Grozdov, D S; Kolotov, V P; Lavrukhin, Yu E
2016-04-01
A method of full energy peak efficiency estimation in the space around scintillation detector, including the presence of a collimator, has been developed. It is based on a mathematical convolution of the experimental results with the following data extrapolation. The efficiency data showed the average uncertainty less than 10%. Software to calculate integral efficiency for nuclear power plant plume was elaborated. The paper also provides results of nuclear power plant plume height estimation by analysis of the spectral data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benefits of 20 kHz PMAD in a nuclear space station
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1987-01-01
Compared to existing systems, high frequency ac power provides higher efficiency, lower cost, and improved safety benefits. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources; photovoltaic, solar dynamic, rotating machines and nuclear. A 25 kW, 20 kHz ac power distribution system testbed was recently (1986) developed. The testbed possesses maximum flexibility, versatility, and transparency to user technology while maintaining high efficiency, low mass, and reduced volume. Several aspects of the 20 kHz power management and distribution (PMAD) system that have particular benefits for a nuclear power Space Station are discussed.
78 FR 70588 - STP Nuclear Operating Company; South Texas Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... efficiency; (8) wind power; (9) solar power; (10) hydroelectric power; (11) ocean wave and current energy... generic environmental impact statement for license renewal of nuclear plants; issuance. SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) has published the final, plant-specific...
The Satellite Nuclear Power Station - An option for future power generation.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.
1973-01-01
A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Harada, N.
2005-01-01
A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.
Nuclear power in the 21st century: Challenges and possibilities.
Horvath, Akos; Rachlew, Elisabeth
2016-01-01
The current situation and possible future developments for nuclear power--including fission and fusion processes--is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields--from material sciences to safety demonstration--to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.
Thermal and nuclear power plants: Competitiveness in the new economic conditions
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.
2017-05-01
In recent years, the conditions of development and functionality of power generating assets have notably changed. Considering the decline in the price of hydrocarbon fuel on the global market, the efficiency of combined-cycle gas-turbine plants in the European part of Russia is growing in comparison with nuclear power plants. Capital investments in the construction of nuclear power plants have also increased as a result of stiffening the safety requirements. In view of this, there has been an increasing interest in exploration of effective lines of development of generating assets in the European part of Russia, taking consideration of the conditions that may arise in the nearest long-term perspective. In particular, the assessment of comparative efficiency of developing combined-cycle gas-turbine plants (operating on natural gas) in the European part of Russia and nuclear power plants is of academic and practical interest. In this article, we analyze the trends of changes in the regional price of hydrocarbon fuel. Using the prognosis of net-weighted import prices of natural gas in Western European countries—prepared by the International Energy Agency (IEA) and the Energy Research Institute of the Russian Academy of Sciences (ERIRAS)—the prices of natural gas in the European part of Russia equilibrated with import prices of this heat carrier in Western Europe were determined. The methodology of determining the comparative efficiency of combined-cycle gas turbine plants (CCGT) and nuclear power plants (NPP) were described; based on this, the possible development of basic CCGTs and NPPs with regard to the European part of Russia for various scenarios in the prognosis of prices of gaseous fuel in a broad range of change of specific investments in the given generating sources were assessed, and the extents of their comparative efficiency were shown. It was proven that, at specific investments in the construction of new NPPs in the amount of 5000 dollars/kW, nuclear power plants in the European part of Russia become less efficient as compared to CCGTs operating on natural gas.
Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovacic, Donald N
2015-01-01
This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathi, Nima; McDaniel, Patrick; Vorobieff, Peter
The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typicalmore » 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.« less
A Power Conversion Concept for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2003-01-01
The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission under development by the Office of Space Science at NASA Headquarters. ITMO is examining the potential of Nuclear Electric Propulsion (NEP) technology to efficiently deliver scientific payloads to three Jovian moons: Callisto, Ganymede, and Europa. A critical element of the NEP vehicle is the reactor power system, consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD). The emphasis of this paper is on the non-nuclear elements of the reactor power system.
Hydrogen by electrolysis of water
NASA Technical Reports Server (NTRS)
1975-01-01
Hydrogen production by electrolytic decomposition of water is explained. Power efficiency, efficient energy utilization, and costs were emphasized. Four systems were considered: two were based on current electrolyzer technology using present efficiency values for electrical generation by fossil fired and nuclear thermal stations, and two using projected electrolyzer technology with advanced fossil and nuclear plants.
University of Maryland Energy Research Center |
ENERGY MICRO POWER SYSTEMS ENERGY EFFICIENCY SMART GRID POWER ELECTRONICS RENEWABLE ENERGY NUCLEAR ENERGY most efficient use of our natural resources while minimizing environmental impacts and our dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinfelds, Eric V; Prelas, Mark A.; Sudarshan, Loyalka K.
2006-07-01
In this paper we compare the potential performance capabilities of several types of nuclear batteries to the Radioisotope Thermocouple Generators (RTG's) currently in use. There have been theoretical evaluations of, and some experimental testing of, several types of nuclear batteries including Radioisotope Energy Conversion Systems (RECS), Direct Energy Conversion (DEC) systems, and Betavoltaic Power Cells (BPC's). It has been theoretically shown, and to some extent experimentally demonstrated, that RECS, capacitive DEC systems, and possibly BPC's are all potentially capable of efficiencies well above the 9% maximum efficiency demonstrated to date in RTG's customized for deep space probe applications. Even thoughmore » RTG's have proven their reliability and have respectable power to mass ratios, it is desirable to attain efficiencies of at least 25% in typical applications. High fuel efficiency is needed to minimize the quantities of radioisotopic or nuclear fuels in the systems, to maximize power to mass ratios, and to minimize housing requirements. It has been shown that RECS can attain electric power generation efficiencies greater than 18% for devices which use Sr-90 fuel and where the accompanying material is less than roughly twice the mass of the Sr-90 fuel. Other radioisotopic fuels such as Pu-238 or Kr-85 can also be placed into RECS in order to attain efficiencies over 18%. With the likely exception of one fuel investigated by the authors, all of the promising candidates for RECS fuels can attain electric power to mass ratios greater than 15 W kg{sup -1}. It has been claimed recently [1] that the efficiency of tritium-fueled BPC's can be as high as 25%. While this is impressive and tritium has the benefit of being a 'soft' radioisotopic fuel, the silicon wafer that holds the tritium would have to be considerably more massive than the tritium contained within it and immediately adjacent to the wafer. Considering realistic mass requirements for the presence of silicon in the bulk of the wafer, a tritium cell would thus be limited to power to mass ratios <3 W kg{sup -1}. Even RECS designs with more energetic fuels and higher shielding burdens can attain >3 W kg{sup -1} and efficiencies exceeding 20%. Capacitive DEC systems can also offer significant benefits. With larger fuel quantities and larger dimensions, DEC systems can attain power efficiencies >50%. For small nuclear batteries of low or medium power, RECS appear highly desirable since the efficiency of a RECS does not vary with the amount of fuel present nor does it vary with temperature to any significant degree. (authors)« less
Human reliability and plant operating efficiency: Are 12-hour work schedules cause for concern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, T.L.
1992-01-01
Since the introduction of 12-h shifts to the US nuclear power industry only 8 yr ago, compressed workweek schedules have proliferated among operations departments at a phenomenal rate. Many plants that continue to use 8-h shifts during normal operations routinely change to scheduled 12-h shifts during refueling or maintenance outages. The most critical issue in the use of extended work shifts is whether alertness, physical stamina, or mental performance are compromised to the point of reducing safety or efficiency of nuclear power plant operation. Laboratory and field research sponsored by the National Institute of Occupational Safety and Health suggests thatmore » alertness, measured by self-ratings, and mental performance, measured by computer-based performance tests, are impaired on 12-h shifts compared with 8-h shifts. In contrast to these findings, plant operating efficiency and operator performance have been rated as improved in two field studies conducted in operating nuclear power plants (Fast Flux Test Facility, Washington and Ontario Hydro, Canada). A recent Electric Power Research Institute review of nuclear industry experience with 12-h shifts also suggests an overwhelmingly positive rating of 12-h schedules from both control room operators and management.« less
NASA Astrophysics Data System (ADS)
Gales, S.
2015-10-01
Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.
NASA Astrophysics Data System (ADS)
Králik, Juraj
2017-07-01
The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Nuclear Energy Office.
Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…
Innovative open air brayton combined cycle systems for the next generation nuclear power plants
NASA Astrophysics Data System (ADS)
Zohuri, Bahman
The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.
Lightweight Radiator for in Space Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; Tomboulian, Briana; SanSoucie, Michael
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.
Nuclear power program and technology development in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Byung-Oke
1994-12-31
KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t asmore » easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.« less
Advanced Radioisotope Power Systems Segmented Thermoelectric Research
NASA Technical Reports Server (NTRS)
Caillat, Thierry
2004-01-01
Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).
Supercritical Brayton Cycle Nuclear Power System Concepts
NASA Astrophysics Data System (ADS)
Wright, Steven A.
2007-01-01
Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6H14, Tcritical = 506.1 K) provided they have adequate chemical compatibility and stability. Overall the use of supercritical Brayton cycles may offer ``break through'' operating capabilities for space nuclear power plants because high efficiencies can be achieved a very low reactor operating temperatures which in turn allows for the use of available fuels, cladding, and structural materials.
Economics of nuclear power and climate change mitigation policies.
Bauer, Nico; Brecha, Robert J; Luderer, Gunnar
2012-10-16
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.
Economics of nuclear power and climate change mitigation policies
Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar
2012-01-01
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963
NASA Technical Reports Server (NTRS)
George, Jeffrey
2014-01-01
Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.
NASA Technical Reports Server (NTRS)
Chakrabarti, Suman; Schmidt, George R.; Thio, Y. C.; Hurst, Chantelle M.
1999-01-01
A preliminary model for spacecraft propulsion performance analysis based on nuclear gain and subsystem mass-power balances are presented in viewgraph form. For very fast missions with straight-line trajectories, it has been shown that mission trip time is proportional to the cube root of alpha. Analysis of spacecraft power systems via a power balance and examination of gain vs. mass-power ratio has shown: 1) A minimum gain is needed to have enough power for thruster and driver operation; and 2) Increases in gain result in decreases in overall mass-power ratio, which in turn leads to greater achievable accelerations. However, subsystem mass-power ratios and efficiencies are crucial: less efficient values for these can partially offset the effect of nuclear gain. Therefore, it is of interest to monitor the progress of gain-limited subsystem technologies and it is also possible that power-limited systems with sufficiently low alpha may be competitive for such ambitious missions. Topics include Space flight requirements; Spacecraft energy gain; Control theory for performance; Mission assumptions; Round trips: Time and distance; Trip times; Vehicle acceleration; and Minimizing trip times.
Human resource development for nuclear generation - from the perspective of a utility company
NASA Astrophysics Data System (ADS)
Kahar, Wan Shakirah Wan Abdul; Mostafa, Nor Azlan; Salim, Mohd Faiz
2017-01-01
Malaysia is currently in the planning phase of its nuclear power program, with the first unit targeted to be operational in 2030. Training of nuclear power plant (NPP) staffs are usually long and rigorous due to the complexity and safety aspects of nuclear power. As the sole electricity utility in the country, it is therefore essential that Tenaga Nasional Berhad (TNB) prepares early in developing its human resource and nuclear expertise as a potential NPP owner-operator. A utility also has to be prudent in managing its work force efficiently and effectively, while ensuring that adequate preparations are being made to acquire the necessary nuclear knowledge with sufficient training lead time. There are several approaches to training that can be taken by a utility company with no experience in nuclear power. These include conducting feasibility studies and benchmarking exercises, preparing long term human resource development, increasing the exposure on nuclear power technology to both the top management and general staff, and employing the assistance of relevant agencies locally and abroad. This paper discusses the activities done and steps taken by TNB in its human resource development for Malaysia's nuclear power program.
Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek
2015-07-01
The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2011-03-01
The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.
Technology for Bayton-cycle powerplants using solar and nuclear energy
NASA Technical Reports Server (NTRS)
English, R. E.
1986-01-01
Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkisson, Mary A.; Qualls, A. L.
The Southeast United States consumes approximately one billion megawatt-hours of electricity annually; roughly two-thirds from carbon dioxide (CO 2) emitting sources. The balance is produced by non-CO 2 emitting sources: nuclear power, hydroelectric power, and other renewables. Approximately 40% of the total CO 2 emissions come from the electric grid. The CO 2 emitting sources, coal, natural gas, and petroleum, produce approximately 372 million metric tons of CO 2 annually. The rest is divided between the transportation sector (36%), the industrial sector (20%), the residential sector (3%), and the commercial sector (2%). An Energy Mix Modeling Analysis (EMMA) tool wasmore » developed to evaluate 100-year energy mix strategies to reduce CO 2 emissions in the southeast. Current energy sector data was gathered and used to establish a 2016 reference baseline. The spreadsheet-based calculation runs 100-year scenarios based on current nuclear plant expiration dates, assumed electrical demand changes from the grid, assumed renewable power increases and efficiency gains, and assumed rates of reducing coal generation and deployment of new nuclear reactors. Within the model, natural gas electrical generation is calculated to meet any demand not met by other sources. Thus, natural gas is viewed as a transitional energy source that produces less CO 2 than coal until non-CO 2 emitting sources can be brought online. The annual production of CO 2 and spent nuclear fuel and the natural gas consumed are calculated and summed. A progression of eight preliminary scenarios show that nuclear power can substantially reduce or eliminate demand for natural gas within 100 years if it is added at a rate of only 1000 MWe per year. Any increases in renewable energy or efficiency gains can offset the need for nuclear power. However, using nuclear power to reduce CO 2 will result in significantly more spent fuel. More efficient advanced reactors can only marginally reduce the amount of spent fuel generated in the next 100 years if they are assumed to be available beginning around 2040. Thus closing the nuclear fuel cycle to reduce nuclear spent fuel inventories should be considered. Future work includes the incorporation of economic features into the model and the extension of the evaluation to the industrial sector. It will also be necessary to identify suitable sites for additional reactors.« less
The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies
NASA Astrophysics Data System (ADS)
Campbell, E. Michael
2010-02-01
Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo
This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclearmore » industry.« less
Nuclear Terrorism: The Possibilities, Probable Consequences, and Preventive Strategies.
ERIC Educational Resources Information Center
Totten, Michael
1986-01-01
This article explores the possibility of terrorist acts against nuclear power stations. It includes information on reactor security, public policy, and alternative courses of action deemed to increase public safety and cost efficiency. (JDH)
An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants
NASA Technical Reports Server (NTRS)
Burroughs, J. W.
1980-01-01
New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.
Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong
2013-11-01
Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energymore » storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most efficient idealized energy storage system is the two tank direct molten salt ESS with an Air Brayton combined cycle using LiF-NaF-KF as the molten salt, and the most economical is the same design with KCl MgCl2 as the molten salt. With energy production being a major worldwide industry, understanding the most efficient molten salt ESS boosts development of an effective NHES with cheap, clean, and steady power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.
2000-01-01
Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less
Liquid Metal Pump Technologies for Nuclear Surface Power
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2007-01-01
Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
Survey of advanced nuclear technologies for potential applications of sonoprocessing.
Rubio, Floren; Blandford, Edward D; Bond, Leonard J
2016-09-01
Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Power conditioning for space nuclear reactor systems
NASA Technical Reports Server (NTRS)
Berman, Baruch
1987-01-01
This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.
Analysis of UF6 breeder reactor power plants
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1976-01-01
Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.
Consequences and countermeasures in a nuclear power accident: Chernobyl experience.
Kirichenko, Vladimir A; Kirichenko, Alexander V; Werts, Day E
2012-09-01
Despite the tragic accidents in Fukushima and Chernobyl, the nuclear power industry will continue to contribute to the production of electric energy worldwide until there are efficient and sustainable alternative sources of energy. The Chernobyl nuclear accident, which occurred 26 years ago in the former Soviet Union, released an immense amount of radioactivity over vast territories of Belarus, Ukraine, and the Russian Federation, extending into northern Europe, and became the most severe accident in the history of the nuclear industry. This disaster was a result of numerous factors including inadequate nuclear power plant design, human errors, and violation of safety measures. The lessons learned from nuclear accidents will continue to strengthen the safety design of new reactor installations, but with more than 400 active nuclear power stations worldwide and 104 reactors in the Unites States, it is essential to reassess fundamental issues related to the Chernobyl experience as it continues to evolve. This article summarizes early and late events of the incident, the impact on thyroid health, and attempts to reduce agricultural radioactive contamination.
Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor
Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.
Recent Trends in Fusion Gyrotron Development at KIT
NASA Astrophysics Data System (ADS)
Gantenbein, G.; Avramidis, K.; Franck, J.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kalaria, P.; Pagonakis, I. Gr.; Ruess, S.; Rzesnicki, T.; Thumm, M.; Wu, C.
