Particle and Photon Detection: Counting and Energy Measurement
Janesick, James; Tower, John
2016-01-01
Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398
Fundamental performance differences between CMOS and CCD imagers: Part II
NASA Astrophysics Data System (ADS)
Janesick, James; Andrews, James; Tower, John; Grygon, Mark; Elliott, Tom; Cheng, John; Lesser, Michael; Pinter, Jeff
2007-09-01
A new class of CMOS imagers that compete with scientific CCDs is presented. The sensors are based on deep depletion backside illuminated technology to achieve high near infrared quantum efficiency and low pixel cross-talk. The imagers deliver very low read noise suitable for single photon counting - Fano-noise limited soft x-ray applications. Digital correlated double sampling signal processing necessary to achieve low read noise performance is analyzed and demonstrated for CMOS use. Detailed experimental data products generated by different pixel architectures (notably 3TPPD, 5TPPD and 6TPG designs) are presented including read noise, charge capacity, dynamic range, quantum efficiency, charge collection and transfer efficiency and dark current generation. Radiation damage data taken for the imagers is also reported.
NASA Technical Reports Server (NTRS)
Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.
2002-01-01
We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.
Optical and x-ray characterization of two novel CMOS image sensors
NASA Astrophysics Data System (ADS)
Bohndiek, Sarah E.; Arvanitis, Costas D.; Venanzi, Cristian; Royle, Gary J.; Clark, Andy T.; Crooks, Jamie P.; Prydderch, Mark L.; Turchetta, Renato; Blue, Andrew; Speller, Robert D.
2007-02-01
A UK consortium (MI3) has been founded to develop advanced CMOS pixel designs for scientific applications. Vanilla, a 520x520 array of 25μm pixels benefits from flushed reset circuitry for low noise and random pixel access for region of interest (ROI) readout. OPIC, a 64x72 test structure array of 30μm digital pixels has thresholding capabilities for sparse readout at 3,700fps. Characterization is performed with both optical illumination and x-ray exposure via a scintillator. Vanilla exhibits 34+/-3e - read noise, interactive quantum efficiency of 54% at 500nm and can read a 6x6 ROI at 24,395fps. OPIC has 46+/-3e - read noise and a wide dynamic range of 65dB due to high full well capacity. Based on these characterization studies, Vanilla could be utilized in applications where demands include high spectral response and high speed region of interest readout while OPIC could be used for high speed, high dynamic range imaging.
Brännström, K Jonas; Waechter, Sebastian
2018-06-01
A common complaint by people with tinnitus is that they experience that the tinnitus causes attention and concentration problems. Previous studies have examined how tinnitus influences cognitive performance on short and intensive cognitive tasks but without proper control of hearing status. To examine the impact tinnitus and high-frequency hearing thresholds have on reading comprehension in quiet and in background noise. A between-group design with matched control participants. One group of participants with tinnitus (n = 20) and an age and gender matched control group without tinnitus (n = 20) participated. Both groups had normal hearing thresholds (20 dB HL at frequencies 0.125 to 8 kHz). Measurements were made assessing hearing thresholds and immediate and delayed recall using a reading comprehension test in quiet and in noise. All participants completed the Swedish version of the Hospital Anxiety and Depression Scale, and participants with tinnitus also completed the Tinnitus Questionnaire. The groups did not differ in immediate nor delayed recall. Accounting for the effect of age, a significant positive correlation was found between best ear high-frequency pure tone average (HF-PTA; 10000, 12500, and 14000 Hz) and the difference score between immediate and delayed recall in noise. Tinnitus seems to have no effect on immediate and delayed recall in quiet or in background noise when hearing status is controlled for. The detrimental effect of background noise on the processes utilized for efficient encoding into long-term memory is larger in participants with better HF-PTA. More specifically, when reading in noise, participants with better HF-PTA seem to recall less information than participants with poorer HF-PTA. American Academy of Audiology.
Pina Rodrigues, Ana; Rebola, José; Jorge, Helena; Ribeiro, Maria José; Pereira, Marcelino; Castelo-Branco, Miguel; van Asselen, Marieke
The ineffective exclusion of surrounding noise has been proposed to underlie the reading deficits in developmental dyslexia. However, previous studies supporting this hypothesis focused on low-level visual tasks, providing only an indirect link of noise interference on reading processes. In this study, we investigated the effect of noise on regular, irregular, and pseudoword reading in 23 dyslexic children and 26 age- and IQ-matched controls, by applying the white noise displays typically used to validate this theory to a lexical decision task. Reading performance and eye movements were measured. Results showed that white noise did not consistently affect dyslexic readers more than typical readers. Noise affected more dyslexic than typical readers in terms of reading accuracy, but it affected more typical than dyslexic readers in terms of response time and eye movements (number of fixations and regressions). Furthermore, in typical readers, noise affected more the speed of reading of pseudowords than real words. These results suggest a particular impact of noise on the sub-lexical reading route where attention has to be deployed to individual letters. The use of a lexical route would reduce the effect of noise. A differential impact of noise between words and pseudowords may therefore not be evident in dyslexic children if they are not yet proficient in using the lexical route. These findings indicate that the type of reading stimuli and consequent reading strategies play an important role in determining the effects of noise interference in reading processing and should be taken into account by further studies.
Monolithic CMOS imaging x-ray spectrometers
NASA Astrophysics Data System (ADS)
Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.
2014-07-01
The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and spectrally resolved without saturation. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting x-ray astronomy. These features include read noise, x-ray spectral response and quantum efficiency. Funding for this work has been provided in large part by NASA Grant NNX09AE86G and a grant from the Betty and Gordon Moore Foundation.
NASA Astrophysics Data System (ADS)
Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith
2017-02-01
The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
Self-masking: Listening during vocalization. Normal hearing.
Borg, Erik; Bergkvist, Christina; Gustafsson, Dan
2009-06-01
What underlying mechanisms are involved in the ability to talk and listen simultaneously and what role does self-masking play under conditions of hearing impairment? The purpose of the present series of studies is to describe a technique for assessment of masked thresholds during vocalization, to describe normative data for males and females, and to focus on hearing impairment. The masking effect of vocalized [a:] on narrow-band noise pulses (250-8000 Hz) was studied using the maximum vocalization method. An amplitude-modulated series of sound pulses, which sounded like a steam engine, was masked until the criterion of halving the perceived pulse rate was reached. For masking of continuous reading, a just-follow-conversation criterion was applied. Intra-session test-retest reproducibility and inter-session variability were calculated. The results showed that female voices were more efficient in masking high frequency noise bursts than male voices and more efficient in masking both a male and a female test reading. The male had to vocalize 4 dBA louder than the female to produce the same masking effect on the test reading. It is concluded that the method is relatively simple to apply and has small intra-session and fair inter-session variability. Interesting gender differences were observed.
Batho, Lauren P; Martinussen, Rhonda; Wiener, Judith
2015-07-28
To examine the effects of environmental noises (speech and white noise) relative to a no noise control condition on the performance and difficulty ratings of youth with ADHD (N = 52) on academic tasks. Reading performance was measured by an oral retell (reading accuracy) and the time spent reading. Writing performance was measured through the proportion of correct writing sequences (writing accuracy) and the total words written on an essay. Participants in the white noise condition took less time to read the passage and wrote more words on the essay compared with participants in the other conditions, though white noise did not improve academic accuracy. The participants in the babble condition rated the tasks as most difficult. Although white noise appears to improve reading time and writing fluency, the findings suggest that white noise does not improve performance accuracy. Educational implications are discussed. © 2015 SAGE Publications.
Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.
Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay
2016-04-09
Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.
Spectral characterisation and noise performance of Vanilla—an active pixel sensor
NASA Astrophysics Data System (ADS)
Blue, Andrew; Bates, R.; Bohndiek, S. E.; Clark, A.; Arvanitis, Costas D.; Greenshaw, T.; Laing, A.; Maneuski, D.; Turchetta, R.; O'Shea, V.
2008-06-01
This work will report on the characterisation of a new active pixel sensor, Vanilla. The Vanilla comprises of 512×512 (25μm 2) pixels. The sensor has a 12 bit digital output for full-frame mode, although it can also be readout in analogue mode, whereby it can also be read in a fully programmable region-of-interest (ROI) mode. In full frame, the sensor can operate at a readout rate of more than 100 frames per second (fps), while in ROI mode, the speed depends on the size, shape and number of ROIs. For example, an ROI of 6×6 pixels can be read at 20,000 fps in analogue mode. Using photon transfer curve (PTC) measurements allowed for the calculation of the read noise, shot noise, full-well capacity and camera gain constant of the sensor. Spectral response measurements detailed the quantum efficiency (QE) of the detector through the UV and visible region. Analysis of the ROI readout mode was also performed. Such measurements suggest that the Vanilla APS (active pixel sensor) will be suitable for a wide range of applications including particle physics and medical imaging.
Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting
Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay
2016-01-01
Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625
Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Alfred, Tamuno; Head, Jenny; Davies, Hugh W; Haines, Mary M; Lopez Barrio, Isabel; Matheson, Mark; Stansfeld, Stephen A
2006-01-01
Transport noise is an increasingly prominent feature of the urban environment, making noise pollution an important environmental public health issue. This paper reports on the 2001-2003 RANCH project, the first cross-national epidemiologic study known to examine exposure-effect relations between aircraft and road traffic noise exposure and reading comprehension. Participants were 2,010 children aged 9-10 years from 89 schools around Amsterdam Schiphol, Madrid Barajas, and London Heathrow airports. Data from The Netherlands, Spain, and the United Kingdom were pooled and analyzed using multilevel modeling. Aircraft noise exposure at school was linearly associated with impaired reading comprehension; the association was maintained after adjustment for socioeconomic variables (beta = -0.008, p = 0.012), aircraft noise annoyance, and other cognitive abilities (episodic memory, working memory, and sustained attention). Aircraft noise exposure at home was highly correlated with aircraft noise exposure at school and demonstrated a similar linear association with impaired reading comprehension. Road traffic noise exposure at school was not associated with reading comprehension in either the absence or the presence of aircraft noise (beta = 0.003, p = 0.509; beta = 0.002, p = 0.540, respectively). Findings were consistent across the three countries, which varied with respect to a range of socioeconomic and environmental variables, thus offering robust evidence of a direct exposure-effect relation between aircraft noise and reading comprehension.
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan
2018-05-21
The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan
2018-01-01
The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410
TES Detector Noise Limited Readout Using SQUID Multiplexers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.
2004-01-01
The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.
Papanikolaou, M; Skenteris, N; Piperakis, S M
2015-02-01
The present study investigated the effect of low, medium, and high traffic road noise as well as irrelevant background speech noise on primary school children's reading and mathematical performance. A total of 676 participants (324 boys, 47.9% and 352 girls, 52.1%) of the 4th and 5th elementary classes participated in the project. The participants were enrolled in public primary schools from urban areas and had ages ranging from 9 to 10 years and from. Schools were selected on the basis of increasing levels of exposure to road traffic noise and then classified into three categories (Low noise: 55-66 dB, Medium noise: 67-77 dB, and High noise: 72-80 dB). We measured reading comprehension and mathematical skills in accordance with the national guidelines for elementary education, using a test designed specifically for the purpose of this study. On the one hand, children in low-level noise schools showed statistically significant differences from children in medium- and high-level noise schools in reading performance (p<0.001). On the other hand, children in low-level noise schools differed significantly from children in high-level noise schools but only in mathematics performance (p=0.001). Girls in general did better in reading score than boys, especially in schools with medium- and high-level noise. Finally the levels of noise and gender were found to be two independent factors.
NASA Astrophysics Data System (ADS)
Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor
2017-03-01
In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.
A new algorithm to reduce noise in microscopy images implemented with a simple program in python.
Papini, Alessio
2012-03-01
All microscopical images contain noise, increasing when (e.g., transmission electron microscope or light microscope) approaching the resolution limit. Many methods are available to reduce noise. One of the most commonly used is image averaging. We propose here to use the mode of pixel values. Simple Python programs process a given number of images, recorded consecutively from the same subject. The programs calculate the mode of the pixel values in a given position (a, b). The result is a new image containing in (a, b) the mode of the values. Therefore, the final pixel value corresponds to that read in at least two of the pixels in position (a, b). The application of the program on a set of images obtained by applying salt and pepper noise and GIMP hurl noise with 10-90% standard deviation showed that the mode performs better than averaging with three-eight images. The data suggest that the mode would be more efficient (in the sense of a lower number of recorded images to process to reduce noise below a given limit) for lower number of total noisy pixels and high standard deviation (as impulse noise and salt and pepper noise), while averaging would be more efficient when the number of varying pixels is high, and the standard deviation is low, as in many cases of Gaussian noise affected images. The two methods may be used serially. Copyright © 2011 Wiley Periodicals, Inc.
A New Instrument for the IRTF: the MIT Optical Rapid Imaging System (MORIS)
NASA Astrophysics Data System (ADS)
Gulbis, Amanda A. S.; Elliot, J. L.; Rojas, F. E.; Bus, S. J.; Rayner, J. T.; Stahlberger, W. E.; Tokunaga, A. T.; Adams, E. R.; Person, M. J.
2010-10-01
NASA's 3-m Infrared Telescope Facility (IRTF) on Mauna Kea, HI plays a leading role in obtaining planetary science observations. However, there has been no capability for high-speed, visible imaging from this telescope. Here we present a new IRTF instrument, MORIS, the MIT Optical Rapid Imaging System. MORIS is based on POETS (Portable Occultation Eclipse and Transit Systems; Souza et al., 2006, PASP, 118, 1550). Its primary component is an Andor iXon camera, a 512x512 array of 16-micron pixels with high quantum efficiency, low read noise, low dark current, and full-frame readout rates of between 3.5 Hz (6 e /pixel read noise) and 35 Hz (49 e /pixel read noise at electron-multiplying gain=1). User-selectable binning and subframing can increase the cadence to a few hundred Hz. An electron-multiplying mode can be employed for photon counting, effectively reducing the read noise to sub-electron levels at the expense of dynamic range. Data cubes, or individual frames, can be triggered to nanosecond accuracy using a GPS. MORIS is mounted on the side-facing widow of SpeX (Rayner et al. 2003, PASP, 115, 362), allowing simultaneous near-infrared and visible observations. The mounting box contains 3:1 reducing optics to produce a 60 arcsec x 60 arcsec field of view at f/12.7. It hosts a ten-slot filter wheel, with Sloan g×, r×, i×, and z×, VR, Johnson V, and long-pass red filters. We describe the instrument design, components, and measured characteristics. We report results from the first science observations, a 24 June 2008 stellar occultation by Pluto. We also discuss a recent overhaul of the optical path, performed in order to eliminate scattered light. This work is supported in part by NASA Planetary Major Equipment grant NNX07AK95G. We are indebted to the University of Hawai'i Institute for Astronomy machine shop, in particular Randy Chung, for fabricating instrument components.
NASA Astrophysics Data System (ADS)
Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru
2016-04-01
TaOx-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaOx-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaOx RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaOx RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons
NASA Astrophysics Data System (ADS)
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp
2017-08-01
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J; Treutlein, Philipp
2017-08-11
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66 GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50 ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.
A chip-scale integrated cavity-electro-optomechanics platform.
Winger, M; Blasius, T D; Mayer Alegre, T P; Safavi-Naeini, A H; Meenehan, S; Cohen, J; Stobbe, S; Painter, O
2011-12-05
We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.
Visual noise disrupts conceptual integration in reading.
Gao, Xuefei; Stine-Morrow, Elizabeth A L; Noh, Soo Rim; Eskew, Rhea T
2011-02-01
The Effortfulness Hypothesis suggests that sensory impairment (either simulated or age-related) may decrease capacity for semantic integration in language comprehension. We directly tested this hypothesis by measuring resource allocation to different levels of processing during reading (i.e., word vs. semantic analysis). College students read three sets of passages word-by-word, one at each of three levels of dynamic visual noise. There was a reliable interaction between processing level and noise, such that visual noise increased resources allocated to word-level processing, at the cost of attention paid to semantic analysis. Recall of the most important ideas also decreased with increasing visual noise. Results suggest that sensory challenge can impair higher-level cognitive functions in learning from text, supporting the Effortfulness Hypothesis.
The Effect of Elevated Train Noise on Reading Ability
ERIC Educational Resources Information Center
Bronzaft, Arline L.; McCarthy, Dennis P.
1975-01-01
This study investigated the hypothesis that low reading achievement may be related to noise interference. Reading scores of children in classrooms near train tracks were lower than scores of children whose classrooms were quieter. Score differences may be due to children's blockage of all sounds in a noisy environment. (Author/MR)
Speech Recognition in Noise by Children with and without Dyslexia: How is it Related to Reading?
Nittrouer, Susan; Krieg, Letitia M; Lowenstein, Joanna H
2018-06-01
Developmental dyslexia is commonly viewed as a phonological deficit that makes it difficult to decode written language. But children with dyslexia typically exhibit other problems, as well, including poor speech recognition in noise. The purpose of this study was to examine whether the speech-in-noise problems of children with dyslexia are related to their reading problems, and if so, if a common underlying factor might explain both. The specific hypothesis examined was that a spectral processing disorder results in these children receiving smeared signals, which could explain both the diminished sensitivity to phonological structure - leading to reading problems - and the speech recognition in noise difficulties. The alternative hypothesis tested in this study was that children with dyslexia simply have broadly based language deficits. Ninety-seven children between the ages of 7 years; 10 months and 12 years; 9 months participated: 46 with dyslexia and 51 without dyslexia. Children were tested on two dependent measures: word reading and recognition in noise with two types of sentence materials: as unprocessed (UP) signals, and as spectrally smeared (SM) signals. Data were collected for four predictor variables: phonological awareness, vocabulary, grammatical knowledge, and digit span. Children with dyslexia showed deficits on both dependent and all predictor variables. Their scores for speech recognition in noise were poorer than those of children without dyslexia for both the UP and SM signals, but by equivalent amounts across signal conditions indicating that they were not disproportionately hindered by spectral distortion. Correlation analyses on scores from children with dyslexia showed that reading ability and speech-in-noise recognition were only mildly correlated, and each skill was related to different underlying abilities. No substantial evidence was found to support the suggestion that the reading and speech recognition in noise problems of children with dyslexia arise from a single factor that could be defined as a spectral processing disorder. The reading and speech recognition in noise deficits of these children appeared to be largely independent. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan
TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statisticalmore » comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.« less
Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors.
Ge, Xiaoliang; Theuwissen, Albert J P
2018-02-27
This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.
Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors †
Theuwissen, Albert J. P.
