Understanding the Development of Mathematical Work in the Context of the Classroom
ERIC Educational Resources Information Center
Kuzniak, Alain; Nechache, Assia; Drouhard, J. P.
2016-01-01
According to our approach to mathematics education, the optimal aim of the teaching of mathematics is to assist students in achieving efficient mathematical work. But, what does efficient exactly mean in that case? And how can teachers reach this objective? The model of Mathematical Working Spaces with its three dimensions--semiotic, instrumental,…
10 CFR 431.17 - Determination of efficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... method or methods used; the mathematical model, the engineering or statistical analysis, computer... accordance with § 431.16 of this subpart, or by application of an alternative efficiency determination method... must be: (i) Derived from a mathematical model that represents the mechanical and electrical...
10 CFR 431.197 - Manufacturer's determination of efficiency for distribution transformers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... methods used; the mathematical model, the engineering or statistical analysis, computer simulation or... (b)(3) of this section, or by application of an alternative efficiency determination method (AEDM... section only if: (i) The AEDM has been derived from a mathematical model that represents the electrical...
Van Houdenhoven, Mark; van Oostrum, Jeroen M; Hans, Erwin W; Wullink, Gerhard; Kazemier, Geert
2007-09-01
An operating room (OR) department has adopted an efficient business model and subsequently investigated how efficiency could be further improved. The aim of this study is to show the efficiency improvement of lowering organizational barriers and applying advanced mathematical techniques. We applied advanced mathematical algorithms in combination with scenarios that model relaxation of various organizational barriers using prospectively collected data. The setting is the main inpatient OR department of a university hospital, which sets its surgical case schedules 2 wk in advance using a block planning method. The main outcome measures are the number of freed OR blocks and OR utilization. Lowering organizational barriers and applying mathematical algorithms can yield a 4.5% point increase in OR utilization (95% confidence interval 4.0%-5.0%). This is obtained by reducing the total required OR time. Efficient OR departments can further improve their efficiency. The paper shows that a radical cultural change that comprises the use of mathematical algorithms and lowering organizational barriers improves OR utilization.
The use of mathematical models in teaching wastewater treatment engineering.
Morgenroth, E; Arvin, E; Vanrolleghem, P
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.
Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina
2017-02-01
Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tan, Y M; Flynn, M R
2000-10-01
The transfer efficiency of a spray-painting gun is defined as the amount of coating applied to the workpiece divided by the amount sprayed. Characterizing this transfer process allows for accurate estimation of the overspray generation rate, which is important for determining a spray painter's exposure to airborne contaminants. This study presents an experimental evaluation of a mathematical model for predicting the transfer efficiency of a high volume-low pressure spray gun. The effects of gun-to-surface distance and nozzle pressure on the agreement between the transfer efficiency measurement and prediction were examined. Wind tunnel studies and non-volatile vacuum pump oil in place of commercial paint were used to determine transfer efficiency at nine gun-to-surface distances and four nozzle pressure levels. The mathematical model successfully predicts transfer efficiency within the uncertainty limits. The least squares regression between measured and predicted transfer efficiency has a slope of 0.83 and an intercept of 0.12 (R2 = 0.98). Two correction factors were determined to improve the mathematical model. At higher nozzle pressure settings, 6.5 psig and 5.5 psig, the correction factor is a function of both gun-to-surface distance and nozzle pressure level. At lower nozzle pressures, 4 psig and 2.75 psig, gun-to-surface distance slightly influences the correction factor, while nozzle pressure has no discernible effect.
Mathematical model for prediction of efficiency indicators of educational activity in high school
NASA Astrophysics Data System (ADS)
Tikhonova, O. M.; Kushnikov, V. A.; Fominykh, D. S.; Rezchikov, A. F.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.
2018-05-01
The quality of high school is a current problem all over the world. The paper presents the system dedicated to predicting the accreditation indicators of technical universities based on J. Forrester mechanism of system dynamics. The mathematical model is developed for prediction of efficiency indicators of the educational activity and is based on the apparatus of nonlinear differential equations.
NASA Astrophysics Data System (ADS)
Gebrin-Baydi, L. V.; Zheleznyak, O. O.; Tereshchenko, A. O.
2016-12-01
The article discusses some of the characteristics of Transcarpathian region soils current conditions. For evaluation of the efficiency of agricultural land we propose a nonlinear mathematical model of soil fertility depending on the economic costs on growing crops. Efficiency of agricultural land use in Transcarpathian region of Ukraine in three landscape zones by traditional for them agricultural crops is assessed.
A one-model approach based on relaxed combinations of inputs for evaluating input congestion in DEA
NASA Astrophysics Data System (ADS)
Khodabakhshi, Mohammad
2009-08-01
This paper provides a one-model approach of input congestion based on input relaxation model developed in data envelopment analysis (e.g. [G.R. Jahanshahloo, M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion -- Considering textile industry of China, Applied Mathematics and Computation (1) (2004) 263-273; G.R. Jahanshahloo, M. Khodabakhshi, Determining assurance interval for non-Archimedean ele improving outputs model in DEA, Applied Mathematics and Computation 151 (2) (2004) 501-506; M. Khodabakhshi, A super-efficiency model based on improved outputs in data envelopment analysis, Applied Mathematics and Computation 184 (2) (2007) 695-703; M. Khodabakhshi, M. Asgharian, An input relaxation measure of efficiency in stochastic data analysis, Applied Mathematical Modelling 33 (2009) 2010-2023]. This approach reduces solving three problems with the two-model approach introduced in the first of the above-mentioned reference to two problems which is certainly important from computational point of view. The model is applied to a set of data extracted from ISI database to estimate input congestion of 12 Canadian business schools.
Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector
NASA Astrophysics Data System (ADS)
Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.
2017-07-01
The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.
NASA Astrophysics Data System (ADS)
Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.
2018-05-01
The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.
Developing the Mathematics Learning Management Model for Improving Creative Thinking in Thailand
ERIC Educational Resources Information Center
Sriwongchai, Arunee; Jantharajit, Nirat; Chookhampaeng, Sumalee
2015-01-01
The study purposes were: 1) To study current states and problems of relevant secondary students in developing mathematics learning management model for improving creative thinking, 2) To evaluate the effectiveness of model about: a) efficiency of learning process, b) comparisons of pretest and posttest on creative thinking and achievement of…
NASA Astrophysics Data System (ADS)
Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani
2017-05-01
The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.
Decision Support Tool for Deep Energy Efficiency Retrofits in DoD Installations
2014-01-01
representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 2. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical...models and their Monte Carlo estimates. Mathematics and computers in simulation, 55, 271–280. 3. Sobol , I. and Kucherenko, S., 2009. Derivative based...representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 16. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical models and
1990-07-31
examples on their use is available with the PASS User Documentation Manual. 2 The data structure of PASS requires a three- lvel organizational...files, and missing control variables. A specific problem noted involved the absence of 8087 mathematical co-processor on the target IBM-XT 21 machine...System, required an operational understanding of the advanced mathematical technique used in the model. Problems with the original release of the PASS
Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.
NASA Astrophysics Data System (ADS)
Velichkin, Vladimir A.; Zavyalov, Vladimir A.
2018-03-01
This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.
The aim of the model was to forecast the groundwater mercury pollution distribution aureole and to discuss the mathematical simulations of the estimated quantity of mercury entering the river Irtysh and the aquifer wells in the village of Pavlodarskoe. During the years of 1975-1...
Numerical bifurcation analysis of immunological models with time delays
NASA Astrophysics Data System (ADS)
Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady
2005-12-01
In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plechac, Petr
2016-03-01
The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.
NASA Astrophysics Data System (ADS)
Seaton, Katherine A.
2013-10-01
This article presents an informed reflection on the evolution of teacher-to-learner feedback provided on written assignments in first-year university mathematics subjects. The feedback provided addresses not only mathematical accuracy and skills, but also the development of graduate attributes, such as discipline-appropriate written communication. Effective and efficient practices that have been collectively refined and enhanced, for more than a decade, are described and examined. This model for formative assessment in mathematics subjects is critiqued in the light of the scholarly literature on feedback and assessment.
Comparison of Intelligent Systems in Detecting a Child's Mathematical Gift
ERIC Educational Resources Information Center
Pavlekovic, Margita; Zekic-Susac, Marijana; Djurdjevic, Ivana
2009-01-01
This paper compares the efficiency of two intelligent methods: expert systems and neural networks, in detecting children's mathematical gift at the fourth grade of elementary school. The input space for the expert system and the neural network model consisted of 60 variables describing five basic components of a child's mathematical gift…
Mathematical models for optimization of the centrifugal stage of a refrigerating compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzhdin, A.S.
1987-09-01
The authors describe a general approach to the creating of mathematical models of energy and head losses in the flow part of the centrifugal compressor. The mathematical model of the pressure head and efficiency of a two-section stage proposed in this paper is meant for determining its characteristics for the assigned geometric dimensions and for optimizing by variance calculations. Characteristic points on the plot of velocity distribution over the margin of the vanes of the impeller and the diffuser of the centrifugal stage with a combined diffuser are presented. To assess the reliability of the mathematical model the authors comparedmore » some calculated data with the experimental ones.« less
Konur, Dinçer; Golias, Mihalis M; Darks, Brandon
2013-03-01
State Departments of Transportation (S-DOT's) periodically allocate budget for safety upgrades at railroad-highway crossings. Efficient resource allocation is crucial for reducing accidents at railroad-highway crossings and increasing railroad as well as highway transportation safety. While a specific method is not restricted to S-DOT's, sorting type of procedures are recommended by the Federal Railroad Administration (FRA), United States Department of Transportation for the resource allocation problem. In this study, a generic mathematical model is proposed for the resource allocation problem for railroad-highway crossing safety upgrades. The proposed approach is compared to sorting based methods for safety upgrades of public at-grade railroad-highway crossings in Tennessee. The comparison shows that the proposed mathematical modeling approach is more efficient than sorting methods in reducing accidents and severity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mathematical modelling of risk reduction in reinsurance
NASA Astrophysics Data System (ADS)
Balashov, R. B.; Kryanev, A. V.; Sliva, D. E.
2017-01-01
The paper presents a mathematical model of efficient portfolio formation in the reinsurance markets. The presented approach provides the optimal ratio between the expected value of return and the risk of yield values below a certain level. The uncertainty in the return values is conditioned by use of expert evaluations and preliminary calculations, which result in expected return values and the corresponding risk levels. The proposed method allows for implementation of computationally simple schemes and algorithms for numerical calculation of the numerical structure of the efficient portfolios of reinsurance contracts of a given insurance company.
Modeling Fuel Efficiency: MPG or GPHM?
ERIC Educational Resources Information Center
Bartkovich, Kevin G.
2013-01-01
The standard for measuring fuel efficiency in the U.S. has been miles per gallon (mpg). However, the Environmental Protection Agency's (EPA) switch in rating fuel efficiency from miles per gallon to gallons per hundred miles with the 2013 model-year cars leads to interesting and relevant mathematics with real-world connections. By modeling…
Current advancements and challenges in soil-root interactions modelling
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry
2015-04-01
Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.
Current Advancements and Challenges in Soil-Root Interactions Modelling
NASA Astrophysics Data System (ADS)
Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.
2014-12-01
Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.
NASA Astrophysics Data System (ADS)
Ghafuri, Mohazabeh; Golfar, Bahareh; Nosrati, Mohsen; Hoseinkhani, Saman
2014-12-01
The process of ATP production is one of the most vital processes in living cells which happens with a high efficiency. Thermodynamic evaluation of this process and the factors involved in oxidative phosphorylation can provide a valuable guide for increasing the energy production efficiency in research and industry. Although energy transduction has been studied qualitatively in several researches, there are only few brief reviews based on mathematical models on this subject. In our previous work, we suggested a mathematical model for ATP production based on non-equilibrium thermodynamic principles. In the present study, based on the new discoveries on the respiratory chain of animal mitochondria, Golfar's model has been used to generate improved results for the efficiency of oxidative phosphorylation and the rate of energy loss. The results calculated from the modified coefficients for the proton pumps of the respiratory chain enzymes are closer to the experimental results and validate the model.
Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model
NASA Astrophysics Data System (ADS)
Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.
2017-12-01
Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.
A Gompertzian model with random effects to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati
2015-05-15
In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
Gompertzian stochastic model with delay effect to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution
ERIC Educational Resources Information Center
Subramanian, Venkat R.
2006-01-01
High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…
Mathematical supply-chain modelling: Product analysis of cost and time
NASA Astrophysics Data System (ADS)
Easters, D. J.
2014-03-01
Establishing a mathematical supply-chain model is a proposition that has received attention due to its inherent benefits of evolving global supply-chain efficiencies. This paper discusses the prevailing relationships found within apparel supply-chain environments, and contemplates the complex issues indicated for constituting a mathematical model. Principal results identified within the data suggest, that the multifarious nature of global supply-chain activities require a degree of simplification in order to fully dilate the necessary factors which affect, each sub-section of the chain. Subsequently, the research findings allowed the division of supply-chain components into sub-sections, which amassed a coherent method of product development activity. Concurrently, the supply-chain model was found to allow systematic mathematical formulae analysis, of cost and time, within the multiple contexts of each subsection encountered. The paper indicates the supply-chain model structure, the mathematics, and considers how product analysis of cost and time can improve the comprehension of product lifecycle management.
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
Nieves-González, Aniel; Clausen, Chris; Marcano, Mariano; Layton, Anita T; Layton, Harold E; Moore, Leon C
2013-03-15
Thick ascending limb (TAL) cells are capable of reducing tubular fluid Na(+) concentration to as low as ~25 mM, and yet they are thought to transport Na(+) efficiently owing to passive paracellular Na(+) absorption. Transport efficiency in the TAL is of particular importance in the outer medulla where O(2) availability is limited by low blood flow. We used a mathematical model of a TAL cell to estimate the efficiency of Na(+) transport and to examine how tubular dilution and cell volume regulation influence transport efficiency. The TAL cell model represents 13 major solutes and the associated transporters and channels; model equations are based on mass conservation and electroneutrality constraints. We analyzed TAL transport in cells with conditions relevant to the inner stripe of the outer medulla, the cortico-medullary junction, and the distal cortical TAL. At each location Na(+) transport efficiency was computed as functions of changes in luminal NaCl concentration ([NaCl]), [K(+)], [NH(4)(+)], junctional Na(+) permeability, and apical K(+) permeability. Na(+) transport efficiency was calculated as the ratio of total net Na(+) transport to transcellular Na(+) transport. Transport efficiency is predicted to be highest at the cortico-medullary boundary where the transepithelial Na(+) gradient is the smallest. Transport efficiency is lowest in the cortex where luminal [NaCl] approaches static head.
System analysis through bond graph modeling
NASA Astrophysics Data System (ADS)
McBride, Robert Thomas
2005-07-01
Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.
Efficiency-Based Funding for Public Four-Year Colleges and Universities
ERIC Educational Resources Information Center
Sexton, Thomas R.; Comunale, Christie L.; Gara, Stephen C.
2012-01-01
We propose an efficiency-based mechanism for state funding of public colleges and universities using data envelopment analysis. We describe the philosophy and the mathematics that underlie the approach and apply\\break the proposed model to data from 362 U.S. public four-year colleges and universities. The model provides incentives to institution…
Mathematical model of design loading vessel
NASA Astrophysics Data System (ADS)
Budnik, V. Yu
2017-10-01
Transport by ferry is very important in our time. The paper shows the factors that affect the operation of the ferry. The constraints of the designed system were identified. The indicators of quality were articulated. It can be done by means of improving the decision-making process and the choice of the optimum loading options to ensure efficient functioning of Kerch strait ferry line. The algorithm and a mathematical model were developed.
Mathematical modeling of a nickel-cadmium battery
NASA Technical Reports Server (NTRS)
Fan, Deyuan; White, Ralph E.
1991-01-01
Extensions are presented for a mathematical model of an Ni-CD cell (Fan and White, 1991). These extensions consist of intercalation thermodynamics for the nickel electrode and oxygen generation and reduction reactions during charge and overcharge. The simulated results indicate that intercalation may be important in the nickel electrode and that including the oxygen reactions provides a means of predicting the efficiency of the cell on charge and discharge.
Research on an augmented Lagrangian penalty function algorithm for nonlinear programming
NASA Technical Reports Server (NTRS)
Frair, L.
1978-01-01
The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.
The study of thermal processes in control systems of heat consumption of buildings
NASA Astrophysics Data System (ADS)
Tsynaeva, E.; A, Tsynaeva
2017-11-01
The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.
Enhancing mathematics teachers' quality through Lesson Study.
Lomibao, Laila S
2016-01-01
The efficiency and effectivity of the learning experience is dependent on the teacher quality, thus, enhancing teacher's quality is vital in improving the students learning outcome. Since, the usual top-down one-shot cascading model practice for teachers' professional development in Philippines has been observed to have much information dilution, and the Southeast Asian Ministers of Education Organization demanded the need to develop mathematics teachers' quality standards through the Southeast Asia Regional Standards for Mathematics Teachers (SEARS-MT), thus, an intensive, ongoing professional development model should be provided to teachers. This study was undertaken to determine the impact of Lesson Study on Bulua National High School mathematics teachers' quality level in terms of SEARS-MT dimensions. A mixed method of quantitative-qualitative research design was employed. Results of the analysis revealed that Lesson Study effectively enhanced mathematics teachers' quality and promoted teachers professional development. Teachers positively perceived Lesson Study to be beneficial for them to become a better mathematics teacher.
The use of experimental design to find the operating maximum power point of PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria
2015-03-10
Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.
Towards a Methodology for the Characterization of Teachers' Didactic-Mathematical Knowledge
ERIC Educational Resources Information Center
Pino-Fan, Luis R.; Assis, Adriana; Castro, Walter F.
2015-01-01
This research study aims at exploring the use of some dimensions and theoretical-methodological tools suggested by the model of Didactic-Mathematical Knowledge (DMK) for the analysis, characterization and development of knowledge that teachers should have in order to efficiently develop within their practice. For this purpose, we analyzed the…
Simulation of Solar Energy Use in Livelihood of Buildings
NASA Astrophysics Data System (ADS)
Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.
2017-11-01
Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.
Immune Response to Electromagnetic Fields through Cybernetic Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.
Immune Response to Electromagnetic Fields through Cybernetic Modeling
NASA Astrophysics Data System (ADS)
Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán
2008-08-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.
Discrete mathematical model of wave diffraction on pre-fractal impedance strips. TM mode case
NASA Astrophysics Data System (ADS)
Nesvit, K. V.
2013-10-01
In this paper a transverse magnetic (TM) wave diffraction problem on pre-fractal impedance strips is considered. The overall aim of this work is to develop a discrete mathematical model of the boundary integral equations (IEs) with the help of special quadrature formulas with the nodes in the zeros of Chebyshev polynomials and to perform a numerical experiments with the help of an efficient discrete singularities method (DSM).
Price-Dynamics of Shares and Bohmian Mechanics: Deterministic or Stochastic Model?
NASA Astrophysics Data System (ADS)
Choustova, Olga
2007-02-01
We apply the mathematical formalism of Bohmian mechanics to describe dynamics of shares. The main distinguishing feature of the financial Bohmian model is the possibility to take into account market psychology by describing expectations of traders by the pilot wave. We also discuss some objections (coming from conventional financial mathematics of stochastic processes) against the deterministic Bohmian model. In particular, the objection that such a model contradicts to the efficient market hypothesis which is the cornerstone of the modern market ideology. Another objection is of pure mathematical nature: it is related to the quadratic variation of price trajectories. One possibility to reply to this critique is to consider the stochastic Bohm-Vigier model, instead of the deterministic one. We do this in the present note.
NASA Astrophysics Data System (ADS)
Dimov, I.; Georgieva, R.; Todorov, V.; Ostromsky, Tz.
2017-10-01
Reliability of large-scale mathematical models is an important issue when such models are used to support decision makers. Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is crucial for improving the reliability of mathematical models. A comprehensive experimental study of Monte Carlo algorithms based on Sobol sequences for multidimensional numerical integration has been done. A comparison with Latin hypercube sampling and a particular quasi-Monte Carlo lattice rule based on generalized Fibonacci numbers has been presented. The algorithms have been successfully applied to compute global Sobol sensitivity measures corresponding to the influence of several input parameters (six chemical reactions rates and four different groups of pollutants) on the concentrations of important air pollutants. The concentration values have been generated by the Unified Danish Eulerian Model. The sensitivity study has been done for the areas of several European cities with different geographical locations. The numerical tests show that the stochastic algorithms under consideration are efficient for multidimensional integration and especially for computing small by value sensitivity indices. It is a crucial element since even small indices may be important to be estimated in order to achieve a more accurate distribution of inputs influence and a more reliable interpretation of the mathematical model results.
Edenharter, Günther M; Gartner, Daniel; Pförringer, Dominik
2017-06-01
Increasing costs of material resources challenge hospitals to stay profitable. Particularly in anesthesia departments and intensive care units, bronchoscopes are used for various indications. Inefficient management of single- and multiple-use systems can influence the hospitals' material costs substantially. Using mathematical modeling, we developed a strategic decision support tool to determine the optimum mix of disposable and reusable bronchoscopy devices in the setting of an intensive care unit. A mathematical model with the objective to minimize costs in relation to demand constraints for bronchoscopy devices was formulated. The stochastic model decides whether single-use, multi-use, or a strategically chosen mix of both device types should be used. A decision support tool was developed in which parameters for uncertain demand such as mean, standard deviation, and a reliability parameter can be inserted. Furthermore, reprocessing costs per procedure, procurement, and maintenance costs for devices can be parameterized. Our experiments show for which demand pattern and reliability measure, it is efficient to only use reusable or disposable devices and under which circumstances the combination of both device types is beneficial. To determine the optimum mix of single-use and reusable bronchoscopy devices effectively and efficiently, managers can enter their hospital-specific parameters such as demand and prices into the decision support tool.The software can be downloaded at: https://github.com/drdanielgartner/bronchomix/.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
NASA Astrophysics Data System (ADS)
Sinaga, A. T.; Wangsaputra, R.
2018-03-01
The development of technology causes the needs of products and services become increasingly complex, diverse, and fluctuating. This causes the level of inter-company dependencies within a production chains increased. To be able to compete, efficiency improvements need to be done collaboratively in the production chain network. One of the efforts to increase efficiency is to harmonize production and distribution activities in the production chain network. This paper describes the harmonization of production and distribution activities by applying the use of push-pull system and supply hub in the production chain between two companies. The research methodology begins with conducting empirical and literature studies, formulating research questions, developing mathematical models, conducting trials and analyses, and taking conclusions. The relationship between the two companies is described in the MINLP mathematical model with the total cost of production chain as the objective function. Decisions generated by the mathematical models are the size of production lot, size of delivery lot, number of kanban, frequency of delivery, and the number of understock and overstock lot.
Tomar, Swati; Gupta, Sunil Kumar
2015-11-01
The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.
In-Situ Optical Imaging of Carrier Transport in Multilayer Solar Cells
2008-06-01
5 1. Efficiency Considerations....................................................... 5 2. Construction...improved efficiency solar cells. The need to move forward on these improvements is driven by the increasing price of oil and other traditional fuels...any improvement in material in a high efficiency multi-junction cell can be difficult to mathematically model, and much effort is involved in
Simplified mathematical model of losses in a centrifugal compressor stage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seleznev, K.P.; Galerkin, Yu.B.; Popova, E.Yu.
1988-05-01
A mathematical model was developed for optimizing the parameters of the stage which does not require calculation of the flow around grids. The loss coefficients of the stage elements were considered as functions of the flow-through section, the angle of incidence, the compressibility criterion, and the Reynolds number. The relationships were used to calculate losses in all blade components, including blade diffusers, deflectors, and rotors. The model is implemented in a microcomputer and will compute the efficiency of one variant of the flow-through section of a stage in 60 minutes.
Chen, Liang-Hsuan; Hsueh, Chan-Ching
2007-06-01
Fuzzy regression models are useful to investigate the relationship between explanatory and response variables with fuzzy observations. Different from previous studies, this correspondence proposes a mathematical programming method to construct a fuzzy regression model based on a distance criterion. The objective of the mathematical programming is to minimize the sum of distances between the estimated and observed responses on the X axis, such that the fuzzy regression model constructed has the minimal total estimation error in distance. Only several alpha-cuts of fuzzy observations are needed as inputs to the mathematical programming model; therefore, the applications are not restricted to triangular fuzzy numbers. Three examples, adopted in the previous studies, and a larger example, modified from the crisp case, are used to illustrate the performance of the proposed approach. The results indicate that the proposed model has better performance than those in the previous studies based on either distance criterion or Kim and Bishu's criterion. In addition, the efficiency and effectiveness for solving the larger example by the proposed model are also satisfactory.
Spectrophotovoltaic orbital power generation
NASA Technical Reports Server (NTRS)
Knowles, G.; Carroll, J.
1983-01-01
A subscale model of a photovoltaic power system employing spectral splitting and 1000:1 concentration was fabricated and tested. The 10-in. aperture model demonstrated 15.5% efficiency with 86% of the energy produced by a GaAs solar cell and 14% of the energy produced by an Si cell. The calculated efficiency of the system using the same solar cells, but having perfect optics, would be approximately 20%. The model design, component measurements, test results, and mathematical model are presented.
Analysis performance of proton exchange membrane fuel cell (PEMFC)
NASA Astrophysics Data System (ADS)
Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.
2017-06-01
Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.
Using a mathematical model to evaluate the efficacy of TB control measures.
Gammaitoni, L.; Nucci, M. C.
1997-01-01
We evaluated the efficacy of recommended tuberculosis (TB) infection control measures by using a deterministic mathematical model for airborne contagion. We examined the percentage of purified protein derivative conversions under various exposure conditions, environmental controlstrategies, and respiratory protective devices. We conclude that environmental control cannot eliminate the risk for TB transmission during high-risk procedures; respiratory protective devices, and particularly high-efficiency particulate air masks, may provide nearly complete protection if used with air filtration or ultraviolet irradiation. Nevertheless, the efficiency of these control measures decreases as the infectivity of the source case increases. Therefore, administrative control measures (e.g., indentifying and isolating patients with infectious TB) are the most effective because they substantially reduce the rate of infection. PMID:9284378
Dynamic behavior of a rolling housing
NASA Astrophysics Data System (ADS)
Gentile, A.; Messina, A. M.; Trentadue, Bartolo
1994-09-01
One of the major objectives of industry is to curtail costs. An element, among others, that enables to achieve such goal is the efficiency of the production cycle machines. Such efficiency lies in the reliability of the upkeeping operations. Among maintenance procedures, measuring and analyzing vibrations is a way to detect structure modifications over the machine's lifespan. Further, the availability of a mathematical model describing the influence of each individual part of the machine on the total dynamic behavior of the whole machine may help localizing breakdowns during diagnosis operations. The paper hereof illustrates an analytical-numerical model which can simulate the behavior of a rolling housing. The aforesaid mathematical model has been obtained by FEM techniques, the dynamic response by mode superposition and the synthesis of the vibration time sequence in the frequency versus by FFT numerical techniques.