2017-10-01
ECRH&CD is one of the favorite heating system for magnetically confined nuclear fusion plasmas. KIT is strongly involved in the development of high power gyrotrons for use in ECRH systems for nuclear fusion. KIT is upgrading the sub-components of the existing 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron to support long-pulse operation up to 1 s, all components will be equipped with a specific active cooling system. Two important developments for future high power, highly efficient gyrotrons will be discussed: design of gyrotrons with high operating frequency (˜ 240 GHz) and efficiency enhancement by using advanced collector designs with multi-staged voltage depression.
Noncombatant Evacuation Operations (NEO) Decision-Making Process Effects on Efficiency
2012-02-15
the eastern coast of Japan. On 12 March, the Fukushima Daiichi nuclear power plant experienced explosions and fires within four reactors.51 Over... awareness , and understanding the mission objectives.43 The following outlines recent NEO successes and failures. First, a strategic look at the evacuation... Daiichi nuclear power plant. Over the next 30 days, the JTF and embassy worked intensely to develop a comprehensive plan overcoming many of the
Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor
NASA Astrophysics Data System (ADS)
Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.
2017-02-01
At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.
Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Harada, Nobuhiro
2011-01-01
Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Masri Husam Fayiz, Al
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.
Nuclear Energy for Space Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2010-01-01
Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future
NASA Technical Reports Server (NTRS)
Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.
1977-01-01
The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.
NASA Astrophysics Data System (ADS)
Xing, Shaoxu; Anakok, Isil; Zuo, Lei
2017-04-01
Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.
An underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, V.E.
1988-05-17
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.
Underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, Viktor E.
1989-01-01
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.
1985-08-01
system thermal -to-electric energy conversion efficiency quite high (-20-25 percent). c. Fuel system--Figure 6 compares the fuel swelling of U02 , UN... high temperature reservoir. Figure 28 shows a schematic of an AMTEC operation. The efficiency of ANTEC is calculated by: IV IV + 1 (L + C AT) + Qloss... thermal energy to electrical energy. The high efficiency and low specific mass (for large systems) are the common advantages of these active systems. In
A Technical Feasibility Study of a Green Area
2012-09-01
40 Biomass Gasification Combined Cycle 40 Waste-to-Electricity 22 - 28 Nuclear 33 - 36 Table 21. Power Plants Efficiencies. After [17] 71 VI...10 6. Biomass and Biofuels ........................................................... 11 7. Earthquakes...31 5. Tidal Power ............................................................................. 32 6. Biomass and Biofuels
Liquid-Metal Pump Technologies for Nuclear Surface Power
NASA Technical Reports Server (NTRS)
Polzin, K. A.
2007-01-01
Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
NASA Astrophysics Data System (ADS)
Shchelik, S. V.; Pavlov, A. S.
2013-07-01
Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.
1983-05-18
based on low-temperature reactors ; atomic heat and electric power stations (ATETs); The restructuring of the energy balance for the 1980-2000 period...ASPT) based on low-temperature reactors ; atomic heat and electric power stations (TETs); industrial atomic power stations (AETS) based on high-temper...ature reactors ) and high-efficiency long-distance heat transport (in conjunc- tion with high-temperature nuclear power sources: ASDT). The
Refractory metal alloys and composites for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.
1988-01-01
Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.R.; Botts, T.E.; Hertzberg, A.
1981-01-01
Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less
The future of nuclear power: The role of the IFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.
1995-12-31
The author is in favor of nuclear energy for three major reasons: (1) a nuclear power station emits no particulates or sulfur; (2) a nuclear power station emits no carbon dioxide and therefore does not contribute (appreciably) to the possibility of global warming which is a major environmental issue of this century; (3) nuclear energy offers the opportunity to have an energy supply sustainable for the next hundred thousands years, and is the only supply presently known to be able to do so at a reasonable cost. He notes that at Rio de Janeiro, the USA joined other countries inmore » calling for an approach to an indefinitely sustainable future. Alas, they were not bold or honest enough to state that using nuclear power, combined with considerable increase in energy efficiency and prudent use of renewables, is the only known way of achieving one other than massive population reduction or poverty. It is unlikely that improved energy efficiency can do the job alone. If the first two were the only issues, ordinary light water reactors would be adequate. One would not need the breeder reactor. But unless huge quantities of high quality uranium are found, or a cheap way of extracting it from seawater, one will need to have a way of using the uranium 238 or thorium. This is the role of this meeting. The author arrives at a set of criteria for a breeder reactor system: (1) it must be safe (secure against major accidents); (2) the system must be proliferation resistant; (3) the cost of the produced electricity must be competitive with other sources of energy--with perhaps a small margin for environmental advantage; (4) it must be capable of rapid expansion if and when needed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T. J.
2014-02-01
The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well knownmore » based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigm—manufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
High-intensity power-resolved radiation imaging of an operational nuclear reactor.
Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J
2015-10-09
Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.
High-intensity power-resolved radiation imaging of an operational nuclear reactor
Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.
2015-01-01
Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669
Increasing nuclear power at liberalised energy markets- case Finland
NASA Astrophysics Data System (ADS)
Syri, S.; Kurki-Suonio, T.; Satka, V.
2012-10-01
Several Finnish projections for future electricity demand and the need for peak load capacity indicate a demand growth of about 2 GW from the present to the year 2030. The retirement of existing fossil fuel plants and old nuclear power plants will cause increased net import needs during 2020's, even when assuming additional energy efficiency measures and the commissioning of two new nuclear power plants recently approved by the Finnish Parliament. By the year 2030, the need for additional new capacity will be about 6 GW. The increased dependence on import is in contradiction with the official Government targets. This situation is not unique to Finland, but rather is likely to be the case in many other European countries as well. Both the energy company Fortum and energy-intensive industry in Finland see nuclear energy as a viable future generation technology. We describe the « Mankala » concept which is successfully used to build new nuclear capacity at liberalised electricity market in Finland.
Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.
Sowerby, B D
2009-09-01
Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.
2015-02-01
The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2012-01-01
Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.
NASA Astrophysics Data System (ADS)
Butler, Thomas S.
Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik
2010-10-01
A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plantmore » operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.« less
The roles and functions of a lunar base Nuclear Technology Center
NASA Astrophysics Data System (ADS)
Buden, D.; Angelo, J. A., Jr.
This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.
SNPSAM - Space Nuclear Power System Analysis Model
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Seo, Jong T.
The current version of SNPSAM is described, and the results of the integrated thermoeletric SP-100 system performance studies using SNPSAM are reported. The electric power output, conversion efficiency, coolant temperatures, and specific pumping power of the system are calculated as functions of the reactor thermal power and the liquid metal coolant type (Li or NaK-78) during steady state operation. The transient behavior of the system is also discussed.
Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane
NASA Technical Reports Server (NTRS)
Strack, W. C.
1971-01-01
Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.
sCO2 Power Cycles Summit Summary November 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Lance, Blake
Over the past ten years, the Department of Energy (DOE) has helped to develop components and technologies for the Supercritical Carbon Dioxide (sCO2) power cycle capable of efficient operation at high temperatures and high efficiency. The DOE Offices of Fossil Energy, Nuclear Energy, and Energy Efficiency and Renewable Energy collaborated in the planning and execution of the sCO2 Power Cycle Summit conducted in Albuquerque, NM in November 2017. The summit brought together participants from government, national laboratories, research, and industry to engage in discussions regarding the future of sCO 2 Power Cycles Technology. This report summarizes the work involved inmore » summit planning and execution, before, during, and after the event, including the coordination between three DOE offices and technical content presented at the event.« less
Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Richard Thomas
2008-01-01
In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system.more » Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures. Additionally, many Generation IV (Gen IV) reactor concepts have goals for optimizing investment recovery and economic efficiency that promote significant reductions in plant operations and maintenance staff over current-generation nuclear power plants. To accomplish these Gen IV goals and also address the SRPS remote-siting challenges, higher levels of automation, fault tolerance, and advanced diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. Essentially, the SRPS control system for several anticipated terrestrial applications can benefit from the kind of operational autonomy that is necessary for deep space and planetary SRPS-enabled missions. Investigation of the state of the technology for autonomous control confirmed that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. As an example, NASA has pursued autonomy for spacecraft and surface exploration vehicles (e.g., rovers) to reduce mission costs, increase efficiency for communications between ground control and the vehicle, and enable independent operation of the vehicle during times of communications blackout. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and fully automated control of normal SRPS operations is clearly feasible. However, the space-based and remote terrestrial applications of SRPS modules require autonomous capabilities that can accommodate nonoptimum operations when degradation, failure, and other off-normal events challenge the performance of the reactor while immediate human intervention is not possible. The independent action provided by autonomous control, which is distinct from the more limited self action of automated control, can satisfy these conditions. Key characteristics that distinguish autonomous control include: (1) intelligence to confirm system performance and detect degraded or failed conditions, (2) optimization to minimize stress on SRPS components and efficiently react to operational events without compromising system integrity, (3) robustness to accommodate uncertainties and changing conditions, and (4) flexibility and adaptability to accommodate failures through reconfiguration among available control system elements or adjustment of control system strategies, algorithms, or parameters.« less
Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)
NASA Astrophysics Data System (ADS)
Lizon-A-Lugrin, Laure
The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a mechanical power of 1200 MW. It is observed that in most cases the landscape of Pareto's front is mostly controlled only by few key parameters. These results may be very useful for future plant design engineers. Furthermore, some calculations for pipe sizing and temperature variation between coolant and fuel have been carried out to provide an idea on their order of magnitude.
Spent Nuclear Fuel Disposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C.
One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less
Spent Nuclear Fuel Disposition
Wagner, John C.
2016-05-22
One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less
Physics and potentials of fissioning plasmas for space power and propulsion
NASA Technical Reports Server (NTRS)
Thom, K.; Schwenk, F. C.; Schneider, R. T.
1976-01-01
Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.
Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2007-01-01
The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.
Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor
NASA Technical Reports Server (NTRS)
Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey
1991-01-01
This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.
TRANSISTOR HIGH VOLTAGE POWER SUPPLY
Driver, G.E.
1958-07-15
High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.
High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
Power Management for Space Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2001-01-01
Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.
Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart A. Ragsdale; Roger Lew; Ronald L. Boring
2014-09-01
This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed bettermore » and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.« less
Schmitt, Kara
2012-01-01
Nuclear power is one of the ways that we can design an efficient sustainable future. Automation is the primary system used to assist operators in the task of monitoring and controlling nuclear power plants (NPP). Automation performs tasks such as assessing the status of the plant's operations as well as making real time life critical situational specific decisions. While the advantages and disadvantages of automation are well studied in variety of domains, accidents remind us that there is still vulnerability to unknown variables. This paper will look at the effects of automation within three NPP accidents and incidents and will consider why automation failed in preventing these accidents from occurring. It will also review the accidents at the Three Mile Island, Chernobyl, and Fukushima Daiichi NPP's in order to determine where better use of automation could have resulted in a more desirable outcome.
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; ...
2014-11-01
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes
NASA Technical Reports Server (NTRS)
Morris, J. F.
1974-01-01
Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.
In Hot Water: A Cooling Tower Case Study. Instructor's Manual
ERIC Educational Resources Information Center
Cochran, Justin; Raju, P. K.; Sankar, Chetan
2005-01-01
Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Additional 20-Year Period; Record of Decision Notice is hereby given that the U.S. Nuclear Regulatory... technical specifications. The notice also serves as the record of decision for the renewal of facility..., efficiency, wood-fired generation, and wind power; and non-renewal of the operating license. The factors...
Nuclear thermionic converter. [tungsten-thorium oxide rods
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Mondt, J. F. (Inventor)
1977-01-01
Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib
The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey.
Solid state radioisotopic energy converter for space nuclear power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.M.
1993-01-10
Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, bettermore » efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.« less
A combined gas cooled nuclear reactor and fuel cell cycle
NASA Astrophysics Data System (ADS)
Palmer, David J.
Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping to increase performance and reduce degradation of the fuel cell. It also provides the high temperature needed to efficiently produce hydrogen for the fuel cell. Moreover, the inclusion of a highly reliable and electrically independent fuel cell is particularly important as the ship will have the ability to divert large amounts of power from the propulsion system to energize high energy weapon pulse loads without disturbing vital parts of the C4ISR systems or control panels. Ultimately, the thesis shows that the combined cycle is mutually beneficial to each side of the cycle and overall critically needed for our future.
Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Genk, Mohamed S.; Tournier, Jean-Michel P.
2002-07-01
This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, Dirk; Kluth, Thomas
2012-07-01
During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the currentmore » potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)« less
Decontamination, decommissioning, and vendor advertorial issue, 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
2005-07-15
The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru
The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results aremore » analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.« less
NASA Astrophysics Data System (ADS)
Shmelev, A. N.; Kulikov, G. G.
2016-12-01
The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U-Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most "protected" in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.
Refractory metal alloys and composites for space power systems
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Petrasek, Donald W.; Titran, Robert H.
1988-01-01
Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary source to meet these high levels of electrical demand. One way to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites is discussed.
UF6 breeder reactor power plants for electric power generation
NASA Technical Reports Server (NTRS)
Rust, J. H.; Clement, J. D.; Hohl, F.
1976-01-01
The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.
Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...
2016-10-05
In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.
In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less
High efficiency Brayton cycles using LNG
Morrow, Charles W [Albuquerque, NM
2006-04-18
A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.
NASA Astrophysics Data System (ADS)
Khroustalev, V. A.; Simonyan, A. A.
2017-11-01
There was carried out an analysis of technical characteristics of boiler houses in a number of Russian NPPs. We justified the possibility of their usage for autonomous generation of electrical energy and improvement of maneuvering properties of power complexes as a single object of regulation, as well as the possibility of increasing the total generation capacity of NPP power units during peak hours. Then the selection of the main equipment of house boiler for its autonomous work was done. There were composed basic thermal diagrams of the power complex on the basis of NPP start-up boiler (SUB) and the satellite turbine. The article also considers some options of reconstruction of SUB into the heat-recovery boiler. The developed power complexes are designed to be used on the basis of the two-loop NPP with pressurized power reactors (PWR). They can be applied with serial and projected domestic NPP units with the aim of getting more power, improving the plant capacity factor (PCF), as well as with the aim of NPP participation in the regulation of the load curve above the nominal value with partial replacement of new construction. The power complexes can be a relevant solution in the light of the energy strategy of the Russian Federation, which is aimed at, firstly, further improvement of efficiency and safety at the NPP, and, secondly, solving the problem of adequate maneuverability and ensuring the adjustment range limits in power systems with high share of nuclear power plants. Implementation of new hybrid thermal diagrams allows simultaneous increase in the safety of NPP, and usage of nuclear power plants emergency frequency control in power systems by fast load drop and rise by -4÷+2 % of the nominal value. Due to the usage of different fuels in power complexes, uranium loading in the core of reactor facilities and gas in SUB, there was proposed and formalized the criterion of “thermoeconomic index”. This criterion represents the ratio of the gross receipt from the sale of electricity to the total cost of fuel of all kinds, spent on ensuring power efficiency.
Debate on the Chernobyl disaster: on the causes of Chernobyl overestimation.
Jargin, Sergei V
2012-01-01
After the Chernobyl accident, many publications appeared that overestimated its medical consequences. Some of them are discussed in this article. Among the motives for the overestimation were anti-nuclear sentiments, widespread among some adherents of the Green movement; however, their attitude has not been wrong: nuclear facilities should have been prevented from spreading to overpopulated countries governed by unstable regimes and regions where conflicts and terrorism cannot be excluded. The Chernobyl accident has hindered worldwide development of atomic industry. Today, there are no alternatives to nuclear power: nonrenewable fossil fuels will become more and more expensive, contributing to affluence in the oil-producing countries and poverty in the rest of the world. Worldwide introduction of nuclear energy will become possible only after a concentration of authority within an efficient international executive. This will enable construction of nuclear power plants in optimally suitable places, considering all sociopolitical, geographic, geologic, and other preconditions. In this way, accidents such as that in Japan in 2011 will be prevented.
NASA Astrophysics Data System (ADS)
Cravey, Kristopher J.
Notable performance differences exist between nuclear and fossil power generation plants in areas such as safety, outage duration efficiency, and capacity factor. This study explored the relationship of organizational culture and implicit leadership theory to these performance differences. A mixed methods approach consisting of quantitative instruments, namely the Organizational Culture Assessment Instrument and the GLOBE Leadership Scales, and qualitative interviews were used in this study. Subjects were operations middle managers in a U.S. energy company that serves nuclear or fossil power plants. Results from the quantitative instruments revealed no differences between nuclear and fossil groups in regards to organizational culture types and implicit leadership theories. However, the qualitative results did reveal divergence between the two groups in regards to what is valued in the organization and how that drives behaviors and decision making. These organizational phenomenological differences seem to explain why performance differences exist between nuclear and fossil plants because, ultimately, they affect how the organization functions.
