation fuel. However, if sustainably available biomass cannot supply the liquid fuel need for the entire transport sector, alternatives must be sought. This article reviews biomass to liquid fuel conversion processes that treat biomass primarily as a carbon source and boost liquid fuel production substantially by using supplementary energy that is recovered from solar energy at much higher efficiencies than the biomass itself. The need to develop technologies for an energy-efficient future sustainable transport sector infrastructure that will use different forms of energy, such as electricity, H(2), and heat, in a synergistic interaction with each other is emphasized. An enabling template for such a future transport infrastructure is presented. An advantage of the use of such a template is that it reduces the land area needed to propel an entire transport sector. Also, some solutions for the transition period that synergistically combine biomass with fossil fuels are briefly discussed.
Li, Wei-Xin; Tang, Chuan-Dong; Wu, Zhi-Lin; Wang, Wei-Min; Zhang, Yu-Feng; Zhao, Yi; Cravotto, Giancarlo
2015-04-01
This paper presents the purification of eutrophic water using a combination of hydrodynamic cavitation (HC) and ozonation (O3) at a continuous flow of 0.8 m(3) h(-1) on a pilot scale. The maximum removal rate of chlorophyll a using O3 alone and the HC/O3 combination was 62.3 and 78.8%, respectively, under optimal conditions, where the ozone utilization efficiency was 64.5 and 94.8% and total energy consumption was 8.89 and 8.25 kWh m(-3), respectively. Thus, the removal rate of chlorophyll a and the ozone utilization efficiency were improved by 26.5% and 46.9%, respectively, by using the combined technique. Meanwhile, total energy consumption was reduced by 7.2%. Turbidity linearly decreased with chlorophyll a removal rate, but no linear relationship exists between the removal of COD or UV254 and chlorophyll a. As expected, the suction-cavitation-assisted O3 exhibited higher energy efficiency than the extrusion-cavitation-assisted O3 and O3 alone methods.
Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products.
Salati, Silvia; D'Imporzano, Giuliana; Menin, Barbara; Veronesi, Davide; Scaglia, Barbara; Abbruscato, Pamela; Mariani, Paola; Adani, Fabrizio
2017-04-01
A local strain of Chlorella vulgaris was cultivated by using cheese whey (CW), white wine lees (WL) and glycerol (Gly), coming from local agro-industrial activities, as C sources (2.2gCL -1 ) to support algae production under mixotrophic conditions in Lombardy. In continuous mode, Chlorella increased biomass production compared with autotrophic conditions by 1.5-2 times, with the best results obtained for the CW substrate, i.e. 0.52gL -1 d -1 of algal biomass vs. 0.24gL -1 d -1 of algal biomass for autotrophic conditions, and protein content for both conditions adopted close to 500gkg -1 DM. Mixotrophic conditions gave a much higher energy recovery efficiency (EF) than autotrophic conditions, i.e. organic carbon energy efficiency (EF oc ) of 32% and total energy efficiency (Ef t ) of 8%, respectively, suggesting the potential for the culture of algae as a sustainable practice to recover efficiently waste-C and a means of local protein production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raising Public Awareness: The Role of the Household Sector in Mitigating Climate Change
Lin, Shis-Ping
2015-01-01
In addition to greenhouse gas emissions from the industrial, transportation and commercial sectors, emissions from the household sector also contribute to global warming. By examining residents of Taiwan (N = 236), this study aims to reveal the factors that influence households’ intention to purchase energy-efficient appliances. The assessment in this study is based on the theory of planned behavior (TPB), and perceived benefit or cost (BOC) is introduced as an independent variable in the proposed efficiency action toward climate change (ECC) model. According to structural equation modeling, most of the indicators presented a good fit to the corresponding ECC model constructs. The analysis indicated that BOC is a good complementary variable to the TPB, as the ECC model explained 61.9% of the variation in intention to purchase energy-efficient appliances, which was higher than that explained by the TPB (58.4%). This result indicates that the ECC model is superior to the TPB. Thus, the strategy of promoting energy-efficient appliances in the household sector should emphasize global warming and include the concept of BOC. PMID:26492262
Raising Public Awareness: The Role of the Household Sector in Mitigating Climate Change.
Lin, Shis-Ping
2015-10-20
In addition to greenhouse gas emissions from the industrial, transportation and commercial sectors, emissions from the household sector also contribute to global warming. By examining residents of Taiwan (N = 236), this study aims to reveal the factors that influence households' intention to purchase energy-efficient appliances. The assessment in this study is based on the theory of planned behavior (TPB), and perceived benefit or cost (BOC) is introduced as an independent variable in the proposed efficiency action toward climate change (ECC) model. According to structural equation modeling, most of the indicators presented a good fit to the corresponding ECC model constructs. The analysis indicated that BOC is a good complementary variable to the TPB, as the ECC model explained 61.9% of the variation in intention to purchase energy-efficient appliances, which was higher than that explained by the TPB (58.4%). This result indicates that the ECC model is superior to the TPB. Thus, the strategy of promoting energy-efficient appliances in the household sector should emphasize global warming and include the concept of BOC.
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.
2017-01-01
This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.
Klöckner, Christian A.; Nayum, Alim
2016-01-01
Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) “not being in a decision mode,” (2) “deciding what to do,” (3) “deciding how to do it,” and (4) “planning implementation.” Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and—again—a feeling that the right point in time has not come yet. Implications for policy-making and marketing are discussed. PMID:27660618
Klöckner, Christian A; Nayum, Alim
2016-01-01
Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) "not being in a decision mode," (2) "deciding what to do," (3) "deciding how to do it," and (4) "planning implementation." Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and-again-a feeling that the right point in time has not come yet. Implications for policy-making and marketing are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jianlan; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139; Liu Fan
2012-11-07
Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time ormore » in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.« less
Limits on the maximum attainable efficiency for solid-state lighting
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi
2008-03-01
Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Longo, Kenneth A; Berryman, Darlene E; Kelder, Bruce; Charoenthongtrakul, Soratree; Distefano, Peter S; Geddes, Brad J; Kopchick, John J
2010-02-01
The goal of this study was to examine factors that contribute to energy balance in female GHR -/- mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (M(b)) changes and physical activity in 17month-old female GHR -/- mice and their age-matched wild type littermates. The GHR -/- mice were smaller, consumed more food per unit M(b), had greater EE per unit M(b) and had an increase in 24-h EE/M(b) that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR -/- mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, M(b) and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for M(b) and LMA, the GHR -/- mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR -/- mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR -/- mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final 3h of the dark phase. Therefore, we conclude that GHR -/- mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable M(b). Relative to wild type mice, the GHR -/- mice consumed more calories per unit M(b), which offset the disproportionate increase in their daily energy expenditure. While GHR -/- mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. Copyright 2009 Elsevier Ltd. All rights reserved.
Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John
2009-01-01
The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867
Branched-chain higher alcohols.
Wang, Bao-Wei; Shi, Ai-Qin; Tu, Ran; Zhang, Xue-Li; Wang, Qin-Hong; Bai, Feng-Wu
2012-01-01
China's energy requirements and environmental concerns have stimulated efforts toward developing alternative liquid fuels. Compared with fuel ethanol, branched-chain higher alcohols (BCHAs), including isopropanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, exhibit significant advantages, such as higher energy density, lower hygroscopicity, lower vapor pressure, and compatibility with existing transportation infrastructures. However, BCHAs have not been synthesized economically using native organisms, and thus their microbial production based on metabolic engineering and synthetic biology offers an alternative approach, which presents great potential for improving production efficiency. We review the current status of production and consumption of BCHAs and research progress regarding their microbial production in China, especially with the combination of metabolic engineering and synthetic biology.
Labussière, E; Dubois, S; Gilbert, H; Thibault, J N; Le Floc'h, N; Noblet, J; van Milgen, J
2015-10-01
Selection of animals for improved feed efficiency can affect sustainability of animal production because the most efficient animals may face difficulties coping with challenges. The objective of this study was to determine the effects of an inflammatory challenge (using an intravenous injection of complete Freund's adjuvant - CFA) in piglets from two lines of pigs divergently selected during the fattening period for a low (RFI-) or a high (RFI+) residual feed intake (RFI; difference between actual feed intake and theoretical feed requirements). Nitrogen and energy balances (including heat production - HP - and its components: activity-related HP - AHP, thermic effect of feeding, and resting HP) were measured individually in thirteen 20-kg BW castrated male piglets (six and seven from RFI+ and RFI- line, respectively) fed at the same level (1.72 MJ ME/kg BW0.60 per day) from 3 days before to 3 days after CFA injection. Dynamics of dietary U-13C-glucose oxidation were estimated from measurements of 13CO2 production on the day before and 3 days after the CFA injection. Oxidation of dietary nutrients and lipogenesis were calculated based on HP and O2 consumption and CO2 production. The data were analyzed as repeated measurements within piglets in a mixed model. Before CFA injection, RFI- piglets had a lower resting energy expenditure than RFI+ piglets, which tended to increase energy retention because of a higher energy retention as fat. The CFA injection did not affect feed intake from the day following CFA injection onwards but it increased energy retention (P=0.04). Time to recover 50% of 13C from dietary glucose as expired 13CO2 was higher in RFI+ piglets before inducing inflammation but decreased after to the level of RFI- piglets (P<0.01). Oxidation of U-13C-glucose tended to slightly increased in RFI- piglets and to decreased in RFI+ piglets (P=0.10) because of CFA. Additionally, RFI- piglets had a lower respiratory quotient during the 1st day following the CFA injection whereas RFI+ piglets tended to have a higher respiratory quotient. In conclusion, selection for RFI during the fattening period also affected the energy metabolism of pigs during earlier stages of growth. The effects of CFA injection were moderated in both lines but the most efficient animals (RFI-) exhibited a marked re-orientation of nutrients only during the 1st day after CFA, and seemed to recover thereafter, whereas the less efficient piglets expressed a more prolonged alteration of their metabolism.
NASA Astrophysics Data System (ADS)
Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan
2017-11-01
In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.
Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch
NASA Astrophysics Data System (ADS)
Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.
2014-03-01
A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.
A numerical model on thermodynamic analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.
Szabó, Ildikó; Bergantino, Elisabetta; Giacometti, Giorgio Mario
2005-01-01
Efficient photosynthesis is of fundamental importance for plant survival and fitness. However, in oxygenic photosynthesis, the complex apparatus responsible for the conversion of light into chemical energy is susceptible to photodamage. Oxygenic photosynthetic organisms have therefore evolved several protective mechanisms to deal with light energy. Rapidly inducible non-photochemical quenching (NPQ) is a short-term response by which plants and eukaryotic algae dissipate excitation energy as heat. This review focuses on recent advances in the elucidation of the molecular mechanisms underlying this protective quenching pathway in higher plants. PMID:15995679
Development of a Highly Loaded Rotor Blade for Steam Turbines
NASA Astrophysics Data System (ADS)
Segawa, Kiyoshi; Shikano, Yoshio; Tsubouchi, Kuniyoshi; Shibashita, Naoaki
Turbine manufacturers have been concerned about efficient utilization of limited energy resources and prevention of environmental pollution. For steam turbine power plants, a higher efficiency gain is necessary to reduce the fuel consumption rate. Blade configurations have been studied for reductions of profile loss and endwall loss that lead to decreased steam turbine internal efficiency, by applying recent aerodynamic technologies based on advanced numerical analysis methods. This paper discusses increase of pitch-chord ratio by 14% (reduction of rotor blade numbers by 14%) and increased blade aerodynamic loading without deterioration of performance. A new rotor cascade is found which improves blade performance, especially at the root section where the reduction in the energy loss coefficient is about 40%. This rotor blade also provides lower manufacturing cost.