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
NASA Astrophysics Data System (ADS)
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
Equilibriumizing all food chain chaos through reproductive efficiency.
Deng, Bo
2006-12-01
The intraspecific interference of a top-predator is incorporated into a classical mathematical model for three-trophic food chains. All chaos types known to the classical model are shown to exist for this comprehensive model. It is further demonstrated that if the top-predator reproduces at high efficiency, then all chaotic dynamics will change to a stable coexisting equilibrium, a novel property not found in the classical model. This finding gives a mechanistic explanation to the question of why food chain chaos is rare in the field. It also suggests that high reproductive efficiency of top-predators tends to stabilize food chains.
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations
Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.
2015-01-01
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C
2016-02-15
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.
Updating the limit efficiency of silicon solar cells
NASA Technical Reports Server (NTRS)
Wolf, M.
1979-01-01
Evaluation of the limit efficiency based on the simplest, most basic mathematical method that is appropriate for the conditions imposed by the cell model is discussed. The methodology, the solar cell structure, and the selection of the material parameters used in the evaluation are described. The results are discussed including a set of design goals derived from the limit efficiency.
Capability of GPGPU for Faster Thermal Analysis Used in Data Assimilation
NASA Astrophysics Data System (ADS)
Takaki, Ryoji; Akita, Takeshi; Shima, Eiji
A thermal mathematical model plays an important role in operations on orbit as well as spacecraft thermal designs. The thermal mathematical model has some uncertain thermal characteristic parameters, such as thermal contact resistances between components, effective emittances of multilayer insulation (MLI) blankets, discouraging make up efficiency and accuracy of the model. A particle filter which is one of successive data assimilation methods has been applied to construct spacecraft thermal mathematical models. This method conducts a lot of ensemble computations, which require large computational power. Recently, General Purpose computing in Graphics Processing Unit (GPGPU) has been attracted attention in high performance computing. Therefore GPGPU is applied to increase the computational speed of thermal analysis used in the particle filter. This paper shows the speed-up results by using GPGPU as well as the application method of GPGPU.
The report describes a version of EPA's electrostatic precipitator (ESP) model suitable for use on a Texas Instruments Programmable 59 (TI-59) hand-held calculator. This version of the model allows the calculation of ESP collection efficiency, including corrections for non-ideal ...
A combinatorial model of malware diffusion via bluetooth connections.
Merler, Stefano; Jurman, Giuseppe
2013-01-01
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.
Modeling Group Interactions via Open Data Sources
2011-08-30
data. The state-of-art search engines are designed to help general query-specific search and not suitable for finding disconnected online groups. The...groups, (2) developing innovative mathematical and statistical models and efficient algorithms that leverage existing search engines and employ
A novel energy recovery system for parallel hybrid hydraulic excavator.
Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan
2014-01-01
Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.
Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining
Gao, Bin; Woo, Wai Lok; Tian, Gui Yun
2016-01-01
Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061
A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator
Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan
2014-01-01
Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215
From Cognitive Science to School Practice: Building the Bridge
ERIC Educational Resources Information Center
Singer, Mihaela
2003-01-01
The paper is focused on recent researches in neuroscience and developmental psychology regarding mathematical abilities of infants. A model that tries to explain these findings is developed. The model underlies the mental operations that could be systematically trained to generate efficient school learning. The model is built from a cognitive…
A Combinatorial Model of Malware Diffusion via Bluetooth Connections
Merler, Stefano; Jurman, Giuseppe
2013-01-01
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression. PMID:23555677
Study of ecological compensation in complex river networks based on a mathematical model.
Wang, Xiao; Shen, Chunqi; Wei, Jun; Niu, Yong
2018-05-31
Transboundary water pollution has resulted in increasing conflicts between upstream and downstream administrative districts. Ecological compensation is an efficient means of restricting pollutant discharge and achieving sustainable utilization of water resources. The tri-provincial region of Taihu Basin is a typical river networks area. Pollutant flux across provincial boundaries in the Taihu Basin is hard to determine due to complex hydrologic and hydrodynamic conditions. In this study, ecological compensation estimation for the tri-provincial area based on a mathematical model is investigated for better environmental management. River discharge and water quality are predicted with the one-dimensional mathematical model and validated with field measurements. Different ecological compensation criteria are identified considering the notable regional discrepancy in sewage treatment costs. Finally, the total compensation payment is estimated. Our study indicates that Shanghai should be the receiver of payment from both Jiangsu and Zhenjiang in 2013, with 305 million and 300 million CNY, respectively. Zhejiang also contributes more pollutants to Jiangsu, and the compensation to Jiangsu is estimated as 9.3 million CNY. The proposed ecological compensation method provides an efficient way for solving the transboundary conflicts in a complex river networks area and is instructive for future policy-making.
Energy-saving management modelling and optimization for lead-acid battery formation process
NASA Astrophysics Data System (ADS)
Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.
2017-11-01
In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.
NASA Technical Reports Server (NTRS)
Purohit, G. P.; Leising, C. J.
1984-01-01
The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.
Modeling RNA interference in mammalian cells
2011-01-01
Background RNA interference (RNAi) is a regulatory cellular process that controls post-transcriptional gene silencing. During RNAi double-stranded RNA (dsRNA) induces sequence-specific degradation of homologous mRNA via the generation of smaller dsRNA oligomers of length between 21-23nt (siRNAs). siRNAs are then loaded onto the RNA-Induced Silencing multiprotein Complex (RISC), which uses the siRNA antisense strand to specifically recognize mRNA species which exhibit a complementary sequence. Once the siRNA loaded-RISC binds the target mRNA, the mRNA is cleaved and degraded, and the siRNA loaded-RISC can degrade additional mRNA molecules. Despite the widespread use of siRNAs for gene silencing, and the importance of dosage for its efficiency and to avoid off target effects, none of the numerous mathematical models proposed in literature was validated to quantitatively capture the effects of RNAi on the target mRNA degradation for different concentrations of siRNAs. Here, we address this pressing open problem performing in vitro experiments of RNAi in mammalian cells and testing and comparing different mathematical models fitting experimental data to in-silico generated data. We performed in vitro experiments in human and hamster cell lines constitutively expressing respectively EGFP protein or tTA protein, measuring both mRNA levels, by quantitative Real-Time PCR, and protein levels, by FACS analysis, for a large range of concentrations of siRNA oligomers. Results We tested and validated four different mathematical models of RNA interference by quantitatively fitting models' parameters to best capture the in vitro experimental data. We show that a simple Hill kinetic model is the most efficient way to model RNA interference. Our experimental and modeling findings clearly show that the RNAi-mediated degradation of mRNA is subject to saturation effects. Conclusions Our model has a simple mathematical form, amenable to analytical investigations and a small set of parameters with an intuitive physical meaning, that makes it a unique and reliable mathematical tool. The findings here presented will be a useful instrument for better understanding RNAi biology and as modelling tool in Systems and Synthetic Biology. PMID:21272352
On the efficiency of driver state monitoring systems
NASA Astrophysics Data System (ADS)
Dementienko, V. V.; Dorokhov, V. B.; Gerus, S. V.; Markov, A. G.; Shakhnarovich, V. M.
2007-06-01
Statistical data on road traffic and the results of laboratory studies are used to construct a mathematical model of a driver-driver state monitor-automobile-traffic system. In terms of the model, the probability of an accident resulting from the drowsy state of the driver is determined both in the absence and presence of a monitor. The model takes into account the efficiency and safety level provided by different monitoring systems, as well as psychological factors associated with the excessive reliance of drivers upon monitoring.
Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work
NASA Astrophysics Data System (ADS)
Pedrammehr, Siamak; Nahavandi, Saeid; Abdi, Hamid
2018-04-01
In this research, a systematic approach to solving the inverse dynamics of hexarot manipulators is addressed using the methodology of virtual work. For the first time, a closed form of the mathematical formulation of the standard dynamic model is presented for this class of mechanisms. An efficient algorithm for solving this closed-form dynamic model of the mechanism is developed and it is used to simulate the dynamics of the system for different trajectories. Validation of the proposed model is performed using SimMechanics and it is shown that the results of the proposed mathematical model match with the results obtained by the SimMechanics model.
Modeling malware propagation using a carrier compartment
NASA Astrophysics Data System (ADS)
Hernández Guillén, J. D.; Martín del Rey, A.
2018-03-01
The great majority of mathematical models proposed to simulate malware spreading are based on systems of ordinary differential equations. These are compartmental models where the devices are classified according to some types: susceptible, exposed, infectious, recovered, etc. As far as we know, there is not any model considering the special class of carrier devices. This type is constituted by the devices whose operative systems is not targeted by the malware (for example, iOS devices for Android malware). In this work a novel mathematical model considering this new compartment is considered. Its qualitative study is presented and a detailed analysis of the efficient control measures is shown by studying the basic reproductive number.
Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation
2011-04-01
history tracing back to Hilbert , Chapmann and Enskog (Cercignani, 1988) at the beginning of the last century. The mathematical difficulties related to the...accurate determin- istic computations of the stationary solutions, which may be treated by schemes aimed to capture the stationary state ( Greenberg and...Stokes model, can be considered using the Chapmann-Enskog and the Hilbert expansions. We refer to Levermore (1996) for a mathematical setting of the
Exploring the benefits of antibody immune response in HIV-1 infection using a discrete model.
Showa, S P; Nyabadza, F; Hove-Musekwa, S D; Magombedze, G
2016-06-01
The role of antibodies in HIV-1 infection is investigated using a discrete-time mathematical model that considers cell-free and cell-associated transmission of the virus. Model analysis shows that the effect of each type of antibody is dependent on the stage of the infection. Neutralizing antibodies are efficient in controlling the viral levels in the early days after seroconversion and antibodies that coat HIV-1-infected cells and recruit effector cells to either kill the HIV-1-infected cells or inhibit viral replication are efficient when the infection becomes established. Model simulations show that antibodies that inhibit viral replication are more effective in controlling the infection than those that recruit Natural Killer T cells after infection establishment. The model was fitted to subjects of the Tsedimoso study conducted in Botswana and conclusions similar to elasticity analysis results were obtained. Model fitting results predicted that neutralizing antibodies are more efficient in controlling the viral levels than antibodies that coat HIV-1-infected cells and recruit effector cells to either kill the HIV-1-infected cells or inhibit viral replication in the early days after seroconversion. © The Authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Na, Dokyun; Lee, Doheon
2010-10-15
RBSDesigner predicts the translation efficiency of existing mRNA sequences and designs synthetic ribosome binding sites (RBSs) for a given coding sequence (CDS) to yield a desired level of protein expression. The program implements the mathematical model for translation initiation described in Na et al. (Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with a desired expression level in prokaryotes. BMC Syst. Biol., 4, 71). The program additionally incorporates the effect on translation efficiency of the spacer length between a Shine-Dalgarno (SD) sequence and an AUG codon, which is crucial for the incorporation of fMet-tRNA into the ribosome. RBSDesigner provides a graphical user interface (GUI) for the convenient design of synthetic RBSs. RBSDesigner is written in Python and Microsoft Visual Basic 6.0 and is publicly available as precompiled stand-alone software on the web (http://rbs.kaist.ac.kr). dhlee@kaist.ac.kr
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1983-01-01
Based on the works of Ruze (1966) and Vu (1969), a novel mathematical model has been developed to determine efficiently the average power pattern degradations caused by random surface errors. In this model, both nonuniform root mean square (rms) surface errors and nonuniform illumination functions are employed. In addition, the model incorporates the dependence on F/D in the construction of the solution. The mathematical foundation of the model rests on the assumption that in each prescribed annular region of the antenna, the geometrical rms surface value is known. It is shown that closed-form expressions can then be derived, which result in a very efficient computational method for the average power pattern. Detailed parametric studies are performed with these expressions to determine the effects of different random errors and illumination tapers on parameters such as gain loss and sidelobe levels. The results clearly demonstrate that as sidelobe levels decrease, their dependence on the surface rms/wavelength becomes much stronger and, for a specified tolerance level, a considerably smaller rms/wavelength is required to maintain the low sidelobes within the required bounds.
Mathematical modeling and hydrodynamics of Electrochemical deburring process
NASA Astrophysics Data System (ADS)
Prabhu, Satisha; Abhishek Kumar, K., Dr
2018-04-01
The electrochemical deburring (ECD) is a variation of electrochemical machining is considered as one of the efficient methods for deburring of intersecting features and internal parts. Since manual deburring costs are comparatively high one can potentially use this method in both batch production and flow production. The other advantage of this process is that time of deburring as is on the order of seconds as compared to other methods. In this paper, the mathematical modeling of Electrochemical deburring is analysed from its deburring time and base metal removal point of view. Simultaneously material removal rate is affected by electrolyte temperature and bubble formation. The mathematical model and hydrodynamics of the process throw limelight upon optimum velocity calculations which can be theoretically determined. The analysis can be the powerful tool for prediction of the above-mentioned parameters by experimentation.
Multiscale Space-Time Computational Methods for Fluid-Structure Interactions
2015-09-13
prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel . We use...With creative methods for coupling the fluid and structure, we can increase the scope and efficiency of the FSI modeling . Multiscale methods, which now...play an important role in computational mathematics, can also increase the accuracy and efficiency of the computer modeling techniques. The main
Modelling and validation of Proton exchange membrane fuel cell (PEMFC)
NASA Astrophysics Data System (ADS)
Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.
2018-01-01
This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.
Energy-technological complex with reactor for torrefaction
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Director, L. B.; Zaichenko, V. M.
2016-11-01
To eliminate shortcomings of raw plant materials pelletizing process with thermal treatment (low-temperature pyrolysis or torrefaction) can be applied. This paper presents a mathematical model of energy-technological complex (ETC) for combined production of heat, electricity and solid biofuels torrefied pellets. According to the structure the mathematical model consists of mathematical models of main units of ETC and the relationships between them and equations of energy and material balances. The equations describe exhaust gas straining action through a porous medium formed by pellets. Decomposition rate of biomass was calculated by using the gross-reaction diagram, which is responsible for the disintegration of raw material. A mathematical model has been tested according to bench experiments on one reactor module. From nomographs, designed for a particular configuration of ETC it is possible to determine the basic characteristics of torrefied pellets (rate of weight loss, heating value and heat content) specifying only two parameters (temperature and torrefaction time). It is shown that the addition of reactor for torrefaction to gas piston engine can improve the energy efficiency of power plant.
ERIC Educational Resources Information Center
Sillah, B. M. S.
2012-01-01
This paper employs a stochastic production frontier model to assess the efficiency of the senior secondary schools in the Gambia. It examines their efficiency in using and mixing the educational inputs of average teacher salary, average teacher education, average teacher experience and students-to-teacher ratio in producing the number of students…
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determined either by testing in accordance with § 431.444 of this subpart, or by application of an... method. An AEDM applied to a basic model must be: (i) Derived from a mathematical model that represents... statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data. (3...
Analysis of the coupling efficiency of a tapered space receiver with a calculus mathematical model
NASA Astrophysics Data System (ADS)
Hu, Qinggui; Mu, Yining
2018-03-01
We establish a calculus mathematical model to study the coupling characteristics of tapered optical fibers in a space communications system, and obtained the coupling efficiency equation. Then, using MATLAB software, the solution was calculated. After this, the sample was produced by the mature flame-brush technique. The experiment was then performed, and the results were in accordance with the theoretical analysis. This shows that the theoretical analysis was correct and indicates that a tapered structure could improve its tolerance with misalignment. Project supported by The National Natural Science Foundation of China (grant no. 61275080); 2017 Jilin Province Science and Technology Development Plan-Science and Technology Innovation Fund for Small and Medium Enterprises (20170308029HJ); ‘thirteen five’ science and technology research project of the Department of Education of Jilin 2016 (16JK009).
Investigation of various epidemic diseases in some countries by mathematical models SI and SIS
NASA Astrophysics Data System (ADS)
Ćilli, A.; Ergen, K.
2017-02-01
In this study, efficiency of SI and SIS mathematical models were defined in the prediction of the number of infected people with malaria and Acquired Immune Deficiency Syndrome (AIDS) as infectious diseases. Afghanistan and Angola were selected for their geographical and economical features. Although the models do not predict exact numbers for each year, in a long term and in a normal conditions (unless there are external parameters such as natural disaster, war, emigration and terrorism) they can predict the trend for the diseases and can tell when to disappear. Therefore, updating data are of importance to achieve the powerful prediction.
Using a Polytope to Estimate Efficient Production Functions of Joint Product Processes.
ERIC Educational Resources Information Center
Simpson, William A.
In the last decade, a modeling technique has been developed to handle complex input/output analyses where outputs involve joint products and there are no known mathematical relationships linking the outputs or inputs. The technique uses the geometrical concept of a six-dimensional shape called a polytope to analyze the efficiency of each…
A University Admissions System
ERIC Educational Resources Information Center
Ittig, Peter T.
1977-01-01
Presents a mathematical programming model that will make admit/reject decisions for freshman university applicants. The model is intended to aid reviewers in producing better, more consistent decisions. The author shows that a linear programming formulation will provide an efficient and practical solution for all but a very few applicants.…
Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.
Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658
System and method for anomaly detection
Scherrer, Chad
2010-06-15
A system and method for detecting one or more anomalies in a plurality of observations is provided. In one illustrative embodiment, the observations are real-time network observations collected from a stream of network traffic. The method includes performing a discrete decomposition of the observations, and introducing derived variables to increase storage and query efficiencies. A mathematical model, such as a conditional independence model, is then generated from the formatted data. The formatted data is also used to construct frequency tables which maintain an accurate count of specific variable occurrence as indicated by the model generation process. The formatted data is then applied to the mathematical model to generate scored data. The scored data is then analyzed to detect anomalies.
A magneto-rheological fluid mount featuring squeeze mode: analysis and testing
NASA Astrophysics Data System (ADS)
Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok
2016-05-01
This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled.
Ledzewicz, Urszula; Schättler, Heinz
2017-08-10
Metronomic chemotherapy refers to the frequent administration of chemotherapy at relatively low, minimally toxic doses without prolonged treatment interruptions. Different from conventional or maximum-tolerated-dose chemotherapy which aims at an eradication of all malignant cells, in a metronomic dosing the goal often lies in the long-term management of the disease when eradication proves elusive. Mathematical modeling and subsequent analysis (theoretical as well as numerical) have become an increasingly more valuable tool (in silico) both for determining conditions under which specific treatment strategies should be preferred and for numerically optimizing treatment regimens. While elaborate, computationally-driven patient specific schemes that would optimize the timing and drug dose levels are still a part of the future, such procedures may become instrumental in making chemotherapy effective in situations where it currently fails. Ideally, mathematical modeling and analysis will develop into an additional decision making tool in the complicated process that is the determination of efficient chemotherapy regimens. In this article, we review some of the results that have been obtained about metronomic chemotherapy from mathematical models and what they infer about the structure of optimal treatment regimens. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Qiang
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of whichmore » is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.« less
NASA Astrophysics Data System (ADS)
Wang, Li-yong; Li, Le; Zhang, Zhi-hua
2016-09-01
Hot compression tests of Ti-6Al-4V alloy in a wide temperature range of 1023-1323 K and strain rate range of 0.01-10 s-1 were conducted by a servo-hydraulic and computer-controlled Gleeble-3500 machine. In order to accurately and effectively characterize the highly nonlinear flow behaviors, support vector regression (SVR) which is a machine learning method was combined with genetic algorithm (GA) for characterizing the flow behaviors, namely, the GA-SVR. The prominent character of GA-SVR is that it with identical training parameters will keep training accuracy and prediction accuracy at a stable level in different attempts for a certain dataset. The learning abilities, generalization abilities, and modeling efficiencies of the mathematical regression model, ANN, and GA-SVR for Ti-6Al-4V alloy were detailedly compared. Comparison results show that the learning ability of the GA-SVR is stronger than the mathematical regression model. The generalization abilities and modeling efficiencies of these models were shown as follows in ascending order: the mathematical regression model < ANN < GA-SVR. The stress-strain data outside experimental conditions were predicted by the well-trained GA-SVR, which improved simulation accuracy of the load-stroke curve and can further improve the related research fields where stress-strain data play important roles, such as speculating work hardening and dynamic recovery, characterizing dynamic recrystallization evolution, and improving processing maps.
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.445 Determination of small... the mechanical and electrical characteristics of that basic model, and (ii) Based on engineering or... Department of Energy records showing the method or methods used; the mathematical model, the engineering or...
Modelling the effect of structural QSAR parameters on skin penetration using genetic programming
NASA Astrophysics Data System (ADS)
Chung, K. K.; Do, D. Q.
2010-09-01
In order to model relationships between chemical structures and biological effects in quantitative structure-activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data.
Mathematical modeling and simulation of a thermal system
NASA Astrophysics Data System (ADS)
Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.
2016-12-01
The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.
Thermal oil recovery method using self-contained windelectric sets
NASA Astrophysics Data System (ADS)
Belsky, A. A.; Korolyov, I. A.
2018-05-01
The paper reviews challenges associated with questions of efficiency of thermal methods of impact on productive oil strata. The concept of using electrothermal complexes with WEG power supply for the indicated purposes was proposed and justified, their operating principles, main advantages and disadvantages, as well as a schematechnical solution for the implementation of the intensification of oil extraction, were considered. A mathematical model for finding the operating characteristics of WEG is presented and its main energy parameters are determined. The adequacy of the mathematical model is confirmed by laboratory simulation stand tests with nominal parameters.
Lübken, M; Wichern, M; Bischof, F; Prechtl, S; Horn, H
2007-01-01
Poor sanitation and insufficient disposal of sewage and faeces are primarily responsible for water associated health problems in developing countries. Domestic sewage and faeces are prevalently discharged into surface waters which are used by the inhabitants as a source for drinking water. This paper presents a decentralized anaerobic process technique for handling of such domestic organic waste. Such an efficient and compact system for treating faeces and food waste may be of great benefit for developing countries. Besides a stable biogas production for energy generation, the reduction of bacterial pathogens is of particular importance. In our research we investigated the removal capacity of the reactor concerning pathogens, which has been operated under thermophilic conditions. Faecal coliforms and intestinal enterococci have been detected as indicator organisms for bacterial pathogens. By the multiple regression analysis technique an empirical mathematical model has been developed. The model shows a high correlation between removal efficiency and both, hydraulic retention time (HRT) and temperature. By this model an optimized HRT for defined bacterial pathogens effluent standards can be easily calculated. Thus, hygiene potential can be evaluated along with economic aspects. In this paper not only results for describing the hygiene potential of a thermophilic anaerobic bioreactor are presented, but also an exemplary method to draw the right conclusions out of biological tests with the aid of mathematical tools.
Role of Edges in Complex Network Epidemiology
NASA Astrophysics Data System (ADS)
Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao
2012-09-01
In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.
Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation
NASA Astrophysics Data System (ADS)
Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.
2016-10-01
The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.
ERIC Educational Resources Information Center
Hoffman, Bobby
2010-01-01
This study investigated the role of self-efficacy beliefs, mathematics anxiety, and working memory capacity in problem-solving accuracy, response time, and efficiency (the ratio of problem-solving accuracy to response time). Pre-service teachers completed a mathematics anxiety inventory measuring cognitive and affective dispositions for…
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat
NASA Astrophysics Data System (ADS)
Cherednichenko, Oleksandr; Serbin, Serhiy
2018-03-01
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.
Design, processing and testing of LSI arrays: Hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.
1979-01-01
Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.
Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna
2008-10-01
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.
Qin, Mohan; Ping, Qingyun; Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen
2015-11-01
Osmotic microbial fuel cells (OsMFCs) are a new type of MFCs with integrating forward osmosis (FO). However, it is not well understood why electricity generation is improved in OsMFCs compared to regular MFCs. Herein, an approach integrating experimental investigation and mathematical model was adopted to address the question. Both an OsMFC and an MFC achieved similar organic removal efficiency, but the OsMFC generated higher current than the MFC with or without water flux, resulting from the lower resistance of FO membrane. Combining NaCl and glucose as a catholyte demonstrated that the catholyte conductivity affected the electricity generation in the OsMFC. A mathematical model of OsMFCs was developed and validated with the experimental data. The model predicated the variation of internal resistance with increasing water flux, and confirmed the importance of membrane resistance. Increasing water flux with higher catholyte conductivity could decrease the membrane resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tararykov, A. V.; Garyaev, A. B.
2017-11-01
The possibility of increasing the energy efficiency of production processes by converting the initial fuel - natural gas to synthesized fuel using the heat of the exhaust gases of plants involved in production is considered. Possible applications of this technology are given. A mathematical model of the processes of heat and mass transfer occurring in a thermochemical reactor is developed taking into account the nonequilibrium nature of the course of chemical reactions of fuel conversion. The possibility of using microchannel reaction elements and facilities for methane conversion in order to intensify the process and reduce the overall dimensions of plants is considered. The features of the course of heat and mass transfer processes under flow conditions in microchannel reaction elements are described. Additions have been made to the mathematical model, which makes it possible to use it for microchannel installations. With the help of a mathematical model, distribution of the parameters of mixtures along the length of the reaction element of the reactor-temperature, the concentration of the reacting components, the velocity, and the values of the heat fluxes are obtained. The calculations take into account the change in the thermophysical properties of the mix-ture, the type of the catalytic element, the rate of the reactions, the heat exchange processes by radiation, and the lon-gitudinal heat transfer along the flow of the reacting mixture. The reliability of the results of the application of the mathematical model is confirmed by their comparison with the experimental data obtained by Grasso G., Schaefer G., Schuurman Y., Mirodatos C., Kuznetsov V.V., Vitovsky O.V. on similar installations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
NASA Technical Reports Server (NTRS)
Guo, Boyun
2005-01-01
Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.
Sivasankar, P; Suresh Kumar, G
2017-01-01
In present work, the influence of reservoir pH conditions on dynamics of microbial enhanced oil recovery (MEOR) processes using Pseudomonas putida was analysed numerically from the developed mathematical model for MEOR processes. Further, a new strategy to improve the MEOR performance has also been proposed. It is concluded from present study that by reversing the reservoir pH from highly acidic to low alkaline condition (pH 5-8), flow and mobility of displaced oil, displacement efficiency, and original oil in place (OOIP) recovered gets significantly enhanced, resulting from improved interfacial tension (IFT) reduction by biosurfactants. At pH 8, maximum of 26.1% of OOIP was recovered with higher displacement efficiency. The present study introduces a new strategy to increase the recovery efficiency of MEOR technique by characterizing the biosurfactants for IFT min /IFT max values for different pH conditions and subsequently, reversing the reservoir pH conditions at which the IFT min /IFT max value is minimum. Copyright © 2016 Elsevier Ltd. All rights reserved.