Survey of Current and Next Generation Space Power Technologies
2006-06-26
different thermodynamic cycles, such as the Brayton, Rankine, and Stirling cycles, alkali metal thermal electric converters ( AMTEC ) and thermionic...efficiencies @ 1700K. The primary issue with this system is the integration of the converter technology into the nuclear reactor core. AMTEC (static...Alkali metal thermal to electric converters ( AMTECs ) are thermally powered electrochemical concentration cells that convert heat energy directly to DC
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy's 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
In the Introductory statement, Professor Philip N. Powers, Director of the Energy Engineering Center, discussed briefly the societal stresses resulting from energy shortfalls, the conservation and lower-growth-rate approach, the energy decision-making process, international considerations of energy supply and demand, the consideration for alternative energy sources other than nuclear or coal, and the cost-effectiveness of environmental improvements. Professor Leonard Z. Breen's statement, Energy and Society, discusses population changes, communication networks in decision making, effects of urbanizing and suburbanizing, and social impacts of changing technologies. Professor Otto C. Doering in his statement, Alternate Fuels and Agricultural Production, emphasizes such things as timemore » constraints, relative inflexibility with respect to energy source, and the biological nature of agriculture (especially weather concerns). Professor Frank P. Incropera identifies the technology of power generation (especially increasing power plant efficiency) as the first priority in his statement, Efficient Energy Utilization and Conservation. Professor Reinhardt Schuhmann, Jr. in his statement, National Problem Solving and Energy, suggests that the primary objective should be development of a new national energy process, rather than the collection and analysis of comprehensive and detailed data and rather than refinement of forecasting and scenario building. Professor Jay W. Wiley in his statement, Planning for Effective Energy Utilization, specifies certain basic understandings that must be recognized in the following areas: economic relationships, energy sources, fission nuclear energy, and electric power production in the short run. (MCW)« less
Status and prospect of NDT technology for nuclear energy industry in Korea
NASA Astrophysics Data System (ADS)
Lee, Joon Hyun
2016-02-01
Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.
Thermoelectric energy conversion with solid electrolytes
NASA Astrophysics Data System (ADS)
Cole, T.
1983-09-01
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta-double prime-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
Thermoelectric energy conversion with solid electrolytes.
Cole, T
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta"- alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
A role for high frequency superconducting devices in free space power transmission systems
NASA Technical Reports Server (NTRS)
Christian, Jose L., Jr.; Cull, Ronald C.
1988-01-01
Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.
Method and apparatus for improving the performance of a nuclear power electrical generation system
Tsiklauri, Georgi V.; Durst, Bruce M.
1995-01-01
A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.
Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji
2014-01-01
Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.
NASA Astrophysics Data System (ADS)
Showstack, Randy
Three new reports commissioned by the Pew Center on Global Climate Change examine the electric power sectors in Argentina, Brazil, and China, and the potential impact that energy use in each country has on climate change.In 1999, Argentina voluntarily agreed to lower its greenhouse gas emissions to 2 10% below projected emissions for 2012. The report looks at additional steps that could further reduce emissions, including adopting policies that favor renewable energy sources and nuclear power, and increasing energy efficiency by end-users.
Analysis about modeling MEC7000 excitation system of nuclear power unit
NASA Astrophysics Data System (ADS)
Liu, Guangshi; Sun, Zhiyuan; Dou, Qian; Liu, Mosi; Zhang, Yihui; Wang, Xiaoming
2018-02-01
Aiming at the importance of accurate modeling excitation system in stability calculation of nuclear power plant inland and lack of research in modeling MEC7000 excitation system,this paper summarize a general method to modeling and simulate MEC7000 excitation system. Among this method also solve the key issues of computing method of IO interface parameter and the conversion process of excitation system measured model to BPA simulation model. At last complete the simulation modeling of MEC7000 excitation system first time in domestic. By used No-load small disturbance check, demonstrates that the proposed model and algorithm is corrective and efficient.
Detection and Sizing of Defects in Structural Components of a Nuclear Power Plant by ECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhenmao; Miya, Kenzo
2005-04-09
In this paper, progress of ECT technique for inspection of stress corrosion cracks in a structural component of a nuclear power plant is reported. Access and scanning vehicle (robot), advanced probes for SG tube inspection, development and evaluation of new probes for welding joint, and ECT based crack sizing technique are described respectively. Based on these new techniques, it is clarified that ECT can play as a supplement of UT for the welding zone inspection. It is also proved in this work that new ECT sensors are efficient even for a stainless plate as thick as 15mm.
Study on a hypothetical replacement of nuclear electricity by wind power in Sweden
NASA Astrophysics Data System (ADS)
Wagner, F.; Rachlew, E.
2016-05-01
The Swedish electricity supply system benefits strongly from the natural conditions which allow a high share of hydroelectricity. A complete supply is, however, not possible. Up to now, nuclear power is the other workhorse to serve the country with electricity. Thus, electricity production of Sweden is basically CO2 -free and Sweden has reached an environmental status which others in Europe plan to reach in 2050. Furthermore, there is an efficient exchange within the Nordic countries, Nordpol, which can ease possible capacity problems during dry cold years. In this study we investigate to what extent and with what consequences the base load supply of nuclear power can be replaced by intermittent wind power. Such a scenario leads unavoidably to high wind power installations. It is shown that hydroelectricity cannot completely smooth out the fluctuations of wind power and an additional back-up system using fossil fuel is necessary. From the operational dynamics, this system has to be based on gas. The back-up system cannot be replaced by a storage using surplus electricity from wind power. The surplus is too little. To overcome this, further strong extension of wind power is necessary which leads, however, to a reduction of the use of hydroelectricity if the annual consumption is kept constant. In this case one fossil-free energy form is replaced by another, however, more complex one. A mix of wind power at 22.3GW plus a gas based back-up system with 8.6GW producing together 64.8TWh would replace the present infrastructure with 9GW nuclear power producing 63.8TWh electricity. The specific CO2 -emission increases to the double in this case. Pumped storage for the exclusive supply of Sweden does not seem to be a meaningful investment.-1
High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
Nuclear Electric Magnetohydrodynamic Propulsion for Submarine
1989-05-01
develop - ment strategies for the future. The base program includes the development of the LMFBR, and HTGR to...events. Oxide fuel is -134- being retained as a backup, pending the outcome of the metal fuel development program . The design allows for a quick fuel ... HTGR plants can be developed with much higher source temperature and core power density. High efficiency and low power den- sity characteristics
NASA Astrophysics Data System (ADS)
Schmitt, Kara Anne
This research aims to prove that strict adherence to procedures and rigid compliance to process in the US Nuclear Industry may not prevent incidents or increase safety. According to the Institute of Nuclear Power Operations, the nuclear power industry has seen a recent rise in events, and this research claims that a contributing factor to this rise is organizational, cultural, and based on peoples overreliance on procedures and policy. Understanding the proper balance of function allocation, automation and human decision-making is imperative to creating a nuclear power plant that is safe, efficient, and reliable. This research claims that new generations of operators are less engaged and thinking because they have been instructed to follow procedures to a fault. According to operators, they were once to know the plant and its interrelations, but organizationally more importance is now put on following procedure and policy. Literature reviews were performed, experts were questioned, and a model for context analysis was developed. The Context Analysis Method for Identifying Design Solutions (CAMIDS) Model was created, verified and validated through both peer review and application in real world scenarios in active nuclear power plant simulators. These experiments supported the claim that strict adherence and rigid compliance to procedures may not increase safety by studying the industry's propensity for following incorrect procedures, and when it directly affects the outcome of safety or security of the plant. The findings of this research indicate that the younger generations of operators rely highly on procedures, and the organizational pressures of required compliance to procedures may lead to incidents within the plant because operators feel pressured into following the rules and policy above performing the correct actions in a timely manner. The findings support computer based procedures, efficient alarm systems, and skill of the craft matrices. The solution to the problems facing the industry include in-depth, multiple fault failure training which tests the operator's knowledge of the situation. This builds operator collaboration, competence and confidence to know what to do, and when to do it in response to an emergency situation. Strict adherence to procedures and rigid compliance to process may not prevent incidents or increase safety; building operators' fundamental skills of collaboration, competence and confidence will.
Loss of Load Probability Calculation for West Java Power System with Nuclear Power Plant Scenario
NASA Astrophysics Data System (ADS)
Azizah, I. D.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.; Shafii, M. A.
2017-03-01
Loss of Load Probability (LOLP) index showing the quality and performance of an electrical system. LOLP value is affected by load growth, the load duration curve, forced outage rate of the plant, number and capacity of generating units. This reliability index calculation begins with load forecasting to 2018 using multiple regression method. Scenario 1 with compositions of conventional plants produce the largest LOLP in 2017 amounted to 71.609 days / year. While the best reliability index generated in scenario 2 with the NPP amounted to 6.941 days / year in 2015. Improved reliability of systems using nuclear power more efficiently when compared to conventional plants because it also has advantages such as emission-free, inexpensive fuel costs, as well as high level of plant availability.
Application of nuclear pumped laser to an optical self-powered neutron detector
NASA Astrophysics Data System (ADS)
Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.
1996-05-01
A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.
A study of electric transmission lines for use on the lunar surface
NASA Technical Reports Server (NTRS)
Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.
1994-01-01
The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-02-01
This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.
What is nuclear power in Japan?
NASA Astrophysics Data System (ADS)
Suzuki, Toshikazu
2011-03-01
The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.
Light Water Reactor Sustainability Program: Integrated Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy’s 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less
Thermoelectric energy conversion with solid electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, T.
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta''-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40%, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. Amore » wide range of applications from aerospace power to utility power plants appears possible.« less
NASA Astrophysics Data System (ADS)
Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.
2015-05-01
The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
Fuel Effective Photonic Propulsion
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Srivarshini, S.
2017-09-01
With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.
NASA Astrophysics Data System (ADS)
Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.
2014-02-01
The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, D.R.; Chandler, J.R.; Church, J.P.
1979-01-01
The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji
A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-05-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less
Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Hongbin Zhang; Phil Sharpe
2010-06-01
Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be builtmore » at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.« less
NASA Astrophysics Data System (ADS)
Pochylý, F.; Haluza, M.; Fialová, S.; Dobšáková, L.; Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Druzhinin, A. A.
2017-11-01
The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient n s < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of n s are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1-4% (in the experiments for the pumps with n s = 33 and 55) and to extend its efficient working zone approximately by 15-20% (in the experiment for the pumps with n s = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.
Status of NASA's Stirling Space Power Converter Program
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.
1991-01-01
An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.
Surface Nuclear Power for Human Mars Missions
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
The Design Reference Mission for NASA's human mission to Mars indicates the desire for in-situ propellant production and bio-regenerative life systems to ease Earth launch requirements. These operations, combined with crew habitation and science, result in surface power requirements approaching 160 kilowatts. The power system, delivered on an early cargo mission, must be deployed and operational prior to crew departure from Earth. The most mass efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters. The resulting system satisfies the key mission requirements including autonomous deployment, high reliability, and cost effectiveness at a overall system mass of 12 tonnes and a stowed volume of about 63 cu m.
Programmatic status of NASA's CSTI high capacity power Stirling space power converter program
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.
1990-01-01
An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Efficiency mark of the two-product power complex of nuclear power plant
NASA Astrophysics Data System (ADS)
Khrustalev, V. A.; Suchkov, V. M.
2017-11-01
The article discusses the combining nuclear power plants (NPP) with pressurized water reactors and distillation-desalination plants (DDP), their joint mode of operation during periods of coating failures of the electric power load graphs and thermo-economical efficiency. Along with the release of heat and generation of electric energy a desalination complex with the nuclear power plant produces distillate. Part of the selected steam “irretrievably lost” with a mix of condensation of this vapor in a desalination machine with a flow of water for distillation. It means that this steam transforms into condition of acquired product - distillate. The article presents technical solutions for the return of the working fluid for turbine К-1000-60/1500-2 и К-1200-6,8/50, as well as permissible part of low pressure regime according to the number of desalination units for each turbine. Patent for the proposed two-product energy complex, obtained by Gagarin State Technical University is analyzed. The energy complex has such system advantages as increasing the capacity factor of a nuclear reactor and also allows to solve the problem of shortage of fresh water. Thermo-economics effectiveness of this complex is determined by introducing a factor-“thermo-economic index”. During analyzing of the results of the calculations of a thermo-economic index we can see a strong influence of the cost factor of the distillate on the market. Then higher participation of the desalination plant in coverage of the failures of the graphs of the electric loading then smaller the payback period of the NPP. It is manifested more clearly, as it’s shown in the article, when pricing options depend on time of day and the configuration of the daily electric load diagram. In the geographical locations of the NPPs with PWR the Russian performance in a number of regions with low freshwater resources and weak internal electrical connections combined with DDP might be one of the ways to improve the competitiveness of NPPs, especially for foreign coastal areas.
Managing Instructor Training to Achieve Excellence.
ERIC Educational Resources Information Center
Norton, Robert E.
A group of concerned companies in the nuclear electric power industry formed the Electric Utility Instructor Training Consortium to train instructors in a cost-effective and time-efficient manner. The companies collaborated with the Ohio State University to (1) conduct job and task analyses; (2) develop performance-based instructor modules; (3)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, T.L.
A growing number of nuclear power plants in the United States have adopted routine 12-hr shift schedules. Because of the potential impact that extended work shifts could have on safe and efficient power plant operation, the U.S. Nuclear Regulatory Commission funded research on 8-hr and 12-hr shifts at the Human Alertness Research Center (HARC) in Boston, Massachusetts. This report describes the research undertaken: a study of simulated 8-hr and 12-hr work shifts that compares alertness, speed, and accuracy at responding to simulator alarms, and relative cognitive performance, self-rated mood and vigor, and sleep-wake patterns of 8-hr versus 12-hr shift workers.
Si--Au Schottky barrier nuclear battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tse, Anthony N.
1972-11-01
A long-life, high-power-density, high-reliability, compact microwatt battery is needed in many applications. In the field of medicine, for example, such a battery could power an artificial pacemaker which would greatly extend the residence time of the device. Various alternatives are analyzed and discussed. Betavoltaic conversion systems with Si-Au Schottky barrier cells coupled with 147Pm metal foil were selected for investigation. Characterization experiments were performed to obtain optimized silicon resistivity and promethium metal foil thickness. Radiation dose rates were measured and the safety aspects of the battery were analyzed. A prototype battery was assembled and tested. The economics of the batterymore » were demonstrated for special applications. It is concluded that a microwatt nuclear battery can be built with a conversion efficiency of 1 to 2%, a power density of 60 to 300 pW/cm 3 depending on the power level, and a useful life of 5 to 10 years. Further research areas are recommended.« less
Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Ashe, Thomas L.; Otting, William D.
1993-01-01
The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.
Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
NASA Astrophysics Data System (ADS)
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-12-31
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-01-01
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
Operational status and current trends in gas turbines for utility applications in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, R.A.
1976-08-16
This investigation was conducted to ascertain the operational status and current trends in gas turbines for electric utility applications in Europe. A number of selected organizations were contacted by letter and personal visits and readily available pertinent literature was reviewed. The impact of business recovery in 1976 and increases in power demand on gas turbine operation and design trends is reflected in the following: annual operating hours on simple cycle gas turbines is very low in favor of more efficient combined cycle or steam plants which comprise part of the present excess reserve capacity; economics indicates the need for highermore » single unit ratings, e.g., in the 100 MW power range; inquiries and discussion of new plants are predominantly for more efficient systems--combined cycles and/or exhaust heat utilization; dual-purpose heat and power plants are getting much more attention; re-powering of existing steam plants is an attractive approach which has been demonstrated and should expand in use; ability to burn (or handle) dirty fuels is important; closed cycle gas turbine plants are receiving renewed consideration because of their good operational experience with dirty fuels including coal, flexibility in supplying varying amounts of heat and power with independent control, low pollution characteristics, ability to use over 80 percent of the heat content in thefuel, and potential for advantageous use in direct cycle, gas cooled nuclear power stations; the broad use of nuclear energy appears inevitable, and the potential advantages of direct cycle gas cooled systems with helium turbines offer incentives of increased efficiency, safety, and lower cost; and component trends are toward higher turbine inlet temperatures (1700 to 2000/sup 0/F) and toward higher compressor pressure ratios and variable geometry. Gas turbines are expected to play an important and continuing role in the utility industry in accordance with its changing requirements.« less
Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems
NASA Astrophysics Data System (ADS)
Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel
2007-01-01
Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.
A radioluminescent nuclear battery using volumetric configuration: 63Ni solution/ZnS:Cu,Al/InGaP.