2018-01-01
This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models. PMID:29495496
NASA Astrophysics Data System (ADS)
Daigle, Olivier; Quirion, Pierre-Olivier; Lessard, Simon
2010-07-01
EMCCDs are devices capable of sub-electron read-out noise at high pixel rate, together with a high quantum efficiency (QE). However, they are plagued by an excess noise factor (ENF) which has the same effect on photometric measurement as if the QE would be halved. In order to get rid of the ENF, the photon counting (PC) operation is mandatory, with the drawback of counting only one photon per pixel per frame. The high frame rate capability of the EMCCDs comes to the rescue, at the price of increased clock induced charges (CIC), which dominates the noise budget of the EMCCD. The CIC can be greatly reduced with an appropriate clocking, which renders the PC operation of the EMCCD very efficient for faint flux photometry or spectroscopy, adaptive optics, ultrafast imaging and Lucky Imaging. This clocking is achievable with a new EMCCD controller: CCCP, the CCD Controller for Counting Photons. This new controller, which is now commercialized by Nüvü cameras inc., was integrated into an EMCCD camera and tested at the observatoire du mont-M'egantic. The results are presented in this paper.
Development and flight testing of UV optimized Photon Counting CCDs
NASA Astrophysics Data System (ADS)
Hamden, Erika T.
2018-06-01
I will discuss the latest results from the Hamden UV/Vis Detector Lab and our ongoing work using a UV optimized EMCCD in flight. Our lab is currently testing efficiency and performance of delta-doped, anti-reflection coated EMCCDs, in collaboration with JPL. The lab has been set-up to test quantum efficiency, dark current, clock-induced-charge, and read noise. I will describe our improvements to our circuit boards for lower noise, updates from a new, more flexible NUVU controller, and the integration of an EMCCD in the FIREBall-2 UV spectrograph. I will also briefly describe future plans to conduct radiation testing on delta-doped EMCCDs (both warm, unbiased and cold, biased configurations) thus summer and longer term plans for testing newer photon counting CCDs as I move the HUVD Lab to the University of Arizona in the Fall of 2018.
Robust relationship between reading span and speech recognition in noise
Souza, Pamela; Arehart, Kathryn
2015-01-01
Objective Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. Design The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. Study sample The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Results Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Conclusions Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition. PMID:25975360
Robust relationship between reading span and speech recognition in noise.
Souza, Pamela; Arehart, Kathryn
2015-01-01
Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition.
Focal plane infrared readout circuit
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2002-01-01
An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.
Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors
Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian
2016-01-01
This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.
Elbakri, I A; McIntosh, B J; Rickey, D W
2009-03-21
We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.
NASA Astrophysics Data System (ADS)
Nobuhara, Hirofumi; Okamoto, Yoshihiro; Yamashita, Masato; Nakamura, Yasuaki; Osawa, Hisashi; Muraoka, Hiroaki
2014-05-01
In this paper, we investigate the influence of the writing and reading intertrack interferences (ITIs) in terms of bit aspect ratio (BAR) in shingled magnetic recording by computer simulation using a read/write model which consists of a writing process based on Stoner-Wohlfarth switching asteroid by a one-side shielded isosceles triangular write head and a reading process by an around shielded read head for a discrete Voronoi medium model. The results show that BAR should be 3 to reduce the influence of writing and reading ITIs, media noise, and additive white Gaussian noise in an assumed areal density of 4.61Tbpsi.
Audio-Visual Speech in Noise Perception in Dyslexia
ERIC Educational Resources Information Center
van Laarhoven, Thijs; Keetels, Mirjam; Schakel, Lemmy; Vroomen, Jean
2018-01-01
Individuals with developmental dyslexia (DD) may experience, besides reading problems, other speech-related processing deficits. Here, we examined the influence of visual articulatory information (lip-read speech) at various levels of background noise on auditory word recognition in children and adults with DD. We found that children with a…
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos
2012-01-01
IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.
Auditory Processing in Noise: A Preschool Biomarker for Literacy.
White-Schwoch, Travis; Woodruff Carr, Kali; Thompson, Elaine C; Anderson, Samira; Nicol, Trent; Bradlow, Ann R; Zecker, Steven G; Kraus, Nina
2015-07-01
Learning to read is a fundamental developmental milestone, and achieving reading competency has lifelong consequences. Although literacy development proceeds smoothly for many children, a subset struggle with this learning process, creating a need to identify reliable biomarkers of a child's future literacy that could facilitate early diagnosis and access to crucial early interventions. Neural markers of reading skills have been identified in school-aged children and adults; many pertain to the precision of information processing in noise, but it is unknown whether these markers are present in pre-reading children. Here, in a series of experiments in 112 children (ages 3-14 y), we show brain-behavior relationships between the integrity of the neural coding of speech in noise and phonology. We harness these findings into a predictive model of preliteracy, revealing that a 30-min neurophysiological assessment predicts performance on multiple pre-reading tests and, one year later, predicts preschoolers' performance across multiple domains of emergent literacy. This same neural coding model predicts literacy and diagnosis of a learning disability in school-aged children. These findings offer new insight into the biological constraints on preliteracy during early childhood, suggesting that neural processing of consonants in noise is fundamental for language and reading development. Pragmatically, these findings open doors to early identification of children at risk for language learning problems; this early identification may in turn facilitate access to early interventions that could prevent a life spent struggling to read.
Noise in pressure transducer readings produced by variations in solar radiation
Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
Noise in pressure transducer readings produced by variations in solar radiation.
Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
1/f neural noise and electrophysiological indices of contextual prediction in aging.
Dave, S; Brothers, T A; Swaab, T Y
2018-07-15
Prediction of upcoming words during reading has been suggested to enhance the efficiency of discourse processing. Emerging models have postulated that predictive mechanisms require synchronous firing of neural networks, but to date, this relationship has been investigated primarily through oscillatory activity in narrow frequency bands. A recently-developed measure proposed to reflect broadband neural activity - and thereby synchronous neuronal firing - is 1/f neural noise extracted from EEG spectral power. Previous research has indicated that this measure of 1/f neural noise changes across the lifespan, and these neural changes predict age-related behavioral impairments in visual working memory. Using a cross-sectional sample of young and older adults, we examined age-related changes in 1/f neural noise and whether this measure predicted ERP correlates of successful lexical prediction during discourse comprehension. 1/f neural noise across two different language tasks revealed high within-subject correlations, indicating that this measure can provide a reliable index of individualized patterns of neural activation. In addition to age, 1/f noise was a significant predictor of N400 effects of successful lexical prediction; however, noise did not mediate age-related declines in other ERP effects. We discuss broader implications of these findings for theories of predictive processing, as well as potential applications of 1/f noise across research populations. Copyright © 2018 Elsevier B.V. All rights reserved.
A dual V t disturb-free subthreshold SRAM with write-assist and read isolation
NASA Astrophysics Data System (ADS)
Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata
2018-02-01
This paper presents a new dual V t 8T SRAM cell having single bit-line read and write, in addition to Write Assist and Read Isolation (WARI). Also a faster write back scheme is proposed for the half selected cells. A high V t device is used for interrupting the supply to one of the inverters for weakening the feedback loop for assisted write. The proposed cell provides an improved read static noise margin (RSNM) due to the bit-line isolation during the read. Static noise margins for data read (RSNM), write (WSNM), read delay, write delay, data retention voltage (DRV), leakage and average powers have been calculated. The proposed cell was found to operate properly at a supply voltage as small as 0.41 V. A new write back scheme has been suggested for half-selected cells, which uses a single NMOS access device and provides reduced delay, pulse timing hardware requirements and power consumption. The proposed new WARI 8T cell shows better performance in terms of easier write, improved read noise margin, reduced leakage power, and less delay as compared to the existing schemes that have been available so far. It was also observed that with proper adjustment of the cell ratio the supply voltage can further be reduced to 0.2 V.
49 CFR 393.94 - Interior noise levels in power units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Interior noise levels in power units. 393.94... noise levels in power units. (a) Applicability of this section. The interior noise level requirements..., if the reading has not been influenced by extraneous noise sources such as motor vehicles operating...
49 CFR 393.94 - Interior noise levels in power units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Interior noise levels in power units. 393.94... noise levels in power units. (a) Applicability of this section. The interior noise level requirements..., if the reading has not been influenced by extraneous noise sources such as motor vehicles operating...
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.
Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K
2016-07-20
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.
A front-end read out chip for the OPERA scintillator tracker
NASA Astrophysics Data System (ADS)
Lucotte, A.; Bondil, S.; Borer, K.; Campagne, J. E.; Cazes, A.; Hess, M.; de La Taille, C.; Martin-Chassard, G.; Raux, L.; Repellin, J. P.
2004-04-01
Multi-anode photomultipliers H7546 are used to readout signal from the OPERA Scintillator Tracker (CERN/SPSC 2000-028, SPSC/P318, LNGSP 25/2000; CERN/SPSC 2001-025, SPSC/M668, LNGS-EXP30/2001). A 32-channel front-end Read Out Chip prototype accommodating the H7546 has been designed at LAL. This device features a low-noise, variable gain preamplifier to correct for multi-anode non-uniformity, an auto-trigger capability 100% efficient at a 0.3 photo-electron, and a charge measurement extending over a large dynamic range [0-100] photo-electrons. In this article we describe the ASIC architecture that is being implemented for the Target Tracker in OPERA, with a special emphasis put on the designs and the measured performance.
NASA Technical Reports Server (NTRS)
Janesick, J. R.; Elliott, T.; Collins, S.; Marsh, H.; Blouke, M. M.