Designation of a polarization-converting system and its enhancement of double-frequency efficiency
NASA Astrophysics Data System (ADS)
Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun
2015-08-01
A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.
WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-01-01
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs. PMID:23669714
WEAMR-a weighted energy aware multipath reliable routing mechanism for hotline-based WSNs.
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-05-13
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs.
PROTOCOL TO EVALUATE THE MOISTURE DURABILITY OF ENERGY-EFFICIENT WALLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R; Pallin, Simon B; Hun, Diana E
Walls account for about 8% of the energy used in residential buildings. This energy penalty can be reduced with higher insulation levels and increased airtightness. However, these measures can compromise the moisture durability and long-term performance of wall assemblies because they can lead to lower moisture tolerance due to reduced drying potential. To avert these problems, a moisture durability protocol was developed to evaluate the probability that an energy-efficient wall design will experience mold growth. This protocol examines the effects of moisture sources in walls through a combination of simulations and lab experiments, uses the mold growth index as themore » moisture durability indicator, and is based on a probabilistic approach that utilizes stochastically varying input parameters. The simulation tools used include a new validated method for taking into account the effects of air leakage in wall assemblies This paper provides an overview of the developed protocol, discussion of the probabilistic simulation approach and describes results from the evaluation of two wall assemblies in Climate Zones 2, 4, and 6. The protocol will be used to supply builders with wall designs that are energy efficient, moisture durable and cost-effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jiaoping; Chen, Zexiang, E-mail: zxchen@uestc.edu.cn; Li, Jun
2015-02-15
A new titanium dioxide (TiO{sub 2}) slurry formulation is herein reported for the fabrication of TiO{sub 2} photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO{sub 2} photoanode featured a highly uniform mesoporous structure with well-dispersed TiO{sub 2} nanoparticles. The energy conversion efficiency of the resulting TiO{sub 2} slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO{sub 2} slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO{sub 2} slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on themore » performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO{sub 2} photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO{sub 2} slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.« less
Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.
Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo
2018-02-19
The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid piezoelectric energy harvesting transducer system
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)
2008-01-01
A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.
X-ray characterization of curved crystals for hard x-ray astronomy
NASA Astrophysics Data System (ADS)
Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo
2015-05-01
Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).
Harvey-Thompson, A J; Sefkow, A B; Wei, M S; Nagayama, T; Campbell, E M; Blue, B E; Heeter, R F; Koning, J M; Peterson, K J; Schmitt, A
2016-11-01
We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n_{e}/n_{crit}∼0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0×10^{14} to 2.5×10^{14}W/cm^{2} and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I=1.5×10^{14}W/cm^{2}) beams can efficiently couple energy (∼82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)10.1063/1.4890298].
NASA Astrophysics Data System (ADS)
Harvey-Thompson, A. J.; Sefkow, A. B.; Wei, M. S.; Nagayama, T.; Campbell, E. M.; Blue, B. E.; Heeter, R. F.; Koning, J. M.; Peterson, K. J.; Schmitt, A.
2016-11-01
We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with ne/nc r i t˜0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 ×1014 to 2.5 ×1014W /c m2 and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I =1.5 ×1014W /c m2 ) beams can efficiently couple energy (˜82 % of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014), 10.1063/1.4890298].
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System.
Chinnadurai, Sunil; Selvaprabhu, Poongundran; Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-09-18
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach's algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System
Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-01-01
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach’s algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme. PMID:28927019
Harvey-Thompson, A. J.; Sefkow, A. B.; Wei, M. S.; ...
2016-11-02
Here, we report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n e / n c r i t ~ 0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 × 10 14 to 2.5 × 10 14 W / c m 2 andmore » pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity ( I = 1.5 × 10 14 W / c m 2 ) beams can efficiently couple energy ( ~ 82 % of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The heating efficiency we demonstrate is significantly higher than it was thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey-Thompson, A. J.; Sefkow, A. B.; Wei, M. S.
Here, we report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n e / n c r i t ~ 0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 × 10 14 to 2.5 × 10 14 W / c m 2 andmore » pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity ( I = 1.5 × 10 14 W / c m 2 ) beams can efficiently couple energy ( ~ 82 % of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The heating efficiency we demonstrate is significantly higher than it was thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)].« less
Energy Transformations of Soil Organic Matter in a Changing World
NASA Astrophysics Data System (ADS)
Herrmann, A. M.; Coucheney, E.; Grice, S. M.; Ritz, K.; Harris, J.
2011-12-01
The role of soils in governing the terrestrial carbon balance is acknowledged as being important but remains poorly understood within the context of climate change. Soils exchange energy with their surroundings and are therefore open systems thermodynamically, but little is known how energy transformations of decomposition processes are affected by temperature. Soil organic matter and the soil biomass can be conceptualised as analogous to the 'fuel' and 'biological engine' of the earth, respectively, and are pivotal in driving the belowground carbon cycle. Thermodynamic principles of soil organic matter decomposition were evaluated by means of isothermal microcalorimetry (TAM Air, TA Instruments, Sollentuna Sweden: (i) Mineral forest soils from the Flakaliden long-term nitrogen fertilisation experiment (Sweden) were amended with a range of different substrates representing structurally simple to complex, ecologically pertinent organic matter and heat signatures were determined at temperatures between 5 and 25°C. (ii) Thermodynamic and resource-use efficiencies of the biomass were determined in arable soils which received contrasting long-term management regimes with respect to organic matter and nitrogen since 1956. The work showed that (i) structurally labile components have higher activation energy and temperature dependence than structurally more complex organic components. This is, however, in contrast to the thermodynamic argument which suggests the opposite that reactions metabolising structurally complex, aromatic components have higher temperature dependence than reactions metabolising structurally more labile components. (ii) Microbial communities exposed to long-term stress by heavy metal and low pH were less thermodynamic efficient and showed a decrease in resource-use efficiency in comparison with conventional input regimes. Differences in efficiencies were mirrored in both the phenotypic and functional profiles of the communities. We will present our findings illustrating the capacity of isothermal microcalorimetry to evaluate temperature dependencies of soil organic matter decomposition, associated energy transformations and thermodynamic principles in soil ecosystems.
NASA Astrophysics Data System (ADS)
Dasgupta, Arati
2015-11-01
Designing high fluence photon sources above 10 keV are a challenge for High Energy Density plasmas. This has motivated radiation source development investigations of Kr with K-shell energies around 13 keV. Recent pulsed power driven gas-puff experiments on the refurbished Z machine at Sandia have produced intense X-rays in the multi-keV photon energy range. K-shell radiative yields and efficiencies are very high for Ar, but rapidly decrease for higher atomic number (ZA) elements such as Kr. It has been suggested that an optimum exists corresponding to a trade-off between the increase of photon energy for higher ZA elements and the corresponding fall off in radiative power. However the conversion efficiency on NIF, where the drive, energy deposition process, and target dynamics are different, does not fall off with higher ZA as rapidly as on Z. We have developed detailed atomic structure and collisional data for the full K-, L- and partial M-shell of Kr using the Flexible Atomic Code (FAC). Our non-LTE atomic model includes all collisional and recombination processes, including state-specific dielectronic recombination (DR), that significantly affect ionization balance and spectra of Kr plasmas at the temperatures and densities of concern. The model couples ionization physics, radiation production and transport, and magnetohydrodynamics. In this talk, I will give a detailed description of the model and discuss 1D Kr simulations employing a multifrequency radiation transport scheme. Synthetic K- and L-shell spectra will be compared with available experimental data. This talk will analyze experimental data indicative of the differences between Z and NIF experimental data and discuss how they affect the K-shell radiative output of Kr plasma. Work supported by DOE/NNSA.
High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell
NASA Technical Reports Server (NTRS)
Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville
2009-01-01
A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.
Han, Chunmiao; Zhang, Zhensong; Xu, Hui; Li, Jing; Zhao, Yi; Yan, Pengfei; Liu, Shiyong
2013-01-21
A series of donor (D)-π-acceptor (A)-type phosphine-oxide hosts (DBF(x) POPhCz(n)), which were composed of phenylcarbazole, dibenzofuran (DBF), and diphenylphosphine-oxide (DPPO) moieties, were designed and synthesized. Phenyl π-spacer groups were inserted between the carbazolyl and DBF groups, which effectively weakened the charge transfer and triplet-excited-state extension. As the result, the first triplet energy levels (T(1)) of DBF(x)POPhCz(n) are elevated to about 3.0 eV, 0.1 eV higher than their D-A-type analogues. Nevertheless, the electrochemical analysis and DFT calculations demonstrated the ambipolar characteristics of DBF(x)POPhCz(n). The phenyl π spacers hardly influenced the frontier molecular orbital (FMO) energy levels and the carrier-transporting ability of the materials. Therefore, these D-π-A systems are endowed with higher T(1) states, as well as comparable electrical properties to D-A systems. Phosphorescent blue-light-emitting diodes (PHOLEDs) that were based on DBF(x)POPhCz(n) not only inherited the ultralow driving voltages (2.4 V for onset, about 2.8 V at 200 cd m(-2), and <3.4 V at 1000 cd m(-2)) but also had much-improved efficiencies, including about 26 cd A(-1) for current efficiency, 30 Lm W(-1) for power efficiency, and 13% for external quantum efficiency, which were more than twice the values of devices that are based on conventional unipolar host materials. This performance makes DBFDPOPhCz(n) among the best hosts for ultralow-voltage-driven blue PHOLEDs reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chou, Ho-Hsiu; Li, Yi-Kai; Chen, Yu-Han; Chang, Ching-Chih; Liao, Chuang-Yi; Cheng, Chien-Hong
2013-07-10
A new light blue complex (fmoppy)2Ir(tfpypz) [bis(4'-fluoro-6'-methoxylphenyl pyridinato)-iridium(III)-3-(trifluoromethyl)-5-(pyridin-2-yl)-1,2,4-triazolate] and a new orange complex (dpiq)2Ir(acac) [bis(3,4-diphenylisoquinoline)-iridium(III)-acetylacetonate] were synthesized. These two complexes were used as the dopants for the fabrication of two-element white phosphorescent devices. Via the introduction of a thin energy-harvesting layer (EHL) to harvest the extra energy and exciton from the emission zone, highly efficient two-element white devices with excellent color stability were created. One of the best devices shows yellow-white color emission with an extremely high external quantum efficiency (EQE) of 21.5% and a current efficiency of 68.8 cd/A. The other device gave a pure white emission with an external quantum efficiency of 19.2% and a current efficiency of 53.2 cd/A. At a high brightness of 1000 cd/m(2), the EQE still remains as high as 18.9 and 17.2%. With a brightness of 1000-10000 cd/m(2), the CIE coordinates of these two devices shift by only (0.02, ≤0.01). The white phosphorescent devices with the EHL showed much higher efficiency and better color stability than the one without the EHL.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ballast in accordance with the circuit shown in Figure 2. ER09MR10.006 (iii) Power Line Carrier (PLC) Control Signal. Measure the PLC control signal power (watts), using a wattmeter capable of indicating true... wattmeter must have a frequency response that is at least 10 times higher than the PLC being measured to...