Russo, Johnny; Litz, Marc; Ray, William; Smith, Brenda; Moyers, Richard
2017-12-01
Energy dense power sources are critical to the development of compact, remote sensors for terrestrial and space applications. Nuclear batteries using β - -emitting radioisotopes possess energy densities 1000 times greater than chemical batteries. Their power generation is a function of β - flux saturation point relative to the planar (2D) configuration, β - range, and semiconductor converter. An approach to increase power density in a beta-photovoltaic (β-PV) nuclear battery is described. By using volumetric (3D) configuration, the radioisotope, nickel-63 ( 63 Ni) in a chloride solution was integrated in a phosphor film (ZnS:Cu,Al) where the β - energy is converted into optical energy. The optical energy was converted to electrical energy via an indium gallium phosphate (InGaP) photovoltaic (PV) cell, which was optimized for low light illumination and closely matched to radioluminescence (RL) spectrum. With 15mCi of 63 Ni activity, the 3D configuration energy values surpassed 2D configuration results. The highest total power conversion efficiency (η t ) of 3D configuration was 0.289% at 200µm compared 0.0638% for 2D configuration at 50µm. The highest electrical power and η t for the 3D configuration were 3.35 nW e /cm 2 at an activity of 30mCi and 0.289% at an activity of 15mCi, respectively. By using 3D configuration, the interaction space between the radioisotope source and scintillation material increased, allowing for significant electrical energy output, relative to the 2D configuration. These initial results represent a first step to increase nuclear battery power density from microwatts to milliwatts per 1000cm 3 with the implementation of higher energy β - sources. Published by Elsevier Ltd.
THz Dynamic Nuclear Polarization NMR
Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.
2013-01-01
Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...
Generation-IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
McFarlane, Harold
2008-05-01
Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Nuclear Power as a Basis for Future Electricity Generation
NASA Astrophysics Data System (ADS)
Pioro, Igor; Buruchenko, Sergey
2017-12-01
It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy, moreover, the energy source, which does not emit carbon dioxide into atmosphere, are considered as the energy source for basic loads in an electrical grid. Currently, the vast majority of NPPs are used only for electricity generation. However, there are possibilities to use NPPs also for district heating or for desalination of water. In spite of all current advances in nuclear power, NPPs have the following deficiencies: 1) Generate radioactive wastes; 2) Have relatively low thermal efficiencies, especially, watercooled NPPs; 3) Risk of radiation release during severe accidents; and 4) Production of nuclear fuel is not an environment-friendly process. Therefore, all these deficiencies should be addressed in the next generation or Generation-IV reactors. Generation-IV reactors will be hightemperature reactors and multipurpose ones, which include electricity generation, hydrogen cogeneration, process heat, district heating, desalination, etc.
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
NASA Astrophysics Data System (ADS)
Batyrbekov, E. G.; Gordienko, Yu. N.; Barsukov, N. I.; Ponkratov, Yu. V.; Kulsartov, T. V.; Khassenov, M. U.; Zaurbekova, Zh. A.; Tulubayev, Ye. Y.; Samarkhanov, K. K.
2018-04-01
The spectral studies of optical radiation of gaseous mixtures are of interest for solving problems associated with finding gaseous media with high energy conversion efficiency of nuclear reactions into the energy of laser or spontaneous emission [1, 2]. Such media can be used to extract energy from nuclear and fusion reactors in the form of optical radiation, and also to control and adjust the nuclear reactors parameters. This paper presents the preliminary results of the reactor experiments to study the spectral-luminescent properties of gas mixtures (based on He, Ne and Kr noble gases) excited by the products of 6Li(n,α)3H nuclear reaction at different levels of the stationary power of the IVG.1M reactor.
Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul D.; SanSoucie, Michael P.
2015-01-01
NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.
78 FR 13911 - Proposed Revision to Design of Structures, Components, Equipment and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... Analysis Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.1, ``Seismic Design Parameters,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... and analysis issues, (2) updates to review interfaces to improve the efficiency and consistency of...
In Hot Water: A Cooling Tower Case Study
ERIC Educational Resources Information Center
Cochran, Justin; Raju, P. K.; Sankar, Chetan
2005-01-01
Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…
Physics-based multiscale coupling for full core nuclear reactor simulation
Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...
2015-10-01
Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
Closed fuel cycle with increased fuel burn-up and economy applying of thorium resources
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Apse, V. A.
2017-01-01
The possible role of existing thorium reserves in the Russian Federation on engaging thorium in being currently closed (U-Pu)-fuel cycle of nuclear power of the country is considered. The application efficiency of thermonuclear neutron sources with thorium blanket for the economical use of existing thorium reserves is demonstrated. The aim of the work is to find solutions of such major tasks as the reduction of both front-end and back-end of nuclear fuel cycle and an enhancing its protection against the uncontrolled proliferation of fissile materials by means of the smallest changes in the fuel cycle. During implementation of the work we analyzed the results obtained earlier by the authors, brought new information on the number of thorium available in the Russian Federation and made further assessments. On the basis of proposal on the inclusion of hybrid reactors with Th-blanket into the future nuclear power for the production of light uranium fraction 232+233+234U, and 231Pa, we obtained the following results: 1. The fuel cycle will shift from fissile 235U to 233U which is more attractive for thermal power reactors. 2. The light uranium fraction is the most "protected" in the uranium component of fuel and mixed with regenerated uranium will in addition become a low enriched uranium fuel, that will weaken the problem of uncontrolled proliferation of fissile materials. 3. 231Pa doping into the fuel stabilizes its multiplying properties that will allow us to implement long-term fuel residence time and eventually to increase the export potential of all nuclear power technologies. 4. The thorium reserves being near city Krasnoufimsk (Russia) are large enough for operation of large-scale nuclear power of the Russian Federation of 70 GWe capacity during more than a quarter century under assumption that thorium is loaded into blankets of hybrid TNS only. The general conclusion: the inclusion of a small number of hybrid reactors with Th-blanket into the future nuclear power will allow us substantially to solve its problems, as well as to increase its export potential.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... proposed action may include issuing exemptions to nuclear power plant licensees for up to 40 nuclear power.... Fitzpatrick Nuclear Power Plant Joseph M. Farley Nuclear Plant, Units 1 and 2 Millstone Power Station, Unit... Palisades Nuclear Plant Palo Verde Nuclear Generating Station, Units 1, 2, and 3 Perry Nuclear Power Plant...
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew
1990-01-01
Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.
Thermionic energy conversion technology - Present and future
NASA Technical Reports Server (NTRS)
Shimada, K.; Morris, J. F.
1977-01-01
Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.
Nuclear metaphors: Why risk communication and public education haven't worked
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flank, S.; Hansen, K.
1991-11-01
Broad public acceptability is a necessary condition for the future success of nuclear power in the US and will be determined by the way the public perceives nuclear power - specifically, through nuclear power's metaphoric equivalences. A content analysis of a cross section of the debate over nuclear power shows that the public does not share a single concept of what nuclear power is - nuclear energy has yet to be firmly anchored in a particular context or caught in a web of relations to the rest of society. The political battleground for the contest over nuclear power is notmore » patterns of risk perception or shortcomings in public education but rather nuclear power as metaphor. For example, is nuclear power a factory producing electricity, or is it indistinguishable from nuclear weapons By highlighting the metaphors that underlie competing conceptions of nuclear power, one can illuminate parts of the political debate that otherwise are consigned to psychology, irrationality, or ignorance. Understanding these metaphors also makes clear the kind of deep changes that would be necessary to secure public acceptance of nuclear power.« less
Comparison of evolving photovoltaic and nuclear power systems for earth orbital applications
NASA Technical Reports Server (NTRS)
Rockey, D. E.; Jones, R. M.; Schulman, I.
1982-01-01
Photovoltaic and fission reactor orbital power systems are compared in terms of the end-to-end system power-to-mass ratios. Three PV systems are examined, i.e., a solid substrate with a cell array and a NiCd battery, a modified SEP array and an NiH2 battery, and a 62-micron Si cell array and a fuel cell. All arrays were modeled to be 13.5% efficient and to produce 25 kW dc. The SP-100 reactor consists of the heat source, radiation shield, heat pipes to transfer thermal energy from the reactor to thermoelectric elements, and a waste heat radiator. Consideration is given to system applications in orbits ranging from LEO to GEO, and to mission durations of 1, 5, and 10 yr. PV systems are concluded to be flight-proven, useful out of radiation belts, and best for low to moderate power levels. Limitations exist for operations where atmospheric drag may become a factor and due to the size of a large PV power supply. Space nuclear reactors will continue under development and uses at high power levels and in low altitude orbits are foreseen.
Power conditioning system modelling for nuclear electric propulsion
NASA Astrophysics Data System (ADS)
Metcalf, Kenneth J.
1993-11-01
NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.
Power Conditioning System Modelling for Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Metcalf, Kenneth J.
1993-01-01
NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.
Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil
NASA Astrophysics Data System (ADS)
de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.
2018-05-01
A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Calvert Cliffs.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1...
Exploring Students' Ideas About Risks and Benefits of Nuclear Power Using Risk Perception Theories
NASA Astrophysics Data System (ADS)
Kılınç, Ahmet; Boyes, Edward; Stanisstreet, Martin
2013-06-01
Due to increased energy demand, Turkey is continuing to explore the possibilities of introducing nuclear power. Gaining acceptance from local populations, however, may be problematic because nuclear power has a negative image and risk perceptions are complicated by a range of psychological and cultural factors. In this study, we explore the views about nuclear power of school students from three locations in Turkey, two of which have been proposed as sites suitable for nuclear power plants. About half of the student cohort believed that nuclear power can supply continuous and sufficient electricity, but approximately three quarters thought that nuclear power stations could harm organisms, including humans, living nearby. Rather few students realized that adoption of nuclear power would help to reduce global warming and thereby limit climate change; indeed, three quarters thought that nuclear power would make global warming worse. There was a tendency for more students from the location most likely to have a nuclear power plant to believe negative characteristics of nuclear power, and for fewer students to believe positive characteristics. Exploration of the possible nuclear power programmes by Turkey offers an educational opportunity to understand the risk perceptions of students that affect their decision-making processes.
[Nuclear transfer of goat somatic cells transgenic for human lactoferrin].
Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie
2006-12-01
Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.
Bimodal Nuclear Thermal Rocket Analysis Developments
NASA Technical Reports Server (NTRS)
Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark
2014-01-01
Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Research on digital system design of nuclear power valve
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye
2018-04-01
With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
...- 2010-0373] Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos... and DPR-25 for Dresden Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power...
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1987-01-01
The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.
An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity
NASA Technical Reports Server (NTRS)
Randolph, Thomas M.; Polk, James E., Jr.
2004-01-01
The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1991-01-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.
77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
....; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... licensee), for operation of the Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth, Massachusetts... Regarding Pilgrim Nuclear Power Station, Final Report- Appendices,'' published in July 2007 (ADAMS Accession...
Modification of graphene by ion beam
NASA Astrophysics Data System (ADS)
Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.
2017-09-01
Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.
Informed public preferences for electricity portfolios with CCS and other low-carbon technologies.
Fleishman, Lauren A; De Bruin, Wändi Bruine; Morgan, M Granger
2010-09-01
Public perceptions of carbon capture and sequestration (CCS) and other low-carbon electricity-generating technologies may affect the feasibility of their widespread deployment. We asked a diverse sample of 60 participants recruited from community groups in Pittsburgh, Pennsylvania to rank 10 technologies (e.g., coal with CCS, natural gas, nuclear, various renewables, and energy efficiency), and seven realistic low-carbon portfolios composed of these technologies, after receiving comprehensive and carefully balanced materials that explained the costs and benefits of each technology. Rankings were obtained in small group settings as well as individually before and after the group discussions. The ranking exercise asked participants to assume that the U.S. Congress had mandated a reduction in carbon dioxide emissions from power plants to be built in the future. Overall, rankings suggest that participants favored energy efficiency, followed by nuclear power, integrated gasification combined-cycle coal with CCS and wind. The most preferred portfolio also included these technologies. We find that these informed members of the general public preferred diverse portfolios that contained CCS and nuclear over alternatives once they fully understood the benefits, cost, and limitations of each. The materials and approach developed for this study may also have value in educating members of the general public about the challenges of achieving a low-carbon energy future. © 2010 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Schastlivtsev, A. I.; Borzenko, V. I.
2017-11-01
The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
NASA Technical Reports Server (NTRS)
1975-01-01
A comparison was made between the environmental impact of the present nuclear-heated process and the currently commercial hydrogen-producing process utilizing coal for heating, i.e., the Lurgi coal gasification process. This comparison is based on the assumption that both plants produce the same quantity of H2, i.e., 269 cu m/sec of approximately the same purity, that all pollution abatement equipment is of the same design and efficiency for both the Lurgi process and the nuclear process, and that the energy required for the fresh nuclear fuel and the fuel recycle is generated in a power plant which is also provided with pollution abatement equipment. The pollution caused by the auxiliary units is also taken into account. As regards process water usage, the data show that the water required for the nuclear route, including the nuclear fuel production, is approximately 78% of that required for the Lurgi route.
NASA's Nuclear Frontier: The Plum Brook Reactor Facility, 1941-2002
NASA Technical Reports Server (NTRS)
Bowles, Mark D.; Arrighi, Robert S.
2004-01-01
In 1953, President Eisenhower delivered a speech called "Atoms for Peace" to the United Nations General Assembly. He described the emergence of the atomic age and the weapons of mass destruction that were piling up in the storehouses of the American and Soviet nations. Although neither side was aiming for global destruction, Eisenhower wanted to "move out of the dark chambers of horrors into the light, to find a way by which the minds of men, the hopes of men, the souls of men everywhere, can move towards peace and happiness and well-being." One way Eisenhower hoped this could happen was by transforming the atom from a weapon of war into a useful tool for civilization. Many people believed that there were unprecedented opportunities for peaceful nuclear applications. These included hopeful visions of atomic-powered cities, cars, airplanes, and rockets. Nuclear power might also serve as an efficient way to generate electricity in space to support life and machines. Eisenhower wanted to provide scientists and engineers with "adequate amounts of fission- able material with which to test and develop their ideas." But, in attempting to devise ways to use atomic power for peaceful purposes, scientists realized how little they knew about the nature and effects of radiation. As a result, the United States began constructing nuclear test reactors to enable scientists to conduct research by producing neutrons.
Electricity generation and health.
Markandya, Anil; Wilkinson, Paul
2007-09-15
The provision of electricity has been a great benefit to society, particularly in health terms, but it also carries health costs. Comparison of different forms of commercial power generation by use of the fuel cycle methods developed in European studies shows the health burdens to be greatest for power stations that most pollute outdoor air (those based on lignite, coal, and oil). The health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This same ranking also applies in terms of greenhouse-gas emissions and thus, potentially, to long-term health, social, and economic effects arising from climate change. Nuclear power remains controversial, however, because of public concern about storage of nuclear waste, the potential for catastrophic accident or terrorist attack, and the diversion of fissionable material for weapons production. Health risks are smaller for nuclear fusion, but commercial exploitation will not be achieved in time to help the crucial near-term reduction in greenhouse-gas emissions. The negative effects on health of electricity generation from renewable sources have not been assessed as fully as those from conventional sources, but for solar, wind, and wave power, such effects seem to be small; those of biofuels depend on the type of fuel and the mode of combustion. Carbon dioxide (CO2) capture and storage is increasingly being considered for reduction of CO2 emissions from fossil fuel plants, but the health effects associated with this technology are largely unquantified and probably mixed: efficiency losses mean greater consumption of the primary fuel and accompanying increases in some waste products. This paper reviews the state of knowledge regarding the health effects of different methods of generating electricity.
Free-piston Stirling Engine system considerations for various space power applications
NASA Technical Reports Server (NTRS)
Dochat, George R.; Dhar, Manmohan
1991-01-01
Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.
Feasibility Study of a Nuclear-Stirling Plant for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Schreiber, Jeffrey G.; Penswick, L. Barry
2005-01-01
NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant-RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton Power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This paper will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor i the 1980's and early 1990's. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste hear is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared radiator. The radiator consists of two coplanar wings, which would be deployed after the reactor is in space. System trades were performed to vary cycle state point temperatures and convertor design as well as power output. Other redundancy combinations were considered to understand the affects of convertor size and number of spares to the system mass.
Review of Computational Stirling Analysis Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.
2004-01-01
Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent its current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-Fl technique is presented in detail.
Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator
Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.
2007-01-01
We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0,6,1 mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at 456 GHz and in the TE2,3,1 fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE0,6,1 mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T. PMID:17710187
Breakthrough: Record-Setting Cavity
Ciovati, Gianluigi
2018-02-06
Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Hoover, Mark D.
1991-07-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
...; Pilgrim Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. In... License Renewal of Nuclear Plants: Regarding Pilgrim Nuclear Power Station,'' NUREG-1437, Supplement 29...
78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is... Nuclear Power Station (PNPS). The license provides, among other things, that the facility is subject to... participated in two FEMA-evaluated exercises in conjunction with the Vermont Yankee Nuclear Power Plant and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision Notice is hereby... ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim), owned by...) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of performing their required...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to..., Environmental impact statement, Nuclear materials, Nuclear power plants and reactors, Reporting and... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, A.; Bakhtiari, S.; Huang, X.