1984-01-01
Since the first introduction of charge-coupled devices (CCDs) in 1970, CCDs have been considered for applications related to memories, logic circuits, and the detection of visible radiation. It is pointed out, however, that the mass market orientation of CCD development has left largely untapped the enormous potential of these devices for advanced scientific instrumentation. The present paper has, therefore, the objective to introduce the CCD characteristics to the scientific community, taking into account prospects for further improvement. Attention is given to evaluation criteria, a summary of current CCDs, CCD performance characteristics, absolute calibration tools, quantum efficiency, aspects of charge collection, charge transfer efficiency, read noise, and predictions regarding the characteristics of the next generation of silicon scientific CCD imagers.
H2RG Detector Characterization for RIMAS and Instrument Efficiencies
NASA Technical Reports Server (NTRS)
Toy, Vicki L.; Kutyrev, Alexander S.; Capone, John I.; Hams, Thomas; Robinson, F. David; Lotkin, Gennadiy N.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.
2016-01-01
The Rapid infrared IMAger-Spectrometer (RIMAS) is a near-infrared (NIR) imager and spectrometer that will quickly follow up gamma-ray burst afterglows on the 4.3-meter Discovery Channel Telescope (DCT). RIMAS has two optical arms which allows simultaneous coverage over two bandpasses (YJ and HK) in either imaging or spectroscopy mode. RIMAS utilizes two Teledyne HgCdTe H2RG detectors controlled by Astronomical Research Cameras, Inc. (ARC/Leach) drivers. We report the laboratory characterization of RIMAS's detectors: conversion gain, read noise, linearity, saturation, dynamic range, and dark current. We also present RIMAS's instrument efficiency from atmospheric transmission models and optics data (both telescope and instrument) in all three observing modes.
Halin, Niklas
2016-01-01
The purpose of this study was to investigate the distractive effects of background speech, aircraft noise and road traffic noise on text memory and particularly to examine if displaying the texts in a hard-to-read font can shield against the detrimental effects of these types of background sounds. This issue was addressed in an experiment where 56 students read shorter texts about different classes of fictitious creatures (i.e., animals, fishes, birds, and dinosaurs) against a background of the aforementioned background sounds respectively and silence. For half of the participants the texts were displayed in an easy-to-read font (i.e., Times New Roman) and for the other half in a hard-to-read font (i.e., Haettenschweiler). The dependent measure was the proportion correct answers on the multiple-choice tests that followed each sound condition. Participants’ performance in the easy-to-read font condition was significantly impaired by all three background sound conditions compared to silence. In contrast, there were no effects of the three background sound conditions compared to silence in the hard-to-read font condition. These results suggest that an increase in task demand—by displaying the text in a hard-to-read font—shields against various types of distracting background sounds by promoting a more steadfast locus-of-attention and by reducing the processing of background sound. PMID:27555834
Read-noise characterization of focal plane array detectors via mean-variance analysis.
Sperline, R P; Knight, A K; Gresham, C A; Koppenaal, D W; Hieftje, G M; Denton, M B
2005-11-01
Mean-variance analysis is described as a method for characterization of the read-noise and gain of focal plane array (FPA) detectors, including charge-coupled devices (CCDs), charge-injection devices (CIDs), and complementary metal-oxide-semiconductor (CMOS) multiplexers (infrared arrays). Practical FPA detector characterization is outlined. The nondestructive readout capability available in some CIDs and FPA devices is discussed as a means for signal-to-noise ratio improvement. Derivations of the equations are fully presented to unify understanding of this method by the spectroscopic community.
Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Mike
2012-01-01
Given the limited studies conducted within the African continent, the purpose of this study was to investigate the impact of chronic aircraft noise exposure and the moderating effect of home language on the learners' reading comprehension. The sample comprised 437 (52%) senior primary learners exposed to high levels of aircraft noise (Experimental group) and 337 (48%) learners residing in a quieter area (Control group). Of these, 151 learners in the Experimental group spoke English as a first language (EFL) and 162 spoke English as a second language (ESL). In the Control group, the numbers were similarly divided (EFL n = 191; ESL n = 156). A univariate General Linear Model was used to investigate the effects of aircraft noise exposure and language on reading comprehension, while observing for the possible impact of intellectual ability, gender, and socioeconomic status on the results. A significant difference was observed between ESL and EFL learners in favor of the latter (F 1,419 = 21.95, P =.000). In addition a substantial and significant interaction effect was found between the experimental and control groups for the two language groups. For the EFL speakers there was a strong reduction in reading comprehension in the aircraft noise group. By contrast this difference was not significant for the ESL speakers. Implications of the findings and suggestions for further research are made in the article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas
In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less
Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas; ...
2016-01-06
In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors
Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.
2016-01-01
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643
NASA Astrophysics Data System (ADS)
Janesick, James; Cheng, John; Bishop, Jeanne; Andrews, James T.; Tower, John; Walker, Jeff; Grygon, Mark; Elliot, Tom
2006-08-01
A high performance prototype CMOS imager is introduced. Test data is reviewed for different array formats that utilize 3T photo diode, 5T pinned photo diode and 6T photo gate CMOS pixel architectures. The imager allows several readout modes including progressive scan, snap and windowed operation. The new imager is built on different silicon substrates including very high resistivity epitaxial wafers for deep depletion operation. Data products contained in this paper focus on sensor's read noise, charge capacity, charge transfer efficiency, thermal dark current, RTS dark spikes, QE, pixel cross- talk and on-chip analog circuitry performance.
Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Maxwell
SuperCDMS SNOLAB is a second generation direct dark matter search. In the SuperCDMS SNOLAB experiment, detectors are able to pick up from signals from dark matter nuclear recoil interactions which occur inside the bulk of the detectors. These interactions produce both phonon and charge signals. HEMTs read out charge signals whereas TES are used to detect phonon signals which are then read out by SQUID amplifiers. SQUID amplifiers must add negligible noise to the TES intrinsic noise which has been previously measured and is approximately 50pA/√Hz down to 100Hz for ease of signal distinguishability in dark matter nuclear interactions. Themore » intrinsic noise level of the SQUID was tested in the SLAC 300mK fridge and determined to provide adequately low levels of noise with a floor of approximately 3pA/√Hz. Furthermore, a 10x amplifier was tested for addition of extraneous noise. This noise was investigated with and without this amplifier, and it was found that it did not add a significant amount of noise to the intrinsic SQUID noise.« less
VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2015-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.
VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras
NASA Astrophysics Data System (ADS)
Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.
2015-08-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (<= 25 e- read noise and <= 10 e- /sec/pixel dark current), in addition to maintaining a stable gain of ≍ 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Three flight cameras and one engineering camera were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise and dark current of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV, EUV and X-ray science cameras at MSFC.
IRAC test report. Gallium doped silicon band 2: Read noise and dark current
NASA Technical Reports Server (NTRS)
Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey
1987-01-01
A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.
Hyperbolic and semi-hyperbolic surface codes for quantum storage
NASA Astrophysics Data System (ADS)
Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.
2017-09-01
We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.
Improved charge injection device and a focal plane interface electronics board for stellar tracking
NASA Technical Reports Server (NTRS)
Michon, G. J.; Burke, H. K.
1984-01-01
An improved Charge Injection Device (CID) stellar tracking sensor and an operating sensor in a control/readout electronics board were developed. The sensor consists of a shift register scanned, 256x256 CID array organized for readout of 4x4 subarrays. The 4x4 subarrays can be positioned anywhere within the 256x256 array with a 2 pixel resolution. This allows continuous tracking of a number of stars simultaneously since nine pixels (3x3) centered on any star can always be read out. Organization and operation of this sensor and the improvements in design and semiconductor processing are described. A hermetic package incorporating an internal thermoelectric cooler assembled using low temperature solders was developed. The electronics board, which contains the sensor drivers, amplifiers, sample hold circuits, multiplexer, analog to digital converter, and the sensor temperature control circuits, is also described. Packaged sensors were evaluated for readout efficiency, spectral quantum efficiency, temporal noise, fixed pattern noise, and dark current. Eight sensors along with two tracker electronics boards were completed, evaluated, and delivered.
A compact multichannel spectrometer for Thomson scatteringa)
NASA Astrophysics Data System (ADS)
Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
A compact multichannel spectrometer for Thomson scattering.
Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colasanti, L.; Macculi, C.; Piro, L.
2009-12-16
The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA), requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%). A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo-AntiCoincidence (Cryo-AC) based on a silicon absorber and read by a TES (Transition-Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. Wemore » present the results of estimations, simulations and preliminary measurement.« less
SWIR HgCdTe avalanche photiode focal plane array performances evaluation
NASA Astrophysics Data System (ADS)
de Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P.