A mathematical model for simulating noise suppression of lined ejectors
NASA Technical Reports Server (NTRS)
Watson, Willie R.
1994-01-01
A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.
Study of the stability of a SEIRS model for computer worm propagation
NASA Astrophysics Data System (ADS)
Hernández Guillén, J. D.; Martín del Rey, A.; Hernández Encinas, L.
2017-08-01
Nowadays, malware is the most important threat to information security. In this sense, several mathematical models to simulate malware spreading have appeared. They are compartmental models where the population of devices is classified into different compartments: susceptible, exposed, infectious, recovered, etc. The main goal of this work is to propose an improved SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) mathematical model to simulate computer worm propagation. It is a continuous model whose dynamic is ruled by means of a system of ordinary differential equations. It considers more realistic parameters related to the propagation; in fact, a modified incidence rate has been used. Moreover, the equilibrium points are computed and their local and global stability analyses are studied. From the explicit expression of the basic reproductive number, efficient control measures are also obtained.
Spatial operator algebra for flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
Mathematical and Numerical Techniques in Energy and Environmental Modeling
NASA Astrophysics Data System (ADS)
Chen, Z.; Ewing, R. E.
Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms
Fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Ostrach, S.
1978-01-01
The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.
NASA Astrophysics Data System (ADS)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-09-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...
2016-05-20
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm
NASA Astrophysics Data System (ADS)
von Larcher, Th; Klein, R.
2012-04-01
Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.
Technological aspects of lift-slab method in high-rise-building construction.
NASA Astrophysics Data System (ADS)
Gaidukov, Pavel V.; Pugach, Evgeny M.
2018-03-01
The utilization efficiency of slab lifting technology for high-rise-building construction is regarded in the present article. The main problem of the article is organizing technology abilities indication, which proves the method application possibility. There is the comparing of lifting technologies and sequential concrete-frame extension, as follows: the first one: the parameters are defined, and the second one: the organizational model is executed. This model defines borders of the usage methods, as well. There is the mathematic model creating, which describes boundary conditions of the present technologies usage. This model allows to predict construction efficiency for different stored-number buildings.
NASA Astrophysics Data System (ADS)
Qi, D.; Majda, A.
2017-12-01
A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.
Development of a model to assess environmental performance, concerning HSE-MS principles.
Abbaspour, M; Hosseinzadeh Lotfi, F; Karbassi, A R; Roayaei, E; Nikoomaram, H
2010-06-01
The main objective of the present study was to develop a valid and appropriate model to evaluate companies' efficiency and environmental performance, concerning health, safety, and environmental management system principles. The proposed model overcomes the shortcomings of the previous models developed in this area. This model has been designed on the basis of a mathematical method known as Data Envelopment Analysis (DEA). In order to differentiate high-performing companies from weak ones, one of DEA nonradial models named as enhanced Russell graph efficiency measure has been applied. Since some of the environmental performance indicators cannot be controlled by companies' managers, it was necessary to develop the model in a way that it could be applied when discretionary and/or nondiscretionary factors were involved. The model, then, has been modified on a real case that comprised 12 oil and gas general contractors. The results showed the relative efficiency, inefficiency sources, and the rank of contractors.
Xing, Shihe; Lin, Dexi; Shen, Jinquan; Cao, Rongbin
2005-10-01
Based on the meteorological elements observation and mountain soil survey in Fujian Province, this paper approached the application of geographic information system (GIS) and integrated mathematic models on estimating the grid wood productiveness and solar energy use efficiency (SEUE) of regional forest land. The results showed that there was a significant quadratic correlation of annual mean temperature, precipitation and total solar radiation energy(TSRE) with longitude, latitude and altitude, and their multiple correlation coefficients ranged from 0.692 to 0.981. The regional annual mean TSRE, temperature and precipitation could be well estimated by GIS and integrated models of quadratic tendency curve, and linear, quadratic and quartic inverse distance weighted interpolation. These annual means estimated by the models did not differ greatly from observed data, and the t test values were 1.29, 0.12 and 0.06, respectively. The grid wood productiveness and SEUE of regional forest land in Fujian could also be well estimated with the aid of GIS and integrated models, which ranged from 2.32 m3 x hm(-2) yr(-1) to 18.61 m3 x hm(-2) yr(-1) and from 0.11% to 0.91%, respectively.
A mathematical model of water and nutrient transport in xylem vessels of a wheat plant.
Payvandi, S; Daly, K R; Jones, D L; Talboys, P; Zygalakis, K C; Roose, T
2014-03-01
At a time of increasing global demand for food, dwindling land and resources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in farming, and in fertiliser usage in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plant from roots to leaves. We present a mathematical model of the transport of nutrients within the xylem vessels in response to the evapotranspiration of water. We determine seven different classes of flow, including positive unidirectional flow, which is optimal for nutrient transport from the roots to the leaves; and root multidirectional flow, which is similar to the hydraulic lift process observed in plants. We also investigate the effect of diffusion on nutrient transport and find that diffusion can be significant at the vessel termini especially if there is an axial efflux of nutrient, and at night when transpiration is minimal. Models such as these can then be coupled to whole-plant models to be used for optimisation of nutrient delivery scenarios.
NASA Astrophysics Data System (ADS)
Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.
2018-05-01
The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the evolution profiles of temperature fields, which enable one to analyze the efficiency of the regime parameters of heat treatment.
Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang
2018-04-01
Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.
ERIC Educational Resources Information Center
Connelly, Edward A.; And Others
A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…
An integer programming model to optimize resource allocation for wildfire containment.
Geoffrey H. Donovan; Douglas B. Rideout
2003-01-01
Determining the specific mix of fire-fighting resources for a given fire is a necessary condition for identifying the minimum of the Cost Plus Net Value Change (C+NVC) function. Current wildland fire management models may not reliably do so. The problem of identifying the most efficient wildland fire organization is characterized mathematically using integer-...
Li, Yan
2017-05-25
The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.
Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.
Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe
2015-06-01
The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
The use of predictive models to optimize risk of decisions.
Baranyi, József; Buss da Silva, Nathália
2017-01-02
The purpose of this paper is to set up a mathematical framework that risk assessors and regulators could use to quantify the "riskiness" of a particular recommendation (choice/decision). The mathematical theory introduced here can be used for decision support systems. We point out that efficient use of predictive models in decision making for food microbiology needs to consider three major points: (1) the uncertainty and variability of the used information based on which the decision is to be made; (2) the validity of the predictive models aiding the assessor; and (3) the cost generated by the difference between the a-priory choice and the a-posteriori outcome. Copyright © 2016 Elsevier B.V. All rights reserved.
Extension of transonic flow computational concepts in the analysis of cavitated bearings
NASA Technical Reports Server (NTRS)
Vijayaraghavan, D.; Keith, T. G., Jr.; Brewe, D. E.
1990-01-01
An analogy between the mathematical modeling of transonic potential flow and the flow in a cavitating bearing is described. Based on the similarities, characteristics of the cavitated region and jump conditions across the film reformation and rupture fronts are developed using the method of weak solutions. The mathematical analogy is extended by utilizing a few computational concepts of transonic flow to numerically model the cavitating bearing. Methods of shock fitting and shock capturing are discussed. Various procedures used in transonic flow computations are adapted to bearing cavitation applications, for example, type differencing, grid transformation, an approximate factorization technique, and Newton's iteration method. These concepts have proved to be successful and have vastly improved the efficiency of numerical modeling of cavitated bearings.
NASA Astrophysics Data System (ADS)
Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny
2015-06-01
One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, comparing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous model and compare the results of hydraulic head and specific discharge. We show that both approaches are suitable for modeling material boundaries, considering high accuracy for the boundary constraints, the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency using a fixed mathematical mesh.
Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem
2015-08-01
Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology.
NASA Technical Reports Server (NTRS)
Brown, W. C.
1977-01-01
Significant advancements were made in a number of areas: improved efficiency of basic receiving element at low power density levels, improved resolution and confidence in efficiency measurements mathematical modelling and computer simulation of the receiving element and the design, construction, and testing of an environmentally protected two-plane construction suitable for low cost, highly automated construction of large receiving arrays.
NASA Astrophysics Data System (ADS)
Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.
2012-10-01
Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.
The optimization problems of CP operation
NASA Astrophysics Data System (ADS)
Kler, A. M.; Stepanova, E. L.; Maximov, A. S.
2017-11-01
The problem of enhancing energy and economic efficiency of CP is urgent indeed. One of the main methods for solving it is optimization of CP operation. To solve the optimization problems of CP operation, Energy Systems Institute, SB of RAS, has developed a software. The software makes it possible to make optimization calculations of CP operation. The software is based on the techniques and software tools of mathematical modeling and optimization of heat and power installations. Detailed mathematical models of new equipment have been developed in the work. They describe sufficiently accurately the processes that occur in the installations. The developed models include steam turbine models (based on the checking calculation) which take account of all steam turbine compartments and regeneration system. They also enable one to make calculations with regenerative heaters disconnected. The software for mathematical modeling of equipment and optimization of CP operation has been developed. It is based on the technique for optimization of CP operating conditions in the form of software tools and integrates them in the common user interface. The optimization of CP operation often generates the need to determine the minimum and maximum possible total useful electricity capacity of the plant at set heat loads of consumers, i.e. it is necessary to determine the interval on which the CP capacity may vary. The software has been applied to optimize the operating conditions of the Novo-Irkutskaya CP of JSC “Irkutskenergo”. The efficiency of operating condition optimization and the possibility for determination of CP energy characteristics that are necessary for optimization of power system operation are shown.
NASA Astrophysics Data System (ADS)
Pandya, Raaghav; Raja, Hammad; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia; Hassebo, Yasser; Marciniak, Małgorzata
2018-02-01
The purpose of this research is to analyze mathematically cylindrical shapes of flexible solar panels and compare their efficiency to the flat panels. The efficiency is defined to be the flux density, which is the ratio of the mathematical flux and the surface area. In addition we describe the trajectory of the Sun at specific locations: the North Pole, The Equator and a geostationary satellite above the Equator. The calculations were performed with software: Maple, Mathematica, and MATLAB.
Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.
Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng
2018-01-01
Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.
Influence of peak power in ablation rate of dental hard tissues: mathematical model
NASA Astrophysics Data System (ADS)
Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.
1996-12-01
Pulsed Er:YAG and CO2 lasers should be suitable instruments for dentin and enamel ablation because both tissues have absorption peaks for radiation at 2.9 and 9.6 micrometers wavelengths. This is the context of our research that emphasizes the way in which the diameter and the depth of the crater made in enamel and dentin with the laser Er:YAG and CO2 is influenced in quantity and quality. Freshly extracted human third molar were used for this experiment. The laser source is Er:YAG Kavo Key dental model 1240 and CO2 Laser Sonics LS 860. The dimensions of the obtained craters were measured using the optical microscopy method. The obtained results were modelled experimentally with programs: GRAPHER and STATGRAPHICS. After the mathematical processing to the results what we obtain is relevant regarding the influence of the key parameters in the efficiency of the ablation according to the type of laser. On the whole, from our research results that both lasers ablate efficiently the dentin when the laser energy is between 200 and 300 mJ.
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Abstract Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins. PMID:29491797
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.
Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.
Skoneczny, Szymon
2015-01-01
The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics.
DOT National Transportation Integrated Search
2014-12-01
The objective of this project is to design decision-support tools for identifying : biorefinery locations that ensure a cost-efficient and reliable supply chain. We built : mathematical models which take into consideration the benefits (such as acces...
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plechac, Petr; Vlachos, Dionisios; Katsoulakis, Markos
2013-09-05
The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomassmore » transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.« less
A mathematical function for the description of nutrient-response curve
Ahmadi, Hamed
2017-01-01
Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271
Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A
2012-07-02
Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.
Mathematical modeling of the burden distribution in the blast furnace shaft
NASA Astrophysics Data System (ADS)
Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan
2011-06-01
Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.
Development and Application of Numerical Models for Reactive Flows
1990-08-15
Shear Layers: Ill. Effect of Convective Mach number Raafat H. Guirguis Abstract Model This paper addresses some of the fundamental We have made the...OTIC FILE COPY / 0 00 DTIC N~l 9 ELECTE D CbBA9-OI Development and Application of Numerical Models for Reactive Flows Berkeley Research Associates...Laboratory for Computa- tional Physics (LCP), hav focused on developing mathematical and computational models which accurately and efficiently describe the
NASA Astrophysics Data System (ADS)
Guiraldello, Rafael T.; Martins, Marcelo L.; Mancera, Paulo F. A.
2016-08-01
We present a mathematical model based on partial differential equations that is applied to understand tumor development and its response to chemotherapy. Our primary aim is to evaluate comparatively the efficacies of two chemotherapeutic protocols, Maximum Tolerated Dose (MTD) and metronomic, as well as two methods of drug delivery. Concerning therapeutic outcomes, the metronomic protocol proves more effective in prolonging the patient's life than MTD. Moreover, a uniform drug delivery method combined with the metronomic protocol is the most efficient strategy to reduce tumor density.
NASA Astrophysics Data System (ADS)
Tyurina, E. A.; Mednikov, A. S.
2017-11-01
The paper presents the results of studies on the perspective technologies of natural gas conversion to synthetic liquid fuel (SLF) at energy-technology installations for combined production of SLF and electricity based on their detailed mathematical models. The technologies of the long-distance transport of energy of natural gas from large fields to final consumers are compared in terms of their efficiency. This work was carried out at Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences and supported by Russian Science Foundation via grant No 16-19-10174
ERIC Educational Resources Information Center
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-01-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The…
ERIC Educational Resources Information Center
Andrade, Sally J.
This paper proposes an alternative curriculum assessment model to the traditional approach of examining semester course grades as a measure of curricular or instructional change. The alternative model focuses on the academic success of students in the next course in a curricular sequence and was applied with a gateway mathematics course…
On the botanic model of plant growth with intermediate vegetative-reproductive stage.
Ioslovich, Ilya; Gutman, Per-Olof
2005-11-01
The application of dynamic optimization to mathematical models of ontogenic biological growth has been the subject of much research [see e.g. . J. Theor. Biol. 33, 299-307]. Kozłowsky and Ziółko [1988. Thor. Popul. Biol. 34, 118-129] and Ziółko and Kozłowski [1995. IEEE Trans. Automat. Contr. 40(10), 1779-1783] presented a model with gradual transition from vegetative to reproductive growth. The central point of their model is a mixed state-control constraint on the rate of reproductive growth, which leads to a mixed vegetative-reproductive growth period. Their model is modified here in order to take into account the difference of photosynthesis use efficiency when energy is accumulated in the vegetative and in the reproductive organs of a plant, respectively. The simple assumption on correlation between photosynthesis and temperature permits us to modify the model in a form that is useful for changing climate. Unfortunately, the mathematical solution of the optimal control problem in Kozłowsky and Ziółko (1988) and Ziółko and Kozłowski (1995) is incorrect. The strict mathematical solution is presented here, the numerical example from is solved, and the results are compared. The influence of the length of the season and the relative photosynthesis use efficiency, as well as of the potential sink demand of the reproductive organs, on the location and duration of the mixed vegetative-reproduction period of growth is investigated numerically. The results show that the mixed growth period is increased and shifted toward the end of the season when the lengths of the season is increased. Additional details of the sensitivity analysis are also presented.
The Mathematics of Navigating the Solar System
NASA Technical Reports Server (NTRS)
Hintz, Gerald
2000-01-01
In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.
Mathematization in introductory physics
NASA Astrophysics Data System (ADS)
Brahmia, Suzanne M.
Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in doing physics. It contrasts with their more common experience with mathematics as the practice of specified procedures to improve efficiency. This paper describes new curricular materials based on invention instruction provide students with opportunities to generate mathematical relationships in physics, and the paper presents preliminary evidence of the effectiveness of this method with mathematically underprepared engineering students.
In-Situ Assays Using a New Advanced Mathematical Algorithm - 12400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oginni, B.M.; Bronson, F.L.; Field, M.B.
2012-07-01
Current mathematical efficiency modeling software for in-situ counting, such as the commercially available In-Situ Object Calibration Software (ISOCS), typically allows the description of measurement geometries via a list of well-defined templates which describe regular objects, such as boxes, cylinder, or spheres. While for many situations, these regular objects are sufficient to describe the measurement conditions, there are occasions in which a more detailed model is desired. We have developed a new all-purpose geometry template that can extend the flexibility of current ISOCS templates. This new template still utilizes the same advanced mathematical algorithms as current templates, but allows the extensionmore » to a multitude of shapes and objects that can be placed at any location and even combined. In addition, detectors can be placed anywhere and aimed at any location within the measurement scene. Several applications of this algorithm to in-situ waste assay measurements, as well as, validations of this template using Monte Carlo calculations and experimental measurements are studied. Presented in this paper is a new template of the mathematical algorithms for evaluating efficiencies. This new template combines all the advantages of the ISOCS and it allows the use of very complex geometries, it also allows stacking of geometries on one another in the same measurement scene and it allows the detector to be placed anywhere in the measurement scene and pointing in any direction. We have shown that the template compares well with the previous ISOCS software within the limit of convergence of the code, and also compare well with the MCNPX and measured data within the joint uncertainties for the code and the data. The new template agrees with ISOCS to within 1.5% at all energies. It agrees with the MCNPX to within 10% at all energies and it agrees with most geometries within 5%. It finally agrees with measured data to within 10%. This mathematical algorithm can now be used for quickly and accurately evaluating efficiencies for wider range of gamma-ray spectroscopy applications. (authors)« less
Controlling Inventory: Real-World Mathematical Modeling
ERIC Educational Resources Information Center
Edwards, Thomas G.; Özgün-Koca, S. Asli; Chelst, Kenneth R.
2013-01-01
Amazon, Walmart, and other large-scale retailers owe their success partly to efficient inventory management. For such firms, holding too little inventory risks losing sales, whereas holding idle inventory wastes money. Therefore profits hinge on the inventory level chosen. In this activity, students investigate a simplified inventory-control…
Destruction of solid tumors by immune cells
NASA Astrophysics Data System (ADS)
López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.
2017-03-01
The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1975-01-01
Results are reported which were obtained from a mathematical model of a generalized piston steam engine configuration employing the uniflow principal. The model accounted for the effects of clearance volume, compression work, and release volume. A simple solution is presented which characterizes optimum performance of the steam engine, based on miles per gallon. Development of the mathematical model is presented. The relationship between efficiency and miles per gallon is developed. An approach to steam car analysis and design is presented which has purpose rather than lucky hopefulness. A practical engine design is proposed which correlates to the definition of the type engine used. This engine integrates several system components into the engine structure. All conclusions relate to the classical Rankine Cycle.
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
Maximizing the efficiency of multienzyme process by stoichiometry optimization.
Dvorak, Pavel; Kurumbang, Nagendra P; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri
2014-09-05
Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalyzing a five-step chemical conversion. Kinetic models of pathways with wild-type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one-pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir
2017-10-01
A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.
Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; ...
2015-03-09
Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behaviormore » of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.« less
A stochastic model for optimizing composite predictors based on gene expression profiles.
Ramanathan, Murali
2003-07-01
This project was done to develop a mathematical model for optimizing composite predictors based on gene expression profiles from DNA arrays and proteomics. The problem was amenable to a formulation and solution analogous to the portfolio optimization problem in mathematical finance: it requires the optimization of a quadratic function subject to linear constraints. The performance of the approach was compared to that of neighborhood analysis using a data set containing cDNA array-derived gene expression profiles from 14 multiple sclerosis patients receiving intramuscular inteferon-beta1a. The Markowitz portfolio model predicts that the covariance between genes can be exploited to construct an efficient composite. The model predicts that a composite is not needed for maximizing the mean value of a treatment effect: only a single gene is needed, but the usefulness of the effect measure may be compromised by high variability. The model optimized the composite to yield the highest mean for a given level of variability or the least variability for a given mean level. The choices that meet this optimization criteria lie on a curve of composite mean vs. composite variability plot referred to as the "efficient frontier." When a composite is constructed using the model, it outperforms the composite constructed using the neighborhood analysis method. The Markowitz portfolio model may find potential applications in constructing composite biomarkers and in the pharmacogenomic modeling of treatment effects derived from gene expression endpoints.
Who is afraid of math? Two sources of genetic variance for mathematical anxiety.
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W; Lyons, Ian M; Petrill, Stephen A
2014-09-01
Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem solving and achievement. This study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and nonfamilial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics and may extend to other areas of academic achievement. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Who’s Afraid of Math? Two Sources of Genetic Variance for Mathematical Anxiety
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A.; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W.; Lyons, Ian M.; Petrill, Stephen A.
2015-01-01
Background Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem-solving and achievement. The present study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Methods Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Results Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and non-familial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. Conclusions The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics, and may extend to other areas of academic achievement. PMID:24611799
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
2016-01-01
Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630
NASA Astrophysics Data System (ADS)
Vignion-Dewalle, Anne-Sophie; Betrouni, Nacim; Tylcz, Jean-Baptiste; Vermandel, Maximilien; Mortier, Laurent; Mordon, Serge
2015-05-01
Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J/cm2, 75 mW/cm2, 500 s blue light dose, 10 J/cm2, 10 mW/cm2, 1000 s and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.
Incorporating Non-financial Wealth in College and University Investment Strategies.
ERIC Educational Resources Information Center
Kaufman, Roger T.; Woglom, Geoffrey
2003-01-01
Illustrates how nonendowment cash flows (tuition, grants, and gifts) affect the portfolio allocation decisions for the endowment and are "efficient" in terms of the total wealth of the institution. A mathematical appendix displays the reasoning behind the model. (Contains 12 references and 4 tables.) (Author/MLF)
Carrey, R; Rodríguez-Escales, P; Soler, A; Otero, N
2018-02-01
Nitrate removal through enhanced biological denitrification (EBD), consisting of the inoculation of an external electron donor, is a feasible solution for the recovery of groundwater quality. In this context, liquid waste from wine industries (wine industry by-products, WIB) may be feasible for use as a reactant to enhance heterotrophic denitrification. To address the feasibility of WIB as electron donor to promote denitrification, as well as to evaluate the role of biomass as a secondary organic C source, a flow-through experiment was carried out. Chemical and isotopic characterization was performed and coupled with mathematical modeling. Complete nitrate attenuation with no nitrite accumulation was successfully achieved after 10 days. Four different C/N molar ratios (7.0, 2.0, 1.0 and 0) were tested. Progressive decrease of the C/N ratio reduced the remaining C in the outflow and favored biomass migration, producing significant changes in dispersivity in the reactor, which favored efficient nitrate degradation. The applied mathematical model described the general trends for nitrate, ethanol, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. This model shows how the biomass present in the system is degraded to dissolved organic C (DOC en ) and becomes the main source of DOC for a C/N ratio between 1.0 and 0. The isotopic model developed for organic and inorganic carbon also describes the general trends of δ 13 C of ethanol, DOC and DIC in the outflow water. The study of the evolution of the isotopic fractionation of organic C using a Rayleigh distillation model shows the shift in the organic carbon source from the WIB to the biomass and is in agreement with the isotopic fractionation values used to calibrate the model. Isotopic fractionations (ε) of C-ethanol and C-DOC en were -1‰ and -5‰ (model) and -3.3‰ and -4.8‰ (Rayleigh), respectively. In addition, an inverse isotopic fractionation of +10‰ was observed for biomass degradation to DOC en . Overall, WIB can efficiently promote nitrate reduction in EBD treatments. The conceptual model of the organic C cycle and the developed mathematical model accurately described the chemical and isotopic transformations that occur during this induced denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy.
Yoon, Dennis J; Chen, Kevin Y; Lopes, André M; Pan, April A; Shiloach, Joseph; Mason, Anne B; Kamei, Daniel T
2017-03-07
The transferrin (Tf) trafficking pathway is a promising mechanism for use in targeted cancer therapy due to the overexpression of transferrin receptors (TfRs) on cancerous cells. We have previously developed a mathematical model of the Tf/TfR trafficking pathway to improve the efficiency of Tf as a drug carrier. By using diphtheria toxin (DT) as a model toxin, we found that mutating the Tf protein to change its iron release rate improves cellular association and efficacy of the drug. Though this is an improvement upon using wild-type Tf as the targeting ligand, conjugated toxins like DT are unfortunately still highly cytotoxic at off-target sites. In this work, we address this hurdle in cancer research by developing a mathematical model to predict the efficacy and selectivity of Tf conjugates that use an alternative toxin. For this purpose, we have chosen to study a mutant of DT, cross-reacting material 107 (CRM107). First, we developed a mathematical model of the Tf-DT trafficking pathway by extending our Tf/TfR model to include intracellular trafficking via DT and DT receptors. Using this mathematical model, we subsequently investigated the efficacy of several conjugates in cancer cells: DT and CRM107 conjugated to wild-type Tf, as well as to our engineered mutant Tf proteins (K206E/R632A Tf and K206E/R534A Tf). We also investigated the selectivity of mutant Tf-CRM107 against non-neoplastic cells. Through the use of our mathematical model, we predicted that (i) mutant Tf-CRM107 exhibits a greater cytotoxicity than wild-type Tf-CRM107 against cancerous cells, (ii) this improvement was more drastic with CRM107 conjugates than with DT conjugates, and (iii) mutant Tf-CRM107 conjugates were selective against non-neoplastic cells. These predictions were validated with in vitro cytotoxicity experiments, demonstrating that mutant Tf-CRM107 conjugates is indeed a more suitable therapeutic agent. Validation from in vitro experiments also confirmed that such whole-cell kinetic models can be useful in cancer therapeutic design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Yunhwan; Lee, Sunmi; Chu, Chaeshin; Choe, Seoyun; Hong, Saeme; Shin, Youngseo
2016-02-01
The outbreak of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) was one of the major events in South Korea in 2015. In particular, this study pays attention to formulating a mathematical model for MERS transmission dynamics and estimating transmission rates. Incidence data of MERS-CoV from the government authority was analyzed for the first aim and a mathematical model was built and analyzed for the second aim of the study. A mathematical model for MERS-CoV transmission dynamics is used to estimate the transmission rates in two periods due to the implementation of intensive interventions. Using the estimates of the transmission rates, the basic reproduction number was estimated in two periods. Due to the superspreader, the basic reproduction number was very large in the first period; however, the basic reproduction number of the second period has reduced significantly after intensive interventions. It turned out to be the intensive isolation and quarantine interventions that were the most critical factors that prevented the spread of the MERS outbreak. The results are expected to be useful to devise more efficient intervention strategies in the future.