The objective of this project is to develop and demonstrate methods for transmission of information in nuclear facilities by acoustic means along existing in-place metal piping infrastructure. Pipes are omnipresent in a nuclear facility, and penetrate enclosures and partitions, such as the containment building wall. In the envisioned acoustic communication (AC) system, packets of information will be transmitted as guided acoustic waves along pipes. Performance of AC hardware and network protocols for efficient and secure communications under development in this project will be eventually evaluated in a representative nuclear power plant environment. Research efforts in the first year of thismore » project have been focused on identification of appropriate transducers, and evaluation of their performance for information transmission along nuclear-grade metallic pipes. COMSOL computer simulations were performed to study acoustic wave generation, propagation, and attenuation on pipes. An experimental benchtop system was used to evaluate signal attenuation and spectral dispersion using piezo-electric transducers (PZTs) and electromagnetic acoustic transducers (EMATs). Communication protocols under evaluation consisted on-off keying (OOK) signal modulation, in particular amplitude shift keying (ASK) and phase shift keying (PSK). Tradeoffs between signal power and communication data rate were considered for ASK and PSK coding schemes.« less
Neutron radiation characteristics of the IVth generation reactor spent fuel
NASA Astrophysics Data System (ADS)
Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey
2018-03-01
Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...
NASA Astrophysics Data System (ADS)
Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst
2015-04-01
The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological hazards, …).
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
NASA Astrophysics Data System (ADS)
Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.
2000-01-01
In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .
76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... draft regulatory guide (DG), DG-4016, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. DATES: Submit...
Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.
2008-01-01
Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurilenkov, Yu. K.; Skowronek, M.
2010-12-15
Properties of an aerosol substance with a high power density in the interelectrode space of a nano- second vacuum discharge are studied. The possibilities of emission and/or trapping of fast ions and hard X-rays by ensembles of clusters and microparticles are analyzed. The possibility of simultaneous partial trapping (diffusion) of X-rays and complete trapping of fast ions by a cluster ensemble is demonstrated experimentally. Due to such trapping, the aerosol ensemble transforms into a 'dusty' microreactor that can be used to investigate a certain class of nuclear processes, including collisional DD microfusion. Operating regimes of such a microreactor and theirmore » reproducibility were studied. On the whole, the generation efficiency of hard X-rays and neutrons in the proposed vacuum discharge with a hollow cathode can be higher by two orders of magnitude than that in a system 'high-power laser pulse-cluster cloud.' Multiply repeated nuclear fusion accompanied by pulsating DD neutron emission was reproducibly detected in experiment. Ion acceleration mechanisms in the interelectrode space and the fundamental role of the virtual cathode in observed nuclear fusion processes are discussed.« less
NASA Astrophysics Data System (ADS)
Takahashi, Tsuyoshi
Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.
Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.
78 FR 64028 - Decommissioning of Nuclear Power Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision...
NASA Technical Reports Server (NTRS)
Mason, Lee; Birchenough, Arthur; Pinero, Luis
2004-01-01
A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis
2004-01-01
A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load
NASA Astrophysics Data System (ADS)
Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.
2008-09-01
A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.
Analytical Study of 90Sr Betavoltaic Nuclear Battery Performance Based on p-n Junction Silicon
NASA Astrophysics Data System (ADS)
Rahastama, Swastya; Waris, Abdul
2016-08-01
Previously, an analytical calculation of 63Ni p-n junction betavoltaic battery has been published. As the basic approach, we reproduced the analytical simulation of 63Ni betavoltaic battery and then compared it to previous results using the same design of the battery. Furthermore, we calculated its maximum power output and radiation- electricity conversion efficiency using semiconductor analysis method.Then, the same method were applied to calculate and analyse the performance of 90Sr betavoltaic battery. The aim of this project is to compare the analytical perfomance results of 90Sr betavoltaic battery to 63Ni betavoltaic battery and the source activity influences to performance. Since it has a higher power density, 90Sr betavoltaic battery yields more power than 63Ni betavoltaic battery but less radiation-electricity conversion efficiency. However, beta particles emitted from 90Sr source could travel further inside the silicon corresponding to stopping range of beta particles, thus the 90Sr betavoltaic battery could be designed thicker than 63Ni betavoltaic battery to achieve higher conversion efficiency.
Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.
2010-01-01
Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.
An overview of the Nuclear Electric Xenon Ion System (NEXIS) program
NASA Technical Reports Server (NTRS)
Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.;
2003-01-01
NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.
77 FR 69449 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
.... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power...., Constellation Power Source Generation, Inc., Cow Branch Wind Power, L.L.C., CR Clearing, LLC, Criterion Power...
Efficient solution of the simplified P N equations
Hamilton, Steven P.; Evans, Thomas M.
2014-12-23
We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.
Gaseous fuel reactors for power systems
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Rodgers, R. J.
1977-01-01
Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2003-01-01
Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU performance over its full operating range. The primary test variables used in operating the Brayton PCU were heater input power and rotor speed. Testing demonstrated a maximum steady-state alternating-current power output of 1835 W at a gas heater power of 9000 W and a rotor speed of 52000 rpm. The corresponding measured turbine inlet gas temperature was 1076 K, and the compressor inlet gas temperature was 282 K. When insulation losses from the gas heater were neglected, the Brayton cycle efficiency for the maximum power point was calculated to be 24 percent. The net direct-current power output was 1750 W, indicating a PMAD efficiency of about 95 percent.
Frequency-Swept Integrated Solid Effect.
Can, Thach V; Weber, Ralph T; Walish, Joseph J; Swager, Timothy M; Griffin, Robert G
2017-06-06
The efficiency of continuous wave dynamic nuclear polarization (DNP) experiments decreases at the high magnetic fields used in contemporary high-resolution NMR applications. To recover the expected signal enhancements from DNP, we explored time domain experiments such as NOVEL which matches the electron Rabi frequency to the nuclear Larmor frequency to mediate polarization transfer. However, satisfying this matching condition at high frequencies is technically demanding. As an alternative we report here frequency-swept integrated solid effect (FS-ISE) experiments that allow low power sweeps of the exciting microwave frequencies to constructively integrate the negative and positive polarizations of the solid effect, thereby producing a polarization efficiency comparable to (±10 % difference) NOVEL. Finally, the microwave frequency modulation results in field profiles that exhibit new features that we coin the "stretched" solid effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment and Finding of No Significant Impact... Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with 10 CFR 51.21... of Nuclear Plants: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437...
76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...
76 FR 66089 - Access Authorization Program for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0245] Access Authorization Program for Nuclear Power... Program for Nuclear Power Plants.'' This guide describes a method that NRC staff considers acceptable to... Regulations (10 CFR), section 73.56, ``Personnel Access Authorization Requirements for Nuclear Power Plants...
β-DECAY Studies at Triumf and Future Opportunities with Griffin
NASA Astrophysics Data System (ADS)
Garnsworthy, A. B.; Ball, G. C.; Bender, P. C.; Churchman, R.; Close, A.; Glister, J.; Hackman, G.; Ketelhut, S.; Krücken, R.; Sjue, S. K. L.; Tardiff, E.; Garrett, P. E.; Demand, G. A.; Dunlop, R.; Finlay, P.; Hadinia, B.; Leach, K.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Andreoiu, C.; Ashley, R.; Chester, A.; Cross, D.; Starosta, K.; Wang, Z.; Zganjar, E. F.
2013-03-01
The 8π spectrometer at TRIUMF-ISAC-I and a powerful suite of ancillary detectors support a wide program of research in the fields of nuclear structure, nuclear astrophysics and fundamental symmetries with low-energy radioactive beams.Work is underway to upgrade the Ge detectors and DAQ aspects of the facility to a new state-of-the-art γ-ray spectrometer, GRIFFIN, which will become operational in 2014. GRIFFIN will constitute an increase in the γ-γ efficiency of close to a factor of 300 over the current setup and extend the capabilities for investigations of exotic nuclei produced at ISAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwal
2009-07-01
Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.
Solar Electric Propulsion for Mars Exploration
NASA Technical Reports Server (NTRS)
Hack, Kurt J.
1998-01-01
Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.
Space power reactor in-core thermionic multicell evolutionary (S-prime) design
NASA Astrophysics Data System (ADS)
Determan, William R.; Van Hagan, Tom H.
1993-01-01
A 5- to 40-kWe moderated in-core thermionic space nuclear power system (TI-SNPS) concept was developed to address the TI-SNPS program requirements. The 40-kWe baseline design uses multicell Thermionic Fuel Elements (TFEs) in a zirconium hydride moderated reactor to achieve a specific mass of 18.2 We/kg and a net end-of-mission (EOM) efficiency of 8.2%. The reactor is cooled with a single NaK-78 pumped loop, which rejects the heat through a 24 m2 heat pipe space radiator.
Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Bitteker, L. J.; Jones, J. E.
2001-01-01
Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...
78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...
77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2011-0182 when contacting the NRC about...
78 FR 71675 - License Amendment Application for Vermont Yankee Nuclear Power Station
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... Vermont Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: License amendment... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have...
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...
75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
..., Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the... Operating License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant, Unit 1... rule's compliance date for all operating nuclear power plants, but noted that the Commission's...
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to themore » nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Steffen; Weigel, Robert; Koelpin, Alexander
2015-07-01
Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installationmore » of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)« less
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-06
... NUCLEAR REGULATORY COMMISSION [Project No. 0782; NRC-2013-0244] Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt; availability. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff acknowledges receipt of...
76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
..., and 52 [NRC-2011-0297] General Site Suitability Criteria for Nuclear Power Stations AGENCY: Nuclear... Suitability Criteria for Nuclear Power Stations.'' This guide describes a method that the NRC staff considers acceptable to implement the site suitability requirements for nuclear power stations. DATES: Submit comments...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... Company, Davis-Besse Nuclear Power Station; Environmental Assessment And Finding of No Significant Impact... operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS), located in Ottawa County, Ohio. In... the reactor coolant pressure boundary of light-water nuclear power reactors provide adequate margins...
78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental... (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...
78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
Role of nuclear power in the Philippine power development program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleta, C.R.
1994-12-31
The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclearmore » power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.« less
Nuclear power generation and fuel cycle report 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; NRC-2010-0010] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact The U.S... Entergy Nuclear Operations, Inc. (Entergy or the licensee), for operation of Pilgrim Nuclear Power Station...
75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0240] FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...
75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0378] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...
78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...
Surface Power Radiative Cooling Tests
NASA Astrophysics Data System (ADS)
Vaughn, Jason; Schneider, Todd
2006-01-01
Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
Multimegawatt potassium Rankine power for nuclear electric power
NASA Technical Reports Server (NTRS)
Rovang, Richard D.; Mills, Joseph C.; Baumeister, Ernie B.
1991-01-01
A cermet fueled potassium rankine power system concept has been developed for various power ranges and operating lifetimes. This concept utilizes a single primary lithium loop to transport thermal energy from the reactor to the boiler. Multiple, independent potassium loops are employed to achieve the required reliability of 99 percent. The potassium loops are two phase systems which expand heated potassium vapor through multistage turboalternators to produce a 10-kV dc electrical output. Condensation occurs by-way-of a shear-flow condenser, producing a 100 percent liquid potassium stream which is pumped back to the boiler. Waste heat is rejected by an advanced carbon-carbon radiator at approximately 1000 K. Overall system efficiencies of 19.3 percent to 20.5 percent were calculated depending on mission life and power level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liun, Edwaren, E-mail: edwaren@batan.go.id; Suparman, E-mail: edwaren@batan.go.id
Regarding nuclear power plant development in Bangka Island, it can be estimated that produced power will be oversupply for the Bangka Island and needs to transmit to Sumatra or Java Island. The distance between the regions or islands causing considerable loss of power in transmission by alternating current, and a wide range of technical and economical issues. The objective of this paper addresses to economics analysis of direct current transmission system to overcome those technical problem. Direct current transmission has a stable characteristic, so that the power delivery from Bangka to Sumatra or Java in a large scale efficiently andmore » reliably can be done. HVDC system costs depend on the power capacity applied to the system and length of the transmission line in addition to other variables that may be different.« less
Cost estimation of HVDC transmission system of Bangka's NPP candidates
NASA Astrophysics Data System (ADS)
Liun, Edwaren; Suparman
2014-09-01
Regarding nuclear power plant development in Bangka Island, it can be estimated that produced power will be oversupply for the Bangka Island and needs to transmit to Sumatra or Java Island. The distance between the regions or islands causing considerable loss of power in transmission by alternating current, and a wide range of technical and economical issues. The objective of this paper addresses to economics analysis of direct current transmission system to overcome those technical problem. Direct current transmission has a stable characteristic, so that the power delivery from Bangka to Sumatra or Java in a large scale efficiently and reliably can be done. HVDC system costs depend on the power capacity applied to the system and length of the transmission line in addition to other variables that may be different.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...
NASA Missions Enabled by Space Nuclear Systems
NASA Technical Reports Server (NTRS)
Scott, John H.; Schmidt, George R.
2009-01-01
This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.
Development of high-average-power DPSSL with high beam quality
NASA Astrophysics Data System (ADS)
Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki
2000-08-01
The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.
NASA Astrophysics Data System (ADS)
Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.
2006-06-01
The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...
77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... Testing at Nuclear Power Plants, Draft Report for Comment'' AGENCY: Nuclear Regulatory Commission. ACTION... Testing at Nuclear Power Plants, Draft Report for Comment,'' and subtitled ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at Nuclear Power...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271, NRC-2011-0168] Vermont Yankee Nuclear Power... Regulatory Commission (NRC or the Commission) has granted the request of Vermont Yankee Nuclear Power Station... Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station, located in Vernon, Vermont. The...
76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
...; Vermont Yankee Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Vermont Yankee Nuclear Power Station (Vermont Yankee), located in Windham... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...
NUCLEAR NONPROLIFERATION AND SAFETY: Challenges Facing the International Atomic Energy Agency.
1993-09-01
safeguards), and the Chernobyl nuclear power plant accident have focused greater attention on nuclear proliferation and the safety of nuclear power... Chernobyl , IAEA has placed increasing emphasis on assisting member states in improving the safety of nuclear power plants. Despite funding shortfalls...report language, GAO has incorporated their comments where appropriate. 2Nuclear Power Safety: Chernobyl Accident Prompted Worldwide Actions but
Efficiency dilution: long-term exergy conversion trends in Japan.
Williams, Eric; Warr, Benjamin; Ayres, Robert U
2008-07-01
This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.
Solar power. [comparison of costs to wind, nuclear, coal, oil and gas
NASA Technical Reports Server (NTRS)
Walton, A. L.; Hall, Darwin C.
1990-01-01
This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.
Yu, Ningle; Zhang, Yimei; Wang, Jin; Cao, Xingjiang; Fan, Xiangyong; Xu, Xiaosan; Wang, Furu
2012-01-01
Aims: The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China. Design: A descriptive, cross-sectional design was adopted. Participants: 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey. Methods: Data were collected through self-administered questionnaires consisting of a socio-demographic sheet. Inferential statistics, t-test, ANOVA test and multivariate regression analysis were used to compare the differences between each subgroup and correlation analysis was conducted to understand the relationship between different factors and dependent variables. Results: Our investigation found that the level of awareness and acceptance of nuclear power was generally not high. Respondents' gender, age, marital status, residence, educational level, family income and the distance away from the nuclear power plant are important effect factors to the knowledge of and attitude to nuclear power. Conclusions: The public concerns about nuclear energy's impact are widespread. The level of awareness and acceptance of nuclear power needs to be improved urgently. PMID:22811610
Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.; Rowan, W.J.
1994-06-27
Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru
2010-12-15
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.
2010-12-01
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.
Options for near-term phaseout of CO(2) emissions from coal use in the United States.
Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward
2010-06-01
The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future.
Analysis on capability of load following for nuclear power plants abroad and its enlightenment
NASA Astrophysics Data System (ADS)
Zheng, Kuan; Zhang, Fu-qiang; Deng, Ting-ting; Zhang, Jin-fang; Hao, Weihua
2017-01-01
With the acceleration adjustment of China’s energy structure, the development of nuclear power plants in China has been going back to the fast track. While as the trend of slowing electric power demand is now unmistakable, it enforces the power system to face much greater pressure in some coastal zones where the nuclear power plants are of a comparative big proportion, such as Fujian province and Liaoning province. In this paper, the capability of load following of nuclear power plants of some developed countries with high proportion of nuclear power generation such as France, US and Japan are analysed, also from the aspects including the safety, the economy and their practical operation experience is studied. The feasibility of nuclear power plants to participate in the peak regulation of system is also studied and summarized. The results of this paper could be of good reference value for the China’s nuclear power plants to participate in system load following, and also of great significance for the development of the nuclear power plants in China.
Tethered nuclear power for the Space Station
NASA Technical Reports Server (NTRS)
Bents, D. J.
1985-01-01
A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.
Tethered nuclear power for the space station
NASA Technical Reports Server (NTRS)
Bents, D. J.
1985-01-01
A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
...; NRC-2013-0245] In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station... licenses authorize the operation of the Dresden Nuclear Power Station (Dresden Station) in accordance with... actions described below will be taken at Dresden Nuclear Power Station and other nuclear plants in Exelon...