2017-11-01
One of the main challenges of modern astronomical instruments like adaptive optics (AO) systems or fringe trackers is to deal with the very low photons flux detection scenarios. The typical timescale of atmospheric turbulences being in the range of some tens of milliseconds, infrared wavefront sensors for AO systems needs frame rates higher than 1 KHz leading to integration times lower than 1 ms. This integration time associated with a low irradiance results in a few number of integrated photons per frame per pixel. To preserve the information coming from this weak signal, the focal plane array (FPA) has to present a low read out noise, a high quantum efficiency and a low dark current. Up to now, the output noise of high speed near infrared sensors is limited by the silicon read out circuit noise. The use of HgCdTe avalanche photodiodes with high gain at moderate reverse bias and low excess noise seems then a logical way to reduce the impact of the read noise on images signal to noise ratio. These low irradiance passive imaging applications with integration times in the millisecond range needs low photodiode dark current and low background current. These requirements lead to the choice of the photodiode cut off wavelength. The short wave infrared (SWIR) around 3 μm is a good compromise between the gain that can be obtain for a given APD bias and the background and dark current. The CEA LETI HgCdTe APD technology, and a fine analysis of the gain curve characteristic are presented in [1] and won't be detailed here. The response time of the APD is also a key factor for a high frame rate FPA. This parameter has been evaluated in [2] and the results shows cut off frequencies in the GHz range. In this communication we report the performances of a SWIR APD FPA designed and fabricated by CEA LETI and SOFRADIR for astrophysical applications. This development was made in the frame of RAPID, a 4 years R&D project funded by the French FUI (Fond Unique Interministériel). This project involves industrial and academic partners from the field of advanced infrared focal plane arrays fabrication (SOFRADIR and CEA LETI) and of astronomical/defense institutes (IPAG, LAM, ONERA). The goal of this program is to develop a fast and low noise SWIR camera for astronomical fast applications like adaptive optics wavefront sensing and fringe tracking for astronomical interferometers [3]. The first batch of FPA's was based on liquid-phase epitaxy (LPE) grown photodiode arrays with 3 μm cut off wavelength. In order to get higher avalanche gain for a given photodiode reverse bias voltage, we have made a second batch with a cadmium composition leading to 3.3 μm cut off wavelength (λc). This paper described the read out circuit in the next section. The aim section III is to find the critical parameter that has to be measured to evaluate the signal to noise ratio (SNR) of an APD FPA. The main electro optical characteristics of an FPA based on 3.3μm cut off wavelength APDs are reported in "Rapid FPAs characterisation" section. The dark current evolution with temperature of a 3 μm FPA high and low APD bias is also detailed in this section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, Yasushi, E-mail: endo@ecei.tohoku.ac.jp; Fan, Peng; Yamaguchi, Masahiro
To understand the spin-torque effect on the noise in tunneling magnetoresistive (TMR) read heads, the GHz range noise spectra of TMR read heads with a narrow track width (w = 36 nm), and various stripe heights (h) are investigated as a function of the external magnetic field (H{sub ex}) and dc bias current density (j). The strong noise peak intensity depends on both H{sub ex} and j, indicating that the spin-torque affects the thermal mag-noise under a positive (negative) j for a positive (negative) H{sub ex}, regardless of h in the TMR heads. Due to the increased shape anisotropy, the critical current densitymore » (j{sub c}), where the non-thermal fluctuation noise originates from the spin-torque, increases markedly as the head dimension is reduced, and the maximum value of j{sub c} is approximately +1.5 × 10{sup 12} A/m{sup 2} for a head with w = 36 nm and h = 15 nm. These results demonstrate that the non-thermal fluctuation noise originating from the spin-torque in the TMR head can be suppressed in the current density range below 10{sup 12} A/m{sup 2}, as the head dimension is reduced and the shape anisotropy is increased.« less
Volterra Transfer Functions from Pulse Tests for Mildly Nonlinear Channels.
1983-07-01
printing(1215) = 0 minimal printing = 1 maximum printing IFIX noise correction option = 0 no correction S1 do noise correction IPLI and IPL2 plot options...TITLE READ(5,1)N1,tI,ISKIP,IREM,IBIAS,IO)LY,DELTA, +OSAV,VAR,DFAC READ(5,1021)TITLE READ(5,I001)IPR, IFIX,IPL1, IPL2 IF(II.EQ.10000)GO To 4320...1)VIRITE (6,1004) IF(IPLT.EQ.1.OR. IPLT.EQ.3) +CALL PLOTIT(DATA2,2,11I~l,,rP,ISEIP,NIAXPL,1,1.0) IFCIPLT. EQ.1.OR. IPL2 .EQ. 0)GO TO 6544 C LABEL(18
A Power-Efficient Capacitive Read-Out Circuit With Parasitic-Cancellation for MEMS Cochlea Sensors.
Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Mastropaolo, Enrico; Cheung, Rebecca; Abel, Andrew; Smith, Leslie S; Wang, Lei
2016-02-01
This paper proposes a solution for signal read-out in the MEMS cochlea sensors that have very small sensing capacitance and do not have differential sensing structures. The key challenge in such sensors is the significant signal degradation caused by the parasitic capacitance at the MEMS-CMOS interface. Therefore, a novel capacitive read-out circuit with parasitic-cancellation mechanism is developed; the equivalent input capacitance of the circuit is negative and can be adjusted to cancel the parasitic capacitance. Chip results prove that the use of parasitic-cancellation is able to increase the sensor sensitivity by 35 dB without consuming any extra power. In general, the circuit follows a low-degradation low-amplification approach which is more power-efficient than the traditional high-degradation high-amplification approach; it employs parasitic-cancellation to reduce the signal degradation and therefore a lower gain is required in the amplification stage. Besides, the chopper-stabilization technique is employed to effectively reduce the low-frequency circuit noise and DC offsets. As a result of these design considerations, the prototype chip demonstrates the capability of converting a 7.5 fF capacitance change of a 1-Volt-biased 0.5 pF capacitive sensor pair into a 0.745 V signal-conditioned output at the cost of only 165.2 μW power consumption.
Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters
NASA Technical Reports Server (NTRS)
Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.
2012-01-01
Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.
Development of a timing detector for the TOTEM experiment at the LHC
NASA Astrophysics Data System (ADS)
Minafra, Nicola
2017-09-01
The upgrade program of the TOTEM experiment will include the installation of timing detectors inside vertical Roman Pots to allow the reconstruction of the longitudinal vertex position in the presence of event pile-up in high- β^{\\ast} dedicated runs. The small available space inside the Roman Pot, optimized for high-intensity LHC runs, and the required time precision led to the study of a solution using single crystal CVD diamonds. The sensors are read out using fast low-noise front-end electronics developed by the TOTEM Collaboration, achieving a signal-to-noise ratio larger than 20 for MIPs. A prototype was designed, manufactured and tested during a test beam campaign, proving a time precision below 100ps and an efficiency above 99%. The geometry of the detector has been designed to guarantee uniform occupancy in the expected running conditions keeping, at the same time, the number of channels below 12. The read-out electronics was developed during an extensive campaign of beam tests dedicated first to the characterization of existing solution and then to the optimization of the electronics designed within the Collaboration. The detectors were designed to be read out using the SAMPIC chip, a fast sampler designed specifically for picosecond timing measurements with high-rate capabilities; later, a modified version was realized using the HPTDC to achieve the higher trigger rates required for the CT-PPS experiment. The first set of prototypes was successfully installed and tested in the LHC in November 2015; moreover the detectors modified for CT-PPS are successfully part of the global CMS data taking since October 2016.
NASA Astrophysics Data System (ADS)
Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay
2016-07-01
As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.
The Decibel Report: Acoustic Sound Measurement Modeling and the Effects of Sonar on Marine Mammals
2010-06-21
flow noise and shipborne internal noise are other relevant factors. For active systems, transmit and receive apparatus, target echo reflectivity...ambient noise, hydrodynamic flow noise, shipborne internal noise, and reverberation interference are the other relevant factors. The "L" terms expressed...speed, that is, hydrodynamic flow , dependent. 27 5. ND1 : dB - These symbols are read as receiving directivity index in units of decibels. The
The Social Construction of Meaning: Reading "Animal Farm" in the Classroom
ERIC Educational Resources Information Center
Yandell, John
2013-01-01
The novel, it has generally been assumed, was from its very beginnings a literary form designed to be read by solitary, silent individuals. One consequence of this assumption is that the class novel, read amid all the noise and sociality of the classroom, tends to be treated as a preparation for more authentic, private reading, or even as a poor…
Recent progress and development of a speedster-EXD: a new event-triggered hybrid CMOS x-ray detector
NASA Astrophysics Data System (ADS)
Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.
2015-08-01
We present the characterization of a new event-driven X-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Along with its low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up, the Speedster-EXD has been designed with the capability to limit its readout to only those pixels containing charge, thus enabling even faster effective frame rates. The threshold for the comparator in each pixel can be set by the user so that only pixels with signal above the set threshold are read out. The Speedster-EXD hybrid CMOS detector also has two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate crosstalk from interpixel capacitance (IPC) and (2) in-pixel CDS subtraction to reduce kTC noise. We present the read noise, dark current, IPC, energy resolution, and gain variation measurements of one Speedster-EXD detector.
González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
2016-05-01
This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dose ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-López, Antonio, E-mail: antonio.gonzalez7@carm.es; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
Purpose: This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Methods: Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dosemore » ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. Results: For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Conclusions: Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.« less
Characterisation results of the CMOS VISNIR spectral band detector for the METimage instrument
NASA Astrophysics Data System (ADS)
Pratlong, Jérôme; Schmuelling, Frank; Benitez, Victor; Breart De Boisanger, Michel; Skegg, Michael; Simpson, Robert; Bowring, Steve; Krzizok, Natalie
2017-09-01
The METimage instrument is part of the EPS-SG (EUMETSAT Polar System Second Generation) program. It will be situated on the MetOp-SG platform which in operation has an objective of collecting data for meteorology and climate monitoring as well as their forecasting. Teledyne e2v has developed and characterised the CMOS VISNIR detector flight module part of the METimage instrument. This paper will focus on the silicon results obtained from the CMOS VISNIR detector flight model. The detector is a large multi-linear device composed of 7 spectral bands covering a wavelength range from 428 nm to 923 nm (some bands are placed twice and added together to enhance the signal-to-noise performance). This detector uses a 4T pixel, with a size of 250μm square, presenting challenges to achieve good charge transfer efficiency with high conversion factor and good linearity for signal levels up to 2M electrons and with high line rates. Low noise has been achieved using correlated double sampling to suppress the read-out noise and give a maximum dynamic range that is significantly larger than in standard commercial devices. The photodiode occupies a significant fraction of the large pixel area. This makes it possible to meet the detection efficiency when front illuminated. A thicker than standard epitaxial silicon is used to improve NIR response. However, the dielectric stack on top of the sensor produces Fabry-Perot étalon effects, which are problematic for narrow band illumination as this causes the detection efficiency to vary significantly over a small wavelength range. In order to reduce this effect and to meet the specification, the silicon manufacturing process has been modified. The flight model will have black coating deposited between each spectral channel, onto the active silicon regions.