Mathematical modelling and quantitative methods.
Edler, L; Poirier, K; Dourson, M; Kleiner, J; Mileson, B; Nordmann, H; Renwick, A; Slob, W; Walton, K; Würtzen, G
2002-01-01
The present review reports on the mathematical methods and statistical techniques presently available for hazard characterisation. The state of the art of mathematical modelling and quantitative methods used currently for regulatory decision-making in Europe and additional potential methods for risk assessment of chemicals in food and diet are described. Existing practices of JECFA, FDA, EPA, etc., are examined for their similarities and differences. A framework is established for the development of new and improved quantitative methodologies. Areas for refinement, improvement and increase of efficiency of each method are identified in a gap analysis. Based on this critical evaluation, needs for future research are defined. It is concluded from our work that mathematical modelling of the dose-response relationship would improve the risk assessment process. An adequate characterisation of the dose-response relationship by mathematical modelling clearly requires the use of a sufficient number of dose groups to achieve a range of different response levels. This need not necessarily lead to an increase in the total number of animals in the study if an appropriate design is used. Chemical-specific data relating to the mode or mechanism of action and/or the toxicokinetics of the chemical should be used for dose-response characterisation whenever possible. It is concluded that a single method of hazard characterisation would not be suitable for all kinds of risk assessments, and that a range of different approaches is necessary so that the method used is the most appropriate for the data available and for the risk characterisation issue. Future refinements to dose-response characterisation should incorporate more clearly the extent of uncertainty and variability in the resulting output.
NASA Technical Reports Server (NTRS)
1977-01-01
Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.
Sanchez-Palencia, Evariste; Lherminier, Philippe; Françoise, Jean-Pierre
2016-12-01
The present work is a contribution to the understanding of the sempiternal problem of the "burden of factor two" implied by sexual reproduction versus asexual one, as males are energy consumers not contributing to the production of offspring. We construct a deterministic mathematical model in population dynamics where a species enjoys both sexual and parthenogenetic capabilities of reproduction and lives on a limited resource. We then show how polygamy implies instability of a parthenogenetic population with a small number of sexually born males. This instability implies evolution of the system towards an attractor involving both (sexual and asexual) populations (which does not imply optimality of the population). We also exhibit the analogy with a parasite/host system.
Model-Based Design of Biochemical Microreactors
Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter
2016-01-01
Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P increases for scenarios where microcompartimentation of enzymes occurs. These results show that spatially resolved models are needed in the description of the conversion processes. Finally, the enzyme stoichiometry on the nano-beads is determined, which maximizes the production of glucose-6-phosphate. PMID:26913283
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
Choi, Kup-Sze; Chan, Tak-Yin
2015-03-01
To investigate the feasibility of using tablet device as user interface for students with upper extremity disabilities to input mathematics efficiently into computer. A touch-input system using tablet device as user interface was proposed to assist these students to write mathematics. User-switchable and context-specific keyboard layouts were designed to streamline the input process. The system could be integrated with conventional computer systems only with minor software setup. A two-week pre-post test study involving five participants was conducted to evaluate the performance of the system and collect user feedback. The mathematics input efficiency of the participants was found to improve during the experiment sessions. In particular, their performance in entering trigonometric expressions by using the touch-input system was significantly better than that by using conventional mathematics editing software with keyboard and mouse. The participants rated the touch-input system positively and were confident that they could operate at ease with more practice. The proposed touch-input system provides a convenient way for the students with hand impairment to write mathematics and has the potential to facilitate their mathematics learning. Implications for Rehabilitation Students with upper extremity disabilities often face barriers to learning mathematics which is largely based on handwriting. Conventional computer user interfaces are inefficient for them to input mathematics into computer. A touch-input system with context-specific and user-switchable keyboard layouts was designed to improve the efficiency of mathematics input. Experimental results and user feedback suggested that the system has the potential to facilitate mathematics learning for the students.
Mathematical modeling of electrical activity of uterine muscle cells.
Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine
2009-06-01
The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.
Allocation of surgical procedures to operating rooms.
Ozkarahan, I
1995-08-01
Reduction of health care costs is of paramount importance in our time. This paper is a part of the research which proposes an expert hospital decision support system for resource scheduling. The proposed system combines mathematical programming, knowledge base, and database technologies, and what is more, its friendly interface is suitable for any novice user. Operating rooms in hospitals represent big investments and must be utilized efficiently. In this paper, first a mathematical model similar to job shop scheduling models is developed. The model loads surgical cases to operating rooms by maximizing room utilization and minimizing overtime in a multiple operating room setting. Then a prototype expert system which replaces the expertise of the operations research analyst for the model, drives the modelbase, database, and manages the user dialog is developed. Finally, an overview of the sequencing procedures for operations within an operating room is also presented.
Study on dynamic performance of SOFC
NASA Astrophysics Data System (ADS)
Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai
2017-05-01
In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.
Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N; Mantalaris, Athanasios
2012-01-01
The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.
Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios
2013-01-01
The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals. PMID:24688682
Zhang, Yu-Tian; Xiao, Mei-Feng; Deng, Kai-Wen; Yang, Yan-Tao; Zhou, Yi-Qun; Zhou, Jin; He, Fu-Yuan; Liu, Wen-Long
2018-06-01
Nowadays, to research and formulate an efficiency extraction system for Chinese herbal medicine, scientists have always been facing a great challenge for quality management, so that the transitivity of Q-markers in quantitative analysis of TCM was proposed by Prof. Liu recently. In order to improve the quality of extraction from raw medicinal materials for clinical preparations, a series of integrated mathematic models for transitivity of Q-markers in quantitative analysis of TCM were established. Buyanghuanwu decoction (BYHWD) was a commonly TCMs prescription, which was used to prevent and treat the ischemic heart and brain diseases. In this paper, we selected BYHWD as an extraction experimental subject to study the quantitative transitivity of TCM. Based on theory of Fick's Rule and Noyes-Whitney equation, novel kinetic models were established for extraction of active components. Meanwhile, fitting out kinetic equations of extracted models and then calculating the inherent parameters in material piece and Q-marker quantitative transfer coefficients, which were considered as indexes to evaluate transitivity of Q-markers in quantitative analysis of the extraction process of BYHWD. HPLC was applied to screen and analyze the potential Q-markers in the extraction process. Fick's Rule and Noyes-Whitney equation were adopted for mathematically modeling extraction process. Kinetic parameters were fitted and calculated by the Statistical Program for Social Sciences 20.0 software. The transferable efficiency was described and evaluated by potential Q-markers transfer trajectory via transitivity availability AUC, extraction ratio P, and decomposition ratio D respectively. The Q-marker was identified with AUC, P, D. Astragaloside IV, laetrile, paeoniflorin, and ferulic acid were studied as potential Q-markers from BYHWD. The relative technologic parameters were presented by mathematic models, which could adequately illustrate the inherent properties of raw materials preparation and affection of Q-markers transitivity in equilibrium processing. AUC, P, D for potential Q-markers of AST-IV, laetrile, paeoniflorin, and FA were obtained, with the results of 289.9 mAu s, 46.24%, 22.35%; 1730 mAu s, 84.48%, 1.963%; 5600 mAu s, 70.22%, 0.4752%; 7810 mAu s, 24.29%, 4.235%, respectively. The results showed that the suitable Q-markers were laetrile and paeoniflorin in our study, which exhibited acceptable traceability and transitivity in the extraction process of TCMs. Therefore, these novel mathematic models might be developed as a new standard to control TCMs quality process from raw medicinal materials to product manufacturing. Copyright © 2018 Elsevier GmbH. All rights reserved.
Bove, Edward L; Migliavacca, Francesco; de Leval, Marc R; Balossino, Rossella; Pennati, Giancarlo; Lloyd, Thomas R; Khambadkone, Sachin; Hsia, Tain-Yen; Dubini, Gabriele
2008-08-01
Stage one reconstruction (Norwood operation) for hypoplastic left heart syndrome can be performed with either a modified Blalock-Taussig shunt or a right ventricle-pulmonary artery shunt. Both methods have certain inherent characteristics. It is postulated that mathematic modeling could help elucidate these differences. Three-dimensional computer models of the Blalock-Taussig shunt and right ventricle-pulmonary artery shunt modifications of the Norwood operation were developed by using the finite volume method. Conduits of 3, 3.5, and 4 mm were used in the Blalock-Taussig shunt model, whereas conduits of 4, 5, and 6 mm were used in the right ventricle-pulmonary artery shunt model. The hydraulic nets (lumped resistances, compliances, inertances, and elastances) were identical in the 2 models. A multiscale approach was adopted to couple the 3-dimensional models with the circulation net. Computer simulations were compared with postoperative catheterization data. Good correlation was found between predicted and observed data. For the right ventricle-pulmonary artery shunt modification, there was higher aortic diastolic pressure, decreased pulmonary artery pressure, lower Qp/Qs ratio, and higher coronary perfusion pressure. Mathematic modeling predicted minimal regurgitant flow in the right ventricle-pulmonary artery shunt model, which correlated with postoperative Doppler measurements. The right ventricle-pulmonary artery shunt demonstrated lower stroke work and a higher mechanical efficiency (stroke work/total mechanical energy). The close correlation between predicted and observed data supports the use of mathematic modeling in the design and assessment of surgical procedures. The potentially damaging effects of a systemic ventriculotomy in the right ventricle-pulmonary artery shunt modification of the Norwood operation have not been analyzed.
Simulation model for electron irradiated IGZO thin film transistors
NASA Astrophysics Data System (ADS)
Dayananda, G. K.; Shantharama Rai, C.; Jayarama, A.; Kim, Hyun Jae
2018-02-01
An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In-Ga-Zn-O (IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.
Measuring and modeling the oxygen profile in a nitrifying Moving Bed Biofilm Reactor.
Masić, Alma; Bengtsson, Jessica; Christensson, Magnus
2010-09-01
In this paper we determine the oxygen profile in a biofilm on suspended carriers in two ways: firstly by microelectrode measurements and secondly by a simple mathematical model. The Moving Bed Biofilm Reactor is well-established for wastewater treatment where bacteria grow as a biofilm on the protective surfaces of suspended carriers. The flat shaped BiofilmChip P was developed to allow good conditions for transport of substrates into the biofilm. The oxygen profile was measured in situ the nitrifying biofilm with a microelectrode and it was simulated with a one-dimensional mathematical model. We extended the model by adding a CSTR equation, to connect the reactor to the biofilm through the boundary conditions. We showed the dependence of the thickness of the mass transfer boundary layer on the bulk flow rate. Finally, we estimated the erosion parameter lambda to increase the concordance between the measured and simulated profiles. This lead to a simple empirical relationship between lambda and the flow rate. The data gathered by in situ microelectrode measurements can, together with the mathematical model, be used in predictive modeling and give more insight in the design of new carriers, with the ambition of making process operation more energy efficient. Copyright 2010 Elsevier Inc. All rights reserved.
Analytical approximation of the InGaZnO thin-film transistors surface potential
NASA Astrophysics Data System (ADS)
Colalongo, Luigi
2016-10-01
Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.
Schmidt, Vanessa; Baum, Katharina; Lao, Angelyn; Rateitschak, Katja; Schmitz, Yvonne; Teichmann, Anke; Wiesner, Burkhard; Petersen, Claus Munck; Nykjaer, Anders; Wolf, Jana; Wolkenhauer, Olaf; Willnow, Thomas E
2012-01-04
The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-β (Aβ) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aβ production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles.
Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease
Schmidt, Vanessa; Baum, Katharina; Lao, Angelyn; Rateitschak, Katja; Schmitz, Yvonne; Teichmann, Anke; Wiesner, Burkhard; Petersen, Claus Munck; Nykjaer, Anders; Wolf, Jana; Wolkenhauer, Olaf; Willnow, Thomas E
2012-01-01
The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-β (Aβ) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aβ production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles. PMID:21989385
A mathematical model for the iron/chromium redox battery
NASA Technical Reports Server (NTRS)
Fedkiw, P. S.; Watts, R. W.
1984-01-01
A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.
An attempt at the computer-aided management of HIV infection
NASA Astrophysics Data System (ADS)
Ida, A.; Oharu, Y.; Sankey, O.
2007-07-01
The immune system is a complex and diverse system in the human body and HIV virus disrupts and destroys it through extremely complicated but surprisingly logical process. The purpose of this paper is to make an attempt to present a method for the computer-aided management of HIV infection process by means of a mathematical model describing the dynamics of the host pathogen interaction with HIV-1. Treatments for the AIDS disease must be changed to more efficient ones in accordance with the disease progression and the status of the immune system. The level of progression and the status are represented by parameters which are governed by our mathematical model. It is then exhibited that our model is numerically stable and uniquely solvable. With this knowledge, our mathematical model for HIV disease progression is formulated and physiological interpretations are provided. The results of our numerical simulations are visualized, and it is seen that our results agree with medical aspects from the point of view of antiretroviral therapy. It is then expected that our approach will take to address practical clinical issues and will be applied to the computer-aided management of antiretroviral therapies.
Hankins, Catherine; Warren, Mitchell; Njeuhmeli, Emmanuel
2016-01-01
Over 11 million voluntary medical male circumcisions (VMMC) have been performed of the projected 20.3 million needed to reach 80% adult male circumcision prevalence in priority sub-Saharan African countries. Striking numbers of adolescent males, outside the 15-49-year-old age target, have been accessing VMMC services. What are the implications of overall progress in scale-up to date? Can mathematical modeling provide further insights on how to efficiently reach the male circumcision coverage levels needed to create and sustain further reductions in HIV incidence to make AIDS no longer a public health threat by 2030? Considering ease of implementation and cultural acceptability, decision makers may also value the estimates that mathematical models can generate of immediacy of impact, cost-effectiveness, and magnitude of impact resulting from different policy choices. This supplement presents the results of mathematical modeling using the Decision Makers' Program Planning Tool Version 2.0 (DMPPT 2.0), the Actuarial Society of South Africa (ASSA2008) model, and the age structured mathematical (ASM) model. These models are helping countries examine the potential effects on program impact and cost-effectiveness of prioritizing specific subpopulations for VMMC services, for example, by client age, HIV-positive status, risk group, and geographical location. The modeling also examines long-term sustainability strategies, such as adolescent and/or early infant male circumcision, to preserve VMMC coverage gains achieved during rapid scale-up. The 2016-2021 UNAIDS strategy target for VMMC is an additional 27 million VMMC in high HIV-prevalence settings by 2020, as part of access to integrated sexual and reproductive health services for men. To achieve further scale-up, a combination of evidence, analysis, and impact estimates can usefully guide strategic planning and funding of VMMC services and related demand-creation strategies in priority countries. Mid-course corrections now can improve cost-effectiveness and scale to achieve the impact needed to help turn the HIV pandemic on its head within 15 years.
Model of Rescue Units Control in Event of Potential Emergency
NASA Astrophysics Data System (ADS)
Kalach, A. V.; Kravchenko, A. S.; Soloviev, A. S.; Nesterov, A. A.
2018-05-01
A problem of organization and efficiency improvement of the system controlling the rescue units of the Ministry of Civil Defense and Emergency Response of the Russian Federation considered using the example of potential hydrological emergency, a model of a system for controlling rescue units in the event of potential hydrological emergency. The problem solution is based on mathematical models of operational control of rescue units and assessment of a hydrological situation of area flooding.
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xingang; Gao, Yujie; Ding, Hui
2013-10-01
The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaponenko, A. M.; Kagramanova, A. A.
2017-11-01
The opportunity of application of Stirling engine with non-conventional and renewable sources of energy. The advantage of such use. The resulting expression for the thermal efficiency of the Stirling engine. It is shown that the work per cycle is proportional to the quantity of matter, and hence the pressure of the working fluid, the temperature difference and, to a lesser extent, depends on the expansion coefficient; efficiency of ideal Stirling cycle coincides with the efficiency of an ideal engine working on the Carnot cycle, which distinguishes a Stirling cycle from the cycles of Otto and Diesel underlying engine. It has been established that the four input parameters, the only parameter which can be easily changed during operation, and which effectively affects the operation of the engine is the phase difference. Dependence of work per cycle of the phase difference, called the phase characteristic, visually illustrates mode of operation of Stirling engine. The mathematical model of the cycle of Schmidt and the analysis of operation of Stirling engine in the approach of Schmidt with the aid of numerical analysis. To conduct numerical experiments designed program feature in the language MathLab. The results of numerical experiments are illustrated by graphical charts.
Groth, Kevin M; Granata, Kevin P
2008-06-01
Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.
Energy regeneration model of self-consistent field of electron beams into electric power*
NASA Astrophysics Data System (ADS)
Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.
2016-04-01
We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.
Modeling and Reduction With Applications to Semiconductor Processing
1999-01-01
smoothies ,” as they kept my energy level high without resorting to coffee (the beverage of choice, it seems, for graduate students). My advisor gave me all...with POC data, and balancing approach. . . . . . . . . . . . . . . . 312 xii LIST OF FIGURES 1.1 General state-space model reduction methodology ...reduction problem, then, is one of finding a systematic methodology within a given mathematical framework to produce an efficient or optimal trade-off of
Mathematical Modeling of Radiofrequency Ablation for Varicose Veins
Choi, Sun Young; Kwak, Byung Kook
2014-01-01
We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one. PMID:25587351
NASA Astrophysics Data System (ADS)
Cristallini, Achille
2016-07-01
A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.
Mathematical and computational model for the analysis of micro hybrid rocket motor
NASA Astrophysics Data System (ADS)
Stoia-Djeska, Marius; Mingireanu, Florin
2012-11-01
The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.
A mathematical model for the movement of food bolus of varying viscosities through the esophagus
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra
2011-09-01
This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.
NASA Astrophysics Data System (ADS)
Coralli, Alberto; Villela de Miranda, Hugo; Espiúca Monteiro, Carlos Felipe; Resende da Silva, José Francisco; Valadão de Miranda, Paulo Emílio
2014-12-01
Solid oxide fuel cells are globally recognized as a very promising technology in the area of highly efficient electricity generation with a low environmental impact. This technology can be advantageously implemented in many situations in Brazil and it is well suited to the use of ethanol as a primary energy source, an important feature given the highly developed Brazilian ethanol industry. In this perspective, a simplified mathematical model is developed for a fuel cell and its balance of plant, in order to identify the optimal system structure and the most convenient values for the operational parameters, with the aim of maximizing the global electric efficiency. In this way it is discovered the best operational configuration for the desired application, which is the distributed generation in the concession area of the electricity distribution company Elektro. The data regarding this configuration are required for the continuation of the research project, i.e. the development of a prototype, a cost analysis of the developed system and a detailed perspective of the market opportunities in Brazil.
Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W
2018-01-01
Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p < .001; Adjusted R = .51). All independent variables were significant predictors with positive association. Science and mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.
Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.
Oskay, Kürşad Oğuz; Kul, Mehmet
2015-01-01
This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.
Modeling Non-homologous End Joining
NASA Technical Reports Server (NTRS)
Li, Yongfeng
2013-01-01
Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed
Workbook, Basic Mathematics and Wastewater Processing Calculations.
ERIC Educational Resources Information Center
New York State Dept. of Environmental Conservation, Albany.
This workbook serves as a self-learning guide to basic mathematics and treatment plant calculations and also as a reference and source book for the mathematics of sewage treatment and processing. In addition to basic mathematics, the workbook discusses processing and process control, laboratory calculations and efficiency calculations necessary in…
Optimising resource management in neurorehabilitation.
Wood, Richard M; Griffiths, Jeff D; Williams, Janet E; Brouwers, Jakko
2014-01-01
To date, little research has been published regarding the effective and efficient management of resources (beds and staff) in neurorehabilitation, despite being an expensive service in limited supply. To demonstrate how mathematical modelling can be used to optimise service delivery, by way of a case study at a major 21 bed neurorehabilitation unit in the UK. An automated computer program for assigning weekly treatment sessions is developed. Queue modelling is used to construct a mathematical model of the hospital in terms of referral submissions to a waiting list, admission and treatment, and ultimately discharge. This is used to analyse the impact of hypothetical strategic decisions on a variety of performance measures and costs. The project culminates in a hybridised model of these two approaches, since a relationship is found between the number of therapy hours received each week (scheduling output) and length of stay (queuing model input). The introduction of the treatment scheduling program has substantially improved timetable quality (meaning a better and fairer service to patients) and has reduced employee time expended in its creation by approximately six hours each week (freeing up time for clinical work). The queuing model has been used to assess the effect of potential strategies, such as increasing the number of beds or employing more therapists. The use of mathematical modelling has not only optimised resources in the short term, but has allowed the optimality of longer term strategic decisions to be assessed.
Calculation of skiving cutter blade
NASA Astrophysics Data System (ADS)
Xu, Lei; Lao, Qicheng; Shang, Zhiyi
2018-05-01
The gear skiving method is a kind of gear machining technology with high efficiency and high precision. According to the method of gear machining, a method for calculating the blade of skiving cutter in machining an involute gear is proposed. Based on the principle of meshing gear and the kinematic relationship between the machined flank and the gear skiving, the mathematical model of skiving for machining the internal gear is built and the gear tooth surface is obtained by solving the meshing equation. The mathematical model of the gear blade curve of the skiving cutter is obtained by choosing the proper rake face and the cutter tooth surface for intersection. Through the analysis of the simulation of the skiving gear, the feasibility and correctness of the skiving cutter blade design are verified.
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
Eigenvalue Tests and Distributions for Small Sample Order Determination for Complex Wishart Matrices
1994-08-13
theoretic order determination criteria for ARMA(p, q) models can be expressed in the form of equation 4.2. The word ARIMA should not be a distractor...subjectivity is not necessarily bad. It enables us to build tractable models and efficiently achieve reasonable results. The charge of "subjectivity" lodged...signal processing studies because it simplifies the mathematics involved and it is not a bad model for a wide range of situations. Wooding [293] is
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
The usefulness of vee-trough concentrators in improving the efficiency and reducing the cost of collectors assembled from evacuated tube receivers was studied in the vee-trough/vacuum tube collector (VTVTC) project. The VTVTC was analyzed rigorously and various mathematical models were developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized FEP Teflon. Tests were run at temperatures ranging from 95 to 180 C. Vee-trough collector efficiencies of 35 to 40% were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Predicted daily useful heat collection and efficiency values are presented for a year's duration of operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with a complete economic evaluation.
Simulation of Electrical Characteristics of a Solar Panel
NASA Astrophysics Data System (ADS)
Obukhov, S.; Plotnikov, I.; Kryuchkova, M.
2016-06-01
The fast-growing photovoltaic system market leads to the necessity of the informed choice of major energy components and optimization of operating conditions in order to improve energy efficiency. Development of mathematical models of the main components of photovoltaic systems to ensure their comprehensive study is an urgent problem of improving and practical using of the technology of electrical energy production. The paper presents a mathematical model of the solar module implemented in the popular software MATLAB/Simulink. Equivalent circuit of the solar cell with a diode parallel without derived resistance is used for modelling. The serie8s resistance of the solar module is calculated by Newton's iterative method using the data of its technical specifications. It ensures high precision of simulation. Model validity was evaluated by the well-known technical characteristics of the module Solarex MSX 60. The calculation results of the experiment showed that the obtained current-voltage and current-watt characteristics of the model are compatible with those of the manufacturer.
NASA Astrophysics Data System (ADS)
Markov, Detelin
2012-11-01
This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.
Soundoff: Mathematics Is Getting Easier.
ERIC Educational Resources Information Center
Usiskin, Zalman
1984-01-01
Teaching mathematics in hard ways, rather than using easier methods or technology, is described. Employing the most efficient means possible to solve a problem is the essence of good mathematics, rather than wasting time in practicing obsolete skills. (MNS)
Trajectory-based morphological operators: a model for efficient image processing.
Jimeno-Morenilla, Antonio; Pujol, Francisco A; Molina-Carmona, Rafael; Sánchez-Romero, José L; Pujol, Mar
2014-01-01
Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.
Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen
2010-04-01
This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.
A Necessary Condition for Coexistence of Autocatalytic Replicators in a Prebiotic Environment
Hernandez, Andres F.; Grover, Martha A.
2013-01-01
A necessary, but not sufficient, mathematical condition for the coexistence of short replicating species is presented here. The mathematical condition is obtained for a prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling, variable reaction order and a fixed monomer inlet flow with two replicator types and two monomer types. An extensive exploration of the parameter space in the model validates the robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets meeting the condition and half of those exhibiting sustained coexistence. The results show that it is possible to generate a condition of coexistence, where two replicators sustain a linear growth simultaneously for a wide variety of chemistries, under an appropriate environment. The presence of multiple monomer types is critical to sustaining the coexistence of multiple replicator types. PMID:25369813
A necessary condition for coexistence of autocatalytic replicators in a prebiotic environment.
Hernandez, Andres F; Grover, Martha A
2013-07-24
A necessary, but not sufficient, mathematical condition for the coexistence of short replicating species is presented here. The mathematical condition is obtained for a prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling, variable reaction order and a fixed monomer inlet flow with two replicator types and two monomer types. An extensive exploration of the parameter space in the model validates the robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets meeting the condition and half of those exhibiting sustained coexistence. The results show that it is possible to generate a condition of coexistence, where two replicators sustain a linear growth simultaneously for a wide variety of chemistries, under an appropriate environment. The presence of multiple monomer types is critical to sustaining the coexistence of multiple replicator types.
Signal transmission competing with noise in model excitable brains
NASA Astrophysics Data System (ADS)
Marro, J.; Mejias, J. F.; Pinamonti, G.; Torres, J. J.
2013-01-01
This is a short review of recent studies in our group on how weak signals may efficiently propagate in a system with noise-induced excitation-inhibition competition which adapts to the activity at short-time scales and thus induces excitable conditions. Our numerical results on simple mathematical models should hold for many complex networks in nature, including some brain cortical areas. In particular, they serve us here to interpret available psycho-technical data.