Code of Federal Regulations, 2014 CFR
2014-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Tower of Babel: a special report of the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The southern U.S. region currently maintains 19 operating nuclear reactors, a large number of nuclear-related industries, and numerous radioactive waste storage facilities. To illustrate the greed of nuclear power proponents and the dangers of existing and future nuclear power plant operations, the southern nuclear power industry is surveyed. Detailed are the South's involvement in each phase of the nuclear fuel cycle, from uranium mining to waste disposal; efforts by the region's private electric utility companies to buttress the crumbling supports of the nuclear industry; and the serious threat that nuclear power poses to the region, the nation, and the world.more » The U.S. nuclear power industry can be viewed as a modern Tower of Babel. (4 maps, 20 photos, 2 tables)« less
The (de)politicisation of nuclear power: The Finnish discussion after Fukushima.
Ylönen, Marja; Litmanen, Tapio; Kojo, Matti; Lindell, Pirita
2017-04-01
When the Fukushima accident occurred in March 2011, Finland was at the height of a nuclear renaissance, with the Government's decision-in-principle in 2010 to allow construction of two new nuclear reactors. This article examines the nuclear power debate in Finland after Fukushima. We deploy the concepts of (de)politicisation and hyperpoliticisation in the analysis of articles in the country's main newspaper. Our analysis indicates that Finnish nuclear exceptionalism manifested in the safety-related depoliticising and the nation's prosperity-related hyperpoliticisation arguments of the pro-nuclear camp. The anti-nuclear camp used politicisation strategies, such as economic arguments, to show the unprofitability of nuclear power. The Fukushima accident had a clear effect on Finnish nuclear policy: the government programme of 2011 excluded the nuclear new build. However, in 2014 the majority of Parliament again supported nuclear power. Hence, the period after Fukushima until 2014 could be described as continued but undermined loyalty to nuclear power.
Development of an advanced antineutrino detector for reactor monitoring
Classen, T.; Bernstein, A.; Bowden, N. S.; ...
2014-11-05
We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less
NASA Astrophysics Data System (ADS)
Luis, Josep M.; Duran, Miquel; Andrés, José L.
1997-08-01
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values.
CBP for Field Workers – Results and Insights from Three Usability and Interface Design Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Bly, Aaron Douglas
2015-09-01
Nearly all activities that involve human interaction with the systems in a nuclear power plant are guided by procedures. Even though the paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety, improving procedure use could yield significant savings in increased efficiency as well as improved nuclear safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use and adherence, researchers in the Light-Water Reactor Sustainability (LWRS) Program, togethermore » with the nuclear industry, have been investigating the possibility and feasibility of replacing the current paper-based procedure process with a computer-based procedure (CBP) system. This report describes a field evaluation of new design concepts of a prototype computer-based procedure system.« less
Japan-U.S. Relations: Issues for Congress
2014-09-24
disasters and meltdowns at the Fukushima Daiichi nuclear power plant. Public trust in the safety of nuclear power collapsed, and a vocal anti- nuclear ...to half a million Japanese were displaced. Damage to several reactors at the Fukushima Dai-ichi nuclear power plant complex led the government to...of Japan’s power generation capacity, and the 2006 “New National Energy Strategy” had set out a goal of significantly increasing Japan’s nuclear power
[Risk communication in construction of new nuclear power plant].
He, Gui-Zhen; Lü, Yong-Long
2013-03-01
Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.
Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esch, E.-I.; Bond, E.M.; Bredeweg, T. A.
2005-05-24
Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmutermore » system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,{gamma}) measurements using the recently commissioned DANCE array.« less
ERIC Educational Resources Information Center
Novick, Sheldon
1974-01-01
Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…
Knowledge elicitation techniques and application to nuclear plant maintenance
NASA Astrophysics Data System (ADS)
Doyle, E. Kevin
The new millennium has brought with it the opportunity of global trade which in turn requires the utmost in efficiency from each individual industry. This includes the nuclear power industry, a point which was emphasized when the electrical generation industry began to be de regulated across North America the late 1990s and re-emphasized when the northeast power grid of North America collapsed in the summer of 2003. This dissertation deals with reducing the cost of the maintenance function of Candu nuclear power plants and initiating a strong link between universities and the Canadian nuclear industry. Various forms of RCM (reliability-centred maintenance) have been the tools of choice in industry for improving the maintenance function during the last 20 years. In this project, pilot studies, conducted at Bruce Power between 1999 and 2005, and reported on in this dissertation, lay out a path to implement statistical improvements as the next step after RCM in reducing the cost of the maintenance. Elicitation protocols, designed for the age group being elicited, address the much-documented issue of a lack of data. Clear, graphical, inferential statistical interfaces are accentuated and developed to aid in building the teams required to implement the various methodologies and to help in achieving funding targets. Graphical analysis and Crow/AMSAA (army materials systems analysis activity) plots are developed and demonstrated from the point of view of justifying the expenditures of cost reduction efforts. This dissertation ultimately speaks to the great opportunity being presented by this approach at this time: of capturing the baby-boom generation's huge pool of knowledge before those people retire. It is expected that the protocols and procedures referenced here will have applicability across the many disciplines where collecting expert information from a similar age group is required.
Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K.; Bi, Jun; Liu, Yang
2013-01-01
We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public’s attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies. PMID:24248341
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County, NY. In accordance with 10 CFR...Patrick Nuclear Power Plant Power Authority of the State of New York, Docket No. 50-333,'' dated March...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...
NASA Astrophysics Data System (ADS)
Fetisov, V. V.; Vasilyev, O. S.; Borisyuk, P. V.; YuLebedinskii, Yu
2017-12-01
The paper considersthe construction of a miniature radioisotope power unit based on thermoelectric conversion of thermal energy released during nuclear decay. It is proposed to use thin fluoropolymer films (membranes) as a dielectric heat-insulating material. The results of numerical simulation of a prototype of a miniature radioisotope thermoelectric battery unit based on the thorium-228 isotope in the ANSYS program are presented. The geometry of the system has been optimized. It was established that the temperature of the source can reach about 1033 K, and the efficiency of the considered battery unit can reach 16.8%, which corresponds to modern power supplies of this type.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; License No. DPR-35; NRC-2012-0186] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action Notice is hereby... the Commission) take action with regard to the Pilgrim Nuclear Power Station (Pilgrim). The Petitioner...
CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong
The objective of this research is to collect experimental data on spent nuclear fuel (SNF) from pressurized water reactors (PWRs), including the H. B. Robinson Nuclear Power Station (HBR), Catawba Nuclear Station, North Anna Nuclear Power Station (NA), and the Limerick Nuclear Power Station (LMK) boiling water reactor (BWR).
NASA Astrophysics Data System (ADS)
Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis
2014-10-01
The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
2006-01-01
This paper presents the results of mission analyses that expose the advantages and disadvantages of high-power (MWe-class) Solar Electric Propulsion (SEP) for Lunar and Mars Cargo missions that would support human exploration of the Moon and Mars. In these analyses, we consider SEP systems using advanced Ion thrusters (the Xenon [Xe] propellant Herakles), Hall thrusters (the Bismuth [Bi] propellant Very High Isp Thruster with Anode Layer [VHITAL], magnetoplasmadynamic (MPD) thrusters (the Lithium [Li] propellant Advanced Lithium-Fed, Applied-field Lorentz Force Accelerator (ALFA2), and pulsed inductive thruster (PIT) (the Ammonia [NH3] propellant Nuclear-PIT [NuPIT]). The analyses include comparison of the advanced-technology propulsion systems (VHITAL, ALFA2, and NuPIT) relative to state-of-theart Ion (Herakles) propulsion systems and quantify the unique benefits of the various technology options such as high power-per-thruster (and/or high power-per-thruster packaging volume), high specific impulse (Isp), high-efficiency, and tankage mass (e.g., low tankage mass due to the high density of bismuth propellant). This work is based on similar analyses for Nuclear Electric Propulsion (NEP) systems.
76 FR 46856 - Qualification of Connection Assemblies for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S..., ``Qualification of Connection Assemblies for Nuclear Power Plants.'' This guide describes a method that the NRC... in nuclear power plants. The environmental qualification helps ensure that connection assemblies can...
GPU applications for data processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch; Aleksandrov, Andrey; INFN sezione di Napoli, I-80125 Napoli
2015-12-31
Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.
Sea-Shore Interface Robotic Design
2014-06-01
such as the Fukushima Daiichi Nuclear Power Plant disaster . For this prototype, waterproofed sparse print 3-D print material was acceptable. 27 THIS...Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for...predecessor. This thesis addresses the following questions: • Is this platform capable of operating efficiently in a sea-shore interface environment
In Space Nuclear Power as an Enabling Technology for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.; Houts, Michael
2000-01-01
Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably reach the outer planets for scientific exploration.
Status of a Power Processor for the Prometheus-1 Electric Propulsion System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph
2006-01-01
NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...
Nuclear Power as an Ethical Issue: Utilitarian Ethics and Egalitarian Responses.
ERIC Educational Resources Information Center
Hadjilambrinos, Constantine
1990-01-01
Described is the philosophical debate over the issue of nuclear power. Discussed are the utilitarian nature of the justification of nuclear power and the utilitarian approaches to the issue of nuclear power, the strengths and weaknesses of this approach, and utilitarian versus egalitarian ethics. (KR)
75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... date for all operating nuclear power plants, but noted that the Commission's regulations provide... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power...
Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements
NASA Astrophysics Data System (ADS)
Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.
2017-05-01
The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.
Accelerator-driven transmutation of spent fuel elements
Venneri, Francesco; Williamson, Mark A.; Li, Ning
2002-01-01
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing
NASA Astrophysics Data System (ADS)
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...
Powering the Nuclear Navy (U.S. Department of Energy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Secretary Perry toured the USS Harry Truman with Admiral Caldwell. The Truman is powered by the Department of Energy’s Nuclear Propulsion Program. These ships can run 25 years with a single nuclear-powered reactor. Secretary Perry was briefed on the importance of nuclear propulsion to the carrier’s capabilities. The Naval Nuclear Propulsion Program provides power plants that ensure safety, reliability, and extended deployment capacity.
2010-05-27
small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants
How to Overcome Numerical Challenges to Modeling Stirling Engines
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.
2004-01-01
Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.
NASA Technical Reports Server (NTRS)
Stone, James R.
1994-01-01
Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler technology for space Rankine cycle systems. Research is summarized on the problems of flow stability, liquid carryover, pressure drop and heat transfer, and on potential solutions developed, primarily those developed by the NASA Lewis Research Center in the 1960's and early 1970's.
NASA Astrophysics Data System (ADS)
Dudek, M.; Podsadna, J.; Jaszczur, M.
2016-09-01
In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
Applications in Nuclear Energy Security
NASA Astrophysics Data System (ADS)
Sheffield, Richard
2009-05-01
A key roadblock to development of additional nuclear power capacity is a concern over management of nuclear waste. Nuclear waste is predominantly comprised of used fuel discharged from operating nuclear reactors. The roughly 100 operating US reactors currently produce about 20% of the US electricity and will create about 87,000 tons of such discharged or ``spent'' fuel over the course of their lifetimes. The long-term radioactivity of the spent fuel drives the need for deep geologic storage that remains stable for millions of years. Nearly all issues related to risks to future generations arising from long-term disposal of such spent nuclear fuel is attributable to approximately the 1% made up primarily of minor actinides. If we can reduce or eliminate this 1% of the spent fuel, then within a few hundred years the toxic nature of the spent fuel drops below that of the natural uranium ore that was originally mined for nuclear fuel. The minor actinides can be efficiently eliminated through nuclear transmutation using as a driver fast-neutrons produced by a spallation process initiated with a high-energy proton beam. This presentation will cover the system design considerations and issues of an accelerator driven transmutation system.
Absorption of Radionuclides from the Fukushima Nuclear Accident by a Novel Algal Strain
Shimura, Hiroki; Itoh, Katsuhiko; Sugiyama, Atsushi; Ichijo, Sayaka; Ichijo, Masashi; Furuya, Fumihiko; Nakamura, Yuji; Kitahara, Ken; Kobayashi, Kazuhiko; Yukawa, Yasuhiro; Kobayashi, Tetsuro
2012-01-01
Large quantities of radionuclides have leaked from the Fukushima Daiichi Nuclear Power Plant into the surrounding environment. Effective prevention of health hazards resulting from radiation exposure will require the development of efficient and economical methods for decontaminating radioactive wastewater and aquatic ecosystems. Here we describe the accumulation of water-soluble radionuclides released by nuclear reactors by a novel strain of alga. The newly discovered green microalgae, Parachlorella sp. binos (Binos) has a thick alginate-containing extracellular matrix and abundant chloroplasts. When this strain was cultured with radioiodine, a light-dependent uptake of radioiodine was observed. In dark conditions, radioiodine uptake was induced by addition of hydrogen superoxide. High-resolution secondary ion mass spectrometry (SIMS) showed a localization of accumulated iodine in the cytosol. This alga also exhibited highly efficient incorporation of the radioactive isotopes strontium and cesium in a light-independent manner. SIMS analysis showed that strontium was distributed in the extracellular matrix of Binos. Finally we also showed the ability of this strain to accumulate radioactive nuclides from water and soil samples collected from a heavily contaminated area in Fukushima. Our results demonstrate that Binos could be applied to the decontamination of iodine, strontium and cesium radioisotopes, which are most commonly encountered after nuclear reactor accidents. PMID:22984475
Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)
Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão
2015-01-01
DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628
A 1050 K Stirling space engine design
NASA Technical Reports Server (NTRS)
Penswick, L. Barry
1988-01-01
As part of the NASA CSTI High Capacity Power Program on Conversion Systems for Nuclear Applications, Sunpower, Inc. completed for NASA Lewis a reference design of a single-cylinder free-piston Stirling engine that is optimized for the lifetimes and temperatures appropriate for space applications. The NASA effort is part of the overall SP-100 program which is a combined DOD/DOE/NASA project to develop nuclear power for space. Stirling engines have been identified as a growth option for SP-100 offering increased power output and lower system mass and radiator area. Superalloy materials are used in the 1050 K hot end of the engine; the engine temperature ratio is 2.0. The engine design features simplified heat exchangers with heat input by sodium heat pipes, hydrodynamic gas bearings, a permanent magnet linear alternator, and a dynamic balance system. The design shows an efficiency (including the alternator) of 29 percent and a specific mass of 5.7 kg/kW. This design also represents a significant step toward the 1300 K refractory Stirling engine which is another growth option of SP-100.
Modelling of nuclear power plant decommissioning financing.
Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J
2015-06-01
Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Advertising the atom: federal promotion of nuclear power, 1953-1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.
The public relations strategies of the Atomic Energy Commission (AEC) and the nuclear power industry reveal both public and official perceptions of nuclear power and the social uses of technology in general during the first 15 years after passage of the Atomic Energy Act of 1954. The relation between nuclear promotion and regulation also helps explain the environmental crisis of the 1969-1984 years. Project Plowshare coincides roughly with the early promotional years, and provides a case study of the relation of regulatory standards to promotion in AEC policymaking. The author examines the environmentalists challenge to nuclear power that emerged inmore » 1969 alongside government and industry response. He concludes with an assessment of the present state of federal nuclear power policy and of the nuclear power industry.« less
Nuclear Security for Floating Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiba, James M.; Scherer, Carolynn P.
2015-10-13
Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hanchung; Liu, Yung Y.; Shuler, James
The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination andmore » radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being developed by Argonne National Laboratory. ARG-US RAMM, powered by on-board battery, can sustain extended autonomous surveillance operation during and following an incident. The benefits could be invaluable to such critical facilities as nuclear power plants, research and test reactors, fuel cycle manufacturing centers, spent-fuel dry-cask storage facilities, and other nuclear installations. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft Report for Comment AGENCY: Nuclear Regulatory Commission... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... CONTACT: Felix Gonzalez, Fire Research Branch, Division of Risk Analysis, Office of Nuclear Regulatory...
76 FR 74630 - Making Changes to Emergency Plans for Nuclear Power Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 50 and 52 RIN 3150-AI10 [NRC-2008-0122] Making Changes to Emergency Plans for Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... guide (RG) 1.219, ``Guidance on Making Changes to Emergency Plans for Nuclear Power Reactors.'' This...
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear...
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear...
NASA Astrophysics Data System (ADS)
1985-12-01
Topics related to aerospace power are discussed, taking into account trends and issues of military space power systems technology, space station power system advanced development, the application and use of nuclear power for future spacecraft, the current status of advanced solar array technology development, the application of a parabolic trough concentrator to space station power needs, life test results of the Intelsat-V nickel-cadmium battery, and metal hydride hydrogen storage in nickel hydrogen batteries. Other subjects explored are concerned with alternative fuels, biomass energy, biomedical power, coal gasification, electric power cycles, and electric propulsion. Attention is given to an advanced terrestrial vehicle electric propulsion systems assessment, fuel cells as electric propulsion power plants, a sinewave synthesis for high efficiency dc-ac conversion, steam desulfurization of coal, leadless transfer of energy into the body to power implanted blood pumps, oil production via entrained flow pyrolysis of biomass, and a New Zealand synthetic gasoline plant.