Evaluation of mobile smartphones app as a screening tool for environmental noise monitoring.
Ibekwe, Titus S; Folorunsho, David O; Dahilo, Enoch A; Gbujie, Ibeneche O; Nwegbu, Maxwell M; Nwaorgu, Onyekwere G
2016-01-01
Noise is a global occupational and environmental health hazard with considerable social and physiological impact and, therefore, there is a need for regular measurements to boost monitoring and regulations of environmental noise levels in our communities. This necessitates a readily available, inexpensive, and easy to use noise measuring device. We aimed to test the sensitivity and validity of mobile "smart" phones for this purpose. This was a comparative analysis of a cross sectional study done between January 2014 and February 2015. Noise levels were measured simultaneously at different locations within Abuja Nigeria at day and night hours in real time environments. A sound level meter (SLM) (Extech407730 Digital Soundmeter, serial no.: 2310135, calibration no: 91037) and three smartphones (Samsung Galaxy note3, Nokia S, and Techno Phantom Z running on Android "Apps" Androidboy1) were used. Statistical calculations were done with Pearson correlation, T-test and Consistency within American National Standards Institute acceptable standard errors. Noise level readings for both daytime and night with the SLM and the mobile phones showed equivalent values. All noise level meters measured were <100dB. The daytime readings were nearly identical in six locations and the maximum difference in values between the SLM and Smartphone instruments was 3db, noted in two locations. Readings in dBA showed strong correlation (r = 0.9) within acceptable error limits for Type 2 SLM devices and no significant difference in the values (p = 0.12 & 0.58) for both day and night. Sensitivity of the instrument yielded 92.9%. The androidboy1 "app" performance in this study showed a good correlation and comparative high sensitivity to the Standard SLM (type 2 SLM device). However there is the need for further studies.
Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter
NASA Technical Reports Server (NTRS)
Smith, Stephen J.
2007-01-01
We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.
Special topics in infrared interferometry. [Michelson interferometer development
NASA Technical Reports Server (NTRS)
Hanel, R. A.
1985-01-01
Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.
Knoop-van Campen, Carolien A N; Segers, Eliane; Verhoeven, Ludo
2018-05-01
This study examined the relation between working memory, phonological awareness, and word reading efficiency in fourth-grade children with dyslexia. To test whether the relation between phonological awareness and word reading efficiency differed for children with dyslexia versus typically developing children, we assessed phonological awareness and word reading efficiency in 50 children with dyslexia (aged 9;10, 35 boys) and 613 typically developing children (aged 9;5, 279 boys). Phonological awareness was found to be associated with word reading efficiency, similar for children with dyslexia and typically developing children. To find out whether the relation between working memory and word reading efficiency in the group with dyslexia could be explained by phonological awareness, the children with dyslexia were also tested on working memory. Results of a mediation analysis showed a significant indirect effect of working memory on word reading efficiency via phonological awareness. Working memory predicted reading efficiency, via its relation with phonological awareness in children with dyslexia. This indicates that working memory is necessary for word reading efficiency via its impact on phonological awareness and that phonological awareness continues to be important for word reading efficiency in older children with dyslexia. © 2018 The Authors Dyslexia Published by John Wiley & Sons Ltd.
Digital signal processing for the ATLAS/LUCID detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-07-01
Both the detector and the associated read-out electronics have been improved in order to cope with the LHC luminosity increase foreseen for RUN 2 and RUN 3. The new operating conditions require a careful tuning of the read-out electronics in order to optimize the signal-to-noise ratio. The new read-out electronics will allow the use of digital filtering of the photo multiplier tube signals. In this talk, we will present the first results that we obtained in the optimization of the signal-to-noise ratio. In addition, we will introduce the next steps to adapt this system to high performance read-out chains formore » low energy gamma rays. Such systems are based, for instance, on Silicon Drift Detector devices and can be used in applications at Free-Electron-Laser facilities such as the XFEL under construction at DESY. (authors)« less
Neural Timing is Linked to Speech Perception in Noise
Samira, Anderson; Erika, Skoe; Bharath, Chandrasekaran; Nina, Kraus
2010-01-01
Understanding speech in background noise is challenging for every listener, including those with normal peripheral hearing. This difficulty is due in part to the disruptive effects of noise on neural synchrony, resulting in degraded representation of speech at cortical and subcortical levels as reflected by electrophysiological responses. These problems are especially pronounced in clinical populations such as children with learning impairments. Given the established effects of noise on evoked responses, we hypothesized that listening-in-noise problems are associated with degraded processing of timing information at the brainstem level. Participants (66 children, ages 8 to 14 years, 22 females) were divided into groups based on their performance on clinical measures of speech-in-noise perception (SIN) and reading. We compared brainstem responses to speech syllables between top and bottom SIN and reading groups in the presence and absence of competing multi-talker babble. In the quiet condition, neural response timing was equivalent between groups. In noise, however, the bottom groups exhibited greater neural delays relative to the top groups. Group-specific timing delays occurred exclusively in response to the noise-vulnerable formant transition, not to the more perceptually-robust, steady-state portion of the stimulus. These results demonstrate that neural timing is disrupted by background noise and that greater disruptions are associated with the inability to perceive speech in challenging listening conditions. PMID:20371812
Quantum noise in the mirror-field system: A field theoretic approach
NASA Astrophysics Data System (ADS)
Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien
2013-02-01
We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2014-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.
NASA Technical Reports Server (NTRS)
Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.
NASA Technical Reports Server (NTRS)
Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick
2014-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.
Li, Zhi; Wei, Henglu; Zhou, Wei; Duan, Zhemin
2018-01-01
Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ∘C and increase the signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times. PMID:29393862
Li, Xin; Ou, Xingtao; Li, Zhi; Wei, Henglu; Zhou, Wei; Duan, Zhemin
2018-02-02
Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ∘ C and increase the signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.
Read-out electronics for DC squid magnetic measurements
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.
Furnham, Adrian; Strbac, Lisa
2002-02-20
Previous research has found that introverts' performance on complex cognitive tasks is more negatively affected by distracters, e.g. music and background television, than extraverts' performance. This study extended previous research by examining whether background noise would be as distracting as music. In the presence of silence, background garage music and office noise, 38 introverts and 38 extraverts carried out a reading comprehension task, a prose recall task and a mental arithmetic task. It was predicted that there would be an interaction between personality and background sound on all three tasks: introverts would do less well on all of the tasks than extraverts in the presence of music and noise but in silence performance would be the same. A significant interaction was found on the reading comprehension task only, although a trend for this effect was clearly present on the other two tasks. It was also predicted that there would be a main effect for background sound: performance would be worse in the presence of music and noise than silence. Results confirmed this prediction. These findings support the Eysenckian hypothesis of the difference in optimum cortical arousal in introverts and extraverts.
High operating temperature interband cascade focal plane arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z.-B.; Godoy, S. E.; Kim, H. S.
2014-08-04
In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature differencemore » of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.« less
Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardani, L., E-mail: laura.cardani@roma1.infn.it; Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey; Colantoni, I.
The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patternedmore » on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.« less
NASA Technical Reports Server (NTRS)
Vasilyev, Y. M.; Lagunov, L. F.
1973-01-01
The schematic diagram of a noise measuring device is presented that uses pulse expansion modeling according to the peak or any other measured values, to obtain instrument readings at a very low noise error.
READING UNREADINESS IN THE UNDERPRIVILEGED.
ERIC Educational Resources Information Center
CUTTS, WARREN G.
CULTURALLY DEPRIVED CHILDREN HAVE DIFFICULTY MASTERING BASIC COMMUNICATION SKILLS. WHILE UNDERPRIVILEGED CHILDREN CAN COMMUNICATE AMONG THEMSELVES AT A RATHER HIGH LEVEL OF FLUENCY, THEIR ONE-WORD SENTENCES, STRANGE SPEAKING NOISES, AND IRREGULARITIES PREVENT THE DEVELOPMENT OF BASIC READING READINESS SKILLS. A FUNDAMENTAL NECESSITY IN OVERCOMING…
Performance of Hg1-xCdxTe infrared focal plane array at elevated temperature
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2017-04-01
The simulated optical and electrical performance of the infrared HgCdTe focal plane array (FPA) for elevated operation temperature is reported. The depleted absorber layer is explored for equilibrium mode of operation up to 160 K. A resonant cavity is created to improve photon-matter interaction and hence, reduces the required absorption volume. The volume of the active region of HgCdTe detector is reduced by 70% in this manner. Dark current density is decreased without compromising the quantum efficiency. The effect of the reduced band filling effect leading to higher absorption coefficient and more efficient utilization of incident flux is employed. High quantum efficiency is achieved in a thin compositionally graded n+/ν/π/p HgCdTe photo-diode. This architecture helps to minimize the requirement of charge handling capacity in the CMOS read-out integrated circuit (ROIC) as the operation temperature is increased. Quantum efficiency ˜30% or above is shown to be sufficient for Noise Equivalent Temperature Difference (NETD) less than 20 mK with the reported design.