Navy Expeditionary Technology Transition Program (NETTP)
2012-03-02
water vapor from feed air using a zeolite membrane •Temperature/Humidity levels can be met in warm, humid climates without reheating •Allows higher...UNCLASSIFIED, Distribution Unlimited Modular Thermal Hub •Small, efficient absorption cooling •Energy source: Combustion, low- grade waste heat, solar... thermal energy •Reversible operation enables space cooling and heating, and water heating •Modular cooling and heating unit •Monolithic packaging offers
International Experience in Standards and Labeling Programs for Rice Cookers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Zheng, Nina
China has had an active program on energy efficiency standards for household appliances since the mid-1990s. Rice cooker is among the first to be subject to such mandatory regulation, since it is one of the most prevalent electric appliances in Chinese households. Since first introduced in 1989, the minimum energy efficiency standard for rice cookers has not been revised. Therefore, the potential for energy saving is considerable. Initial analysis from CNIS indicates that potential carbon savings is likely to reach 7.6 million tons of CO2 by the 10th year of the standard implementation. Since September 2007, CNIS has been workingmore » with various groups to develop the new standard for rice cookers. With The Energy Foundation's support, LBNL has assisted CNIS in the revision of the minimum energy efficiency standard for rice cookers that is expected to be effective in 2009. Specifically, work has been in the following areas: assistance in developing consumer survey on usage pattern of rice cookers, review of international standards, review of international test procedures, comparison of the international standards and test procedures, and assessment of technical options of reducing energy use. This report particularly summarizes the findings of reviewing international standards and technical options of reducing energy consumption. The report consists of an overview of rice cooker standards and labeling programs and testing procedures in Hong Kong, South Korea, Japan and Thailand, and Japan's case study in developing energy efficiency rice cooker technologies and rice cooker efficiency programs. The results from the analysis can be summarized as the follows: Hong Kong has a Voluntary Energy Efficiency Labeling scheme for electric rice cookers initiated in 2001, with revision implemented in 2007; South Korea has both MEPS and Mandatory Energy Efficiency Label targeting the same category of rice cookers as Hong Kong; Thailand's voluntary endorsement labeling program is similar to Hong Kong in program design but has 5 efficiency grades; Japan's program is distinct in its adoption of the 'Top Runner' approach, in which, the future efficiency standards is set based on the efficiency levels of the most efficient product in the current domestic market. Although the standards are voluntary, penalties can still be evoked if the average efficiency target is not met. Both Hong Kong and South Korea's tests involve pouring water into the inner pot equal to 80% of its rated volume; however, white rice is used as a load for its tests in Hong Kong whereas no rice is used for tests in South Korea. In Japan's case, water level specified by the manufactures is used and milled rice is used as a load only partially in the tests. Moreover, Japan does not conduct heat efficiency test but its energy consumption measurements tests are much more complex, with 4 different tests are conducted to determine the annual average energy consumption. Hong Kong and Thailand both set Minimum Allowable Heat Efficiency for different rated wattages. The energy efficiency requirements are identical except that the minimum heat efficiency in Thailand is 1 percentage point higher for all rated power categories. In South Korea, MEPS and label's energy efficiency grades are determined by the rice cooker's Rated Energy Efficiency for induction, non-induction, pressure, nonpressure rice cookers. Japan's target standard values are set for electromagnetic induction heating products and non-electromagnetic induction heating products by different size of rice cookers. Specific formulas are used by type and size depending on the mass of water evaporation of the rice cookers. Japan has been the leading country in technology development of various types of rice cookers, and developed concrete energy efficiency standards for rice cookers. However, as consumers in Japan emphasize the deliciousness of cooked rice over other factors, many types of models were developed to improve the taste of cooked rice. Nonetheless, the efficiency of electromagnetic induction heating (IH) rice cookers in warm mode has improved approximately 12 percent from 1993 to 2004 due to the 'low temperature warming method' developed by manufacturers. The Energy Conservation Center of Japan (IEEJ) releases energy saving products database on the web regularly, on which the energy saving performance of each product is listed and ranked. Energy saving in rice cookers mostly rest with insulation of the pot. Technology developed to improve the energy efficiency of the rice cookers includes providing vacuum layers on both side of the pot, using copper-plated materials, and double stainless layer lid that can be heated and steam can run in between the two layers to speed the heating process.« less
Sakadjian, B.; Hu, S.; Maryamchik, M.; ...
2015-06-05
Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakadjian, B.; Hu, S.; Maryamchik, M.
Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
NASA Astrophysics Data System (ADS)
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa
2013-04-22
The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention.
2013-01-01
Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention. PMID:23607263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar; Wei, Max; Letschert, Virginie
2015-10-01
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.« less
NASA Astrophysics Data System (ADS)
Di Valentin, Marilena; Carbonera, Donatella
2017-08-01
Triplet-triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis.
Electrorheology for energy production and conservation
NASA Astrophysics Data System (ADS)
Huang, Ke
Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.
A reanalysis of the HCO(+)/HOC(+) abundance ratio in dense interstellar clouds
NASA Technical Reports Server (NTRS)
Jarrold, M. F.; Bowers, M. T.; Defrees, D. J.; Mclean, A. D.; Herbst, E.
1986-01-01
New theoretical and experimental results have prompted a reinvestigation of the HCO(+)/HOC(+) abundance ratio in dense interstellar clouds. These results pertain principally but not exclusively to the reaction between HOC(+) and H2, which was previously calculated by DeFrees et al. (1984) to possess a large activation energy barrier. New calculations, reported here, indicate that this activation energy barrier is quite small and may well be zero. In addition, experimental results at higher energy and temperature indicate strongly that the reaction proceeds efficiently at interstellar temperatures. If HOC(+) does indeed react efficiently with H2 in interstellar clouds, the calculated HCO(+)/HOC(+) abundance ratio rises to a substantially greater value under standard dense cloud conditions than is deduced via the tentative observation of HOC(+) in Sgr B2.
FY2010 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.
Sunlight absorption engineering for thermophotovoltaics: contributions from the optical design.
Míguez, Hernán
2015-03-01
Nowadays, solar thermophotovoltaic systems constitute a platform in which sophisticated optical material designs are put into practice with the aim of achieving the long sought after dream of developing an efficient energy conversion device based on this concept. Recent advances demonstrate that higher efficiencies are at reach using photonic nanostructures amenable to mass production and scale-up. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resonant scattering and charm showers in ultrahigh-energy neutrino interactions
NASA Technical Reports Server (NTRS)
Wilczek, F.
1985-01-01
Electron antineutrinos with energy of about 7 x 10 to the 6th GeV have much-enhanced cross sections due to W-boson production off electrons. Possible signals due to cosmic-ray sources are estimated. Higher-energy antineutrinos can efficiently produce a W accompanied by radiation. Another possibility, which could lead to shadowing at modest depths, is resonant production of a charged Higgs particle. The importance of muon production by charm showers in rock is pointed out.
Manned Mars Landing Missions Using Electric Propulsion
1966-01-01
U 77= 2 eV 21qý 1200 1+ io 2(I X 9.80665) > 1000 _---where S800- -- 7 thrustor efficiency 600 _ u fraction of propellant ionized -oo - -eV/ion energy ...terminated at escape energy rather than at the sphere of influence. For some of the higher accelera- tions, escape energy is reached some distance inside the...error being about 5 percent of the initial mass. Most doubtful at this time are the accuracies of the planet approach velocity and peri- helion radius
2017-12-11
provides ultra-low energy search operations. To improve throughput, the in-array pipeline scheme has been developed, allowing the MeTCAM to operate at a...controlled magnetic tunnel junction (VC-MTJ), which not only reduces cell area (thus achieving higher density) but also eliminates standby energy . This...Variations of the cell design are presented and evaluated. The results indicated a potential 90x improvement in the energy efficiency and a 50x
Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O
2004-06-01
The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.
Meng, Yilin; Roux, Benoît
2015-08-11
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Pengjie; Wang, Huan; Qu, Shiwei
Two polymers with fully two-dimensional (2D) conjugated side chains, 2D-PTB-Th and 2D-PTB-TTh, were synthesized and characterized through simultaneously integrating the 2D-TT and the 2D-BDT monomers onto the polymer backbone. Resulting from the synergistic effect from the conjugated side chains on both monomers, the two polymers showed remarkably efficient absorption of the sunlight and improved pi-pi intermolecular interactions for efficient charge carrier transport. The optimized bulk heterojunction device based on 2D-PTB-Th and PC71BM shows a higher PCE of 9.13% compared to PTB7-Th with a PCE of 8.26%, which corresponds to an approximately 10% improvement in solar energy conversion. The fully 2D-conjugatedmore » side-chain concept reported here developed a new molecular design strategy for polymer materials with enhanced sunlight absorption and efficient solar energy conversion.« less
2015-01-01
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost. PMID:26574437
NASA Technical Reports Server (NTRS)
Fabris, Gracio
1992-01-01
Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.
The performance of 3-D graphite doped anodes in microbial electrolysis cells
NASA Astrophysics Data System (ADS)
Yasri, Nael G.; Nakhla, George
2017-02-01
This study investigated the use of granular activated carbon (GAC) as high surface area 3-dimensional (3-D) anode in MECs systems. The interfacial anodes' charge transfer resistance of the doped GAC did not impact the overall performance of MECs. Based on our finding, the 3-D anode packed with GAC-doped with nonconductive calcium sulfide (CaS) outperformed the more conductive iron (II) sulfide (FeS), magnetite (Fe3O4), or GAC without doping. The results showed higher current densities for 3-D CaS (40.1 A/m3), as compared with 3-D FeS (34.4 A/m3), 3-D Fe3O4 (29.8 A/m3), and 3-D GAC (23.1 A/m3). The higher current density in the 3-D CaS translated to higher coulombic efficiency (96.7%), hydrogen yield (3.6 mol H2/mol acetate), and attached biomass per anode mass (54.01 mg COD biomass/g GAC). Although the 3-D MEC achieved similar hydrogen yield, hydrogen recovery efficiency, and COD removal rate to a conventional sandwich type MEC, the current density, coulombic efficiency, and overall energy efficiency were higher.
A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, David B.
2014-08-31
This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon themore » data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.« less
Detailed performance analysis of the A.A.D. - concept B
NASA Technical Reports Server (NTRS)
Sekar, R.; Tozzi, L.