Gerasimov, Gennady
2016-09-01
The efficiency of the electron beam treatment of industrial flue gases for the removal of sulfur and nitrogen oxides was investigated as applied to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) using methods of mathematical modeling. The proposed kinetic model of the process includes mechanism of PCDD/Fs decomposition caused by their interaction with OH radicals generated in the flue gases under the electron beam (EB) irradiation as well as PCDD/Fs formation from unburned aromatic compounds. The model allows to predict the main features of the process, which are observed in pilot plant installations, as well as to evaluate the process efficiency. The results of calculations are compared with the available experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stamatakos, Georgios S; Dionysiou, Dimitra D
2009-10-21
The tremendous rate of accumulation of experimental and clinical knowledge pertaining to cancer dictates the development of a theoretical framework for the meaningful integration of such knowledge at all levels of biocomplexity. In this context our research group has developed and partly validated a number of spatiotemporal simulation models of in vivo tumour growth and in particular tumour response to several therapeutic schemes. Most of the modeling modules have been based on discrete mathematics and therefore have been formulated in terms of rather complex algorithms (e.g. in pseudocode and actual computer code). However, such lengthy algorithmic descriptions, although sufficient from the mathematical point of view, may render it difficult for an interested reader to readily identify the sequence of the very basic simulation operations that lie at the heart of the entire model. In order to both alleviate this problem and at the same time provide a bridge to symbolic mathematics, we propose the introduction of the notion of hypermatrix in conjunction with that of a discrete operator into the already developed models. Using a radiotherapy response simulation example we demonstrate how the entire model can be considered as the sequential application of a number of discrete operators to a hypermatrix corresponding to the dynamics of the anatomic area of interest. Subsequently, we investigate the operators' commutativity and outline the "summarize and jump" strategy aiming at efficiently and realistically address multilevel biological problems such as cancer. In order to clarify the actual effect of the composite discrete operator we present further simulation results which are in agreement with the outcome of the clinical study RTOG 83-02, thus strengthening the reliability of the model developed.
A simulation-based approach for solving assembly line balancing problem
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu
2017-09-01
Assembly line balancing problem is directly related to the production efficiency, since the last century, the problem of assembly line balancing was discussed and still a lot of people are studying on this topic. In this paper, the problem of assembly line is studied by establishing the mathematical model and simulation. Firstly, the model of determing the smallest production beat under certain work station number is anysized. Based on this model, the exponential smoothing approach is applied to improve the the algorithm efficiency. After the above basic work, the gas stirling engine assembly line balancing problem is discussed as a case study. Both two algorithms are implemented using the Lingo programming environment and the simulation results demonstrate the validity of the new methods.
NASA Astrophysics Data System (ADS)
andreev, A. N.; Kolesnichenko, D. A.
2017-12-01
The possibility of increasing the energy efficiency of the production cycle in a roller bed is briefly reviewed and justified. The sequence diagram of operation of the electrical drive in a roller bed is analyzed, and the possible increase in the energy efficiency is calculated. A method for energy saving is described for the application of a frequency-controlled asynchronous electrical drive of drive rollers in a roller bed with an increased capacitor capacity in a dc link. A fine mathematical model is developed to describe the behavior of the electrical drive during the deceleration of a roller bed. An experimental setup is created and computer simulation and physical modeling are performed. The basic information flows of the general hierarchical automatic control system of an enterprise are described and determined with allowance for the proposed method of increasing the energy efficiency.
Research on Mathematical Animation Using Pascal Animation as an Example
ERIC Educational Resources Information Center
Weng, Ting-Sheng; Yang, Der-Ching
2017-01-01
Most students thinking mathematics is a difficult subject. This study aims to enhance students' motivation and efficiency in learning mathematics. This study developed 3D animation on the binomial theorem with historical stories of mathematics as the plot. It also examined the effect of animation on students' learning willingness and…
ERIC Educational Resources Information Center
Anderson, Stephen A.
2010-01-01
This paper summarizes an action research project to develop a math screening instrument that would be effective (valid and reliable) and efficient (time for administration). An instrument was developed after review of the mathematics assessment and mathematics disabilities literature. The instrument was administered to kindergarten, first, and…
ERIC Educational Resources Information Center
Connelly, E. M.; And Others
A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is described. Ultimately, this approach will allow automatic measurement of pilot performance in a flight simulator or from recorded in-flight data. An efficient method of representing performance data within a computer is…
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
Mathematical model of highways network optimization
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Concurrent processing simulation of the space station
NASA Technical Reports Server (NTRS)
Gluck, R.; Hale, A. L.; Sunkel, John W.
1989-01-01
The development of a new capability for the time-domain simulation of multibody dynamic systems and its application to the study of a large angle rotational maneuvers of the Space Station is described. The effort was divided into three sequential tasks, which required significant advancements of the state-of-the art to accomplish. These were: (1) the development of an explicit mathematical model via symbol manipulation of a flexible, multibody dynamic system; (2) the development of a methodology for balancing the computational load of an explicit mathematical model for concurrent processing; and (3) the implementation and successful simulation of the above on a prototype Custom Architectured Parallel Processing System (CAPPS) containing eight processors. The throughput rate achieved by the CAPPS operating at only 70 percent efficiency, was 3.9 times greater than that obtained sequentially by the IBM 3090 supercomputer simulating the same problem. More significantly, analysis of the results leads to the conclusion that the relative cost effectiveness of concurrent vs. sequential digital computation will grow substantially as the computational load is increased. This is a welcomed development in an era when very complex and cumbersome mathematical models of large space vehicles must be used as substitutes for full scale testing which has become impractical.
Na/beta-alumina/NaAlCl4, Cl2/C circulating cell
NASA Technical Reports Server (NTRS)
Cherng, Jing-Yih; Bennion, Douglas N.
1987-01-01
A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.
Physical and mathematical cochlear models
NASA Astrophysics Data System (ADS)
Lim, Kian-Meng
2000-10-01
The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity, and non-linear effects such as compression of response with stimulus level, two-tone suppression and the generation of harmonic and distortion products.
Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa
2017-01-01
Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316
NASA Astrophysics Data System (ADS)
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-03-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The study used a convergent mixed methods design, in which quantitative and qualitative data were collected concurrently to answer the research questions (Creswell and Plano Clark 2011). Videos were used to capture each child's interactions with the virtual manipulative mathematics apps, document learning performance and efficiency, and record children's interactions with the affordances within the apps. Quantitized video data answered the research question on differences in children's learning performance and efficiency between pre- and post-assessments. A Wilcoxon matched pairs signed-rank test was used to explore these data. Qualitative video data was used to identify affordance access by children when using each app, identifying 95 potential helping and hindering affordances among the 18 apps. The results showed that there were changes in children's learning performance and efficiency when children accessed a helping or a hindering affordance. Helping affordances were more likely to be accessed by children who progressed between the pre- and post-assessments, and the same affordances had helping and hindering effects for different children. These results have important implications for the design of virtual manipulative mathematics learning apps.
A review of mathematical modeling and simulation of controlled-release fertilizers.
Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N
2018-02-10
Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.
On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model
Paiva, Juliana Pereira Lisboa Mohallem; Paiva, Henrique Mohallem; Esposito, Elisa; Morais, Michelle Manfrini
2016-01-01
This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved. PMID:27875589
Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong
2016-05-01
A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.
A computable expression of closure to efficient causation.
Mossio, Matteo; Longo, Giuseppe; Stewart, John
2009-04-07
In this paper, we propose a mathematical expression of closure to efficient causation in terms of lambda-calculus; we argue that this opens up the perspective of developing principled computer simulations of systems closed to efficient causation in an appropriate programming language. An important implication of our formulation is that, by exhibiting an expression in lambda-calculus, which is a paradigmatic formalism for computability and programming, we show that there are no conceptual or principled problems in realizing a computer simulation or model of closure to efficient causation. We conclude with a brief discussion of the question whether closure to efficient causation captures all relevant properties of living systems. We suggest that it might not be the case, and that more complex definitions could indeed create crucial some obstacles to computability.
Iwata, Michio; Miyawaki-Kuwakado, Atsuko; Yoshida, Erika; Komori, Soichiro; Shiraishi, Fumihide
2018-02-02
In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks. Copyright © 2018 Elsevier Inc. All rights reserved.
Mathematical modeling of a single stage ultrasonically assisted distillation process.
Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W
2015-05-01
The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie
2016-04-01
The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate biogeochemical processes in the sediments. The performance of the respective mathematical representations in constraining the importance of carbon pump feedbacks on marine biogeochemical dynamics is then compared and evaluated under different extreme climate scenarios (e.g. OAE2, Eocene) using the Earth system model 'GENIE' and proxy records. The compiled mathematical descriptions and the model results underline the lack of a complete and mechanistic framework to represent the short-term carbon cycle in most EMICs which seriously limits the ability of these models to constrain the response of the ocean's carbon cycle to past and in particular future climate change. In conclusion, this presentation will critically evaluate the approaches currently used in marine biogeochemical modelling and outline key research directions concerning model development in the future.
Optimizing Cubature for Efficient Integration of Subspace Deformations
An, Steven S.; Kim, Theodore; James, Doug L.
2009-01-01
We propose an efficient scheme for evaluating nonlinear subspace forces (and Jacobians) associated with subspace deformations. The core problem we address is efficient integration of the subspace force density over the 3D spatial domain. Similar to Gaussian quadrature schemes that efficiently integrate functions that lie in particular polynomial subspaces, we propose cubature schemes (multi-dimensional quadrature) optimized for efficient integration of force densities associated with particular subspace deformations, particular materials, and particular geometric domains. We support generic subspace deformation kinematics, and nonlinear hyperelastic materials. For an r-dimensional deformation subspace with O(r) cubature points, our method is able to evaluate subspace forces at O(r2) cost. We also describe composite cubature rules for runtime error estimation. Results are provided for various subspace deformation models, several hyperelastic materials (St.Venant-Kirchhoff, Mooney-Rivlin, Arruda-Boyce), and multimodal (graphics, haptics, sound) applications. We show dramatically better efficiency than traditional Monte Carlo integration. CR Categories: I.6.8 [Simulation and Modeling]: Types of Simulation—Animation, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling G.1.4 [Mathematics of Computing]: Numerical Analysis—Quadrature and Numerical Differentiation PMID:19956777
CFD studies on biomass thermochemical conversion.
Wang, Yiqun; Yan, Lifeng
2008-06-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
CFD Studies on Biomass Thermochemical Conversion
Wang, Yiqun; Yan, Lifeng
2008-01-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
An analytically linearized helicopter model with improved modeling accuracy
NASA Technical Reports Server (NTRS)
Jensen, Patrick T.; Curtiss, H. C., Jr.; Mckillip, Robert M., Jr.
1991-01-01
An analytically linearized model for helicopter flight response including rotor blade dynamics and dynamic inflow, that was recently developed, was studied with the objective of increasing the understanding, the ease of use, and the accuracy of the model. The mathematical model is described along with a description of the UH-60A Black Hawk helicopter and flight test used to validate the model. To aid in utilization of the model for sensitivity analysis, a new, faster, and more efficient implementation of the model was developed. It is shown that several errors in the mathematical modeling of the system caused a reduction in accuracy. These errors in rotor force resolution, trim force and moment calculation, and rotor inertia terms were corrected along with improvements to the programming style and documentation. Use of a trim input file to drive the model is examined. Trim file errors in blade twist, control input phase angle, coning and lag angles, main and tail rotor pitch, and uniform induced velocity, were corrected. Finally, through direct comparison of the original and corrected model responses to flight test data, the effect of the corrections on overall model output is shown.
ERIC Educational Resources Information Center
Schoppek, Wolfgang; Tulis, Maria
2010-01-01
The fluency of basic arithmetical operations is a precondition for mathematical problem solving. However, the training of skills plays a minor role in contemporary mathematics instruction. The authors proposed individualization of practice as a means to improve its efficiency, so that the time spent with the training of skills is minimized. As a…
Tractable Experiment Design via Mathematical Surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian J.
This presentation summarizes the development and implementation of quantitative design criteria motivated by targeted inference objectives for identifying new, potentially expensive computational or physical experiments. The first application is concerned with estimating features of quantities of interest arising from complex computational models, such as quantiles or failure probabilities. A sequential strategy is proposed for iterative refinement of the importance distributions used to efficiently sample the uncertain inputs to the computational model. In the second application, effective use of mathematical surrogates is investigated to help alleviate the analytical and numerical intractability often associated with Bayesian experiment design. This approach allows formore » the incorporation of prior information into the design process without the need for gross simplification of the design criterion. Illustrative examples of both design problems will be presented as an argument for the relevance of these research problems.« less
NASA Astrophysics Data System (ADS)
Mahalakshmi; Murugesan, R.
2018-04-01
This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.
Persistence in a single species CSTR model with suspended flocs and wall attached biofilms.
Mašić, Alma; Eberl, Hermann J
2012-04-01
We consider a mathematical model for a bacterial population in a continuously stirred tank reactor (CSTR) with wall attachment. This is a modification of the Freter model, in which we model the sessile bacteria as a microbial biofilm. Our analysis indicates that the results of the algebraically simpler original Freter model largely carry over. In a computational simulation study, we find that the vast majority of bacteria in the reactor will eventually be sessile. However, we also find that suspended biomass is relatively more efficient in removing substrate from the reactor than biofilm bacteria.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1983-01-01
A tentative mathematical computer model of the microfissuring process during electron beam welding of Inconel 718 has been constructed. Predictions of the model are compatible with microfissuring tests on eight 0.25-in. thick test plates. The model takes into account weld power and speed, weld loss (efficiency), parameters and material characteristics. Besides the usual material characteristics (thermal and strength properties), a temperature and grain size dependent critical fracture strain is required by the model. The model is based upon fundamental physical theory (i.e., it is not a mere data interpolation system), and can be extended to other metals by suitable parameter changes.
The Applied Mathematics for Power Systems (AMPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less
NASA Astrophysics Data System (ADS)
Nemchinova, N. V.; Tyutrin, A. A.; Salov, V. M.
2018-03-01
The silicon production process in the electric arc reduction furnaces (EAF) is studied using pelletized charge as an additive to the standard on the basis of the generated mathematical model. The results obtained due to the model will contribute to the analysis of the charge components behavior during melting with the achievement of optimum final parameters of the silicon production process. The authors proposed using technogenic waste as a raw material for the silicon production in a pelletized form using liquid glass and aluminum production dust from the electrostatic precipitators as a binder. The method of mathematical modeling with the help of the ‘Selector’ software package was used as a basis for the theoretical study. A model was simulated with the imitation of four furnace temperature zones and a crystalline silicon phase (25 °C). The main advantage of the created model is the ability to analyze the behavior of all burden materials (including pelletized charge) in the carbothermic process. The behavior analysis is based on the thermodynamic probability data of the burden materials interactions in the carbothermic process. The model accounts for 17 elements entering the furnace with raw materials, electrodes and air. The silicon melt, obtained by the modeling, contained 91.73 % wt. of the target product. The simulation results showed that in the use of the proposed combined charge, the recovery of silicon reached 69.248 %, which is in good agreement with practical data. The results of the crystalline silicon chemical composition modeling are compared with the real silicon samples of chemical analysis data, which showed the results of convergence. The efficiency of the mathematical modeling methods in the studying of the carbothermal silicon obtaining process with complex interphase transformations and the formation of numerous intermediate compounds using a pelletized charge as an additive to the traditional one is shown.
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Analysis of satellite multibeam antennas’ performances
NASA Astrophysics Data System (ADS)
Sterbini, Guido
2006-07-01
In this work, we discuss the application of frequency reuse's concept in satellite communications, stressing the importance for a design-oriented mathematical model as first step for dimensioning antenna systems. We consider multibeam reflector antennas. The first part of the work consists in reorganizing, making uniform and completing the models already developed in the scientific literature. In doing it, we adopt the multidimensional Taylor development formalism. For computing the spillover efficiency of the antenna, we consider different feed's illuminations and we propose a completely original mathematical model, obtained by the interpolation of simulator results. The second part of the work is dedicated to characterize the secondary far field pattern. Combining this model together with the information on the cellular coverage geometry is possible to evaluate the isolation and the minimum directivity on the cell. As third part, in order to test the model and its analysis and synthesis capabilities, we implement a software tool that helps the designer in the rapid tuning of the fundamental quantities for the optimization of the performance: the proposed model shows an optimum agreement with the results of the simulations.
Combinatorial solutions to integrable hierarchies
NASA Astrophysics Data System (ADS)
Kazarian, M. E.; Lando, S. K.
2015-06-01
This paper reviews modern approaches to the construction of formal solutions to integrable hierarchies of mathematical physics whose coefficients are answers to various enumerative problems. The relationship between these approaches and the combinatorics of symmetric groups and their representations is explained. Applications of the results to the construction of efficient computations in problems related to models of quantum field theories are described. Bibliography: 34 titles.
Automatic phase control in solar power satellite systems
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Kantak, A. V.
1978-01-01
Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry.
An investigation of a mathematical model for atmospheric absorption spectra
NASA Technical Reports Server (NTRS)
Niple, E. R.
1979-01-01
A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.
Bayesian Inference: with ecological applications
Link, William A.; Barker, Richard J.
2010-01-01
This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.
Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.
ERIC Educational Resources Information Center
Carr, Robin; And Others
1995-01-01
Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…
Hankins, Catherine; Warren, Mitchell
2016-01-01
Over 11 million voluntary medical male circumcisions (VMMC) have been performed of the projected 20.3 million needed to reach 80% adult male circumcision prevalence in priority sub-Saharan African countries. Striking numbers of adolescent males, outside the 15-49-year-old age target, have been accessing VMMC services. What are the implications of overall progress in scale-up to date? Can mathematical modeling provide further insights on how to efficiently reach the male circumcision coverage levels needed to create and sustain further reductions in HIV incidence to make AIDS no longer a public health threat by 2030? Considering ease of implementation and cultural acceptability, decision makers may also value the estimates that mathematical models can generate of immediacy of impact, cost-effectiveness, and magnitude of impact resulting from different policy choices. This supplement presents the results of mathematical modeling using the Decision Makers’ Program Planning Tool Version 2.0 (DMPPT 2.0), the Actuarial Society of South Africa (ASSA2008) model, and the age structured mathematical (ASM) model. These models are helping countries examine the potential effects on program impact and cost-effectiveness of prioritizing specific subpopulations for VMMC services, for example, by client age, HIV-positive status, risk group, and geographical location. The modeling also examines long-term sustainability strategies, such as adolescent and/or early infant male circumcision, to preserve VMMC coverage gains achieved during rapid scale-up. The 2016–2021 UNAIDS strategy target for VMMC is an additional 27 million VMMC in high HIV-prevalence settings by 2020, as part of access to integrated sexual and reproductive health services for men. To achieve further scale-up, a combination of evidence, analysis, and impact estimates can usefully guide strategic planning and funding of VMMC services and related demand-creation strategies in priority countries. Mid-course corrections now can improve cost-effectiveness and scale to achieve the impact needed to help turn the HIV pandemic on its head within 15 years. PMID:27783613
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-05-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-03-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
Uchida, Thomas K.; Sherman, Michael A.; Delp, Scott L.
2015-01-01
Impacts are instantaneous, computationally efficient approximations of collisions. Current impact models sacrifice important physical principles to achieve that efficiency, yielding qualitative and quantitative errors when applied to simultaneous impacts in spatial multibody systems. We present a new impact model that produces behaviour similar to that of a detailed compliant contact model, while retaining the efficiency of an instantaneous method. In our model, time and configuration are fixed, but the impact is resolved into distinct compression and expansion phases, themselves comprising sliding and rolling intervals. A constrained optimization problem is solved for each interval to compute incremental impulses while respecting physical laws and principles of contact mechanics. We present the mathematical model, algorithms for its practical implementation, and examples that demonstrate its effectiveness. In collisions involving materials of various stiffnesses, our model can be more than 20 times faster than integrating through the collision using a compliant contact model. This work extends the use of instantaneous impact models to scientific and engineering applications with strict accuracy requirements, where compliant contact models would otherwise be required. An open-source implementation is available in Simbody, a C++ multibody dynamics library widely used in biomechanical and robotic applications. PMID:27547093
Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.
Mushaben, Madaline; Urie, Russell; Flake, Tanner; Jaffe, Michael; Rege, Kaushal; Heys, Jeffrey
2018-02-01
Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The subtle business of model reduction for stochastic chemical kinetics
NASA Astrophysics Data System (ADS)
Gillespie, Dan T.; Cao, Yang; Sanft, Kevin R.; Petzold, Linda R.
2009-02-01
This paper addresses the problem of simplifying chemical reaction networks by adroitly reducing the number of reaction channels and chemical species. The analysis adopts a discrete-stochastic point of view and focuses on the model reaction set S1⇌S2→S3, whose simplicity allows all the mathematics to be done exactly. The advantages and disadvantages of replacing this reaction set with a single S3-producing reaction are analyzed quantitatively using novel criteria for measuring simulation accuracy and simulation efficiency. It is shown that in all cases in which such a model reduction can be accomplished accurately and with a significant gain in simulation efficiency, a procedure called the slow-scale stochastic simulation algorithm provides a robust and theoretically transparent way of implementing the reduction.
The subtle business of model reduction for stochastic chemical kinetics.
Gillespie, Dan T; Cao, Yang; Sanft, Kevin R; Petzold, Linda R
2009-02-14
This paper addresses the problem of simplifying chemical reaction networks by adroitly reducing the number of reaction channels and chemical species. The analysis adopts a discrete-stochastic point of view and focuses on the model reaction set S(1)<=>S(2)-->S(3), whose simplicity allows all the mathematics to be done exactly. The advantages and disadvantages of replacing this reaction set with a single S(3)-producing reaction are analyzed quantitatively using novel criteria for measuring simulation accuracy and simulation efficiency. It is shown that in all cases in which such a model reduction can be accomplished accurately and with a significant gain in simulation efficiency, a procedure called the slow-scale stochastic simulation algorithm provides a robust and theoretically transparent way of implementing the reduction.
NASA Technical Reports Server (NTRS)
Akin, Lee S.; Townsend, Dennis P.
1989-01-01
This paper develops the mathematical relations for the Virtual Kinetic Model as an improvement over the vectorial model developed earlier. The model solution described provides the most energy efficient means of cooling gears, i.e., it requires the least pressure or pumping power to distribute the coolant onto the tooth surface. Further, this nozzle orientation allows impingement to the root of the tooth if needed and provides the most cooling control when compared to into-mesh and out-of-mesh cooling.
NASA Technical Reports Server (NTRS)
Akin, L. S.; Townsend, D. P.
1989-01-01
This paper develops the mathematical relations for the Virtual Kinetic Model as an improvement over the vectorial model developed earlier. The model solution described provides the most energy efficient means of cooling gears, i.e., it requires the least pressure or pumping power to distribute the coolant onto the tooth surface. Further, this nozzle orientation allows impingement to the root of the tooth if needed and provides the most cooling control when compared to into-mesh and out-of-mesh cooling.
Sims, Lee B; Frieboes, Hermann B; Steinbach-Rankins, Jill M
2018-01-01
A variety of drug-delivery platforms have been employed to deliver therapeutic agents across cervicovaginal mucus (CVM) and the vaginal mucosa, offering the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract (FRT). Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, polymeric NPs represent a promising option that has shown improved distribution through the CVM. These NPs are typically fabricated from nontoxic, non-inflammatory, US Food and Drug Administration-approved polymers that improve biocompatibility. This review summarizes recent experimental studies that have evaluated NP transport in the FRT, and highlights research areas that more thoroughly and efficiently inform polymeric NP design, including mathematical modeling. An overview of the in vitro, ex vivo, and in vivo NP studies conducted to date - whereby transport parameters are determined, extrapolated, and validated - is presented first. The impact of different NP design features on transport through the FRT is summarized, and gaps that exist due to the limitations of iterative experimentation alone are identified. The potential of mathematical modeling to complement the characterization and evaluation of diffusion and transport of delivery vehicles and active agents through the CVM and mucosa is discussed. Lastly, potential advancements combining experimental and mathematical knowledge are suggested to inform next-generation NP designs, such that infections in the FRT may be more effectively treated.
The comparative hydrodynamics of rapid rotation by predatory appendages.
McHenry, M J; Anderson, P S L; Van Wassenbergh, S; Matthews, D G; Summers, A P; Patek, S N
2016-11-01
Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling and phylogenetic comparative analyses. We found that computationally efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly measured spearing species, Coronis scolopendra The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order of magnitude smaller, yet experienced values of drag-induced torque similar to those of a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer, which uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In summary, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages. © 2016. Published by The Company of Biologists Ltd.
Dendritic trafficking faces physiologically critical speed-precision tradeoffs
Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.; ...
2016-12-30
Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less
Dendritic trafficking faces physiologically critical speed-precision tradeoffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.
Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less
Fluidized bed combustor modeling
NASA Technical Reports Server (NTRS)
Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.
1977-01-01
A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.
Egg production forecasting: Determining efficient modeling approaches.
Ahmad, H A
2011-12-01
Several mathematical or statistical and artificial intelligence models were developed to compare egg production forecasts in commercial layers. Initial data for these models were collected from a comparative layer trial on commercial strains conducted at the Poultry Research Farms, Auburn University. Simulated data were produced to represent new scenarios by using means and SD of egg production of the 22 commercial strains. From the simulated data, random examples were generated for neural network training and testing for the weekly egg production prediction from wk 22 to 36. Three neural network architectures-back-propagation-3, Ward-5, and the general regression neural network-were compared for their efficiency to forecast egg production, along with other traditional models. The general regression neural network gave the best-fitting line, which almost overlapped with the commercial egg production data, with an R(2) of 0.71. The general regression neural network-predicted curve was compared with original egg production data, the average curves of white-shelled and brown-shelled strains, linear regression predictions, and the Gompertz nonlinear model. The general regression neural network was superior in all these comparisons and may be the model of choice if the initial overprediction is managed efficiently. In general, neural network models are efficient, are easy to use, require fewer data, and are practical under farm management conditions to forecast egg production.
Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver
Zhang, Bo; Lu, Benzhuo; Cheng, Xiaolin; ...
2013-01-01
This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numericalmore » results.« less
NASA Astrophysics Data System (ADS)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards modelers that have used approximate methods in radiation transport. In this context, different, presumably simpler, equations (such as diffusion) are used in order to make a significant gain on the efficiency axis. We will describe in some detail the most promising approaches to approximate 3D radiative transfer in clouds. Somewhat paradoxically, and in spite of its importance in the above-mentioned applications, approximate radiative transfer modeling lags significantly behind its exact counterpart because the required mathematical and computational culture is essentially alien to the native atmospheric radiation community. I3RC is receiving enough funding from NASA/HQ and DOE/ARM for its essential operations out of NASA/GSFC. However, this does not cover the time and effort of any of the participants; so only existing models were entered. At present, none of inherently approximate methods are represented, only severe truncations of some exact methods. We therefore welcome the Math/Geo initiative at NSF which should enable the proper consortia of experts in atmospheric radiation and in applied mathematics to fill an important niche.
Circadian rhythms of performance: new trends
NASA Technical Reports Server (NTRS)
Carrier, J.; Monk, T. H.