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...
10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...
Nuclear Power: The Market Test. Worldwatch Paper 57.
ERIC Educational Resources Information Center
Flavin, Christopher
Nuclear power was considered vital to humanity's future until just a short time ago. Since the late seventies, economic viability has joined a list of such issues as waste disposal and radiation hazards which call into question the future of nuclear power. This document discusses (in separate sections): (1) the selling of nuclear power, including…
75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power... nuclear power plants that were licensed before January 1, 1979, satisfy the requirements of 10 CFR Part 50...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... Code of Federal Regulations (10 CFR), Appendix R, ``Fire Protection Program for Nuclear Power...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License (Effective... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions with...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
Safety Regulation of Nuclear Power Plant License Renewal
NASA Astrophysics Data System (ADS)
Zhang, Qiaoe; Liu, Ting; Qi, Yuan; Yang, LiLi
2018-01-01
China’s regulations stipulate that a nuclear power plant license is valid for a design life period (generally 30 or 40 years). Whether the nuclear power plant’s license is renewed after the expiration of the license is to be determined based on the safety and economy of the nuclear power plant..
The alternative strategies of the development of the nuclear power industry in the 21st century
NASA Astrophysics Data System (ADS)
Goverdovskii, A. A.; Kalyakin, S. G.; Rachkov, V. I.
2014-05-01
This paper emphasizes the urgency of scientific-and-technical and sociopolitical problems of the modern nuclear power industry without solving of which the transition from local nuclear power systems now in operation to a large-scale nuclear power industry would be impossible. The existing concepts of the longterm strategy of the development of the nuclear power industry have been analyzed. On the basis of the scenarios having been developed it was shown that the most promising alternative is the orientation towards the closed nuclear fuel cycle with fast neutron reactors (hereinafter referred to as fast reactors) that would meet the requirements on the acceptable safety. It was concluded that the main provisions of "The Strategy of the Development of the Nuclear Power Industry of Russia for the First Half of the 21st Century" approved by the Government of the Russian Federation in the year 2000 remain the same at present as well, although they require to be elaborated with due regard for new realities in the market for fossil fuels, the state of both the Russian and the world economy, as well as tightening of requirements related to safe operation of nuclear power stations (NPSs) (for example, after the severe accident at the Fukushima nuclear power station, Japan) and nonproliferation of nuclear weapons.
Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...
2015-01-26
We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less
Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications
NASA Astrophysics Data System (ADS)
Kim, K.; Bushart, S.
2009-12-01
A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power plant sites. One of these remediation technologies is monitored natural attenuation (MNA), which has been widely used in other industries for the remediation of contaminants in soil and groundwater. Monitored natural attenuation (MNA) is a non-intervention, but not a no-action, groundwater and soil remediation approach that involves monitoring the dilution, dispersion, and decay of contaminants to meet remediation objectives. MNA has been commonly applied at sites where soil and groundwater have been contaminated by volatile organic compounds. This method has also been applied to remediation of radiological contamination at U.S. DOE facilities and decommissioning nuclear power plant sites. The EPRI published report (1016764) provides guidance for implementing MNA at nuclear power plants for remediation of radiological contaminants in groundwater and soil. The goal of the EPRI Groundwater Protection program is to bring together experience and technologies - both from within the nuclear industry and other industries - to support the industry’s commitment to environmental stewardship. Results from the program are being published in an extensive series of reports and software, and are being communicated to members in an annual EPRI Groundwater Protection technical exchange workshop.
Nuclear power: the bargain we can't afford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, R.
1977-01-01
This is a handbook for citizens who wish to raise questions about the costs of atomic energy. It explains, step-by-step, why nuclear reactors have failed to produce low-cost electricity, and it tells citizens how they can use economic arguments to challenge nuclear expansion. Part One, The Costs of Nuclear Energy, contains 7 chapters--The Price of Power (electricity is big business); Mushrooming Capital Costs (nuclear construction costs are skyrocketing); Nuclear Lemons (reactors spend much of their time closed for repairs); The Faulty Fuel Cycle (turning uranium into electricity is not as simple as the utilities say); Hidden Costs (goverment subsidies obscuremore » the true costs of atomic energy); Ratepayer Roulette (nuclear problems translate into higher electric rates); and Alternatives to the Atom (coal-fired power and energy conservation can meet future energy needs more cheaply than nuclear energy). Part Two, Challenging Nuclear Power, contains 3 chapters--Regulators and Reactors (state utility commissions can eliminate the power companies' bias toward nuclear energy); Legislation, Licensing, and Lawsuits (nuclear critics can challenge reactor construction in numerous forums); and Winning the Battle (building an organization is a crucial step in fighting nuclear power). (MCW)« less
Effect of nuclear power on CO₂ emission from power plant sector in Iran.
Kargari, Nargess; Mastouri, Reza
2011-01-01
It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.
Power Generation from Nuclear Reactors in Aerospace Applications
NASA Technical Reports Server (NTRS)
English, Robert E.
1982-01-01
Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... Activities at Nuclear Power Plants,'' published in May 2000. The document is redundant due to the inclusion... Risk Before Maintenance Activities at Nuclear Power Plants,'' published in May 2000. The requirements...
Nuclear Power Now and in the Near Future
NASA Astrophysics Data System (ADS)
Burchill, William
2006-04-01
The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.
In defiance of nuclear deterrence: anti-nuclear New Zealand after two decades.
Reitzig, Andreas
2006-01-01
In 1984, nuclear-armed and nuclear-powered vessels were banned from New Zealand to express the country's rejection of the nuclear deterrence concept. This led to a disagreement with the United States. Today, the ban on nuclear-powered ships is the only element of the nuclear-free legislation that still strains US-New Zealand relations. This article presents the reasons for the ban on nuclear-powered ships, which include scientific safety concerns, a symbolic rejection of the nuclear deterrence posture, and patriotic factors such as a nuclear-free national identity. The military and economic consequences of the ban are also examined. Since the ban on nuclear-powered vessels appears to be neither widely known abroad nor commonly recognised as a supportive disarmament measure outside New Zealand, it is concluded that whatever the future of this ban will be, New Zealand's anti-nuclear image will remain known internationally through the ban on nuclear arms.
Nuclear and Solar Energy: Implications for Homeland Security
2008-12-01
of New Nuclear Plants?" Nuclear Engineering International, March 31, 2004, 14. 10 Gwyneth Cravens, Power to Save the World: The Truth about...Pueblo West, CO: Vales Lake Pub, 2004), 98. 12 Cravens, Power to Save the World: The Truth about Nuclear Energy, 249. 13 Jerry Taylor, "Powering...Cravens, Power to Save the World: The Truth about Nuclear Energy, 152. 30 William Langewiesche, The Atomic Bazaar: Dispatches from the Underground World
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
...; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor which... previously applicable to the nuclear power units and associated systems, structures, and components (SSC) are...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4... Regulations (10 CFR), for the Comanche Peak Nuclear Power Plant (CPNPP), Units 3 and 4, Combined License (COL... Peak Nuclear Power Plant, Units 3 and 4,'' dated May 13, 2011. Agencies and Persons Consulted On March...
Feasibility Study of a Nuclear-Stirling Power Plant for the Jupiter Icy Moons Orbiter
NASA Astrophysics Data System (ADS)
Schmitz, Paul C.; Schreiber, Jeffrey G.; Penswick, L. Barry
2005-02-01
NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant - RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This paper will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. Stirling convertors have a long heritage operating in both power generation and the cooler industry, and are currently in use in a wide variety of applications. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor in the 1980's and early 1990's. The baseline RPP considered in this study consists of four dual-opposed Stirling convertors connected to the reactor by a liquid lithium loop. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste heat is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared radiator. The radiator consists of two coplanar wings, which would be deployed after the reactor is in space. For this study design, the radiators would be located behind the conical radiation shield of the reactor and fan out as the radiator's distance from the reactor increases. System trades were performed to vary cycle state point temperatures and convertor design as well as power output. Other redundancy combinations were considered to understand the affects of convertor size and number of spares to the system mass.
Feasibility Study of a Nuclear-Stirling Power Plant for the Jupiter Icy Moons Orbiter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Paul C.; Schreiber, Jeffrey G.; Penswick, L. Barry
2005-02-06
NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant - RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This papermore » will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. Stirling convertors have a long heritage operating in both power generation and the cooler industry, and are currently in use in a wide variety of applications. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor in the 1980's and early 1990's. The baseline RPP considered in this study consists of four dual-opposed Stirling convertors connected to the reactor by a liquid lithium loop. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste heat is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared radiator. The radiator consists of two coplanar wings, which would be deployed after the reactor is in space. For this study design, the radiators would be located behind the conical radiation shield of the reactor and fan out as the radiator's distance from the reactor increases. System trades were performed to vary cycle state point temperatures and convertor design as well as power output. Other redundancy combinations were considered to understand the affects of convertor size and number of spares to the system mass.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report NEI 06-11...(c)(25). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment...
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
Energy Efficient Group Context Aware Sensor Management Strategy for Tactical Operations
2013-09-01
Statistics 23 a. Operation Tomodachi The first several hours after a major disaster constitute a period of confusion and uncertainty. Limited...crisis at the Fukushima Daiichi Nuclear Power Station when the damaged facility suffered “cooling system failures, fires, and explosions” that led to a...Rescue Department). 30 Matthew M. Burke, “Lawsuit expands over radiation exposure during Fukushima disaster ,” Stars and Stripes, http://www.stripes.com
Engine management during NTRE start up
NASA Technical Reports Server (NTRS)
Bulman, Mel; Saltzman, Dave
1993-01-01
The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.
Oil for the Lamps of China - Beijing’s 21st-Century Search for Energy
2003-10-01
coal mines with a high-parametric, high-efficiency capacity of at least 300 MW; and an emphasis on flue gas desulfurization and extra- high voltage...15 Chapter Four The Natural Gas Industry. . . . . . . . . . . . . . . . . . . 27 Chapter Five Other Energy Sources...duction in 2000. In the same year, petroleum accounted for 18 percent, hydropower 5 percent, natural gas 2 percent, and nuclear power less than 1
European Scientific Notes. Volume 37, Numbers 10/11.
1983-11-01
percent decrease in the intensity of space-geodetic methods for monitoring solar radiation reachipg the earth’s local crustal deformations. surface, the...1983) - and solids. The average power available 35-nm range at the Comitato Nazionale and the predicted high efficiency of Energia Nucleare laboratory in...the David W. Taylor Naval gated for transmittance. These measure- Ship Research and Development Center, ments are important for solar energy Bethesda
Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor
NASA Astrophysics Data System (ADS)
Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat
2013-08-01
Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.
Apparatus for localizing disturbances in pressurized water reactors (PWR)
Sykora, Dalibor
1989-01-01
The invention according to CS-PS 177386, entitled ''Apparatus for increasing the efficiency and passivity of the functioning of a bubbling-vacuum system for localizing disturbances in nuclear power plants with a pressurized water reactor'', concerns an important area of nuclear power engineering that is being developed in the RGW member countries. The invention solves the problems of increasing the reliability and intensification during the operation of the above very important system for guaranteeing the safety of the standard nuclear power plants of Soviet design. The essence of the invention consists in the installation of a simple passively operating supplementary apparatus. Consequently, the following can be observed in the system: first an improvement and simultaneous increase in the reliability of its function during the critical transition period, which follows the filling of the second space with air from the first space; secondly, elimination of the hitherto unavoidable initiating role of the active sprinkler-condensation device present; thirdly, a more effective performance and subjection of the elements to disintegration of the water flowing from the bubbling condenser into the first space; and fourthly, an enhanced utilization of the heat-conducting ability of the water reservoir of the bubbling condenser. Representatives of the supplementary apparatus are autonomous and local secondary systems of the sprinkler-sprayer without an insert, which spray the water under the effect of gravity. 1 fig.
Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance
NASA Technical Reports Server (NTRS)
Chakrabarti, S.; Schmidt, G. R.
2001-01-01
Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.
Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Erpyleva, S. F.
2017-05-01
Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2013-0034] Zion Nuclear Power Station, Units 1 and 2; ZionSolutions, LLC; Consideration of Indirect Transfer AGENCY: Nuclear Regulatory... the indirect transfer of Facility Operating License Nos. DPR-39 and DPR-48 for Zion Nuclear Power...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple... construct and operate nuclear power reactors of identical design (“common design”) to be located at multiple...
Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.
ERIC Educational Resources Information Center
Whitelaw, Robert L.
The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... state that active proposals for more than 3,000 megawatts of wind power are currently on the books in... projected over 20 years what wind power will then be available, in part because wind power projects are... public about the connections between nuclear power and nuclear weapons. Beyond Nuclear has members who...
ERIC Educational Resources Information Center
McCamey, Randy B.
2003-01-01
The need for workers in the U.S. nuclear power industry to continually update their knowledge, skills, and abilities is critical to the safe and reliable operation of the country's nuclear power facilities. To improve their skills, knowledge, and abilities, many professionals in the nuclear power industry participate in continuing professional…
Code of Federal Regulations, 2010 CFR
2010-01-01
... could occur in a nuclear power plant. These sessions shall provide brigade members with experience in... A. Fire protection program. A fire protection program shall be established at each nuclear power... fires that could occur in the plant and in using the types of equipment available in the nuclear power...
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
Pointer, William David; Baglietto, Emilio
2016-05-01
Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less
Nuclear driven water decomposition plant for hydrogen production
NASA Technical Reports Server (NTRS)
Parker, G. H.; Brecher, L. E.; Farbman, G. H.
1976-01-01
The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; NRC-2010-0243; License No. DPR-28] Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear Power Station... action with regard to the Vermont Yankee Nuclear Power Station. Mr. Mulligan requested in his petition...
Gender differences in attitudes toward nuclear power: a multivariate explanation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, R.K.
1987-01-01
The purpose of this study was to examine gender differences in attitudes toward nuclear power and to discover what factors account for these differences. The marginality explanation for these differences suggest that women have less-favorable attitudes toward nuclear power because they are less concerned about energy supplies and economic growth and are less convinced of the benefits of nuclear power for society than are men. The irrationality explanation holds that women are less favorable toward nuclear power because they are less knowledgeable about this technology than are men. The lay-rationality explanation argues that people form attitudes toward nuclear power whichmore » are consistent with their relevant beliefs, attitudes and values; thus, this explanation suggests that women's unfavorable attitudes toward nuclear power stem from greater concern about environmental protection, exposing society to risk, and lower faith in science and technology. Data for this study were collected via a mail questionnaire administered to a state wide sample of Washington residents (n= 696).« less
Nuclear Safety for Space Systems
NASA Astrophysics Data System (ADS)
Offiong, Etim
2010-09-01
It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.
Proliferation of Small Nuclear Forces.
1983-04-30
character of conflict, arm control issues, conventional arms competition and U.S. forces; 3) Assess how new nuclear powers will behave and how their...neighbors 0and other nuclear powers will react; "--- 5) Identify the likely patterns and outcars of nuclear and other military interaction, including...Regional Nuclear Powers , 1990-2010 A small nuclear force (SNF) would comprise at a minimum from 5 to 10 deliverable and militarily serviceable fission
High Efficiency and Low Cost Thermal Energy Storage System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton
BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Comparedmore » to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less
Prevented mortality and greenhouse gas emissions from historical and projected nuclear power.
Kharecha, Pushker A; Hansen, James E
2013-05-07
In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420,000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.
Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power
NASA Technical Reports Server (NTRS)
Kharecha, Pushker A.; Hansen, James E.
2013-01-01
In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.
Forecast for nuclear energy: Clear skies or stormy weather?
NASA Astrophysics Data System (ADS)
Ferguson, Charles D.
2018-01-01
During the last decade many people in the nuclear industry were forecasting a renaissance in construction of nuclear power plants, especially in light of the near-zero greenhouse gas emissions of nuclear power and the global need for such cleaner electricity sources. While the accident in March 2011 at the Fukushima Daiichi Nuclear Power Station in Japan resulted in dozens of reactor shutdowns in Japan and reconsideration of new nuclear power plants in several countries, other countries are continuing to build new plants but not at a fast enough rate yet to make a significant further reduction in greenhouse gas emissions. Even before this accident, the prospects for major growth in nuclear power were dim. To explicate the present situation and potential future scenarios for nuclear power, this paper examines the issue of who bears the financial risk especially during the construction phase, the roles of governments in financial interventions such as loan guarantees, tax credits, and prices on greenhouse gas emissions, the effects of regulated versus market-based utility systems, the competition with relatively cheap natural gas, the roles of various governments around the world in determining the use of nuclear power, the interdependent nature of the nuclear industry with companies both competing and cooperating with each other, and the issue of whether small modular reactors or advanced nuclear reactors could result in many more plants being constructed in the United States and worldwide.