1983-01-01
New concepts for engine performance improvement are seen through the adoption of heat regeneration techniques; advanced methods to enhance the combustion; and higher efficiency air handling machinery, such as the positive displacement helical screw expander and compressor. Each of these concepts plays a particular role in engine performance improvement. First regeneration has a great potential for achieving higher engine thermal efficiency through the recovery of waste energy. Although the concept itself is not new (this technique is used in the gas turbine), the application to reciprocating internal combustion engines is quite unusual and presents conceptual difficulties. The second important area is better control of the combustion process in terms of heat transfer characteristics, combustion products, and heat release rate. The third area for performance improvement is in the adoption of high efficiency air handling machinery. In particular, positive displacement helical expander and compressor exhibit an extremely high efficiency over a wide range of operating conditions.
NASA Astrophysics Data System (ADS)
Shinmoto, Kazuya; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu
This paper describes experimental study on NO removal from a simulated exhausted-gas using repetitive surface discharge on a glass barrier subjected to polarity-reversed voltage pulses. The very fast polarity-reversal with a rise time of 20ns is caused by direct grounding of a charged coaxial cable of 10m in length. Influence of voltage rise time on energy efficiency for NO removal is studied. Results of NO removal using a barrier-type plasma reactor with screw-plane electrode system indicates that the energy efficiency for the very fast polarity reversal caused by direct grounding becomes higher than that for the slower polarity reversal caused by grounding through an inductor at the cable end. The energy efficiency for the direct grounding is about 80g/kWh for 50% NO removal ratio and is about 60g/kWh for 100% NO removal ratio. Very intense discharge light is observed at the initial time of 10ns for the fast polarity reversal, whereas the intensity in the initial discharge light for the slower polarity reversal is relatively small. To confirm the effectiveness of the polarity-reversed pulse application, comparison of the energy efficiency between the polarity-reversed voltage pulse and ac 60Hz voltage will be presented.
Low-Energy Ions Injection and Acceleration at Oblique Shocks with Focused Transport Model
NASA Astrophysics Data System (ADS)
Zuo, P.; Zhang, M.; Feng, X. S.
2017-12-01
There is strong evidence that a small portion of suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events. Here we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). We first characterize the role of cross-shock potential (CSP) on pickup ions (PUIs) acceleration. The CSP can affect the shape of the spectrum segment at lower energies, but it does not change the spectral index of the final power-law spectrum at high energies. It is found that a stronger CSP jump results in a dramatically improved injection efficiency. Our simulation results also show that the injection efficiency of PUIs is mass-dependent, which is lower for species with a higher mass. The injection efficiency as the function of Mach number, obliquity, injection speed, and shock strength is also calculated. It can be proved that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of source particle injection.
A comparative assessment of resource efficiency in petroleum refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
A Comparative Assessment of Resource Efficiency in Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, G; Elgowainy, Amgad
2015-10-01
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.« less
A comparative assessment of resource efficiency in petroleum refining
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; ...
2015-03-25
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
NASA Astrophysics Data System (ADS)
Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.
2018-01-01
An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.
Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao
2018-06-11
Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens
Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun
2016-01-01
Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m−2 and 1.5 kW m−2, respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs. PMID:27283350
Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens.
Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun
2016-06-10
Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m(-2) and 1.5 kW m(-2), respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.
Heating and flooding: A unified approach for rapid generation of free energy surfaces
NASA Astrophysics Data System (ADS)
Chen, Ming; Cuendet, Michel A.; Tuckerman, Mark E.
2012-07-01
We propose a general framework for the efficient sampling of conformational equilibria in complex systems and the generation of associated free energy hypersurfaces in terms of a set of collective variables. The method is a strategic synthesis of the adiabatic free energy dynamics approach, previously introduced by us and others, and existing schemes using Gaussian-based adaptive bias potentials to disfavor previously visited regions. In addition, we suggest sampling the thermodynamic force instead of the probability density to reconstruct the free energy hypersurface. All these elements are combined into a robust extended phase-space formalism that can be easily incorporated into existing molecular dynamics packages. The unified scheme is shown to outperform both metadynamics and adiabatic free energy dynamics in generating two-dimensional free energy surfaces for several example cases including the alanine dipeptide in the gas and aqueous phases and the met-enkephalin oligopeptide. In addition, the method can efficiently generate higher dimensional free energy landscapes, which we demonstrate by calculating a four-dimensional surface in the Ramachandran angles of the gas-phase alanine tripeptide.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael
Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941
Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael; ...
2017-10-14
Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less
Liu, Ming-Chao; Kong, De-Liang; Lu, Xiu-Rong; Huang, Kai; Wang, Shuo; Wang, Wei-Bin; Qu, Bo; Feng, Yu-Long
2017-08-01
The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (P max ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher P max , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher P max for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as P max , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat. © 2017 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa
2017-04-01
In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However, AGROE double the energy efficiency (5.9 vs. 3.13). AGROE was more efficient in the use of energy resources and less energy-dependent to produce goods and food. In addition, this model produces less environmental deterioration, preserve natural resources and produce food on a sustainable basis.
Microalgae bioprospecting at NREL
Elliott, Lee
2018-02-02
Prospecting for elusive fast-growing, oily microalgae is a soggy, muddy, rewarding job for NREL researcher Lee Elliott. Not only do algae grow in unlikely settings, but their ability to convert the light they receive into biomass has the potential to outperform that of land plants. Trees, grasses and shrubs typically are not very efficient in capturing and converting the sun's energy into biomass, but some algae are believed to be capable of much higher efficiencies, with some scientists thinking ideal strains may be able to approach the maximum theoretical photosynthetic efficiency under the right conditions.
Hackel, R.P.
1992-10-20
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.
Spectral analysis of fundamental signal and noise performances in photoconductors for mammography.
Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse; Yun, Seungman; Cunningham, Ian A
2012-05-01
This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI(2), PbI(2), PbO, and TlBr, for x-ray spectra typically used in mammography. It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). The quantum efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI(2), PbI(2), and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm(-2), a-Se, HgI(2), and PbI(2) provide similar DQE values to PbO and TlBr. The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.
Kavitha, S; Yukesh Kannah, R; Rajesh Banu, J; Kaliappan, S; Johnson, M
2017-11-01
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Process development for single-crystal silicon solar cells
NASA Astrophysics Data System (ADS)
Bohra, Mihir H.
Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.
Pham, Toan; Nisbet, Linley; Taberner, Andrew; Loiselle, Denis; Han, June-Chiew
2018-04-01
Pulmonary arterial hypertension (PAH) triggers right ventricle (RV) hypertrophy and left ventricle (LV) atrophy, which progressively leads to heart failure. We designed experiments under conditions mimicking those encountered by the heart in vivo that allowed us to investigate whether consequent structural and functional remodelling of the ventricles affects their respective energy efficiencies. We found that peak work output was lower in RV trabeculae from PAH rats due to reduced extent and velocity of shortening. However, their suprabasal enthalpy was unaffected due to increased activation heat, resulting in reduced suprabasal efficiency. There was no effect of PAH on LV suprabasal efficiency. We conclude that the mechanism underlying the reduced energy efficiency of hypertrophied RV tissues is attributable to the increased energy cost of Ca 2+ cycling, whereas atrophied LV tissues still maintain normal mechano-energetic performance. Pulmonary arterial hypertension (PAH) greatly increases the afterload on the right ventricle (RV), triggering RV hypertrophy, which progressively leads to RV failure. In contrast, the disease reduces the passive filling pressure of the left ventricle (LV), resulting in LV atrophy. We investigated whether these distinct structural and functional consequences to the ventricles affect their respective energy efficiencies. We studied trabeculae isolated from both ventricles of Wistar rats with monocrotaline-induced PAH and their respective Control groups. Trabeculae were mounted in a calorimeter at 37°C. While contracting at 5 Hz, they were subjected to stress-length work-loops over a wide range of afterloads. They were subsequently required to undergo a series of isometric contractions at various muscle lengths. In both protocols, stress production, length change and suprabasal heat output were simultaneously measured. We found that RV trabeculae from PAH rats generated higher activation heat, but developed normal active stress. Their peak external work output was lower due to reduced extent and velocity of shortening. Despite lower peak work output, suprabasal enthalpy was unaffected, thereby rendering suprabasal efficiency lower. Crossbridge efficiency, however, was unaffected. In contrast, LV trabeculae from PAH rats maintained normal mechano-energetic performance. Pulmonary arterial hypertension reduces the suprabasal energy efficiency of hypertrophied right ventricular tissues as a consequence of the increased energy cost of Ca 2+ cycling. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Energy Use in China: Sectoral Trends and Future Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; McNeil, Michael A.; Fridley, David
2007-10-04
This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19more » percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.« less
NASA Astrophysics Data System (ADS)
Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.
2017-01-01
A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions. We will review the most recent CAT grating fabrication and x-ray test results.
Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting
NASA Astrophysics Data System (ADS)
Abarr, Miles L. Lindsey
This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.
Comparison of fuel value and combustion characteristics of two different RDF samples.
Sever Akdağ, A; Atımtay, A; Sanin, F D
2016-01-01
Generation of Municipal Solid Waste (MSW) tends to increase with the growing population and economic development of the society; therefore, establishing environmentally sustainable waste management strategies is crucial. In this sense, waste to energy strategies have come into prominence since they increase the resource efficiency and replace the fossil fuels with renewable energy sources by enabling material and energy recovery instead of landfill disposal of the wastes. Refuse Derived Fuel (RDF), which is an alternative fuel produced from energy-rich Municipal Solid Waste (MSW) materials diverted from landfills, is one of the waste to energy strategies gaining more and more attention. This study aims to investigate the thermal characteristics and co-combustion efficiency of two RDF samples in Turkey. Proximate, ultimate and thermogravimetric analyses (TGA) were conducted on these samples. Furthermore, elemental compositions of ash from RDF samples were determined by X-Ray Fluorescence (XRF) analysis. The RDF samples were combusted alone and co-combusted in mixtures with coal and petroleum coke in a lab scale reactor at certain percentages on energy basis (3%, 5%, 10%, 20% and 30%) where co-combustion processes and efficiencies were investigated. It was found that the calorific values of RDF samples on dry basis were close to that of coal and a little lower compared to petroleum coke used in this study. Furthermore, the analysis indicated that when RDF in the mixture was higher than 10%, the CO concentration in the flue gas increased and so the combustion efficiency decreased; furthermore, the combustion characteristics changed from char combustion to volatile combustion. However, RDF addition to the fuel mixtures decreased the SO2 emission and did not change the NOx profiles. Also, XRF analysis showed that the slagging and fouling potential of RDF combustion was a function of RDF portion in fuel blend. When the RDF was combusted alone, the slagging and fouling indices of its ash were found to be higher than the limit values producing slagging and fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
How can we tackle energy efficiency in IoT based smart buildings?
Moreno, M Victoria; Úbeda, Benito; Skarmeta, Antonio F; Zamora, Miguel A
2014-05-30
Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.
How can We Tackle Energy Efficiency in IoT Based Smart Buildings?