2000-01-01
This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented.
Phase Transitions in a Model for Social Learning via the Internet
NASA Astrophysics Data System (ADS)
Bordogna, Clelia M.; Albano, Ezequiel V.
Based on the concepts of educational psychology, sociology and statistical physics, a mathematical model for a new type of social learning process that takes place when individuals interact via the Internet is proposed and studied. The noise of the interaction (misunderstandings, lack of well organized participative activities, etc.) dramatically restricts the number of individuals that can be efficiently in mutual contact and drives phase transitions between ``ordered states'' such as the achievements of the individuals are satisfactory and ``disordered states'' with negligible achievements.
Computational fluid dynamics combustion analysis evaluation
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.
1992-01-01
This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.
Concerning modeling of double-stage water evaporation cooling
NASA Astrophysics Data System (ADS)
Shatskiy, V. P.; Fedulova, L. I.; Gridneva, I. V.
2018-03-01
The matter of need for setting technical norms for production, as well as acceptable microclimate parameters, such as temperature and humidity, at the work place, remains urgent. Use of certain units should be economically sound and that should be taken into account for construction, assembly, operation, technological, and environmental requirements. Water evaporation coolers are simple to maintain, environmentally friendly, and quite cheap, but the development of the most efficient solutions requires mathematical modeling of the heat and mass transfer processes that take place in them.
ERIC Educational Resources Information Center
Yilmaz, Suha; Tekin-Dede, Ayse
2016-01-01
Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…
ERIC Educational Resources Information Center
Tinungki, Georgina Maria
2015-01-01
The importance of learning mathematics can not be separated from its role in all aspects of life. Communicating ideas by using mathematics language is even more practical, systematic, and efficient. In order to overcome the difficulties of students who have insufficient understanding of mathematics material, good communications should be built in…
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1979-01-01
The Vee-Trough/Vacuum Tube Collector (VTVTC) aimed to improve the efficiency and reduce the cost of collectors assembled from evacuated tube receivers. The VTVTC was analyzed rigorously and a mathematical model was developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized GEB Teflon. Tests were run at temperatures ranging from 95 to 180 C during the months of April, May, June, July and August 1977. Vee-trough collector efficiencies of 35-40 per cent were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Test data covering a complete day are presented for selected dates throughout the test season. Predicted daily useful heat collection and efficiency values are presented for a year's duration at operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with an economic evaluation.
Where Are the Quadratic's Complex Roots?
ERIC Educational Resources Information Center
Páll-Szabó, Ágnes Orsolya
2015-01-01
A picture is worth more than a thousand words--in mathematics too. Many students fail in learning mathematics because, in some cases, teachers do not offer the necessary visualization. Nowadays technology overcomes this problem: computer aided instruction is one of the most efficients methods in teaching mathematics. In this article we try to…
Who Is Afraid of Math? Two Sources of Genetic Variance for Mathematical Anxiety
ERIC Educational Resources Information Center
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A.; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W.; Lyons, Ian M.; Petrill, Stephen A.
2014-01-01
Background: Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem solving…
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
ERIC Educational Resources Information Center
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
ERIC Educational Resources Information Center
Schwerdtfeger, Sara
2017-01-01
This study examined the differences in knowledge of mathematical modeling between a group of elementary preservice teachers and a group of elementary inservice teachers. Mathematical modeling has recently come to the forefront of elementary mathematics classrooms because of the call to add mathematical modeling tasks in mathematics classes through…
Biofiltration of isopentane in peat and compost packed beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.; Govind, R.
1997-05-01
Commercially available biofiltration systems have used natural bioactive materials in packed beds due to low media cost and easy availability. Detailed understanding and modeling of biofiltration systems are lacking in existing literature. Experimental studies on the isopentane treatment in air using peat- and compost-packed beds were conducted with inlet isopentane concentrations of 360 to 960 ppmv, and empty-bed gas-phase residence times of 2 to 10 min. High removal efficiencies (>90%) were achieved at low contaminant concentrations (<500 ppmv) and large empty-bed gas-phase residence times (>8 min). For both peat and compost biofilters, there was an optimal water content that gavemore » the highest removal efficiency. For higher water content, mass transfer of isopentane through the liquid phase controlled the biofiltration removal efficiency. At low water content, irreversible changes in the bioactivity of peat and compost occurred, resulting in an irrecoverable loss of removal efficiency. Increases in biofilter bed temperature from 25 to 40 C improved the removal efficiency. A mathematical model incorporating the effect of water content and temperature was developed to describe the packed-bed biofilter performance. Model predictions agreed closely with experimental data.« less
A Case Study of Teachers' Development of Well-Structured Mathematical Modelling Activities
ERIC Educational Resources Information Center
Stohlmann, Micah; Maiorca, Cathrine; Allen, Charlie
2017-01-01
This case study investigated how three teachers developed mathematical modelling activities integrated with content standards through participation in a course on mathematical modelling. The class activities involved experiencing a mathematical modelling activity, reading and rating example mathematical modelling activities, reading articles about…
Klados, Manousos A.; Kanatsouli, Kassia; Antoniou, Ioannis; Babiloni, Fabio; Tsirka, Vassiliki; Bamidis, Panagiotis D.; Micheloyannis, Sifis
2013-01-01
The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known and published. In this study we have used graph theory to compare the brain network organization of these two core systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient information processing. The different mathematical stimuli provoked changes in the graph parameters of different frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it’s local and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the spatial distribution of the network’s weights revealed more prominent connections in frontoparietal regions, revealing the working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha’s network was more dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the cerebral cortex, especially for the difficult mathematics. PMID:23990992
Klados, Manousos A; Kanatsouli, Kassia; Antoniou, Ioannis; Babiloni, Fabio; Tsirka, Vassiliki; Bamidis, Panagiotis D; Micheloyannis, Sifis
2013-01-01
The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known and published. In this study we have used graph theory to compare the brain network organization of these two core systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient information processing. The different mathematical stimuli provoked changes in the graph parameters of different frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it's local and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the spatial distribution of the network's weights revealed more prominent connections in frontoparietal regions, revealing the working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha's network was more dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the cerebral cortex, especially for the difficult mathematics.
Potter, Adam W; Blanchard, Laurie A; Friedl, Karl E; Cadarette, Bruce S; Hoyt, Reed W
2017-02-01
Physiological models provide useful summaries of complex interrelated regulatory functions. These can often be reduced to simple input requirements and simple predictions for pragmatic applications. This paper demonstrates this modeling efficiency by tracing the development of one such simple model, the Heat Strain Decision Aid (HSDA), originally developed to address Army needs. The HSDA, which derives from the Givoni-Goldman equilibrium body core temperature prediction model, uses 16 inputs from four elements: individual characteristics, physical activity, clothing biophysics, and environmental conditions. These inputs are used to mathematically predict core temperature (T c ) rise over time and can estimate water turnover from sweat loss. Based on a history of military applications such as derivation of training and mission planning tools, we conclude that the HSDA model is a robust integration of physiological rules that can guide a variety of useful predictions. The HSDA model is limited to generalized predictions of thermal strain and does not provide individualized predictions that could be obtained from physiological sensor data-driven predictive models. This fully transparent physiological model should be improved and extended with new findings and new challenging scenarios. Published by Elsevier Ltd.
Extension of Liouville Formalism to Postinstability Dynamics
NASA Technical Reports Server (NTRS)
Zak, Michail
2003-01-01
A mathematical formalism has been developed for predicting the postinstability motions of a dynamic system governed by a system of nonlinear equations and subject to initial conditions. Previously, there was no general method for prediction and mathematical modeling of postinstability behaviors (e.g., chaos and turbulence) in such a system. The formalism of nonlinear dynamics does not afford means to discriminate between stable and unstable motions: an additional stability analysis is necessary for such discrimination. However, an additional stability analysis does not suggest any modifications of a mathematical model that would enable the model to describe postinstability motions efficiently. The most important type of instability that necessitates a postinstability description is associated with positive Lyapunov exponents. Such an instability leads to exponential growth of small errors in initial conditions or, equivalently, exponential divergence of neighboring trajectories. The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.
Variational Approach in the Theory of Liquid-Crystal State
NASA Astrophysics Data System (ADS)
Gevorkyan, E. V.
2018-03-01
The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.
A New Mathematical Framework for Design Under Uncertainty
2016-05-05
blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and
Mathematical model of ambulance resources in Saint-Petersburg
NASA Astrophysics Data System (ADS)
Shavidze, G. G.; Balykina, Y. E.; Lejnina, E. A.; Svirkin, M. V.
2016-06-01
Emergency medical system is one of the main elements in city infrastructure. The article contains analysis of existing system of ambulance resource distribution. Paper considers the idea of using multiperiodicity as a tool to increase the efficiency of the Emergency Medical Services. The program developed in programming environment Matlab helps to evaluate the changes in the functioning of the system of emergency medical service.
An efficient code for the simulation of nonhydrostatic stratified flow over obstacles
NASA Technical Reports Server (NTRS)
Pihos, G. G.; Wurtele, M. G.
1981-01-01
The physical model and computational procedure of the code is described in detail. The code is validated in tests against a variety of known analytical solutions from the literature and is also compared against actual mountain wave observations. The code will receive as initial input either mathematically idealized or discrete observational data. The form of the obstacle or mountain is arbitrary.
Mathematical Modelling Approach in Mathematics Education
ERIC Educational Resources Information Center
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
ERIC Educational Resources Information Center
Lowe, James; Carter, Merilyn; Cooper, Tom
2018-01-01
Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…
Efficiency optimization of wireless power transmission systems for active capsule endoscopes.
Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu
2011-10-01
Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.
NASA Astrophysics Data System (ADS)
Shahbari, Juhaina Awawdeh
2018-07-01
The current study examines whether the engagement of mathematics teachers in modelling activities and subsequent changes in their conceptions about these activities affect their beliefs about mathematics. The sample comprised 52 mathematics teachers working in small groups in four modelling activities. The data were collected from teachers' Reports about features of each activity, interviews and questionnaires on teachers' beliefs about mathematics. The findings indicated changes in teachers' conceptions about the modelling activities. Most teachers referred to the first activity as a mathematical problem but emphasized only the mathematical notions or the mathematical operations in the modelling process; changes in their conceptions were gradual. Most of the teachers referred to the fourth activity as a mathematical problem and emphasized features of the whole modelling process. The results of the interviews indicated that changes in the teachers' conceptions can be attributed to structure of the activities, group discussions, solution paths and elicited models. These changes about modelling activities were reflected in teachers' beliefs about mathematics. The quantitative findings indicated that the teachers developed more constructive beliefs about mathematics after engagement in the modelling activities and that the difference was significant, however there was no significant difference regarding changes in their traditional beliefs.
An objective function exploiting suboptimal solutions in metabolic networks
2013-01-01
Background Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network. PMID:24088221
Mohanty, Chitralekha; Zielinska-Chomej, Katarzyna; Edgren, Margareta; Hirayama, Ryoichi; Murakami, Takeshi; Lind, Bengt; Toma-Dasu, Iuliana
2014-06-01
The use of ion radiation therapy is growing due to the continuously increasing positive clinical experience obtained. Therefore, there is a high interest in radio-biological experiments comparing the relative efficiency in cell killing of ions and photons as photons are currently the main radiation modality used for cancer treatment. This comparison is particularly important since the treatment planning systems (TPSs) used at the main ion therapy Centers make use of parameters describing the cellular response to photons, respectively ions, determined in vitro. It was, therefore, the aim of this article to compare the effects of high linear energy transfer (LET) ion radiation with low LET photons and determine whether the cellular response to low LET could predict the response to high LET irradiation. Clonogenic cell survival data of five tumor cell lines irradiated with different ion beams of similar, clinically-relevant, LET were studied in relation to response to low LET photons. Two mathematical models were used to fit the data, the repairable-conditionally repairable damage (RCR) model and the linear quadratic (LQ) model. The results indicate that the relative biological efficiency of the high LET radiation assessed with the RCR model could be predicted based only on the response to the low LET irradiation. The particular features of the RCR model indicate that tumor cells showing a large capacity for repairing the damage will have the larger benefit from radiation therapy with ion beams. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Synthetic Ecology of Microbes: Mathematical Models and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zomorrodi, Ali R.; Segre, Daniel
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
NASA Astrophysics Data System (ADS)
Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.
2018-03-01
The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.
Working Characteristics of Variable Intake Valve in Compressed Air Engine
Yu, Qihui; Shi, Yan; Cai, Maolin
2014-01-01
A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536
Working characteristics of variable intake valve in compressed air engine.
Yu, Qihui; Shi, Yan; Cai, Maolin
2014-01-01
A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.
Synthetic Ecology of Microbes: Mathematical Models and Applications
Zomorrodi, Ali R.; Segre, Daniel
2015-11-11
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation
NASA Technical Reports Server (NTRS)
Walker, Gilbert H.; Heinbockel, John H.
1987-01-01
Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.
Mathematical modelling of cyclic pressure swing adsorption processes
NASA Astrophysics Data System (ADS)
Skvortsov, S. A.; Akulinin, E. I.; Golubyatnikov, O. O.; Dvoretsky, D. S.; Dvoretsky, S. I.
2018-05-01
The paper discusses the results of a numerical analysis of the properties and regimes of the adsorption air separation and oxygen concentration process with a purity of ∼ 40-60%, carried out in a 2-adsorption vacuum-pressure plant with a granular zeolite adsorbent 13X with a productivity of 1.6 · 10-5 m3/s. Computational experiments were carried out using the developed mathematical model and the influence of temperature, pressure, reflux ratio, the duration of the adsorption and desorption stages, the harmonic fluctuations of the inlet pressure during the adsorption stage and the outlet pressure during the desorption stage on the kinetics, and the efficiency of the air separation process by the PSA method were investigated. It is established that the specially organized harmonic fluctuations of the inlet pressure at the stage of adsorption and outlet pressure during the desorption stage lead to an increase in the purity of product oxygen by 4% (vol.).
NASA Astrophysics Data System (ADS)
Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun
2018-03-01
This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.
Improvement of automatic control system for high-speed current collectors
NASA Astrophysics Data System (ADS)
Sidorov, O. A.; Goryunov, V. N.; Golubkov, A. S.
2018-01-01
The article considers the ways of regulation of pantographs to provide quality and reliability of current collection at high speeds. To assess impact of regulation was proposed integral criterion of the quality of current collection, taking into account efficiency and reliability of operation of the pantograph. The study was carried out using mathematical model of interaction of pantograph and catenary system, allowing to assess contact force and intensity of arcing at the contact zone at different movement speeds. The simulation results allowed us to estimate the efficiency of different methods of regulation of pantographs and determine the best option.
NASA Astrophysics Data System (ADS)
Papelniuk, Oksana
2017-10-01
The author studies innovative activity of enterprises and carries out the classification of conditions and factors of construction enterprises’ innovative activity, and conducts systematization of specific features of this innovative activity. On the basis of statistical data on structure and dynamics of innovations the author carries out the research with the use of methods of economic-mathematical modelling in order to offer the approach which will allow construction enterprises to define the directions of innovative activity for achievement of a resource-saving and energy efficiency in construction sector.
NASA Astrophysics Data System (ADS)
Barkanov, E.; Beschetnikov, D.; Lvov, G.
2015-01-01
A mathematical model for the contact interaction of a cylindrical pipe with a composite band during its repair is constructed. A system of governing equations of the contact problem is formulated by using the Timoshenko theory of shells. An analysis of possible solutions is carried out for various combinations of geometric and elastic properties of shells. The possibility of pretension of a prepreg in order to improve the efficiency of repair is considered. The numerical results obtained allow one to establish the desired level of pretension for various repair situations.
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
Analysis and Evaluation of Parameters Determining Maximum Efficiency of Fish Protection
NASA Astrophysics Data System (ADS)
Khetsuriani, E. D.; Kostyukov, V. P.; Khetsuriani, T. E.
2017-11-01
The article is concerned with experimental research findings. The efficiency of fish fry protection from entering water inlets is the main criterion of any fish protection facility or device. The research was aimed to determine an adequate mathematical model E = f(PCT, Vp, α), where PCT, Vp and α are controlled factors influencing the process of fish fry protection. The result of the processing of experimental data was an adequate regression model. We determined the maximum of fish protection Emax=94,21 and the minimum of optimization function Emin=44,41. As a result of the statistical processing of experimental data we obtained adequate dependences for determining an optimal rotational speed of tip and fish protection efficiency. The analysis of fish protection efficiency dependence E% = f(PCT, Vp, α) allowed the authors to recommend the following optimized operating modes for it: the maximum fish protection efficiency is achieved at the process pressure PCT=3 atm, stream velocity Vp=0,42 m/s and nozzle inclination angle α=47°49’. The stream velocity Vp has the most critical influence on fish protection efficiency. The maximum efficiency of fish protection is obtained at the tip rotational speed of 70.92 rpm.
The stabilizing role of the Sabbath in pre-monarchic Israel: a mathematical model.
Livni, Joseph; Stone, Lewi
2015-03-01
The three monotheistic cultures have many common institutions and some of them germinated in pre-monarchic Israel. Reasonably, the essential institutions were in place at that starting point; this work explores the possibility that the Sabbath is one of these institutions. Our mathematical examination points to the potential cultural, civic, and social role of the weekly Sabbath, that is, the Sabbath institution, in controlling deviation from social norms. It begins with an analogy between spread of transgression (defined as lack of conformity with social norms) and of biological infection. Borrowing well-known mathematical methods, we derive solution sets of social equilibrium and study their social stability. The work shows how a weekly Sabbath could in theory enhance social resilience in comparison with a similar assembly with a more natural and longer period, say between New Moon and Full Moon. The examination reveals that an efficient Sabbath institution has the potential to ensure a stable organization and suppress occasional appearances of transgression from cultural norms and boundaries. The work suggests the existence of a sharp threshold governed by the "Basic Sabbath Number ש0"-a critical observance of the Sabbath, or large enough ש0, is required to ensure suppression of transgression. Subsequently, the model is used to explore an interesting question: how old is the Sabbath? The work is interdisciplinary, combining anthropological concepts with mathematical analysis and with archaeological parallels in regards to the findings.
Ranking of options of real estate use by expert assessments mathematical processing
NASA Astrophysics Data System (ADS)
Lepikhina, O. Yu; Skachkova, M. E.; Mihaelyan, T. A.
2018-05-01
The article is devoted to the development of the real estate assessment concept. In conditions of multivariate using of the real estate method based on calculating, the integral indicator of each variant’s efficiency is proposed. In order to calculate weights of criteria of the efficiency expert method, Analytic hierarchy process and its mathematical support are used. The method allows fulfilling ranking of alternative types of real estate use in dependence of their efficiency. The method was applied for one of the land parcels located on Primorsky district in Saint Petersburg.
The 24-Hour Mathematical Modeling Challenge
ERIC Educational Resources Information Center
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
ERIC Educational Resources Information Center
Cowan, Richard; Powell, Daisy
2014-01-01
Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…
Methodological Potential of Computer Experiment in Teaching Mathematics at University
ERIC Educational Resources Information Center
Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.
2017-01-01
The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…
Wang, Chong; Sun, Qun; Wahab, Magd Abdel; Zhang, Xingyu; Xu, Limin
2015-09-01
Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frontiers of finance: evolution and efficient markets.
Farmer, J D; Lo, A W
1999-08-31
In this review article, we explore several recent advances in the quantitative modeling of financial markets. We begin with the Efficient Markets Hypothesis and describe how this controversial idea has stimulated a number of new directions of research, some focusing on more elaborate mathematical models that are capable of rationalizing the empirical facts, others taking a completely different tack in rejecting rationality altogether. One of the most promising directions is to view financial markets from a biological perspective and, specifically, within an evolutionary framework in which markets, instruments, institutions, and investors interact and evolve dynamically according to the "law" of economic selection. Under this view, financial agents compete and adapt, but they do not necessarily do so in an optimal fashion. Evolutionary and ecological models of financial markets is truly a new frontier whose exploration has just begun.
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Pinto, Brian
2017-12-01
Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.
Frontiers of finance: Evolution and efficient markets
Farmer, J. Doyne; Lo, Andrew W.
1999-01-01
In this review article, we explore several recent advances in the quantitative modeling of financial markets. We begin with the Efficient Markets Hypothesis and describe how this controversial idea has stimulated a number of new directions of research, some focusing on more elaborate mathematical models that are capable of rationalizing the empirical facts, others taking a completely different tack in rejecting rationality altogether. One of the most promising directions is to view financial markets from a biological perspective and, specifically, within an evolutionary framework in which markets, instruments, institutions, and investors interact and evolve dynamically according to the “law” of economic selection. Under this view, financial agents compete and adapt, but they do not necessarily do so in an optimal fashion. Evolutionary and ecological models of financial markets is truly a new frontier whose exploration has just begun. PMID:10468547
Tuning Parameters in Heuristics by Using Design of Experiments Methods
NASA Technical Reports Server (NTRS)
Arin, Arif; Rabadi, Ghaith; Unal, Resit
2010-01-01
With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.
Mathematical Modeling of Electrodynamics Near the Surface of Earth and Planetary Water Worlds
NASA Technical Reports Server (NTRS)
Tyler, Robert H.
2017-01-01
An interesting feature of planetary bodies with hydrospheres is the presence of an electrically conducting shell near the global surface. This conducting shell may typically lie between relatively insulating rock, ice, or atmosphere, creating a strong constraint on the flow of large-scale electric currents. All or parts of the shell may be in fluid motion relative to main components of the rotating planetary magnetic field (as well as the magnetic fields due to external bodies), creating motionally-induced electric currents that would not otherwise be present. As such, one may expect distinguishing features in the types of electrodynamic processes that occur, as well as an opportunity for imposing specialized mathematical methods that efficiently address this class of application. The purpose of this paper is to present and discuss such specialized methods. Specifically, thin-shell approximations for both the electrodynamics and fluid dynamics are combined to derive simplified mathematical formulations describing the behavior of these electric currents as well as their associated electric and magnetic fields. These simplified formulae allow analytical solutions featuring distinct aspects of the thin-shell electrodynamics in idealized cases. A highly efficient numerical method is also presented that is useful for calculations under inhomogeneous parameter distributions. Finally, the advantages as well as limitations in using this mathematical approach are evaluated. This evaluation is presented primarily for the generic case of bodies with water worlds or other thin spherical conducting shells. More specific discussion is given for the case of Earth, but also Europa and other satellites with suspected oceans.
Multiscale Multilevel Approach to Solution of Nanotechnology Problems
NASA Astrophysics Data System (ADS)
Polyakov, Sergey; Podryga, Viktoriia
2018-02-01
The paper is devoted to a multiscale multilevel approach for the solution of nanotechnology problems on supercomputer systems. The approach uses the combination of continuum mechanics models and the Newton dynamics for individual particles. This combination includes three scale levels: macroscopic, mesoscopic and microscopic. For gas-metal technical systems the following models are used. The quasihydrodynamic system of equations is used as a mathematical model at the macrolevel for gas and solid states. The system of Newton equations is used as a mathematical model at the mesoand microlevels; it is written for nanoparticles of the medium and larger particles moving in the medium. The numerical implementation of the approach is based on the method of splitting into physical processes. The quasihydrodynamic equations are solved by the finite volume method on grids of different types. The Newton equations of motion are solved by Verlet integration in each cell of the grid independently or in groups of connected cells. In the framework of the general methodology, four classes of algorithms and methods of their parallelization are provided. The parallelization uses the principles of geometric parallelism and the efficient partitioning of the computational domain. A special dynamic algorithm is used for load balancing the solvers. The testing of the developed approach was made by the example of the nitrogen outflow from a balloon with high pressure to a vacuum chamber through a micronozzle and a microchannel. The obtained results confirm the high efficiency of the developed methodology.
Approximation concepts for efficient structural synthesis
NASA Technical Reports Server (NTRS)
Schmit, L. A., Jr.; Miura, H.
1976-01-01
It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
NASA Astrophysics Data System (ADS)
Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen
2017-07-01
Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.
Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian
2016-01-01
We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584
The systems biology simulation core algorithm
2013-01-01
Background With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases. Results This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database. Conclusions The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net. PMID:23826941
NASA Astrophysics Data System (ADS)
Fokina, Mariya
2017-11-01
The economy of Russia is based around the mineral-raw material complex to the highest degree. The mining industry is a prioritized and important area. Given the high competitiveness of businesses in this sector, increasing the efficiency of completed work and manufactured products will become a central issue. Improvement of planning and management in this sector should be based on multivariant study and the optimization of planning decisions, the appraisal of their immediate and long-term results, taking the dynamic of economic development into account. All of this requires the use of economic mathematic models and methodsApplying an economic-mathematic model to determine optimal ore mine production capacity, we receive a figure of 4,712,000 tons. The production capacity of the Uchalinsky ore mine is 1560 thousand tons, and the Uzelginsky ore mine - 3650 thousand. Conducting a corresponding analysis of the production of OAO "Uchalinsky Gok", an optimal production plan was received: the optimal production of copper - 77961,4 rubles; the optimal production of zinc - 17975.66 rubles. The residual production volume of the two main ore mines of OAO "UGOK" is 160 million tons of ore.
The knowledge instinct, cognitive algorithms, modeling of language and cultural evolution
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.
2008-04-01
The talk discusses mechanisms of the mind and their engineering applications. The past attempts at designing "intelligent systems" encountered mathematical difficulties related to algorithmic complexity. The culprit turned out to be logic, which in one way or another was used not only in logic rule systems, but also in statistical, neural, and fuzzy systems. Algorithmic complexity is related to Godel's theory, a most fundamental mathematical result. These difficulties were overcome by replacing logic with a dynamic process "from vague to crisp," dynamic logic. It leads to algorithms overcoming combinatorial complexity, and resulting in orders of magnitude improvement in classical problems of detection, tracking, fusion, and prediction in noise. I present engineering applications to pattern recognition, detection, tracking, fusion, financial predictions, and Internet search engines. Mathematical and engineering efficiency of dynamic logic can also be understood as cognitive algorithm, which describes fundamental property of the mind, the knowledge instinct responsible for all our higher cognitive functions: concepts, perception, cognition, instincts, imaginations, intuitions, emotions, including emotions of the beautiful. I present our latest results in modeling evolution of languages and cultures, their interactions in these processes, and role of music in cultural evolution. Experimental data is presented that support the theory. Future directions are outlined.
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
Mathematics, anxiety, and the brain.
Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer
2017-05-24
Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.