Vogel, H
2007-08-01
Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.
Processing of thermionic power on an electrically propelled spacecraft
NASA Technical Reports Server (NTRS)
Macie, T. W.
1973-01-01
A study to define the power processing equipment required between a thermionic reactor and an array of mercury-ion thrusters for a nuclear electric propulsion system is reported. Observations and recommendations that resulted from this study were: (1) the preferred thermionic-fuel-element source voltages are 23 V or higher; (2) transistor characteristics exert a strong effect on power processor mass; (3) the power processor mass could be considerably reduced should the magnetic materials that exhibit low losses at high frequencies, that have a high Curie point, and that can operate at 15 to 20 kG become avaliable; (4) electrical component packaging on the radiator could reduce the area that is sensitive to meteoroid penetration, thereby reducing the meteoroid shielding mass requirement; (5) an experimental model of the power processor design should be built and tested to verify the efficiencies, masses, and all the automatic operational aspects of the design.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Finding of No Significant Impact; Carolina Power and Light Company Shearon Harris Nuclear Power Plant... Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).'' Agencies...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutton, J.A.
This volume contains a collection of correspondence and contributions from the Illinois Legislative Council. The memoranda, which have been organized into research reports, answer requests from individual legislators for information on specific science, technology, and public policy issues, and include information sources and pertinent legislation of the 81st Illinois General Assembly. Topics covered are as follows: abortion information; accidental deer slaughter; regulation of airport noise pollution; historical artifacts preservation; asbestos health hazards; automobile repair legislation; HLA blood tests; financial aid for catastrophic illness; cost comparison of coal and nuclear power; mandates for coroners versus medical examiners; dialysis patient programs; drugmore » paraphernalia legislation; electric generating capacity of Fox River dams; energy efficiency in appliances; euthanasia; farmland preservation; licenses for fish dealers; gasohol definition, grants, and other states' laws; medical precautions at football games; the Ames, Iowa methane plant; metric sales laws; proposed mining regulations; nuclear power referenda; nuclear waste disposal; pharmaceutical assistance and renewable prescriptions for the aged; licensing of radiation device operators; scientific creationism; solar energy grants and loans; funding for solar energy programs; sulfur dioxide standards; and visual aid programs.« less
Chemical oxygen-iodine laser (COIL) for the dismantlement of nuclear facilities
NASA Astrophysics Data System (ADS)
Hallada, Marc R.; Seiffert, Stephan L.; Walter, Robert F.; Vetrovec, John
2000-05-01
The dismantlement of obsolete nuclear facilities is a major challenge for both the US Department of Energy and nuclear power utilities. Recent demonstrations have shown that lasers can be highly effective for size reduction cutting, especially for the efficient storage and recycling of materials. However, the full benefits of lasers can only be realized with high average power beams that can be conveniently delivered, via fiber optics, to remote and/or confined areas. Industrial lasers that can meet these requirements are not available now or for the foreseeable future. However, a military weapon laser, a Chemical Oxygen Iodine Laser (COIL), which has been demonstrated at over a hundred kilo Watts, could be adapted to meet these needs and enable entirely new industrial applications. An 'industrialized' COIL would enable rapid sectioning of thick and complex structures, such as glove boxes, reactor vessels, and steam generators, accelerating dismantlement schedules and reducing worker hazards. The full advantages of lasers in dismantlement could finally be realized with a portable COIL which is integrated with sophisticated robotics. It could be built and deployed in less than two years, breaking the paradigm of labor-intensive dismantlement operations and cutting processing times and costs dramatically.
77 FR 49833 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization Facilities... or asked to report: Nuclear Power Plant Licensees, Materials Security Licensees and those States... and interested in monitoring the safety status of nuclear power plants and radioactive materials. This...
77 FR 64501 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
.... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Nine Mile Point Nuclear..., LLC, Shooting Star Wind Project, LLC, Safe Harbor Water Power Corporation, PECO Energy Company...
Go Nuclear? What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
The dialogue in this module (about a nuclear power plant in Morong, Bataan) is designed to help students answer these questions: (1) When did the construction of the plant begin? What delayed the construction? (2) How does a nuclear power plant produce electricity? What are the nuclear reactions involved? (3) How does a nuclear power plant control…
Nuclear Power Plants | RadTown USA | US EPA
2018-06-22
Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the design...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the design...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the design...
NASA Technical Reports Server (NTRS)
1973-01-01
Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.
Improved Safety Margin Characterization of Risk from Loss of Offsite Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Paul
Original intent: The original intent of this task was “support of the Risk-Informed Safety Margin Characteristic (RISMC) methodology in order” “to address … efficiency of computation so that more accurate and cost-effective techniques can be used to address safety margin characterizations” (S. M. Hess et al., “Risk-Informed Safety Margin Characterization,” Procs. ICONE17, Brussels, July 2009, CD format). It was intended that “in Task 1 itself this improvement will be directed toward upon the very important issue of Loss of Offsite Power (LOOP) events,” more specifically toward the challenge of efficient computation of the multidimensional nonrecovery integral that has been discussedmore » by many previous contributors to the theory of nuclear safety. It was further envisioned that “three different computational approaches will be explored,” corresponding to the three subtasks listed below; deliverables were tied to the individual subtasks.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; License No. DPR-28; NRC-2011-0074] Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear Power Station... regard to the Vermont Yankee Nuclear Power Station (VY). Mr. Saporito requested in his petition that the...
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode
NASA Astrophysics Data System (ADS)
Qiao, Da-Yong; Yuan, Wei-Zheng; Gao, Peng; Yao, Xian-Wang; Zang, Bo; Zhang, Lin; Guo, Hui; Zhang, Hong-Jian
2008-10-01
A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0272] Knowledge and Abilities Catalog for Nuclear Power...) is issuing for public comment a draft NUREG, NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized-Water Reactors. DATES: Submit...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... integral part of NRC-approved fire protection programs. However, compensatory measures are not expected to...
77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0293] Initial Test Programs for Water-Cooled Nuclear Power... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs...
10 CFR 50.120 - Training and qualification of nuclear power plant personnel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Combustible gas control for nuclear power reactors. 50.44 Section 50.44 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Combustible gas control for nuclear power reactors. 50.44 Section 50.44 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with...
10 CFR 50.120 - Training and qualification of nuclear power plant personnel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...
76 FR 60939 - Metal Fatigue Analysis Performed by Computer Software
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... Nuclear Power Plants,'' Revision 2, issued December 2010, which recommends that the effects of the reactor... design control in accordance with Appendix B, ``Quality Assurance Criteria for Nuclear Power Plants and... Nuclear Power Plants.'' Intent The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0125] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact... 14636
Testing of Liquid Metal Components for Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.
2010-01-01
The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.
75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC...: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The...
Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.
2011-01-01
Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.
U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)
2010-01-01
Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.
Nuclear space power safety and facility guidelines study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehlman, W.F.
1995-09-11
This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system ismore » planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.« less
Preserving the nuclear option: The AIAA position paper on space nuclear power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Bennett, G.L.; El-Genk, M.S.
1996-03-01
In response to published reports about the decline in funding for space nuclear power, the Board of Directors of the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper in March 1995 that recommends (1) development and support of an integrated space nuclear power program by DOE, NASA and DoD; (2) Congressional support for the program; (3) advocacy of the program by government and industry leaders; and (4) continuation of cooperation between the U.S. and other countries to advance nuclear power source technology and to promote safety. This position paper has been distributed to various people having oversightmore » of the U.S. space nuclear power program. {copyright} {ital 1996 American Institute of Physics.}« less
State regulation of nuclear power and national energy policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, J.W.
1992-12-31
In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiologicalmore » injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.« less
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.
High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.
1999-02-01
Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†
Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.
2015-01-01
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.
2013-10-01
A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
The impact of state regulation of nuclear power, since PG&E and Silkwood, on the implementation of national energy policy on nuclear power is evident in the debates on federal legislation required for such implementation. The political demands that confront some states for an expanded role in the regulation of commercial nuclear power plants also confront Congress, which is responsible for the legislative implementation of the strategy proposed in the Report. The expansion of state and local regulation of nuclear plants, however, will complicate and possibly frustrate the efforts of Congress to enact the strategy for nuclear power into law. Themore » debates on Senate Bill 1220, the National Energy Security Act of 1991, indicate that the expansion of state regulation of nuclear power will frustrate the implementation of the national energy policy on nuclear power. Senate Bill 1220 would enact a comprehensive national energy policy. For example, Title XI would further deregulate the production of natural gas; Title XIV is concerned with secure supplies, and the use of coal in the future. Senate Bill 1220 would also amend PUHCA. Of particular significance for nuclear power, however, are Titles VIII and IX. The House and Senate debates on House Bill 1301 and Senate Bill 1220 are summarized.« less
Futures of Space Technology Frontiers of the Responsibly Imaginable
2006-09-01
Nominal Power Densities • ZPE ……………………..E108 X Chemical •Anti-Matter/Positrons….. E10 X Chemical • Fission/Fusion………….. E6 X Chemical • Isomers…………………. E5...Efficiency [KW/KG] Fuel Cells • “On-Site” H2 Generation vice Storage [Zinc,….] • Room Temperature S-C • Tapping ZPE • Controlled Nuclear Isomer Release
On-line measurement of gaseous iodine species during a PWR severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haykal, I.; Doizi, D.; Perrin, A.
A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still notmore » clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)« less
Modelling the energy future of Switzerland after the phase out of nuclear power plants
NASA Astrophysics Data System (ADS)
Diaz, Paula; Van Vliet, Oscar
2015-04-01
In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and HES [Pfenninger, 2015]. It has been specifically design to represent high shares of renewable energy, allowing for the estimation of the Swiss energy transition with high level of detail. Calliope includes topology characteristics of the electricity system, and variability of radiation and wind, which enables the analysis of intermittency in renewable electricity sources, in order to fulfil the electricity demand at all hours. Three energy scenarios are modelled; first, the higher energy production of renewables in Switzerland and the import of natural gas to supply the demand; second, imports of wind power from North Sea with high level of intermittency; and third, imports of solar power from North Africa, with less intermittency but with higher risk of internal turmoil. To summarise, we analyse in detail the energy scenarios of Switzerland when the nuclear power plants will be ceased. A gap currently present in academia, such as the future energy security in Switzerland, is covered by our Calliope modelling. References: Abt, M.; E. Bernhard, A. Kolliker, T. Roth, M. Spicher, L. Stieger, Volkswirtschaftliche Massnahmenanalyse zur Energiestrategie 2050: Tiel I: Gesamtergebnisse und Empfehlungen, Staatssekretariat fur Wirtschaft SECO, Bern, CH, 2012. Busser, M; T. Kaiser, E. Wassermann, K. Ammon, S. Reichen, A. Gunzinger, et al., Energiestrategie 2050 aus Sicht des Energie Trialogs, Energie Trialog Schweiz, 2013. Mathiesen, B. V. and Lund, H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renew. Power Gen. 3, 190-204 (2009). Mathys, N. 2012. Modelling contributions to the Swiss energy and environmental challenge. Special issue on energy modelling_introductory article.Swiss journal of economics and statistics. Pfenninger, Stefan. 2015. Calliope: a multi-scale energy systems (MUSES) modeling framework. Available at: http://www.callio.pe/ Piot, M. Energiestrategie 2050 der Schweiz, in: 13. Symp. Energieinnovation, Graz, AT, 2014: p. 28.
Heterogonous Nanofluids for Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Alammar, Khalid
2014-09-01
Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.
NASA Astrophysics Data System (ADS)
Zhang, Jilin; Sha, Chaoqun; Wu, Yusen; Wan, Jian; Zhou, Li; Ren, Yongjian; Si, Huayou; Yin, Yuyu; Jing, Ya
2017-02-01
GPU not only is used in the field of graphic technology but also has been widely used in areas needing a large number of numerical calculations. In the energy industry, because of low carbon, high energy density, high duration and other characteristics, the development of nuclear energy cannot easily be replaced by other energy sources. Management of core fuel is one of the major areas of concern in a nuclear power plant, and it is directly related to the economic benefits and cost of nuclear power. The large-scale reactor core expansion equation is large and complicated, so the calculation of the diffusion equation is crucial in the core fuel management process. In this paper, we use CUDA programming technology on a GPU cluster to run the LU-SGS parallel iterative calculation against the background of the diffusion equation of the reactor. We divide one-dimensional and two-dimensional mesh into a plurality of domains, with each domain evenly distributed on the GPU blocks. A parallel collision scheme is put forward that defines the virtual boundary of the grid exchange information and data transmission by non-stop collision. Compared with the serial program, the experiment shows that GPU greatly improves the efficiency of program execution and verifies that GPU is playing a much more important role in the field of numerical calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spielman, Zachary; Hill, Racheal; LeBlanc, Katya
Control room modernization is critical to extending the life of the 99 operating commercial nuclear power plants (NPP) within the United States. However, due to the lack of evidence demonstrating the efficiency and effectiveness of recent candidate technologies, current NPP control rooms operate without the benefit of various newer technologies now available. As nuclear power plants begin to extend their licenses to continue operating for another 20 years, there is increased interest in modernizing the control room and supplementing the existing control boards with advanced technologies. As part of a series of studies investigating the benefits of advanced control roommore » technologies, the researchers conducted an experimental study to observe the effect of Task-Based Overview Displays (TODs) on operator workload and situation awareness (SA) while completing typical operating scenarios. Researchers employed the Situation Awareness Rating Technique (SART) and the NASA Task Load Index (TLX) as construct measures.« less
Experimental adoption of RCM in EDF substations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroin, G.; Aupied, J.; Sanchis, G.
1996-08-01
EDF, after testing Reliability Centered Maintenance (RCM) on systems used in nuclear power plants, has now successfully extended RCM to all of its nuclear power plants. In the light of this experience, EDF has committed itself to a pilot study on a line bay of a 400 kV substation in 1992. The RCM method as applied benefited from EDF`s policy of maintenance, introduced five years ago on all substations, which has enhanced prospects of reliability. The original feature in the selection of maintenance tasks was that it brought into play two criteria for failure assessment - frequency and seriousness -more » and two criteria for maintenance task selection - efficiency and facility. The final outcome of RCM as applied to substation maintenance is to categorize maintenance tasks into: (1) essential maintenance tasks, (2) optional tasks, depending on the type and location of the substation, as well as on factors relating to local management of maintenance policy, and (3) unnecessary tasks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenji Akagi; Masayuki Ishiwata; Kenji Araki
In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and generalmore » versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described. (authors)« less
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu
A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).
78 FR 9903 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
...-2181-016; ER10-2182-016. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in... Wind Power, L.L.C., CR Clearing, LLC, Criterion Power Partners, LLC, Exelon Framingham, LLC, Exelon...
Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouratiadou, I.; Bevione, M.; Bijl, D. L.
This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures onmore » the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
..., ``Configuration Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants... Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory..., Reviews, and Audits for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... Documents Access and Management System (ADAMS): You may access publicly available documents online in the... Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants,'' issued for... Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Revision...
Manpower Requirements in the Nuclear Power Industry, 1982-1991.
ERIC Educational Resources Information Center
Johnson, Ruth C.
A study projected employment needs created by growth and employee turnover for the nuclear power industry over the next decade. Only employment by electric utilities in the commercial generation of nuclear power was investigated. Employment data for 1981 were collected in a survey of 60 member utilities of the Institute of Nuclear Power…
76 FR 53673 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
.... Ginna Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC. Description: Notice of Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed....17(b): Amendment to 1765R4 KCPL-GMO NITSA NOA to be effective 6/1/ 2011. Filed Date: 08/19/2011...
78 FR 16492 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
...-2181-017; ER10-2182-017. Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et. al. Filed Date: 3/8/13. Accession Number: 20130308-5085...
78 FR 26348 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
...: Docket Numbers: ER10-2179-018; ER10-2181-018; ER10-2182-018. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description: Notice of Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed Date: 4/26/13...
78 FR 49742 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
...-2181-019; ER10-2182-019. Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed Date: 8/8/13. Accession Number: 20130808-5137...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...
75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0125] FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company..., letter from R.W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy Institute). The licensee's request for an...
Nuclear Submarines and Aircraft Carriers | Radiation ...
2017-08-07
Nuclear submarines and aircraft carriers are powered by onboard nuclear reactors. Heat from the nuclear reaction makes the steam needed to power the submarine. When a nuclear vessel is taken out of service, its radioactive parts are disposed of and monitored.
The Nuclear Power/Nuclear Weapons Connection.
ERIC Educational Resources Information Center
Totten, Sam; Totten, Martha Wescoat
1985-01-01
Once they have nuclear power, most countries will divert nuclear materials from commercial to military programs. In excerpts from the book "Facing the Danger" (by Totten, S. and M. W., Crossing Press, 1984), five anti-nuclear activists explain how and why they have been addressing the nuclear connection. (RM)
NASA Astrophysics Data System (ADS)
Lingga, Marwan Mossa
A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.