Moreno, M. Victoria; Úbeda, Benito; Skarmeta, Antonio F.; Zamora, Miguel A.
2014-01-01
Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario. PMID:24887040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, David B.; Bender, Sadie R.; Cort, Katherine A.
This report provides an update to a previously published (Rev 1) report that describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a versionmore » of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.« less
NASA Technical Reports Server (NTRS)
Bartos, K. P.
1978-01-01
The Golstone Energy Project was established in 1974 to investigate ways in which the Goldstone Deep Space Complex in California could be made partly or completely energy-sufficient, especially through the use of solar- and wind-derived energy resources. Ways in which energy could be conserved at the Complex were also studied. Findings included data on both wind and solar energy. Obstacles to demonstrating energy self-sufficiency are: (1) operation and maintenance costs of solar energy systems are estimated to be much higher than conventional energy systems, (2) initial capital costs of present-day technology solar collectors are high and are compounded by low collector efficiency, and (3) no significant market force exists to create the necessary industry to reduce costs through mass production and broad open-market competition.
Burlacu, G; Iliescu, M; Cărămidă, P
1986-09-01
The efficiency of utilization of feed energy as digestible, metabolizable and net energy is similar in pregnant and lactating sows irrespective of the stage of these physiological conditions. This efficiency with the value of about 71% resembles the one found in the growing and fattening pigs, which enables us to use, for this category of animals, the same system offered evaluation and of the energy requirements based on fat nutritive units. The maintenance energy requirement expressed in ME varies from 467 kJ/kg 0.75 in pregnant sows to 512 kJ/kg 0.75 in lactating sows, for the suckling piglets having intermediary value of 498 kJ/kg 0.75. The efficiency of utilization of diets protein for maintenance and for synthesis is also similar for these categories of pigs, varying from 71% in lactating sows to 75-76% in pregnant sows. In suckling piglets we had recorded an efficiency of DCP utilization which varies parabolically with size of the ingesta and therefore with that of weight gain. The DCP maintenance requirement expressed in g N dig./kg 0.75 varies within narrow limits between 0.345 g N in suckling piglets 0.380 g N in pregnant sows; In lactating sows we have detected an intermediary value of 0.355 g N. Based on these experimental data and also using recent experimental results obtained by Schiemann and Beyer (1984) regarding the energy and N content of the foetuses, of the organs of reproductions and of milk, we could calculate the energy and protein requirements. These requirements when compared with the values used in our country show us higher values of energy in pregnant and lactating sows and lower values of protein for the same categories, including the piglets, where we have also found lower values for the energy too.
Optimization of the Army’s Fast Neutron Moderator for Radiography
2013-02-26
thermal neutron flux from a commercially available high-energy D-T neutron generator. This paper details the steps taken to increase exposure rates...experiment was to have increased thermal neutron flux rates and shorter exposure times than previously achieved. Additional technology developments...This reduced the thermalizing efficiency of the moderator at higher energies, resulted in a large loss of neutron flux at the image plane, and
Effects of Laser Frequency and Multiple Beams on Hot Electron Generation in Fast Ignition
NASA Astrophysics Data System (ADS)
Royle, Ryan B.
Inertial confinement fusion (ICF) is one approach to harnessing fusion power for the purpose of energy production in which a small deuterium-tritium capsule is imploded to about a thousand times solid density with ultra-intense lasers. In the fast ignition (FI) scheme, a picosecond petawatt laser pulse is used to deposit ˜10 kJ of energy in ˜10 ps into a small hot-spot at the periphery of the compressed core, igniting a fusion burn wave. FI promises a much higher energy gain over the conventional central hot-spot ignition scheme in which ignition is achieved through compression alone. Sufficient energy coupling between ignition laser and implosion core is critical for the feasibility of the FI scheme. Laser-core energy coupling is mediated by hot electrons which absorb laser energy near the critical density and propagate to the dense core, depositing their energy primarily through collisions. The hot electron energy distribution plays a large role in achieving efficient energy coupling since electrons with energy much greater than a few MeV will only deposit a small fraction of their energy into the hot-spot region due to reduced collisional cross section. It is understood that it may be necessary to use the second or third harmonic of the 1.05 mum Nd glass laser to reduce the average hot electron energy closer to the few-MeV range. Also, it is likely that multiple ignition beams will be used to achieve the required intensities. In this study, 2D particle-in-cell simulations are used to examine the effects of frequency doubling and tripling of a 1 mum laser as well as effects of using various dual-beam configurations. While the hot-electron energy spectrum is indeed shifted closer to the few-MeV range for higher frequency beams, the overall energy absorption is reduced, canceling the gain from higher efficiency. For a fixed total laser input energy, we find that the amount of hot electron energy able to be deposited into the core hot-spot is fairly insensitive to the laser configuration used. Our results hint that the more important issue at hand may be divergence and transport of the hot electrons, which tend to spray into 2pi radians due to instabilities and current filamentation present in the laser-plasma interaction region.
Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO
2012-05-08
Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.
Kander, Astrid; Warde, Paul
2011-01-01
This article explores the proposition that a reason for high agricultural productivity in the early nineteenth century was relatively high energy availability from draught animals. The article is based on the collection of extensive new data indicating different trends in draught power availability and the efficiency of its use in different countries of Europe. This article shows that the proposition does not hold, and demonstrates that, although towards the end of the nineteenth century England had relatively high numbers of draught animals per agricultural worker, it also had low number of workers and animals per hectare, indicating the high efficiency of muscle power, rather than an abundance of such power. The higher efficiency was related to a specialization on less labour-intensive farming and a preference for horses over oxen.
On the Energy Efficiency of On-Off Keying Transmitters with Two Distinct Types of Batteries.
Shen, Tingting; Wang, Tao; Sun, Yanzan; Wu, Yating; Jin, Yanliang
2018-04-23
As nodes in wireless sensor networks are usually powered by nonrenewable batteries, energy efficient design becomes critical. This paper considers a battery-powered transmitter using on-off keying (OOK) modulation and studies its energy efficiency in terms of the battery’s energy consumption for per bit transmission (BECPB). In particular, the transmitter may use one of two distinct types of batteries with battery utilization factor (BUF) depending on discharge current. The first has an instantaneous discharge current (IDC)-based BUF, while the second has a mean discharge current (MDC)-based BUF. For each type of battery, a closed-form BECPB expression is derived under a Rayleigh channel when a prescribed symbol error rate (SER) is guaranteed. Then theoretical analysis is made to study the impact of battery characteristic parameter γ , communication distance d and bandwidth B on the BECPB. Finally, the analysis is corroborated by numerical experimental results, which reveal that: the BECPB for each type of battery increases with γ and d ; the BECPB for the two batteries first decreases and then increases with B , and there exists the optimal bandwidth corresponding to the minimum BECPB; the battery with IDC-based BUF corresponds to a larger BECPB. When γ and d are large, the BECPB for each type of battery is significantly higher than that for the ideal battery whose BUF is aways 1. For instance, when γ = 0.015 , d = 90 m and B = 10 kHz, the BECPB for IDC-based and MDC-based battery is nearly 60% amd 25% higher than that of the ideal battery, respectively.
On the Energy Efficiency of On-Off Keying Transmitters with Two Distinct Types of Batteries
Shen, Tingting; Wang, Tao; Sun, Yanzan; Wu, Yating; Jin, Yanliang
2018-01-01
As nodes in wireless sensor networks are usually powered by nonrenewable batteries, energy efficient design becomes critical. This paper considers a battery-powered transmitter using on-off keying (OOK) modulation and studies its energy efficiency in terms of the battery’s energy consumption for per bit transmission (BECPB). In particular, the transmitter may use one of two distinct types of batteries with battery utilization factor (BUF) depending on discharge current. The first has an instantaneous discharge current (IDC)-based BUF, while the second has a mean discharge current (MDC)-based BUF. For each type of battery, a closed-form BECPB expression is derived under a Rayleigh channel when a prescribed symbol error rate (SER) is guaranteed. Then theoretical analysis is made to study the impact of battery characteristic parameter γ, communication distance d and bandwidth B on the BECPB. Finally, the analysis is corroborated by numerical experimental results, which reveal that: the BECPB for each type of battery increases with γ and d; the BECPB for the two batteries first decreases and then increases with B, and there exists the optimal bandwidth corresponding to the minimum BECPB; the battery with IDC-based BUF corresponds to a larger BECPB. When γ and d are large, the BECPB for each type of battery is significantly higher than that for the ideal battery whose BUF is aways 1. For instance, when γ=0.015, d=90 m and B=10 kHz, the BECPB for IDC-based and MDC-based battery is nearly 60% amd 25% higher than that of the ideal battery, respectively. PMID:29690609
Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell
Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; ...
2015-03-04
The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less
Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water
NASA Astrophysics Data System (ADS)
Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan
2015-11-01
Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.
Teymurazyan, A; Pang, G
2012-03-01
Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.
The Technical Efficiency of Specialised Milk Farms: A Regional View
Špička, Jindřich; Smutka, Luboš
2014-01-01
The aim of the article is to evaluate production efficiency and its determinants of specialised dairy farming among the EU regions. In the most of European regions, there is a relatively high significance of small specialised farms including dairy farms. The DEAVRS method (data envelopment analysis with variable returns to scale) reveals efficient and inefficient regions including the scale efficiency. In the next step, the two-sample t-test determines differences of economic and structural indicators between efficient and inefficient regions. The research reveals that substitution of labour by capital/contract work explains the variability of the farm net value added per AWU (annual work unit) income indicator by more than 30%. The significant economic determinants of production efficiency in specialised dairy farming are farm size, herd size, crop output per hectare, productivity of energy, and capital (at α = 0.01). Specialised dairy farms in efficient regions have significantly higher farm net value added per AWU than inefficient regions. Agricultural enterprises in inefficient regions have a more extensive structure and produce more noncommodity output (public goods). Specialised dairy farms in efficient regions have a slightly higher milk yield, specific livestock costs of feed, bedding, and veterinary services per livestock unit. PMID:25050408
Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Bin, Zhengyang; Zhang, Deqiang; Duan, Lian
2016-02-17
Exciplex forming cohosts have been widely adopted in phosphorescent organic light-emitting diodes (PHOLEDs), achieving high efficiency with low roll-off and low driving voltage. However, the influence of the exciplex-forming hosts on the lifetimes of the devices, which is one of the essential characteristics, remains unclear. Here, we compare the influence of the bulk exciplex and interface exciplex on the performances of the devices, demonstrating highly efficient orange PHOLEDs with long lifetime at low dopant concentration by efficient Förster energy transfer from the interface exciplex. A bipolar host, (3'-(4,6-diphenyl-1,3,5-triazin-2-yl)-(1,1'-biphenyl)-3-yl)-9-carbazole (CzTrz), was adopted to combine with a donor molecule, tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA), to form exciplex. Devices with energy transfer from the interface exciplex achieve lifetime almost 2 orders of magnitude higher than the ones based on bulk exciplex as the host by avoiding the formation of the donor excited states. Moreover, a highest EQE of 27% was obtained at the dopant concentration as low as 3 wt % for a device with interface exciplex, which is favorable for reducing the cost of fabrication. We believe that our work may shed light on future development of ideal OLEDs with high efficiency, long-lifetime, low roll-off and low cost simultaneously.