Flow Induced by Ex-Vivo Nasal Cilia: Developing an Index of Dyskinesis
NASA Astrophysics Data System (ADS)
Grotberg, James; Bottier, Mathieu; Pena-Fernandez, Marta; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, Andre; Escudier, Estelle; Papon, Jean-Francois; Filoche, Marcel; Louis, Bruno
2017-11-01
Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivomeasurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the steady velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. This compares well to a 2D mathematical model for ciliary fluid propulsion using an envelope model. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress is proposed as a new index for characterizing the efficiency of ciliary beating and diagnosing dyskinesis.
Gandjour, Afschin; Lauterbach, Karl Wilhelm
2005-01-01
Several strategies have shown to be effective at enhancing the implementation of research findings in daily practice. These implementation strategies improve the delivery of preventive or therapeutic care by successfully educating health professionals. On the other hand, little is known about the costs of these implementation strategies. The goal of this article is to present a mathematical model that predicts implementation costs by using published data. As an important feature, the model portrays the relationship between the degree of treatment underuse and implementation costs. Two application examples of outreach programs for the prevention of stroke and coronary disease analyze the relevance of implementation costs with respect to the cost-effectiveness ratio and total costs. They demonstrate that implementation costs may have little impact on the cost-effectiveness ratio but may nevertheless be relevant to a 3rd-party payer who needs to stay within the budget and ensure that care is provided to a large underserved population. The model and its consideration of implementation costs may contribute to a more efficient use of health care resources.
Busatto, Carlos; Pesoa, Juan; Helbling, Ignacio; Luna, Julio; Estenoz, Diana
2018-01-30
Poly(lactic-co-glycolic acid) (PLGA) microparticles containing progesterone were prepared by the solvent extraction/evaporation and microfluidic techniques. Microparticles were characterized by their size distribution, encapsulation efficiency, morphology and thermal properties. The effect of particle size, polydispersity and polymer degradation on the in vitro release of the hormone was studied. A triphasic release profile was observed for larger microparticles, while smaller microspheres showed a biphasic release profile. This behavior is related to the fact that complete drug release was achieved in a few days for smaller microparticles, during which polymer degradation effects are still negligible. A mathematical model was developed that predicts the progesterone release profiles from different-sized PLGA microspheres. The model takes into account both the dissolution and diffusion of the drug in the polymeric matrix as well as the autocatalytic effect of polymer degradation. The model was adjusted and validated with novel experimental data. Simulation results are in very good agreement with experimental results. Copyright © 2017 Elsevier B.V. All rights reserved.
BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.
Müssel, Christoph; Hopfensitz, Martin; Kestler, Hans A
2010-05-15
As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines. BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors. The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0. hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online.
On Mathematical Modeling Of Quantum Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achuthan, P.; Dept. of Mathematics, Indian Institute of Technology, Madras, 600 036; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM,more » though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.« less
NASA Astrophysics Data System (ADS)
Khusna, H.; Heryaningsih, N. Y.
2018-01-01
The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.
Eaton, Jeffrey W.; Johnson, Leigh F.; Salomon, Joshua A.; Bärnighausen, Till; Bendavid, Eran; Bershteyn, Anna; Bloom, David E.; Cambiano, Valentina; Fraser, Christophe; Hontelez, Jan A. C.; Humair, Salal; Klein, Daniel J.; Long, Elisa F.; Phillips, Andrew N.; Pretorius, Carel; Stover, John; Wenger, Edward A.; Williams, Brian G.; Hallett, Timothy B.
2012-01-01
Background Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. Methods and Findings Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. Conclusions Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact. Please see later in the article for the Editors' Summary PMID:22802730
Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.
2010-01-01
The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808
Numerical investigation of cryogen re-gasification in a plate heat exchanger
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz
2017-12-01
The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.
ERIC Educational Resources Information Center
Zbiek, Rose Mary; Conner, Annamarie
2006-01-01
Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…
An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers
ERIC Educational Resources Information Center
Thrasher, Emily Plunkett
2016-01-01
The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…
Method of Harmonic Balance in Full-Scale-Model Tests of Electrical Devices
NASA Astrophysics Data System (ADS)
Gorbatenko, N. I.; Lankin, A. M.; Lankin, M. V.
2017-01-01
Methods for determining the weber-ampere characteristics of electrical devices, one of which is based on solution of direct problem of harmonic balance and the other on solution of inverse problem of harmonic balance by the method of full-scale-model tests, are suggested. The mathematical model of the device is constructed using the describing function and simplex optimization methods. The presented results of experimental applications of the method show its efficiency. The advantage of the method is the possibility of application for nondestructive inspection of electrical devices in the processes of their production and operation.
Modeling an integrated hospital management planning problem using integer optimization approach
NASA Astrophysics Data System (ADS)
Sitepu, Suryati; Mawengkang, Herman; Irvan
2017-09-01
Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.
Optimization Model for Capacity Management and Bed Scheduling for Hospital
NASA Astrophysics Data System (ADS)
Sitepu, Suryati; Mawengkang, Herman; Husein, Ismail
2018-01-01
Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing.. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.
A case study of cost-efficient staffing under annualized hours.
van der Veen, Egbert; Hans, Erwin W; Veltman, Bart; Berrevoets, Leo M; Berden, Hubert J J M
2015-09-01
We propose a mathematical programming formulation that incorporates annualized hours and shows to be very flexible with regard to modeling various contract types. The objective of our model is to minimize salary cost, thereby covering workforce demand, and using annualized hours. Our model is able to address various business questions regarding tactical workforce planning problems, e.g., with regard to annualized hours, subcontracting, and vacation planning. In a case study for a Dutch hospital two of these business questions are addressed, and we demonstrate that applying annualized hours potentially saves up to 5.2% in personnel wages annually.
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
Model Evaluation To Measuring Efficiencies of ICT Development In Indonesia Region Using DEA
NASA Astrophysics Data System (ADS)
Efendi, Syahril; Fadly Syahputra, M.; Anggia Muchtar, M.
2018-01-01
ICT Pura or digital city is a program designed by the Indonesian government with the main objective is to determine the level of readiness of each district and city in each province in the era of digital economy. It is necessarily to evaluate whether a city or a region that was successfully managing ICT better than other city and significantly contributes to the communities and living systems. Data envelopment analysis (DEA) is a well known technique to estimate efficiency and returns to scale through the construction of a best practice frontier, based on non-parametric mathematical programming approach. This paper addresses DEA BCC method to get index of efficiencies for all region in Indonesia covered by ICT Pura. Numerical result is given.
Solar micro-power system for self-powered wireless sensor nodes
NASA Astrophysics Data System (ADS)
He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei
2008-10-01
In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.
Reflective Modeling in Teacher Education.
ERIC Educational Resources Information Center
Shealy, Barry E.
This paper describes mathematical modeling activities from a secondary mathematics teacher education course taken by fourth-year university students. Experiences with mathematical modeling are viewed as important in helping teachers develop a more intuitive understanding of mathematics, generate and evaluate mathematical interpretations, and…
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
ERIC Educational Resources Information Center
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
ERIC Educational Resources Information Center
Jonsson, Bert; Kulaksiz, Yagmur C.; Lithner, Johan
2016-01-01
Two separate studies, Jonsson et al. ("J. Math Behav." 2014;36: 20-32) and Karlsson Wirebring et al. ("Trends Neurosci Educ." 2015;4(1-2):6-14), showed that learning mathematics using creative mathematical reasoning and constructing their own solution methods can be more efficient than if students use algorithmic reasoning and…
Changing Our Perspective on Space: Place Mathematics as a Human Endeavour
ERIC Educational Resources Information Center
Owens, Kay
2010-01-01
This paper collates some of the systematic ways that different cultural groups refer to space. In some cases, space is more strongly identified in terms of place than in school Indo-European mathematics approaches. The affinity to place does not reduce the efficient, abstract, mathematical system behind the reference but it does strengthen its…
ERIC Educational Resources Information Center
Jones, Steven R.
2018-01-01
Many mathematical concepts may have prototypical images associated with them. While prototypes can be beneficial for efficient thinking or reasoning, they may also have self-attributes that may impact reasoning about the concept. It is essential that mathematics educators understand these prototype images in order to fully recognize their benefits…
Exact solutions for sporadic acceleration of cosmic rays
NASA Technical Reports Server (NTRS)
Cowsik, R.
1985-01-01
The steady state spectra of cosmic rays which are subject to a sporadic acceleration process, wherein the gain in energy in each encounter is a finite fraction of the particle energy are discussed. They are derived from a mathematical model which includes the possibility of energy dependent leakage of cosmic rays from the galaxy. Comparison with observations allows limits to be placed on the frequency and efficiency of such encounters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padaki, S.; Drzal, L.T.
The consolidation process in composites made out of powder impregnated tapes differs from that of other material forms because of the distribution of fiber and matrix in the unconsolidated state. A number of factors (e.g. time, pressure, particle size, volume fraction and viscosity) affect the efficiency of the consolidation of these tapes. This paper describes the development of a mathematical process model that describes the best set of parameters required for the consolidation of a given prepreg tape.
2013-03-21
10 2.3 Time Series Response Data ................................................................................. 12 2.4 Comparison of Response...to 12 evaluating the efficiency of the parameter estimates. In the past, the most popular form of response surface design used the D-optimality...as well. A model can refer to almost anything in math , statistics, or computer science. It can be any “physical, mathematical, or logical
NASA Astrophysics Data System (ADS)
Zhang, Bo; Cui, Qingfeng; Piao, Mingxu
2018-05-01
The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.
Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination
Sinkkonen, Aki
2005-01-01
A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163
Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination
Sinkkonen, Aki
2006-01-01
A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596
Predictive model for CO2 generation and decay in building envelopes
NASA Astrophysics Data System (ADS)
Aglan, Heshmat A.
2003-01-01
Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.
Goodman, Dan F M; Brette, Romain
2009-09-01
"Brian" is a simulator for spiking neural networks (http://www.briansimulator.org). The focus is on making the writing of simulation code as quick and easy as possible for the user, and on flexibility: new and non-standard models are no more difficult to define than standard ones. This allows scientists to spend more time on the details of their models, and less on their implementation. Neuron models are defined by writing differential equations in standard mathematical notation, facilitating scientific communication. Brian is written in the Python programming language, and uses vector-based computation to allow for efficient simulations. It is particularly useful for neuroscientific modelling at the systems level, and for teaching computational neuroscience.
NASA Astrophysics Data System (ADS)
Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli
2017-05-01
This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.
ERIC Educational Resources Information Center
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
ERIC Educational Resources Information Center
Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc
2016-01-01
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…
Evolution of Mathematics Teachers' Pedagogical Knowledge When They Are Teaching through Modeling
ERIC Educational Resources Information Center
Aydogan Yenmez, Arzu; Erbas, Ayhan Kursat; Alacaci, Cengiz; Cakiroglu, Erdinc; Cetinkaya, Bulent
2017-01-01
Use of mathematical modeling in mathematics education has been receiving significant attention as a way to develop students' mathematical knowledge and skills. As effective use of modeling in classes depends on the competencies of teachers we need to know more about the nature of teachers' knowledge to use modeling in mathematics education and how…
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
A model for Huanglongbing spread between citrus plants including delay times and human intervention
NASA Astrophysics Data System (ADS)
Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.
2012-09-01
The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.
2012-01-01
atmosphere model, Int. J . High Perform. Comput. Appl. 26 (1) (2012) 74–89. [8] J.M. Dennis, M. Levy, R.D. Nair, H.M. Tufo, T . Voran. Towards and efficient...26] A. Klockner, T . Warburton, J . Bridge, J.S, Hesthaven, Nodal discontinuous galerkin methods on graphics processors, J . Comput. Phys. 228 (21) (2009...mode James F. Kelly, Francis X. Giraldo ⇑ Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA, United States a r t i c l e i n
NASA Astrophysics Data System (ADS)
Berliner, M.
2017-12-01
Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.
A facility location model for municipal solid waste management system under uncertain environment.
Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K
2017-12-15
In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
ERIC Educational Resources Information Center
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
Dendritic trafficking faces physiologically critical speed-precision tradeoffs
Williams, Alex H; O'Donnell, Cian; Sejnowski, Terrence J; O'Leary, Timothy
2016-01-01
Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’ (Doyle and Kiebler, 2011). Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimates of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. These findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons. DOI: http://dx.doi.org/10.7554/eLife.20556.001 PMID:28034367
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity
ERIC Educational Resources Information Center
Stohlmann, Micah S.
2017-01-01
Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…
ERIC Educational Resources Information Center
Karatas, Ilhan
2014-01-01
This study examines the effect of three different computer integration models on pre-service mathematics teachers' beliefs about using computers in mathematics education. Participants included 104 pre-service mathematics teachers (36 second-year students in the Computer Oriented Model group, 35 fourth-year students in the Integrated Model (IM)…
NASA Astrophysics Data System (ADS)
Nizamutdinova, T.; Mukhlynin, N.
2017-06-01
A significant increasing energy efficiency of the full cycle of production, transmission and distribution of electricity in grids should be based on the management of separate consumers of electricity. The existing energy supply systems based on the concept of «smart things» do not allow to identify the technical structure of the electricity consumption in the load nodes from the grid side. It makes solving the tasks of energy efficiency more difficult. To solve this problem, the use of Wavelet transform to create a mathematical tool for monitoring the load composition in the nodes of the distribution grids of 6-10 kV, 0.4 kV is proposed in this paper. The authors have created a unique wavelet based functions for some consumers, based on their current consumption graphs of these power consumers. Possibility of determination of the characteristics of individual consumers of electricity in total nodal charts of load is shown in the test case. In future, creation of a unified technical and informational model of load control will allow to solve the problem of increasing the economic efficiency of not only certain consumers, but also the entire power supply system as a whole.
ERIC Educational Resources Information Center
Deshler, Jessica; Fuller, Edgar
2016-01-01
Approximately 30% of students entering West Virginia University (WVU) are not ready for college mathematics. The WVU Department of Mathematics has been tasked with remediating these students and has worked over the last decade to find the most efficient way to teach the Pre-College Algebra Workshop; the prerequisite course students must complete…
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
ERIC Educational Resources Information Center
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
To Assess Students' Attitudes, Skills and Competencies in Mathematical Modeling
ERIC Educational Resources Information Center
Lingefjard, Thomas; Holmquist, Mikael
2005-01-01
Peer-to-peer assessment, take-home exams and a mathematical modeling survey were used to monitor and assess students' attitudes, skills and competencies in mathematical modeling. The students were all in a secondary mathematics, teacher education program with a comprehensive amount of mathematics studies behind them. Findings indicate that…
Mathematical Modeling in the Undergraduate Curriculum
ERIC Educational Resources Information Center
Toews, Carl
2012-01-01
Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…
Teachers' Conceptions of Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
NASA Astrophysics Data System (ADS)
Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi
2017-06-01
This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.
Modeling of particle radiative properties in coal combustion depending on burnout
NASA Astrophysics Data System (ADS)
Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold
2017-04-01
In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.
Information models of software productivity - Limits on productivity growth
NASA Technical Reports Server (NTRS)
Tausworthe, Robert C.
1992-01-01
Research into generalized information-metric models of software process productivity establishes quantifiable behavior and theoretical bounds. The models establish a fundamental mathematical relationship between software productivity and the human capacity for information traffic, the software product yield (system size), information efficiency, and tool and process efficiencies. An upper bound is derived that quantifies average software productivity and the maximum rate at which it may grow. This bound reveals that ultimately, when tools, methodologies, and automated assistants have reached their maximum effective state, further improvement in productivity can only be achieved through increasing software reuse. The reuse advantage is shown not to increase faster than logarithmically in the number of reusable features available. The reuse bound is further shown to be somewhat dependent on the reuse policy: a general 'reuse everything' policy can lead to a somewhat slower productivity growth than a specialized reuse policy.
Physico-chemical processes for landfill leachate treatment: Experiments and mathematical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Ngo, H.H.; Kim, S.H.
2008-07-01
In this study, the adsorption of synthetic landfill leachate onto four kinds of activated carbon has been investigated. From the equilibrium and kinetics experiments, it was observed that coal based PAC presented the highest organic pollutants removal efficiency (54%), followed by coal based GAC (50%), wood based GAC (33%) and wood based PAC (14%). The adsorption equilibrium of PAC and GAC was successfully predicted by Henry-Freundlich adsorption model whilst LDFA + Dual isotherm Kinetics model could describe well the batch adsorption kinetics. The flocculation and flocculation-adsorption experiments were also conducted. The results indicated that flocculation did not perform well onmore » organics removal because of the dominance of low molecular weight organic compounds in synthetic landfill leachate. Consequently, flocculation as pretreatment to adsorption and a combination of flocculation-adsorption could not improve much the organic removal efficiency for the single adsorption process.« less
Modeling and visual simulation of Microalgae photobioreactor
NASA Astrophysics Data System (ADS)
Zhao, Ming; Hou, Dapeng; Hu, Dawei
Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Quantum Brownian motion model for the stock market
NASA Astrophysics Data System (ADS)
Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong
2016-06-01
It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
Research on energy efficiency design index for sea-going LNG carriers
NASA Astrophysics Data System (ADS)
Lin, Yan; Yu, Yanyun; Guan, Guan
2014-12-01
This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.
Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan
2017-02-01
In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.
NASA Astrophysics Data System (ADS)
Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou
2018-06-01
In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.
NASA Astrophysics Data System (ADS)
Orumbayev, R. K.; Kibarin, A. A.; Khodanova, T. V.; Korobkov, M. S.
2018-03-01
This work contains analysis of technical values of tower hot-water boiler PTVM-100 when operating on gas and oil residual. After the test it became clear that due to the construction deficiency during the combustion of oil residual, it is not possible to provide long-term production of heat. There is also given a short review on modernization of PTVM-100 hot-water boilers. With the help of calculations based on controlled all-mode mathematic modules of hot-water boilers in BOILER DESIGNER software, it was shown that boiler modernization by use of bi-radiated screens and new convective set of tubes allows decreasing sufficiently the temperature of combustor output gases and increase reliability of boiler operation. Constructive changes of boiler unit suggested by authors of this work, along with increase of boiler’s operation reliability also allow to improve it’s heat production rates and efficiency rate up to 90,5% when operating on fuel oil and outdoor installation option.
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
Efficiency improvement of technological preparation of power equipment manufacturing
NASA Astrophysics Data System (ADS)
Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.
2017-11-01
Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.
Tian, Zengshan; Xu, Kunjie; Yu, Xiang
2014-01-01
This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349
Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo
2014-01-01
This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.
EFQPSK Versus CERN: A Comparative Study
NASA Technical Reports Server (NTRS)
Borah, Deva K.; Horan, Stephen
2001-01-01
This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK signals with not too much increase in computational complexity. When a nonlinear amplifier is used, the bit error rate (BER) performance of the CERN signals with a matched filter receiver is found to be more than one decibel (dB) worse compared to the bit error performance of EFQPSK signals. Although channel coding is found to provide BER performance improvement for both EFQPSK and CERN signals, the performance of EFQPSK signals remains better than that of CERN. Optimal receiver structures for CERN signals with nonlinear equalization is left as a possible future work. Based on the numerical results, it is concluded that, in nonlinear channels, CERN processing leads towards better bandwidth efficiency with a compromise in power efficiency. Hence for bandwidth efficient communications needs, CERN is a good solution provided effective adaptive predistorters can be realized. On the other hand, EFQPSK signals provide a good power efficient solution with a compromise in band width efficiency.
How can mathematical models advance tuberculosis control in high HIV prevalence settings?
Houben, R M G J; Dowdy, D W; Vassall, A; Cohen, T; Nicol, M P; Granich, R M; Shea, J E; Eckhoff, P; Dye, C; Kimerling, M E; White, R G
2014-05-01
Existing approaches to tuberculosis (TB) control have been no more than partially successful in areas with high human immunodeficiency virus (HIV) prevalence. In the context of increasingly constrained resources, mathematical modelling can augment understanding and support policy for implementing those strategies that are most likely to bring public health and economic benefits. In this paper, we present an overview of past and recent contributions of TB modelling in this key area, and suggest a way forward through a modelling research agenda that supports a more effective response to the TB-HIV epidemic, based on expert discussions at a meeting convened by the TB Modelling and Analysis Consortium. The research agenda identified high-priority areas for future modelling efforts, including 1) the difficult diagnosis and high mortality of TB-HIV; 2) the high risk of disease progression; 3) TB health systems in high HIV prevalence settings; 4) uncertainty in the natural progression of TB-HIV; and 5) combined interventions for TB-HIV. Efficient and rapid progress towards completion of this modelling agenda will require co-ordination between the modelling community and key stakeholders, including advocates, health policy makers, donors and national or regional finance officials. A continuing dialogue will ensure that new results are effectively communicated and new policy-relevant questions are addressed swiftly.
NASA Astrophysics Data System (ADS)
Noacco, V.; Wagener, T.; Pianosi, F.; Philp, T.
2017-12-01
Insurance companies provide insurance against a wide range of threats, such as natural catastrophes, nuclear incidents and terrorism. To quantify risk and support investment decisions, mathematical models are used, for example to set the premiums charged to clients that protect from financial loss, should deleterious events occur. While these models are essential tools for adequately assessing the risk attached to an insurer's portfolio, their development is costly and their value for decision-making may be limited by an incomplete understanding of uncertainty and sensitivity. Aside from the business need to understand risk and uncertainty, the insurance sector also faces regulation which requires them to test their models in such a way that uncertainties are appropriately captured and that plans are in place to assess the risks and their mitigation. The building and testing of models constitutes a high cost for insurance companies, and it is a time intensive activity. This study uses an established global sensitivity analysis toolbox (SAFE) to more efficiently capture the uncertainties and sensitivities embedded in models used by a leading re/insurance firm, with structured approaches to validate these models and test the impact of assumptions on the model predictions. It is hoped that this in turn will lead to better-informed and more robust business decisions.
NASA Astrophysics Data System (ADS)
Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid
Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.
Enhancing dendritic cell immunotherapy for melanoma using a simple mathematical model.
Castillo-Montiel, E; Chimal-Eguía, J C; Tello, J Ignacio; Piñon-Zaráte, G; Herrera-Enríquez, M; Castell-Rodríguez, A E
2015-06-09
The immunotherapy using dendritic cells (DCs) against different varieties of cancer is an approach that has been previously explored which induces a specific immune response. This work presents a mathematical model of DCs immunotherapy for melanoma in mice based on work by Experimental Immunotherapy Laboratory of the Medicine Faculty in the Universidad Autonoma de Mexico (UNAM). The model is a five delay differential equation (DDEs) which represents a simplified view of the immunotherapy mechanisms. The mathematical model takes into account the interactions between tumor cells, dendritic cells, naive cytotoxic T lymphocytes cells (inactivated cytotoxic cells), effector cells (cytotoxic T activated cytotoxic cells) and transforming growth factor β cytokine (T G F-β). The model is validated comparing the computer simulation results with biological trial results of the immunotherapy developed by the research group of UNAM. The results of the growth of tumor cells obtained by the control immunotherapy simulation show a similar amount of tumor cell population than the biological data of the control immunotherapy. Moreover, comparing the increase of tumor cells obtained from the immunotherapy simulation and the biological data of the immunotherapy applied by the UNAM researchers obtained errors of approximately 10 %. This allowed us to use the model as a framework to test hypothetical treatments. The numerical simulations suggest that by using more doses of DCs and changing the infusion time, the tumor growth decays compared with the current immunotherapy. In addition, a local sensitivity analysis is performed; the results show that the delay in time " τ", the maximal growth rate of tumor "r" and the maximal efficiency of tumor cytotoxic cells rate "aT" are the most sensitive model parameters. By using this mathematical model it is possible to simulate the growth of the tumor cells with or without immunotherapy using the infusion protocol of the UNAM researchers, to obtain a good approximation of the biological trials data. It is worth mentioning that by manipulating the different parameters of the model the effectiveness of the immunotherapy may increase. This last suggests that different protocols could be implemented by the Immunotherapy Laboratory of UNAM in order to improve their results.
ERIC Educational Resources Information Center
Daher, Wajeeh M.; Shahbari, Juhaina Awawdeh
2015-01-01
Engaging mathematics students with modelling activities helps them learn mathematics meaningfully. This engagement, in the case of model eliciting activities, helps the students elicit mathematical models by interpreting real-world situation in mathematical ways. This is especially true when the students utilize technology to build the models.…
Mathematical modeling in realistic mathematics education
NASA Astrophysics Data System (ADS)
Riyanto, B.; Zulkardi; Putri, R. I. I.; Darmawijoyo
2017-12-01
The purpose of this paper is to produce Mathematical modelling in Realistics Mathematics Education of Junior High School. This study used development research consisting of 3 stages, namely analysis, design and evaluation. The success criteria of this study were obtained in the form of local instruction theory for school mathematical modelling learning which was valid and practical for students. The data were analyzed using descriptive analysis method as follows: (1) walk through, analysis based on the expert comments in the expert review to get Hypothetical Learning Trajectory for valid mathematical modelling learning; (2) analyzing the results of the review in one to one and small group to gain practicality. Based on the expert validation and students’ opinion and answers, the obtained mathematical modeling problem in Realistics Mathematics Education was valid and practical.
Mathematical programming for the efficient allocation of health care resources.
Stinnett, A A; Paltiel, A D
1996-10-01
Previous discussions of methods for the efficient allocation of health care resources subject to a budget constraint have relied on unnecessarily restrictive assumptions. This paper makes use of established optimization techniques to demonstrate that a general mathematical programming framework can accommodate much more complex information regarding returns to scale, partial and complete indivisibility and program interdependence. Methods are also presented for incorporating ethical constraints into the resource allocation process, including explicit identification of the cost of equity.
NASA Astrophysics Data System (ADS)
Fasni, N.; Turmudi, T.; Kusnandi, K.
2017-09-01
This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.
The Effect of Teacher Beliefs on Student Competence in Mathematical Modeling--An Intervention Study
ERIC Educational Resources Information Center
Mischo, Christoph; Maaß, Katja
2013-01-01
This paper presents an intervention study whose aim was to promote teacher beliefs about mathematics and learning mathematics and student competences in mathematical modeling. In the intervention, teachers received written curriculum materials about mathematical modeling. The concept underlying the materials was based on constructivist ideas and…
Leaning on Mathematical Habits of Mind
ERIC Educational Resources Information Center
Sword, Sarah; Matsuura, Ryota; Cuoco, Al; Kang, Jane; Gates, Miriam
2018-01-01
Mathematical modeling has taken on increasing curricular importance in the past decade due in no small measure to the Common Core State Standards in Mathematics (CCSSM) identifying modeling as one of the Standards for Mathematical Practice (SMP 4, CCSSI 2010, p. 7). Although researchers have worked on mathematical modeling (Lesh and Doerr 2003;…
NASA Astrophysics Data System (ADS)
Kucher, N. K.; Dveyrin, A. Z.; Zarazovskii, M. N.; Zemtsov, M. P.