Assessment of atmospheric moisture harvesting by direct cooling
NASA Astrophysics Data System (ADS)
Gido, Ben; Friedler, Eran; Broday, David M.
2016-12-01
The enormous amount of water vapor present in the atmosphere may serve as a potential water resource. An index is proposed for assessing the feasibility and energy requirements of atmospheric moisture harvesting by a direct cooling process. A climate-based analysis of different locations reveals the global potential of this process. We demonstrate that the Moisture Harvesting Index (MHI) can be used for assessing the energy requirements of atmospheric moisture harvesting. The efficiency of atmospheric moisture harvesting is highly weather and climate dependent, with the smallest estimated energy requirement found at the tropical regions of the Philippines (0.23 kW/L). Less favorable locations have much higher energy demands for the operation of an atmospheric moisture harvesting device. In such locations, using the MHI to select the optimal operation time periods (during the day and the year) can reduce the specific energy requirements of the process dramatically. Still, using current technology the energy requirement of atmospheric moisture harvesting by a direct air cooling process is significantly higher than of desalination by reverse osmosis.
Powertrain Materials: The Road to Higher Efficiencies
None
2018-01-16
Advanced powertrain materials are critical for automakers to meet new fuel economy standards. Researchers at the Department of Energyâs Oak Ridge National Laboratory are working with industry to develop new propulsion materials that offer improved performance at lower costs.
Carberry, Ciara A.; Kenny, David A.; Han, Sukkyan; McCabe, Matthew S.
2012-01-01
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered. PMID:22562991
Carberry, Ciara A; Kenny, David A; Han, Sukkyan; McCabe, Matthew S; Waters, Sinead M
2012-07-01
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.
Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newbold, Kenneth F.
2013-11-26
Led by James Madison University, Valley 25x?25 promotes using a diverse energy portfolio to achieve the goal of 25 percent renewable energy by 2025, including renewables like wind, biomass, solar, and geothermal. A primary emphasis is energy efficiency, which offers the best opportunities to decrease the use and impact of non-renewable energy sources. Endorsed by the national 25x?25 organization, Valley 25x?25 serves as an East Coast Demonstration Project, and as such, partners with regional businesses, local and state governments, institutions of higher education, and K-12 schools to explore how Valley resources can contribute to the development of innovative energy solutions.
Energy conservation in ice skating rinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, B.K.; McAvoy, T.J.
1980-01-01
An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors andmore » pumps off at night, and reducing ventilation.« less
Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie
2016-10-01
Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of Photoelectron Emission Using Vacuum Ultraviolet Ray Irradiation
NASA Astrophysics Data System (ADS)
Okamura, Shugo; Iwao, Toru; Yumoto, Motoshige; Miyake, Hiroaki; Nitta, Kumi
2009-01-01
Satellites have come to play many roles depending on their purpose, including communication, weather observation, astronomy observation, and space development. A satellite requires long life and high reliability in such a situation. However, at an altitude of several hundred kilometers, atomic oxygen (AO) is a destructive factor. With density of about 1015 atoms/m3, AO also has high reactivity. As the satellite collides with AO, surface materials of the satellite are degraded, engendering surface roughness and oxidation. Accordingly, it is necessary to monitor the surface conditions. In this study, photoemission characteristics of several materials, such as metals, glasses, and polymers are measured using a deuterium lamp and band pass filters. The threshold energy for photoemission and the quantum efficiency were evaluated from those measurements. Consequently, for the investigated materials the threshold energies for photoelectron emission were found to be 4.9-5.7 eV. The quantum efficiency of metals is about 100 times higher than that of other samples. The quantum efficiency of PS that includes a benzene ring is several times higher than that of either PP or PTFE, suggesting that deteriorated materials emit large amounts of photoelectrons.
NASA Astrophysics Data System (ADS)
Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian
2018-05-01
Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.
More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-02-01
Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less
Schach Von Wittenau, Alexis E.
2003-01-01
A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; Rosario, Ruben Del; Madavan, Nateri K.
2013-01-01
This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 percent relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030 to 2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.
2013-01-01
This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.
Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander
2011-01-01
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
NASA Astrophysics Data System (ADS)
Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce
2013-04-01
Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.
Wang, Lei; Wang, Yueqing; Wu, Mingguang; Wei, Zengxi; Cui, Chunyu; Mao, Minglei; Zhang, Jintao; Han, Xiaopeng; Liu, Quanhui; Ma, Jianmin
2018-05-01
Zinc-air batteries with high-density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD-CFs) are prepared and exhibited higher catalytic properties via the efficient 4e - transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn-air batteries using TD-CFs as air-cathode catalysts are constructed. When compared to batteries with Pt/C + RuO 2 and Vulcan XC-72 carbon black catalysts, the TD-CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin
2017-03-01
To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (g s ) and effective quantum efficiency of PSII (Φ PSII ) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (E x ) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Jiang, Weigang; Yu, Runnan; Liu, Zhiyang; Peng, Ruixiang; Mi, Dongbo; Hong, Ling; Wei, Qiang; Hou, Jianhui; Kuang, Yongbo; Ge, Ziyi
2018-01-01
A novel small-molecule acceptor, (2,2'-((5E,5'E)-5,5'-((5,5'-(4,4,9,9-tetrakis(5-hexylthiophen-2-yl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-(2-ethylhexyl)thiophene-5,2-diyl))bis(methanylylidene)) bis(3-hexyl-4-oxothiazolidine-5,2-diylidene))dimalononitrile (ITCN), end-capped with electron-deficient 2-(3-hexyl-4-oxothiazolidin-2-ylidene)malononitrile groups, is designed, synthesized, and used as the third component in fullerene-free ternary polymer solar cells (PSCs). The cascaded energy-level structure enabled by the newly designed acceptor is beneficial to the carrier transport and separation. Meanwhile, the three materials show a complementary absorption in the visible region, resulting in efficient light harvesting. Hence, the PBDB-T:ITCN:IT-M ternary PSCs possess a high short-circuit current density (J sc ) under an optimal weight ratio of donors and acceptors. Moreover, the open-circuit voltage (V oc ) of the ternary PSCs is enhanced with an increase of the third acceptor ITCN content, which is attributed to the higher lowest unoccupied molecular orbital energy level of ITCN than that of IT-M, thus exhibits a higher V oc in PBDB-T:ITCN binary system. Ultimately, the ternary PSCs achieve a power conversion efficiency of 12.16%, which is higher than the PBDB-T:ITM-based PSCs (10.89%) and PBDB-T:ITCN-based ones (2.21%). This work provides an effective strategy to improve the photovoltaic performance of PSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J
2015-02-01
Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing
2015-03-01
Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Chen, Xuefeng; Peng, Wei
The dielectric properties and electrical hysteresis behaviors of Pb{sub 0.97}La{sub 0.02}(Zr{sub 0.58}Sn{sub 0.335}Ti{sub 0.085})O{sub 3} antiferroelectric (AFE) ceramics were investigated in this work with an emphasis on energy storage properties. Three phase transition points can be detected as temperature increases. AFE and paraelectric phases are found to coexist from 100 °C to 170 °C. The room temperature recoverable energy density is 1.37 J/cm{sup 3} at 8.6 kV/mm. With increasing temperature (from 20 °C to 100 °C) and frequency (from 0.01 to 100 Hz) under 8.6 kV/mm, the variation of recoverable energy density was less than 15%, all higher than 1.2 J/cm{sup 3}. All the corresponding energy efficiencies were nomore » less than 75%. The high energy density, high energy efficiency, and their weak dependence on temperature and frequency during a wide scope indicate that these antiferroelectric ceramics are quite promising to be used for pulse power capacitors applications.« less
7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.255 Energy efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a...
High Efficiency Solar-based Catalytic Structure for CO 2 Reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menkara, Hisham
Throughout this project, we developed and optimized various photocatalyst structures for CO 2 reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO 2 reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solutionmore » containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO 2 into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).« less
NASA Astrophysics Data System (ADS)
Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo
2017-10-01
Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.
Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.
Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N
2015-11-11
Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.
CZT drift strip detectors for high energy astrophysics
NASA Astrophysics Data System (ADS)
Kuvvetli, I.; Budtz-Jørgensen, C.; Caroli, E.; Auricchio, N.
2010-12-01
Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions. We report on experimental investigations on the CZT drift detector developed DTU Space. It is operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this detector configuration. The CZT drift strip detector (10 mm×10 mm×2.5 mm) was characterized in both standard illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection efficiency and energy resolution are compared for both configurations . The PTF configuration provided a higher efficiency in agreement with calculations. The detector energy resolution was found to be the same (3 keV FWHM at 122 keV) in both in PPF and PTF . The depth sensing capabilities offered by drift strip detectors was investigated by illuminating the detector using a collimated photon beam of 57Co radiation in PTF configuration. The width (300μm FWHM at 122 keV) of the measured depth distributions was almost equal to the finite beam size. However, the data indicate that the best achievable depth resolution for the CZT drift detector is 90μm FWHM at 122 keV and that it is determined by the electronic noise from the setup.
Sandbakk, Øyvind; Hegge, Ann Magdalen; Ettema, Gertjan
2013-01-01
The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level, and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points [the Federation of International Skiing (FIS) approved scoring system for ski racing] where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r = −0.89 to 0.98 and P < 0.05 in all cases). Gross efficiency was higher at the steeper incline, both for men (17.1 ± 0.4 vs. 15.8 ± 0.5%, P < 0.05) and women (16.9 ± 0.5 vs. 15.7 ± 0.4%, P < 0.05), but without any gender differences being apparent. Significant correlations between gross efficiency and performance level were found for both inclines and genders (r = −0.65 to 0.81 and P < 0.05 in all cases). The current study demonstrated that cross-country skiers of both genders used less metabolic energy to perform the same amount of work at steeper inclines, and that the better ranked elite male and female skiers skied more efficiently. PMID:24155722
Sandbakk, Oyvind; Hegge, Ann Magdalen; Ettema, Gertjan
2013-01-01
The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level, and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points [the Federation of International Skiing (FIS) approved scoring system for ski racing] where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r = -0.89 to 0.98 and P < 0.05 in all cases). Gross efficiency was higher at the steeper incline, both for men (17.1 ± 0.4 vs. 15.8 ± 0.5%, P < 0.05) and women (16.9 ± 0.5 vs. 15.7 ± 0.4%, P < 0.05), but without any gender differences being apparent. Significant correlations between gross efficiency and performance level were found for both inclines and genders (r = -0.65 to 0.81 and P < 0.05 in all cases). The current study demonstrated that cross-country skiers of both genders used less metabolic energy to perform the same amount of work at steeper inclines, and that the better ranked elite male and female skiers skied more efficiently.
NASA Astrophysics Data System (ADS)
Frevert, C.; Bugge, F.; Knigge, S.; Ginolas, A.; Erbert, G.; Crump, P.
2016-03-01
Both high-energy-class laser facilities and commercial high-energy pulsed laser sources require reliable optical pumps with the highest pulse power and electro-optical efficiency. Although commercial quasi-continuous wave (QCW) diode laser bars reach output powers of 300…500 W further improvements are urgently sought to lower the cost per Watt, improve system performance and reduce overall system complexity. Diode laser bars operating at temperatures of around 200 K show significant advances in performance, and are particularly attractive in systems that use cryogenically cooled solid state lasers. We present the latest results on 940 nm, passively cooled, 4 mm long QCW diode bars which operate under pulse conditions of 1.2 ms, 10 Hz at an output power of 1 kW with efficiency of 70% at 203 K: a two-fold increase in power compared to 300 K, without compromising efficiency. We discuss how custom low-temperature design of the vertical layers can mitigate the limiting factors such as series resistance while sustaining high power levels. We then focus on the remaining obstacles to higher efficiency and power, and use a detailed study of multiple vertical structures to demonstrate that the properties of the active region are a major performance limit. Specifically, one key limit to series resistance is transport in the layers around the active region and the differential internal efficiency is closely correlated to the threshold current. Tailoring the barriers around the active region and reducing transparency current density thus promise bars with increased performance at temperatures of 200 K as well as 300 K.
Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems
NASA Astrophysics Data System (ADS)
Francesconi, Javier A.; Mussati, Miguel C.; Mato, Roberto O.; Aguirre, Pio A.
The aim of this work is to investigate the energy integration and to determine the maximum efficiency of an ethanol processor for hydrogen production and fuel cell operation. Ethanol, which can be produced from renewable feedstocks or agriculture residues, is an attractive option as feed to a fuel processor. The fuel processor investigated is based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying simulation techniques and using thermodynamic models the performance of the complete system has been evaluated for a variety of operating conditions and possible reforming reactions pathways. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions (Δ T min). The main operating variables were determined for those conditions. The endothermic nature of the reformer has a significant effect on the overall system efficiency. The highest energy consumption is demanded by the reforming reactor, the evaporator and re-heater operations. To obtain an efficient integration, the heat exchanged between the reformer outgoing streams of higher thermal level (reforming and combustion gases) and the feed stream should be maximized. Another process variable that affects the process efficiency is the water-to-fuel ratio fed to the reformer. Large amounts of water involve large heat exchangers and the associated heat losses. A net electric efficiency around 35% was calculated based on the ethanol HHV. The responsibilities for the remaining 65% are: dissipation as heat in the PEMFC cooling system (38%), energy in the flue gases (10%) and irreversibilities in compression and expansion of gases. In addition, it has been possible to determine the self-sufficient limit conditions, and to analyze the effect on the net efficiency of the input temperatures of the clean-up system reactors, combustion preheating, expander unit and crude ethanol as fuel.
Testing mechanistic models of growth in insects.
Maino, James L; Kearney, Michael R
2015-11-22
Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).
Electrofuels: A New Paradigm for Renewable Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrado, Robert J.; Haynes, Chad A.; Haendler, Brenda E.
2013-01-01
Biofuels are by now a well-established component of the liquid fuels market and will continue to grow in importance for both economic and environmental reasons. To date, all commercial approaches to biofuels involve photosynthetic capture of solar radiation and conversion to reduced carbon; however, the low efficiency inherent to photosynthetic systems presents significant challenges to scaling. In 2009, the US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) created the Electrofuels program to explore the potential of nonphotosynthetic autotrophic organisms for the conversion of durable forms of energy to energy-dense, infrastructure-compatible liquid fuels. The Electrofuels approach expands the boundariesmore » of traditional biofuels and could offer dramatically higher conversion efficiencies while providing significant reductions in requirements for both arable land and water relative to photosynthetic approaches. The projects funded under the Electrofuels program tap the enormous and largely unexplored diversity of the natural world, and may offer routes to advanced biofuels that are significantly more efficient, scalable and feedstock-flexible than routes based on photosynthesis. Here, we describe the rationale for the creation of the Electrofuels program, and outline the challenges and opportunities afforded by chemolithoautotrophic approaches to liquid fuels.« less
NASA Astrophysics Data System (ADS)
Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.
2018-01-01
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.
Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan
2015-04-01
Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping
NASA Astrophysics Data System (ADS)
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.
2017-05-01
Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.
Maturation of metabolic connectivity of the adolescent rat brain
Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo
2015-01-01
Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency. DOI: http://dx.doi.org/10.7554/eLife.11571.001 PMID:26613413
Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.
Zhou, Rifeng; Zhou, Yaling
2014-01-01
The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrow, Ken; Hedman, Bruce
Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and themore » tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of facilities involved, and the geographic distribution. (2) Data Center Energy Use Trends--a discussion of energy use and expected energy growth and the typical energy consumption and uses in data centers. (3) CHP Applicability--Potential configurations, CHP case studies, applicable equipment, heat recovery opportunities (cooling), cost and performance benchmarks, and power reliability benefits (4) CHP Drivers and Hurdles--evaluation of user benefits, social benefits, market structural issues and attitudes toward CHP, and regulatory hurdles. (5) CHP Paths to Market--Discussion of technical needs, education, strategic partnerships needed to promote CHP in the IT community.« less
Macrae, J C; Smith, J S; Dewey, P J; Brewer, A C; Brown, D S; Walker, A
1985-07-01
Three experiments were conducted with sheep given spring-harvested dried grass (SHG) and autumn-harvested dried grass (AHG). The first was a calorimetric trial to determine the metabolizable energy (ME) content of each grass and the efficiency with which sheep utilize their extra ME intakes above the maintenance level of intake. The second examined the relative amounts of extra non-ammonia-nitrogen (NAN) and individual amino acids absorbed from the small intestine per unit extra ME intake as the level of feeding was raised from energy equilibrium (M) to approximately 1.5 M. The third was a further calorimetric trial to investigate the effect of an abomasal infusion of 30 g casein/d on the efficiency of utilization of AHG. The ME content of the SHG (11.8 MJ/kg dry matter (DM] was higher than that of AHG (10.0 MJ/kg DM). The efficiency of utilization of ME for productive purposes (i.e. above the M level of intake; kf) was higher when given SHG (kf 0.54 between M and 2 M) than when given AHG (kf 0.43 between M and 2 M). As the level of intake of each grass was raised from M to 1.5 M there was a greater increment in the amounts of NAN (P less than 0.001) and the total amino acid (P less than 0.05) absorbed from the small intestines when sheep were given the SHG (NAN absorption, SHG 5.4 g/d, AHG 1.5 g/d, SED 0.54; total amino acid absorption SHG 31.5 g/d, AHG 14.3 g/d, SED 5.24). Infusion of 30 g casein/d per abomasum of sheep given AHG at M and 1.5 M levels of intake increased (P less than 0.05) the efficiency of utilization of the herbage from kf 0.45 to kf 0.57. Consideration is given to the possibility that the higher efficiency of utilization of ME in sheep given SHG may be related to the amounts of extra glucogenic amino acids absorbed from the small intestine which provide extra reducing equivalents (NADPH) and glycerol phosphate necessary for the conversion of acetate into fatty acids.
Vegter, Riemer J K; Hartog, Johanneke; de Groot, Sonja; Lamoth, Claudine J; Bekker, Michel J; van der Scheer, Jan W; van der Woude, Lucas H V; Veeger, Dirkjan H E J
2015-03-10
To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an unchanged stable function of the trunk and could be due to the early learning phase where participants still have to learn to effectively use the full movement amplitude available within the wheelchair-user combination. Apparently whole body energy efficiency has priority over mechanical loading in the early stages of learning to propel a handrim wheelchair.
Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.
2013-01-26
This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goalmore » of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.« less
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX; Defiana, Ima; Setyawan, Wahyu
2018-03-01
Many previous types of research have discussed the permeability of site cluster. Because of interaction and interconnected attribute, it will be better that there is its translation into lower context such as building and interior scale. In this paper, the sustainability design performance of both similar designs of courtyard and atrium are investigated continuing the recommendation of site space permeability. By researching related literature review and study through Ecotect Analysis and Ansys Fluent simulations, the pattern transformation and optimum courtyard and atrium design could comply the requirement. The results highlighted that the air movement from the site could be translated at the minimum of 50% higher to the building and indoor environment. Thus, it has potency for energy efficiency when grid, loop, and cul-de-sac site clusters, with 25% of ground coverage, have connectivity with building courtyard compared to the atrium. Energy saving is higher when using low thermal transmittance of transparent material and its lower area percentages for the courtyard walls. In general, it was more energy efficient option as part of a low rise building, while the courtyard building performed better with increasing irregular building height more than 90% of the difference.
Xu, Ting-Ting; Bai, Zhong-Zhong; Wang, Li-Juan; He, Bing-Fang
2010-01-01
The low-energy nitrogen ion beam implantation technique was used in the breeding of mutant D(-)-lactic-acid-producing strains. The wild strain Sporolactobacillus sp. DX12 was mutated by an N(+) ion beam with energy of 10keV and doses ranging from 0.4 x 10(15) to 6.60 x 10(15) ions/cm(2). Combined with an efficient screening method, an efficient mutant Y2-8 was selected after two times N(+) ion beam implantation. By using the mutant Y2-8, 121.6g/l of D-lactic acid was produced with the molar yields of 162.1% to the glucose. The yield of D-lactic acid by strain Y2-8 was 198.8% higher than the wild strain. Determination of anaerobic metabolism by Biolog MT2 was used to analyze the activities of the concerned enzymes in the lactic acid metabolic pathway. The results showed that the activities of the key enzymes responded on the substrates such as 6-phosphofructokinase, pyruvate kinase, and D-lactate dehydrogenase were considerably higher in the mutants than the wild strain. These might be affected by ion beam implantation.
Influence of electrical and hybrid heating on bread quality during baking.
Chhanwal, N; Ezhilarasi, P N; Indrani, D; Anandharamakrishnan, C
2015-07-01
Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with hybrid heating mode (H-1 and H-2, hybrid oven) on the quality characteristics of bread as against conventional heating mode (C-1, pilot scale oven; C-2, hybrid oven) was studied. The results showed that breads baked in hybrid heating mode (H-2) had higher moisture content (28.87%), higher volume (670 cm(3)), lower crumb firmness value (374.6 g), and overall quality score (67.0) comparable to conventional baking process (68.5). Moreover, bread baked in hybrid heating mode showed 28% reduction in baking time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu; Phanish, Deepa
We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-ordermore » finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.« less
Energy-saving quality road lighting with colloidal quantum dot nanophosphors
NASA Astrophysics Data System (ADS)
Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan
2014-12-01
Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.
Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert A. McCoy and John G. Douglass
2014-02-01
This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.
Designing overall stoichiometric conversions and intervening metabolic reactions
Chowdhury, Anupam; Maranas, Costas D.
2015-11-04
Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e.,more » minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C 2+ metabolites with higher carbon efficiency.« less
Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.
Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis
2013-09-15
This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less
COMPTEL neutron response at 17 MeV
NASA Technical Reports Server (NTRS)
Oneill, Terrence J.; Ait-Ouamer, Farid; Morris, Joann; Tumer, O. Tumay; White, R. Stephen; Zych, Allen D.