2004-05-01
The regularities of elastic deformation of multilayered fiberglass plastics reinforced with a fabric of sateen weave are studied. The effect of cooling to 77 K on the averaged elastic characteristics of the orthotropic material is analyzed. The efficiency of mathematical modeling in calculating the stiffness and compliance parameters of the woven composites based on the geometry and mechanical properties of their constituents is investigated.
Biological and aerodynamic problems with the flight of animals
NASA Technical Reports Server (NTRS)
Holst, E. V.; Kuchemann, D.
1980-01-01
Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.
Inverse problem of radiofrequency sounding of ionosphere
NASA Astrophysics Data System (ADS)
Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.
2016-01-01
An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.
NASA Technical Reports Server (NTRS)
Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.
1973-01-01
A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.
Bioadsorber efficiency, design, and performance forecasting for alachlor removal.
Badriyha, Badri N; Ravindran, Varadarajan; Den, Walter; Pirbazari, Massoud
2003-10-01
This study discusses a mathematical modeling and design protocol for bioactive granular activated carbon (GAC) adsorbers employed for purification of drinking water contaminated by chlorinated pesticides, exemplified by alachlor. A thin biofilm model is discussed that incorporates the following phenomenological aspects: film transfer from the bulk fluid to the adsorbent particles, diffusion through the biofilm immobilized on adsorbent surface, adsorption of the contaminant into the adsorbent particle. The modeling approach involved independent laboratory-scale experiments to determine the model input parameters. These experiments included adsorption isotherm studies, adsorption rate studies, and biokinetic studies. Bioactive expanded-bed adsorber experiments were conducted to obtain realistic experimental data for determining the ability of the model for predicting adsorber dynamics under different operating conditions. The model equations were solved using a computationally efficient hybrid numerical technique combining orthogonal collocation and finite difference methods. The model provided accurate predictions of adsorber dynamics for bioactive and non-bioactive scenarios. Sensitivity analyses demonstrated the significance of various model parameters, and focussed on enhancement in certain key parameters to improve the overall process efficiency. Scale-up simulation studies for bioactive and non-bioactive adsorbers provided comparisons between their performances, and illustrated the advantages of bioregeneration for enhancing their effective service life spans. Isolation of microbial species revealed that fungal strains were more efficient than bacterial strains in metabolizing alachlor. Microbial degradation pathways for alachlor were proposed and confirmed by the detection of biotransformation metabolites and byproducts using gas chromatography/mass spectrometry.
ERIC Educational Resources Information Center
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical position held by the modeler(s) and the…
Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered
2011-01-01
Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023
Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.
Mathiassen, Svend Erik; Bolin, Kristian
2011-05-21
Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.
How Ordinary Meaning Underpins the Meaning of Mathematics.
ERIC Educational Resources Information Center
Ormell, Christopher
1991-01-01
Discusses the meaning of mathematics by looking at its uses in the real world. Offers mathematical modeling as a way to represent mathematical applications in real or potential situations. Presents levels of applicability, modus operandi, relationship to "pure mathematics," and consequences for education for mathematical modeling. (MDH)
NASA Astrophysics Data System (ADS)
Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.
2017-11-01
MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.
ERIC Educational Resources Information Center
Boyd, James N.
1991-01-01
Presents a mathematical problem that, when examined and generalized, develops the relationships between power and efficiency in energy transfer. Offers four examples of simple electrical and mechanical systems to illustrate the principle that maximum power occurs at 50 percent efficiency. (MDH)
Thermal performances of vertical hybrid PV/T air collector
NASA Astrophysics Data System (ADS)
Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.
2016-11-01
In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.
Modeling the reversible kinetics of neutrophil aggregation under hydrodynamic shear.
Neelamegham, S; Taylor, A D; Hellums, J D; Dembo, M; Smith, C W; Simon, S I
1997-01-01
Neutrophil emigration into inflamed tissue is mediated by beta 2-integrin and L-selectin adhesion receptors. Homotypic neutrophil aggregation is also dependent on these molecules, and it provides a model system in which to study adhesion dynamics. In the current study we formulated a mathematical model for cellular aggregation in a linear shear field based on Smoluchowski's two-body collision theory. Neutrophil suspensions activated with chemotactic stimulus and sheared in a cone-plate viscometer rapidly aggregate. Over a range of shear rates (400-800 s-1), approximately 90% of the single cells were recruited into aggregates ranging from doublets to groupings larger than sextuplets. The adhesion efficiency fit to these kinetics reached maximum levels of > 70%. Formed aggregates remained intact and resistant to shear up to 120 s, at which time they spontaneously dissociated back to singlets. The rate of cell disaggregation was linearly proportional to the applied shear rate, and it was approximately 60% lower for doublets as compared to larger aggregates. By accounting for the time-dependent changes in adhesion efficiency, disaggregation rate, and the effects of aggregate geometry, we succeeded in predicting the reversible kinetics of aggregation over a wide range of shear rates and cell concentrations. The combination of viscometry with flow cytometry and mathematical analysis as presented here represents a novel approach to differentiating between the effects of hydrodynamics and the intrinsic biological processes that control cell adhesion. Images FIGURE 3 FIGURE 5 PMID:9083659
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century.
Ganusov, Vitaly V
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest "strong inference in mathematical modeling" as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century.
Dynamic stability of an aerodynamically efficient motorcycle
NASA Astrophysics Data System (ADS)
Sharma, Amrit; Limebeer, David J. N.
2012-08-01
Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.
NASA Astrophysics Data System (ADS)
Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati
2018-04-01
we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.
Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Molkov, Yaroslav I.; Zaretsky, Dmitry V.
2015-01-01
Experimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods. PMID:25993564
Impact of airway gas exchange on the multiple inert gas elimination technique: theory.
Anderson, Joseph C; Hlastala, Michael P
2010-03-01
The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.
Summer Camp of Mathematical Modeling in China
ERIC Educational Resources Information Center
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems.
Sugai-Guérios, Maura Harumi; Balmant, Wellington; Furigo, Agenor; Krieger, Nadia; Mitchell, David Alexander
2015-01-01
Solid-state fermentation (SSF) with filamentous fungi is a promising technique for the production of a range of biotechnological products and has the potential to play an important role in future biorefineries. The performance of such processes is intimately linked with the mycelial mode of growth of these fungi: Not only is the production of extracellular enzymes related to morphological characteristics, but also the mycelium can affect bed properties and, consequently, the efficiency of heat and mass transfer within the bed. A mathematical model that describes the development of the fungal mycelium in SSF systems at the particle scale would be a useful tool for investigating these phenomena, but, as yet, a sufficiently complete model has not been proposed. This review presents the biological and mass transfer phenomena that should be included in such a model and then evaluates how these phenomena have been modeled previously in the SSF and related literature. We conclude that a discrete lattice-based model that uses differential equations to describe the mass balances of the components within the system would be most appropriate and that mathematical expressions for describing the individual phenomena are available in the literature. It remains for these phenomena to be integrated into a complete model describing the development of fungal mycelia in SSF systems.
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
ERIC Educational Resources Information Center
Kuznetsova, Elena; Matytcina, Marina
2018-01-01
The article deals with social, psychological and pedagogical aspects of teaching mathematics students at universities. The sociological portrait and the factors influencing a career choice of a mathematician have been investigated through the survey results of 198 first-year students of applied mathematics major at 27 state universities (Russia).…
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century
Ganusov, Vitaly V.
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest “strong inference in mathematical modeling” as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century. PMID:27499750
Swirling Flow Computation at the Trailing Edge of Radial-Axial Hydraulic Turbines
NASA Astrophysics Data System (ADS)
Susan-Resiga, Romeo; Muntean, Sebastian; Popescu, Constantin
2016-11-01
Modern hydraulic turbines require optimized runners within a range of operating points with respect to minimum weighted average draft tube losses and/or flow instabilities. Tractable optimization methodologies must include realistic estimations of the swirling flow exiting the runner and further ingested by the draft tube, prior to runner design. The paper presents a new mathematical model and the associated numerical algorithm for computing the swirling flow at the trailing edge of Francis turbine runner, operated at arbitrary discharge. The general turbomachinery throughflow theory is particularized for an arbitrary hub-to-shroud line in the meridian half-plane and the resulting boundary value problem is solved with the finite element method. The results obtained with the present model are validated against full 3D runner flow computations within a range of discharge value. The mathematical model incorporates the full information for the relative flow direction, as well as the curvatures of the hub-to-shroud line and meridian streamlines, respectively. It is shown that the flow direction can be frozen within a range of operating points in the neighborhood of the best efficiency regime.
Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam
2016-01-01
Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.
Soliton communication lines based on spectrally efficient modulation formats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushko, O V; Redyuk, A A
2014-06-30
We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of amore » coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)« less
Using Covariation Reasoning to Support Mathematical Modeling
ERIC Educational Resources Information Center
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
ENKI - A tool for analysing the learning efficiency
NASA Astrophysics Data System (ADS)
Simona, Dudáková; Boris, Lacsný; Aba, Teleki
2017-01-01
Long-term memory plays a crucial role in learning mechanisms. We start to build up a probability model of learning (ENKI) ten years ago based on findings of micro genetics published in [1]. We accomplished a number of experiments in our department to testify the validity of the model with success. We described ENKI in detail here, giving the general mathematical formula of the learning curve. This paper pointed out that the model ENKI can detect its own strategy of learning in the brain as well as the simulation of the process of learning that will lead to the development of this method using its own strategy.
Biophysics of Euglena phototaxis
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Riedel-Kruse, Ingmar H.
Phototactic microorganisms usually respond to light stimuli via phototaxis to optimize the process of photosynthesis and avoid photodamage by excessive amount of light. Unicellular phototactic microorganisms such as Euglena gracilis only possesses a single photoreceptor, which highly limits its access to the light in three-dimensional world. However, experiments demonstrated that Euglena responds to light stimuli sensitively and exhibits phototaxis quickly, and it's not well understood how it performs so efficiently. We propose a mathematical model of Euglena's phototaxis that couples the dynamics of Euglena and its phototactic response. This model shows that Euglena exhibits wobbling path under weak ambient light, which is consistent to experimental observation. We show that this wobbling motion can enhance the sensitivity of photoreceptor to signals of small light intensity and provide an efficient mechanism for Euglena to sample light in different directions. We further investigate the optimization of Euglena's phototaxis using different performance metrics, including reorientation time, energy consumption, and swimming efficiency. We characterize the tradeoff among these performance metrics and the best strategy for phototaxis.
Evers, Dorothea; Kerkhoffs, Jean-Louis; Van Egmond, Liane; Schipperus, Martin R; Wijermans, Pierre W
2014-06-01
Recently, therapeutic erythrocytapheresis (TE) was suggested to be more efficient in depletion of red blood cells (RBC) compared to manual phlebotomy in the treatment of hereditary hemochromatosis (HH), polycythemia vera (PV), and secondary erythrocytosis (SE). The efficiency rate (ER) of TE, that is, the increase in RBC depletion achieved with one TE cycle compared to one phlebotomy procedure, can be calculated based on estimated blood volume (BV), preprocedural hematocrit (Hct(B)), and delta-hematocrit (ΔHct). In a retrospective evaluation of 843 TE procedures (in 45 HH, 33 PV, and 40 SE patients) the mean ER was 1.86 ± 0.62 with the highest rates achieved in HH patients. An ER of 1.5 was not reached in 37.9% of all procedures mainly concerning patients with a BV below 4,500 ml. In 12 newly diagnosed homozygous HH patients, the induction phase duration was medially 38.4 weeks (medially 10.5 procedures). During the maintenance treatment of HH, PV, and SE, the interval between TE procedures was medially 13.4 weeks. This mathematical model can help select the proper treatment modality for the individual patient. Especially for patients with a large BV and high achievable ΔHct, TE appears to be more efficient than manual phlebotomy in RBC depletion thereby potentially reducing the numbers of procedures and expanding the interprocedural time period for HH, PV, and SE. © 2013 Wiley Periodicals, Inc.
VLSI implementation of RSA encryption system using ancient Indian Vedic mathematics
NASA Astrophysics Data System (ADS)
Thapliyal, Himanshu; Srinivas, M. B.
2005-06-01
This paper proposes the hardware implementation of RSA encryption/decryption algorithm using the algorithms of Ancient Indian Vedic Mathematics that have been modified to improve performance. The recently proposed hierarchical overlay multiplier architecture is used in the RSA circuitry for multiplication operation. The most significant aspect of the paper is the development of a division architecture based on Straight Division algorithm of Ancient Indian Vedic Mathematics and embedding it in RSA encryption/decryption circuitry for improved efficiency. The coding is done in Verilog HDL and the FPGA synthesis is done using Xilinx Spartan library. The results show that RSA circuitry implemented using Vedic division and multiplication is efficient in terms of area/speed compared to its implementation using conventional multiplication and division architectures.
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Billings, S. A.
2016-12-01
Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.
A numerical study of steady crystal growth in a vertical Bridgman device
NASA Astrophysics Data System (ADS)
Jalics, Miklos Kalman
Electronics based on semiconductors creates an enormous demand for high quality semiconductor single crystals. The vertical Bridgman device is commonly used for growing single crystals for a variety of materials such as GaAs, InP and HgCdTe. A mathematical model is presented for steady crystal growth under conditions where crystal growth is determined strictly by heat transfer. The ends of the ampoule are chosen far away from the insulation zone to allow for steady growth. A numerical solution is sought for this mathematical model. The equations are transformed into a rectangular geometry and appropriate finite difference techniques are applied on the transformed equations. Newton's method solves the nonlinear problem. To improve efficiency GMRES with preconditioning is used to compute the Newton iterates. The numerical results are used to compare with two current asymptotic theories that assume small Biot numbers. Results indicate that one of the asymptotic theories is accurate for even moderate Biot numbers.
Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate
Liu, Shuhua; Wang, Shu; Tang, Wan; Hu, Ningning; Wei, Jianpeng
2015-01-01
Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP) on alkali-silica reaction (ASR) expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk. PMID:28793603
Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
Noble, Charleston; Adlam, Ben; Church, George M; Esvelt, Kevin M; Nowak, Martin A
2018-06-19
Recent reports have suggested that self-propagating CRISPR-based gene drive systems are unlikely to efficiently invade wild populations due to drive-resistant alleles that prevent cutting. Here we develop mathematical models based on existing empirical data to explicitly test this assumption for population alteration drives. Our models show that although resistance prevents spread to fixation in large populations, even the least effective drive systems reported to date are likely to be highly invasive. Releasing a small number of organisms will often cause invasion of the local population, followed by invasion of additional populations connected by very low rates of gene flow. Hence, initiating contained field trials as tentatively endorsed by the National Academies report on gene drive could potentially result in unintended spread to additional populations. Our mathematical results suggest that self-propagating gene drive is best suited to applications such as malaria prevention that seek to affect all wild populations of the target species. © 2018, Noble et al.
Manuel Stein's Five Decades of Structural Mechanics Contributions (1944-1988)
NASA Technical Reports Server (NTRS)
Mikulas, Martin M.; Card, Michael F.; Peterson, Jim P.; Starnes, James H., Jr.
1998-01-01
Manuel Stein went to work for NACA (National Advisory Committee for Aeronautics) in 1944 and left in 1988. His research contributions spanned five decades of extremely defining times for the aerospace industry. Problems arising from the analysis and design of efficient thin plate and shell aerospace structures have stimulated research over the past half century. The primary structural technology drivers during Dr. Stein's career included 1940's aluminum aircraft, 1950's jet aircraft, 1960's launch vehicles and advanced spacecraft, 1970's reusable launch vehicles and commercial aircraft, and 1980's composite aircraft. Dr. Stein's research was driven by these areas and he made lasting contributions for each. Dr. Stein's research can be characterized by a judicious mixture of physical insight into the problem, understanding of the basic mechanisms, mathematical modeling of the observed phenomena, and extraordinary analytical and numerical solution methodologies of the resulting mathematical models. This paper summarizes Dr. Stein's life and his contributions to the technical community.
Modelling short channel mosfets for use in VLSI
NASA Technical Reports Server (NTRS)
Klafter, Alex; Pilorz, Stuart; Polosa, Rosa Loguercio; Ruddock, Guy; Smith, Andrew
1986-01-01
In an investigation of metal oxide semiconductor field effect transistor (MOFSET) devices, a one-dimensional mathematical model of device dynamics was prepared, from which an accurate and computationally efficient drain current expression could be derived for subsequent parameter extraction. While a critical review revealed weaknesses in existing 1-D models (Pao-Sah, Pierret-Shields, Brews, and Van de Wiele), this new model in contrast was found to allow all the charge distributions to be continuous, to retain the inversion layer structure, and to include the contribution of current from the pinched-off part of the device. The model allows the source and drain to operate in different regimes. Numerical algorithms used for the evaluation of surface potentials in the various models are presented.
Learning to teach mathematical modelling in secondary and tertiary education
NASA Astrophysics Data System (ADS)
Ferri, Rita Borromeo
2017-07-01
Since 2003 mathematical modelling in Germany is not only a topic for scientific disciplines in university mathematics courses, but also in school starting with primary school. This paper shows what mathematical modelling means in school and how it can be taught as a basis for complex modeling problems in tertiary education.
A queueing theory description of fat-tailed price returns in imperfect financial markets
NASA Astrophysics Data System (ADS)
Lamba, H.
2010-09-01
In a financial market, for agents with long investment horizons or at times of severe market stress, it is often changes in the asset price that act as the trigger for transactions or shifts in investment position. This suggests the use of price thresholds to simulate agent behavior over much longer timescales than are currently used in models of order-books. We show that many phenomena, routinely ignored in efficient market theory, can be systematically introduced into an otherwise efficient market, resulting in models that robustly replicate the most important stylized facts. We then demonstrate a close link between such threshold models and queueing theory, with large price changes corresponding to the busy periods of a single-server queue. The distribution of the busy periods is known to have excess kurtosis and non-exponential decay under various assumptions on the queue parameters. Such an approach may prove useful in the development of mathematical models for rapid deleveraging and panics in financial markets, and the stress-testing of financial institutions.
Kinetic model of water disinfection using peracetic acid including synergistic effects.
Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D
2016-01-01
The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.
Increasing operating room productivity by duration categories and a newsvendor model.
Lehtonen, Juha-Matti; Torkki, Paulus; Peltokorpi, Antti; Moilanen, Teemu
2013-01-01
Previous studies approach surgery scheduling mainly from the mathematical modeling perspective which is often hard to apply in a practical environment. The aim of this study is to develop a practical scheduling system that considers the advantages of both surgery categorization and newsvendor model to surgery scheduling. The research was carried out in a Finnish orthopaedic specialist centre that performs only joint replacement surgery. Four surgery categorization scenarios were defined and their productivity analyzed by simulation and newsvendor model. Detailed analyses of surgery durations and the use of more accurate case categories and their combinations in scheduling improved OR productivity 11.3 percent when compared to the base case. Planning to have one OR team to work longer led to remarkable decrease in scheduling inefficiency. In surgical services, productivity and cost-efficiency can be improved by utilizing historical data in case scheduling and by increasing flexibility in personnel management. The study increases the understanding of practical scheduling methods used to improve efficiency in surgical services.
Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.; ...
2015-02-02
This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are aminomore » acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (C F) is calculated and compared with one set of published measured values. We investigate power law (Ad y) approximations to C F, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (Q F=C F/geometric-cross-section) can be written for homogeneous particles as Q absR F, where Q abs is the absorption efficiency, and R F, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When Q F is plotted vs. m id or mi(m r-1)d, where m=m r+im i is the complex refractive index, the plots for different fractions of water in the particle tend to overlap.« less
Finite-Element Methods for Real-Time Simulation of Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay
2003-01-01
Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.
Development of a Multidisciplinary Middle School Mathematics Infusion Model
ERIC Educational Resources Information Center
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
FLBEIA : A simulation model to conduct Bio-Economic evaluation of fisheries management strategies
NASA Astrophysics Data System (ADS)
Garcia, Dorleta; Sánchez, Sonia; Prellezo, Raúl; Urtizberea, Agurtzane; Andrés, Marga
Fishery systems are complex systems that need to be managed in order to ensure a sustainable and efficient exploitation of marine resources. Traditionally, fisheries management has relied on biological models. However, in recent years the focus on mathematical models which incorporate economic and social aspects has increased. Here, we present FLBEIA, a flexible software to conduct bio-economic evaluation of fisheries management strategies. The model is multi-stock, multi-fleet, stochastic and seasonal. The fishery system is described as a sum of processes, which are internally assembled in a predetermined way. There are several functions available to describe the dynamic of each process and new functions can be added to satisfy specific requirements.
Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.
Frehmann, T; Flores, C; Luekewille, F; Mietzel, T; Spengler, B; Geiger, W F
2005-01-01
A special arrangement of combined sewer overflow tanks is the in-line storage sewer with downstream discharge (ISS-down). This layout has the advantage that, besides the sewer system, no other structures are required for stormwater treatment. The verification of the efficiency with respect to the processes of sedimentation and remobilization of sediment within the in-line storage sewer with downstream discharge is carried out in a combination of a field and a pilot plant study. The model study was carried out using a pilot plant model scaled 1:13. The following is intended to present some results of the pilot plant study and the mathematical empirical modelling of the sedimentation and remobilization process.
Goodman, Dan F. M.; Brette, Romain
2009-01-01
“Brian” is a simulator for spiking neural networks (http://www.briansimulator.org). The focus is on making the writing of simulation code as quick and easy as possible for the user, and on flexibility: new and non-standard models are no more difficult to define than standard ones. This allows scientists to spend more time on the details of their models, and less on their implementation. Neuron models are defined by writing differential equations in standard mathematical notation, facilitating scientific communication. Brian is written in the Python programming language, and uses vector-based computation to allow for efficient simulations. It is particularly useful for neuroscientific modelling at the systems level, and for teaching computational neuroscience. PMID:20011141
Application of queuing theory in inventory systems with substitution flexibility
NASA Astrophysics Data System (ADS)
Seyedhoseini, S. M.; Rashid, Reza; Kamalpour, Iman; Zangeneh, Erfan
2015-03-01
Considering the competition in today's business environment, tactical planning of a supply chain becomes more complex than before. In many multi-product inventory systems, substitution flexibility can improve profits. This paper aims to prepare a comprehensive substitution inventory model, where an inventory system with two substitute products with ignorable lead time has been considered, and effects of simultaneous ordering have been examined. In this paper, demands of customers for both of the products have been regarded as stochastic parameters, and queuing theory has been used to construct a mathematical model. The model has been coded by C++, and it has been analyzed due to a real example, where the results indicate efficiency of proposed model.
ERIC Educational Resources Information Center
Wright, Vince
2014-01-01
Pirie and Kieren (1989 "For the learning of mathematics", 9(3)7-11, 1992 "Journal of Mathematical Behavior", 11, 243-257, 1994a "Educational Studies in Mathematics", 26, 61-86, 1994b "For the Learning of Mathematics":, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which…
ERIC Educational Resources Information Center
Karagiannakis, Giannis N.; Baccaglini-Frank, Anna E.; Roussos, Petros
2016-01-01
Through a review of the literature on mathematical learning disabilities (MLD) and low achievement in mathematics (LA) we have proposed a model classifying mathematical skills involved in learning mathematics into four domains (Core number, Memory, Reasoning, and Visual-spatial). In this paper we present a new experimental computer-based battery…
Teaching Mathematical Modeling in Mathematics Education
ERIC Educational Resources Information Center
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Teaching Mathematical Modelling for Earth Sciences via Case Studies
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
NASA Astrophysics Data System (ADS)
Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.
2016-02-01
This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.
A two-dimensional composite grid numerical model based on the reduced system for oceanography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Y.F.; Browning, G.L.; Chesshire, G.
The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less
A Review of Mathematical Models for Leukemia and Lymphoma
Clapp, Geoffrey; Levy, Doron
2014-01-01
Recently, there has been significant activity in the mathematical community, aimed at developing quantitative tools for studying leukemia and lymphoma. Mathematical models have been applied to evaluate existing therapies and to suggest novel therapies. This article reviews the recent contributions of mathematical modeling to leukemia and lymphoma research. These developments suggest that mathematical modeling has great potential in this field. Collaboration between mathematicians, clinicians, and experimentalists can significantly improve leukemia and lymphoma therapy. PMID:26744598
Sampling and sensitivity analyses tools (SaSAT) for computational modelling
Hoare, Alexander; Regan, David G; Wilson, David P
2008-01-01
SaSAT (Sampling and Sensitivity Analysis Tools) is a user-friendly software package for applying uncertainty and sensitivity analyses to mathematical and computational models of arbitrary complexity and context. The toolbox is built in Matlab®, a numerical mathematical software package, and utilises algorithms contained in the Matlab® Statistics Toolbox. However, Matlab® is not required to use SaSAT as the software package is provided as an executable file with all the necessary supplementary files. The SaSAT package is also designed to work seamlessly with Microsoft Excel but no functionality is forfeited if that software is not available. A comprehensive suite of tools is provided to enable the following tasks to be easily performed: efficient and equitable sampling of parameter space by various methodologies; calculation of correlation coefficients; regression analysis; factor prioritisation; and graphical output of results, including response surfaces, tornado plots, and scatterplots. Use of SaSAT is exemplified by application to a simple epidemic model. To our knowledge, a number of the methods available in SaSAT for performing sensitivity analyses have not previously been used in epidemiological modelling and their usefulness in this context is demonstrated. PMID:18304361
Passos, Ricardo Gomes; von Sperling, Marcos; Ribeiro, Thiago Bressani
2014-01-01
Knowledge of the hydraulic behaviour is very important in the characterization of a stabilization pond, since pond hydrodynamics plays a fundamental role in treatment efficiency. An advanced hydrodynamics characterization may be achieved by carrying out measurements with tracers, dyes and drogues or using mathematical simulation employing computational fluid dynamics (CFD). The current study involved experimental determinations and mathematical simulations of a full-scale facultative pond in Brazil. A 3D CFD model showed major flow lines, degree of dispersion, dead zones and short circuit regions in the pond. Drogue tracking, wind measurements and dye dispersion were also used in order to obtain information about the actual flow in the pond and as a means of assessing the performance of the CFD model. The drogue, designed and built as part of this research, and which included a geographical positioning system (GPS), presented very satisfactory results. The CFD modelling has proven to be very useful in the evaluation of the hydrodynamic conditions of the facultative pond. A virtual tracer test allowed an estimation of the real mean hydraulic retention time and mixing conditions in the pond. The computational model in CFD corresponded well to what was verified in the field.
NASA Astrophysics Data System (ADS)
Latypov, A. F.
2008-12-01
Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.