1992-01-01
The Compton imaging telescope (COMPTEL) instrument of the Gamma Ray Observatory was exposed to 17 MeV d,t neutrons prior to launch. These data were analyzed and compared with Monte Carlo calculations using the MCNP(LANL) code. Energy and angular resolutions are compared and absolute efficiencies are calculated at 0 and 30 degrees incident angle. The COMPTEL neutron responses at 17 MeV and higher energies are needed to understand solar flare neutron data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Said, A. H.; Sinn, H.; Divan, R.
2011-05-01
In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao
2017-10-01
A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.
Bayiz, Yagiz; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo
2018-05-08
In this work, a multi-objective optimization framework is developed for optimizing low Reynolds number ([Formula: see text]) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying [Formula: see text] and Rossby number ([Formula: see text], or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing the lift coefficient and minimizing the power coefficient in dimensionless space, explicitly revealing the trade-off between lift generation and power consumption. The results indicate that revolving wings are more efficient when the required average lift coefficient [Formula: see text] is low (<1 for [Formula: see text] and <1.6 for [Formula: see text]), while flapping wings are more efficient in achieving higher [Formula: see text]. With the dimensionless power loading as the single-objective performance measure to be maximized, rotary flight is more efficient than flapping wings for [Formula: see text] regardless of the amount of energy storage assumed in the flapping wing actuation mechanism, while flapping flight is more efficient for [Formula: see text]. It is observed that wings with low [Formula: see text] perform better when higher [Formula: see text] is needed, whereas higher [Formula: see text] cases are more efficient at [Formula: see text] regions. However, for the selected geometry and [Formula: see text], the efficiency is weakly dependent on [Formula: see text] when the dimensionless power loading is maximized.
Influence of Nano-Fluid and Receiver Modification in Solar Parabolic Trough Collector Performance
NASA Astrophysics Data System (ADS)
Dharani Kumar, M.; Yuvaraj, G.; Balaji, D.; Pravinraj, R.; shanmugasundaram, Prabhu
2018-02-01
Utilization of natural renewal sources in India is very high over the past decades. Solar power is a prime source of energy available plenty in the world. In this work solar energy is modified into thermal energy by using copper absorber tube with fins. Due to low heat transfer coefficient results leading to higher thermal losses and lower thermal efficiency. In order to increase the heat transfer coefficient copper receiver tube with fins is used and as well as solid has higher thermal conductivity compare to fluid (Tio2) nano fluid is used to improve the heat transfer rate. The analyses have been carried out and take the account of parameters such as solar radiation with time variation, mass flow rate of water, temperatures.
Characteristics and Energy Use of Volume Servers in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, H.; Shehabi, A.; Ganeshalingam, M.
Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less
Thermophotonics for ultra-high efficiency visible LEDs
NASA Astrophysics Data System (ADS)
Ram, Rajeev J.
2017-02-01
The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.
NASA Astrophysics Data System (ADS)
Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.; Massey, Sara C.; Ting, Po-Chieh; Martin, Elizabeth C.; Hunter, C. Neil; Engel, Gregory S.
2017-10-01
In photosynthetic organisms, the pigment-protein complexes that comprise the light-harvesting antenna exhibit complex electronic structures and ultrafast dynamics due to the coupling among the chromophores. Here, we present absorptive two-dimensional (2D) electronic spectra from living cultures of the purple bacterium, Rhodobacter sphaeroides, acquired using gradient assisted photon echo spectroscopy. Diagonal slices through the 2D lineshape of the LH1 stimulated emission/ground state bleach feature reveal a resolvable higher energy population within the B875 manifold. The waiting time evolution of diagonal, horizontal, and vertical slices through the 2D lineshape shows a sub-100 fs intra-complex relaxation as this higher energy population red shifts. The absorption (855 nm) of this higher lying sub-population of B875 before it has red shifted optimizes spectral overlap between the LH1 B875 band and the B850 band of LH2. Access to an energetically broad distribution of excitonic states within B875 offers a mechanism for efficient energy transfer from LH2 to LH1 during photosynthesis while limiting back transfer. Two-dimensional lineshapes reveal a rapid decay in the ground-state bleach/stimulated emission of B875. This signal, identified as a decrease in the dipole strength of a strong transition in LH1 on the red side of the B875 band, is assigned to the rapid localization of an initially delocalized exciton state, a dephasing process that frustrates back transfer from LH1 to LH2.
Sleep patterns and sugar-sweetened beverage consumption among children from around the world.
Chaput, Jean-Philippe; Tremblay, Mark S; Katzmarzyk, Peter T; Fogelholm, Mikael; Hu, Gang; Maher, Carol; Maia, Jose; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; Sampasa-Kanyinga, Hugues
2018-04-23
To examine the relationships between objectively measured sleep patterns (sleep duration, sleep efficiency and bedtime) and sugar-sweetened beverage (SSB) consumption (regular soft drinks, energy drinks, sports drinks and fruit juice) among children from all inhabited continents of the world. Multinational, cross-sectional study. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Children (n 5873) 9-11 years of age. Sleep duration was 12 min per night shorter in children who reported consuming regular soft drinks 'at least once a day' compared with those who reported consuming 'never' or 'less than once a week'. Children were more likely to sleep the recommended 9-11 h/night if they reported lower regular soft drink consumption or higher sports drinks consumption. Children who reported consuming energy drinks 'once a week or more' reported a 25-min earlier bedtime than those who reported never consuming energy drinks. Children who reported consuming sports drinks '2-4 d a week or more' also reported a 25-min earlier bedtime compared with those who reported never consuming sports drinks. The associations between sleep efficiency and SSB consumption were not significant. Similar associations between sleep patterns and SSB consumption were observed across all twelve study sites. Shorter sleep duration was associated with higher intake of regular soft drinks, while earlier bedtimes were associated with lower intake of regular soft drinks and higher intake of energy drinks and sports drinks in this international study of children. Future work is needed to establish causality and to investigate underlying mechanisms.
Hasegawa, Shinji; Yamamoto, Kazuhiro; Sakata, Yasushi; Takeda, Yasuharu; Kajimoto, Katsufumi; Kanai, Yasukazu; Hori, Masatsugu; Hatazawa, Jun
2008-06-01
Diastolic heart failure (DHF) has become a high social burden, and its major underlying cardiovascular disease is hypertensive heart disease. However, the pathogenesis of DHF remains to be clarified. This study aimed to assess the effects of cardiac energy efficiency in DHF patients. (11)C-Acetate positron emission tomography and echocardiography were conducted in 11 DHF Japanese patients and 10 normal volunteers. The myocardial clearance rate of radiolabeled (11)C-acetate was measured to calculate the work metabolic index (WMI), an index of cardiac efficiency. The ratio of peak mitral E wave velocity to peak early diastolic septal myocardial velocity (E/e') was calculated to assess left ventricular (LV) filling pressure. The LV mass index was greater and the mean age was higher in the DHF patients than in the normal volunteers. There was no difference in WMI between the two groups. However, WMI varied widely among the DHF patients and was inversely correlated with E/e' (r=-0.699, p=0.017). In contrast, there was no correlation in the normal volunteers. In conclusion, the inefficiency of energy utilization is not a primary cause of diastolic dysfunction or DHF, and cardiac efficiency may not affect diastolic function in normal hearts. However, the energy-wasting state may induce the elevation of LV filling pressure in DHF patients, which was considered to principally result from the progressive diastolic dysfunction.
Energy Efficiency Maximization of Practical Wireless Communication Systems
NASA Astrophysics Data System (ADS)
Eraslan, Eren
Energy consumption of the modern wireless communication systems is rapidly growing due to the ever-increasing data demand and the advanced solutions employed in order to address this demand, such as multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) techniques. These MIMO systems are power hungry, however, they are capable of changing the transmission parameters, such as number of spatial streams, number of transmitter/receiver antennas, modulation, code rate, and transmit power. They can thus choose the best mode out of possibly thousands of modes in order to optimize an objective function. This problem is referred to as the link adaptation problem. In this work, we focus on the link adaptation for energy efficiency maximization problem, which is defined as choosing the optimal transmission mode to maximize the number of successfully transmitted bits per unit energy consumed by the link. We model the energy consumption and throughput performances of a MIMO-OFDM link and develop a practical link adaptation protocol, which senses the channel conditions and changes its transmission mode in real-time. It turns out that the brute force search, which is usually assumed in previous works, is prohibitively complex, especially when there are large numbers of transmit power levels to choose from. We analyze the relationship between the energy efficiency and transmit power, and prove that energy efficiency of a link is a single-peaked quasiconcave function of transmit power. This leads us to develop a low-complexity algorithm that finds a near-optimal transmit power and take this dimension out of the search space. We further prune the search space by analyzing the singular value decomposition of the channel and excluding the modes that use higher number of spatial streams than the channel can support. These algorithms and our novel formulations provide simpler computations and limit the search space into a much smaller set; hence reducing the computational complexity by orders of magnitude without sacrificing the performance. The result of this work is a highly practical link adaptation protocol for maximizing the energy efficiency of modern wireless communication systems. Simulation results show orders of magnitude gain in the energy efficiency of the link. We also implemented the link adaptation protocol on real-time MIMO-OFDM radios and we report on the experimental results. To the best of our knowledge, this is the first reported testbed that is capable of performing energy-efficient fast link adaptation using PHY layer information.
Electroluminescent Properties in Organic Light-Emitting Diode Doped with Two Guest Dyes
NASA Astrophysics Data System (ADS)
Mori, Tatsuo; Kim, Hyeong-Gweon; Mizutani, Teruyoshi; Lee, Duck-Chool
2001-09-01
An organic light-emitting diode (OLED) with a squarylium dye-doped aluminium quinoline (Alq3) emission layer prepared by vapor deposition method has a pure red emission. However, since its luminance and electroluminescence (EL) efficiency is poor, the authors attended to improve the EL efficiency by doping a photosensitizer dye (a styryl dye, DCM) in an emission layer. The EL efficiency and luminance of DCM- and Sq-doped OLEDs are 2-3 times higher than those of only Sq-doped OLEDs. It was found that the excited energy is transferred from Alq3 to Sq through DCM.
From natural to artificial photosynthesis.
Barber, James; Tran, Phong D
2013-04-06
Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO(2)) emissions demands that stabilizing the atmospheric CO(2) levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an 'artificial leaf' able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural photosynthesis, particularly the water-splitting reaction of photosystem II and the hydrogen-generating reaction of hydrogenases. We then follow on to describe how these two reactions are being mimicked in physico-chemical-based catalytic or electrocatalytic systems with the challenge of creating a large-scale robust and efficient artificial leaf technology.
NASA Technical Reports Server (NTRS)
Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.
2013-01-01
The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results
Stress drop with constant, scale independent seismic efficiency and overshoot
Beeler, N.M.
2001-01-01
To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao
2017-02-01
A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.
Global microbialization of coral reefs.
Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest
2016-04-25
Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.