Age Differences in the Effects of Domain Knowledge on Reading Efficiency
Miller, Lisa M. Soederberg
2009-01-01
The present study investigated age differences in the effects of knowledge on the efficiency with which information is processed while reading. Individuals between 18 and 85 years of age, with varying levels of cooking knowledge, read and recalled a series of short passages within the domain of cooking. Reading efficiency was operationalized as time spent reading divided by the amount recalled for each passage. Results showed that reading efficiency increased with increasing levels of knowledge among older but not younger adults. Similarly, those with smaller working memory capacities showed increasing efficiency with increasing knowledge. These findings suggest that knowledge promotes a more efficient allocation policy which is particularly helpful in later life, perhaps due to age-related declines in working memory capacity. PMID:19290738
A practical approach to superresolution
NASA Astrophysics Data System (ADS)
Farsiu, Sina; Elad, Michael; Milanfar, Peyman
2006-01-01
Theoretical and practical limitations usually constrain the achievable resolution of any imaging device. Super-Resolution (SR) methods are developed through the years to go beyond this limit by acquiring and fusing several low-resolution (LR) images of the same scene, producing a high-resolution (HR) image. The early works on SR, although occasionally mathematically optimal for particular models of data and noise, produced poor results when applied to real images. In this paper, we discuss two of the main issues related to designing a practical SR system, namely reconstruction accuracy and computational efficiency. Reconstruction accuracy refers to the problem of designing a robust SR method applicable to images from different imaging systems. We study a general framework for optimal reconstruction of images from grayscale, color, or color filtered (CFA) cameras. The performance of our proposed method is boosted by using powerful priors and is robust to both measurement (e.g. CCD read out noise) and system noise (e.g. motion estimation error). Noting that the motion estimation is often considered a bottleneck in terms of SR performance, we introduce the concept of "constrained motions" for enhancing the quality of super-resolved images. We show that using such constraints will enhance the quality of the motion estimation and therefore results in more accurate reconstruction of the HR images. We also justify some practical assumptions that greatly reduce the computational complexity and memory requirements of the proposed methods. We use efficient approximation of the Kalman Filter (KF) and adopt a dynamic point of view to the SR problem. Novel methods for addressing these issues are accompanied by experimental results on real data.
NASA Astrophysics Data System (ADS)
González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
2017-11-01
The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.
Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.
Allard, Rémy; Arleo, Angelo
2017-01-01
The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.
Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera
NASA Technical Reports Server (NTRS)
Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid;
2012-01-01
The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.
Teledyne H1RG, H2RG, and H4RG Noise Generator
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.
2015-01-01
This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including; (1) white "read noise", (2) residual bias drifts, (3) pink 1/f noise, (4) alternating column noise, and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4.
Sub-electron read noise and millisecond full-frame readout with the near infrared eAPD array SAPHIRA
NASA Astrophysics Data System (ADS)
Finger, Gert; Baker, Ian; Alvarez, Domingo; Dupuy, Christophe; Ives, Derek; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Jörg; Weller, Harald J.
2016-07-01
In 2007 ESO started a program at SELEX (now LEONARDO) to develop noiseless near infrared HgCdTe electron avalanche photodiode arrays (eAPD)[1][2][3]. This eAPD technology is only way to overcome the limiting CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking. After several development cycles of solid state engineering techniques which can be easily applied to the chosen growth technology of metal organic vapour phase epitaxy (MOVPE), the eAPD arrays have matured and resulted in the SAPHIRA arrays. They have a format of 320x256 pixels with a pitch of 24 μm. They now offer an unmatched combination of sub-electron read noise at millisecond frame readout rates. The first generation of SAPHIRA arrays were only sensitive in H and K-band. With the removal of a wide bandgap buffer layer the arrays are now sensitive from λ=0.8 μm to 2.5 μm with high quantum efficiency over the entire wavelength range. The high temperature anneal applied during the growth process produces material with superb cosmetic quality at an APD gain of over 600. The design of the SAPHIRA ROIC has also been revised and the new ME1000 ROIC has an optimized analogue chain and more flexible readout modes. The clock for the vertical shift register is now under external control. The advantage of this is that correlated-double-sampling and uncorrelated readout in the rolling shutter mode now have a duty cycle of 100% at the maximum frame rate. Furthermore, to reduce the readout noise rows can be read several times before and after row reset. Since the APD gain is sufficiently high that one photon produces many more electrons than the square root of kTC which is the charge uncertainty after reset, signals of one photon per exposure can be easily detected without the need for double correlated sampling. First results obtained with the fringe tracker in GRAVITY and the four SAPHIRA wavefront sensors installed in the CIAO adaptive optics systems of the four 8 meter telescopes of the VLTI have proven the unrivaled performance of the SAPHIRA eAPD technology. A future program is being assembled to develop eAPD arrays having a larger format of 1Kx1K capable of frame rates of 1.2 KHz. There are also good prospects to offer low dark current eAPD technology for large format science focal planes as well.
Lip-Reading by Deaf and Hearing Children
ERIC Educational Resources Information Center
Conradm, R.
1977-01-01
A group of profoundly deaf 15-year-old subjects with no other handicap and of average non-verbal intelligence were given a lip-reading test. The same test was given to comparable hearing subjects "deafened" by white noise masking. The difference between the groups was not significant. (Editor)
Carroll, Rebecca; Meis, Markus; Schulte, Michael; Vormann, Matthias; Kießling, Jürgen; Meister, Hartmut
2015-02-01
To report the development of a standardized German version of a reading span test (RST) with a dual task design. Special attention was paid to psycholinguistic control of the test items and time-sensitive scoring. We aim to establish our RST version to use for determining an individual's working memory in the framework of hearing research in German contexts. RST stimuli were controlled and pretested for psycholinguistic factors. The RST task was to read sentences, quickly determine their plausibility, and later recall certain words to determine a listener's individual reading span. RST results were correlated with outcomes of additional sentence-in-noise tests measured in an aided and an unaided listening condition, each at two reception thresholds. Item plausibility was pre-determined by 28 native German participants. An additional 62 listeners (45-86 years, M = 69.8) with mild-to-moderate hearing loss were tested for speech intelligibility and reading span in a multicenter study. The reading span test significantly correlated with speech intelligibility at both speech reception thresholds in the aided listening condition. Our German RST is standardized with respect to psycholinguistic construction principles of the stimuli, and is a cognitive correlate of intelligibility in a German matrix speech-in-noise test.
Traffic noise reduces foraging efficiency in wild owls
NASA Astrophysics Data System (ADS)
Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi
2016-08-01
Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.
Traffic noise reduces foraging efficiency in wild owls.
Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D; Nakamura, Futoshi
2016-08-18
Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls' ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls' ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.
Sensitivity of an imaging space infrared interferometer.
Nakajima, T; Matsuhara, H
2001-02-01
We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.
NASA Astrophysics Data System (ADS)
Rubel, Aleksey S.; Lukin, Vladimir V.; Egiazarian, Karen O.
2015-03-01
Results of denoising based on discrete cosine transform for a wide class of images corrupted by additive noise are obtained. Three types of noise are analyzed: additive white Gaussian noise and additive spatially correlated Gaussian noise with middle and high correlation levels. TID2013 image database and some additional images are taken as test images. Conventional DCT filter and BM3D are used as denoising techniques. Denoising efficiency is described by PSNR and PSNR-HVS-M metrics. Within hard-thresholding denoising mechanism, DCT-spectrum coefficient statistics are used to characterize images and, subsequently, denoising efficiency for them. Results of denoising efficiency are fitted for such statistics and efficient approximations are obtained. It is shown that the obtained approximations provide high accuracy of prediction of denoising efficiency.
Evaluation of traffic noise pollution and attitudes of exposed individuals in working place
NASA Astrophysics Data System (ADS)
Pathak, Vinita; Tripathi, B. D.; Mishra, Virendra kumar
2008-05-01
The main objective of this paper is to evaluate the noise pollution problem in the Varanasi city and its effect on the exposed people. The study revealed the fact that noise levels have reached an alarming level. The result of the study indicated the fact that 85% of the people were disturbed by traffic noise, about 90% of the people reported that traffic noise is the main cause of headache, high BP problem, dizziness and fatigue. People having higher education and income level are much aware of the health impact due to traffic noise. Marital status was found to be significantly affecting the annoyance level caused by traffic noise. Traffic noise was found to be interfering daily activities such as at resting, reading, communication etc.
Radiation imaging with optically read out GEM-based detectors
NASA Astrophysics Data System (ADS)
Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.
2018-02-01
Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.
Noise analysis for CCD-based ultraviolet and visible spectrophotometry.
Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P
2015-09-20
We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4) AU for the AvaSpec-3648 and 5.6×10(-4) AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.
NASA Astrophysics Data System (ADS)
de la Broïse, Xavier; Lugiez, Francis; Bounab, Ayoub; Le Coguie, Alain
2015-07-01
High Electron Mobility Transistors (HEMTs), optimized by CNRS/LPN laboratory for ultra-low noise at very low temperature, have demonstrated their capacity to be used in place of Si JFETs when working temperatures below 100 K are required. We associated them with specific SiGe ASICs that we developed, to implement a complete readout channel able to read highly segmented high impedance detectors within a framework of very low thermal dissipation. Our electronics is dimensioned to read 4096 detection channels, of typically 1 MΩ impedance, and performs 32:1 multiplexing and amplifying, dissipating only 6 mW at 2.5 K and 100 mW at 15 K thanks to high impedance commuting of input stage, with a typical noise of 1 nV/√Hz at 1 kHz.
Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration
2016-05-01
Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.
Radially leaned outlet guide vanes for fan source noise reduction
NASA Technical Reports Server (NTRS)
Kazin, S. B.
1973-01-01
Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.
Lip-read me now, hear me better later: cross-modal transfer of talker-familiarity effects.
Rosenblum, Lawrence D; Miller, Rachel M; Sanchez, Kauyumari
2007-05-01
There is evidence that for both auditory and visual speech perception, familiarity with the talker facilitates speech recognition. Explanations of these effects have concentrated on the retention of talker information specific to each of these modalities. It could be, however, that some amodal, talker-specific articulatory-style information facilitates speech perception in both modalities. If this is true, then experience with a talker in one modality should facilitate perception of speech from that talker in the other modality. In a test of this prediction, subjects were given about 1 hr of experience lipreading a talker and were then asked to recover speech in noise from either this same talker or a different talker. Results revealed that subjects who lip-read and heard speech from the same talker performed better on the speech-in-noise task than did subjects who lip-read from one talker and then heard speech from a different talker.
Aircraft and road traffic noise and children's cognition and health: a cross-national study.
Stansfeld, S A; Berglund, B; Clark, C; Lopez-Barrio, I; Fischer, P; Ohrström, E; Haines, M M; Head, J; Hygge, S; van Kamp, I; Berry, B F
Exposure to environmental stressors can impair children's health and their cognitive development. The effects of air pollution, lead, and chemicals have been studied, but there has been less emphasis on the effects of noise. Our aim, therefore, was to assess the effect of exposure to aircraft and road traffic noise on cognitive performance and health in children. We did a cross-national, cross-sectional study in which we assessed 2844 of 3207 children aged 9-10 years who were attending 89 schools of 77 approached in the Netherlands, 27 in Spain, and 30 in the UK located in local authority areas around three major airports. We selected children by extent of exposure to external aircraft and road traffic noise at school as predicted from noise contour maps, modelling, and on-site measurements, and matched schools within countries for socioeconomic status. We measured cognitive and health outcomes with standardised tests and questionnaires administered in the classroom. We also used a questionnaire to obtain information from parents about socioeconomic status, their education, and ethnic origin. We identified linear exposure-effect associations between exposure to chronic aircraft noise and impairment of reading comprehension (p=0.0097) and recognition memory (p=0.0141), and a non-linear association with annoyance (p<0.0001) maintained after adjustment for mother's education, socioeconomic status, longstanding illness, and extent of classroom insulation against noise. Exposure to road traffic noise was linearly associated with increases in episodic memory (conceptual recall: p=0.0066; information recall: p=0.0489), but also with annoyance (p=0.0047). Neither aircraft noise nor traffic noise affected sustained attention, self-reported health, or overall mental health. Our findings indicate that a chronic environmental stressor-aircraft noise-could impair cognitive development in children, specifically reading comprehension. Schools exposed to high levels of aircraft noise are not healthy educational environments.
Comodulation Masking Release (CMR) in Children and the Influence of Reading Status
ERIC Educational Resources Information Center
Zettler, Cynthia M.; Sevcik, Rose A.; Morris, Robin D.; Clarkson, Marsha G.
2008-01-01
Purpose: Research suggests that children with reading disabilities (RD) have difficulty processing temporal and spectral components of sounds. Comodulation masking release (CMR) measures a listener's ability to use temporal and spectral information in noise to identify a signal. The purpose of this study was to determine whether children with RD…
Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker
2014-11-23
The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.
Auer, Lucas; Mariadassou, Mahendra; O'Donohue, Michael; Klopp, Christophe; Hernandez-Raquet, Guillermina
2017-11-01
Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and β-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and β-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates. © 2017 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Jiang, Xiangying; Sawaki, Yasuyo; Sabatini, John
2012-01-01
This study examined the relationship among word reading efficiency, text reading fluency, and reading comprehension for adult English as a Foreign Language (EFL) learners. Data from 185 adult Chinese EFL learners preparing to take the Test-of-English-as-a-Foreign-Language[TM] (TOEFL[R]) were analyzed in this study. The participants completed a…
NASA Astrophysics Data System (ADS)
Bandara, Sumith V.
2009-11-01
Advancements in III-V semiconductor based, Quantum-well infrared photodetector (QWIP) and Type-II Strained-Layer Superlattice detector (T2SLS) technologies have yielded highly uniform, large-format long-wavelength infrared (LWIR) QWIP FPAs and high quantum efficiency (QE), small format, LWIR T2SLS FPAs. In this article, we have analyzed the QWIP and T2SLS detector level performance requirements and readout integrated circuit (ROIC) noise levels for several staring array long-wavelength infrared (LWIR) imaging applications at various background levels. As a result of lower absorption QE and less than unity photoconductive gain, QWIP FPAs are appropriate for high background tactical applications. However, if the application restricts the integration time, QWIP FPA performance may be limited by the read noise of the ROIC. Rapid progress in T2SLS detector material has already demonstrated LWIR detectors with sufficient performance for tactical applications and potential for strategic applications. However, significant research is needed to suppress surface leakage currents in order to reproduce performances at pixel levels of T2SLS FPAs.
Short wavelength HgCdTe staring focal plane for low background astronomy applications
NASA Technical Reports Server (NTRS)
Hall, D.; Stobie, J.; Hartle, N.; Lacroix, D.; Maschhoff, K.
1989-01-01
The design of a 128x128 staring short wave infrared (SWIR) HgCdTe focal plane incorporating charge integrating transimpedance input preamplifiers is presented. The preamplifiers improve device linearity and uniformity, and provide signal gain ahead of the miltiplexer and readout circuitry. Detector's with cutoff wavelength of 2.5 microns and operated at 80 K have demonstrated impedances in excess of 10(exp 16) ohms with 60 percent quantum efficiency. Focal plane performance using a smaller format device is presented which demonstrates the potential of this approach. Although the design is capable of achieving less than 30 rms electrons with todays technology, initial small format devices demonstrated a read noise of 100 rms electrons and were limited by the atypical high noise performance of the silicon process run. Luminescence from the active silicon circuitry in the multiplexer limits the minimum detector current to a few hundred electrons per second. Approaches to eliminate this excessive source of current is presented which should allow the focal plane to achieve detector background limited performance.
Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Acchiappati, Domenico
2011-08-01
Here, we present a physical and psychophysical characterization of a new clinical unit (named AcSelerate) for digital radiography based on a thick a-Se layer. We also compared images acquired with and without a software filter (named CRF) developed for reducing sharpness and noise of the images and making them similar to images coming from traditional computed radiography systems. The characterization was achieved in terms of physical figures of merit [modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE)], and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). We accomplished measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9. The system shows an excellent MTF (about 50% at the Nyquist frequency). The DQE is about 55% at 0.5 lp/mm and above 20% at the Nyquist frequency and is almost independent from exposure. The contrast-detail curves are comparable to some of the best published data for other systems devoted to imaging in general radiography. The CRF filter influences both the MTF and NPS, but it does lead to very small changes on DQE. Also the visibility of CDRAD details is basically unaltered, when the filter is activated. As normally happens with detector based on direct conversion, the system presents an excellent MTF. The improved efficiency caused by the thick layer allows getting good noise characteristics and DQE results better (about 10% on average) than many of the computed radiography (CR) systems and comparable to those obtained by the best systems for digital radiography available on the market.
Pile-Up Discrimination Algorithms for the HOLMES Experiment
NASA Astrophysics Data System (ADS)
Ferri, E.; Alpert, B.; Bennett, D.; Faverzani, M.; Fowler, J.; Giachero, A.; Hays-Wehle, J.; Maino, M.; Nucciotti, A.; Puiu, A.; Ullom, J.
2016-07-01
The HOLMES experiment is a new large-scale experiment for the electron neutrino mass determination by means of the electron capture decay of ^{163}Ho. In such an experiment, random coincidence events are one of the main sources of background which impair the ability to identify the effect of a non-vanishing neutrino mass. In order to resolve these spurious events, detectors characterized by a fast response are needed as well as pile-up recognition algorithms. For that reason, we have developed a code for testing the discrimination efficiency of various algorithms in recognizing pile up events in dependence of the time separation between two pulses. The tests are performed on simulated realistic TES signals and noise. Indeed, the pulse profile is obtained by solving the two coupled differential equations which describe the response of the TES according to the Irwin-Hilton model. To these pulses, a noise waveform which takes into account all the noise sources regularly present in a real TES is added. The amplitude of the generated pulses is distributed as the ^{163}Ho calorimetric spectrum. Furthermore, the rise time of these pulses has been chosen taking into account the constraints given by both the bandwidth of the microwave multiplexing read out with a flux ramp demodulation and the bandwidth of the ADC boards currently available for ROACH2. Among the different rejection techniques evaluated, the Wiener Filter technique, a digital filter to gain time resolution, has shown an excellent pile-up rejection efficiency. The obtained time resolution closely matches the baseline specifications of the HOLMES experiment. We report here a description of our simulation code and a comparison of the different rejection techniques.
NASA Astrophysics Data System (ADS)
Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.
2017-05-01
Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.
IR CMOS: near infrared enhanced digital imaging (Presentation Recording)
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani
2015-08-01
SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km
Scintillation light detectors with Neganov Luke amplification
NASA Astrophysics Data System (ADS)
Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.
2006-04-01
For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.
Superconducting Digital Multiplexers for Sensor Arrays
NASA Technical Reports Server (NTRS)
Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan
2004-01-01
Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.
Efficiency analysis of color image filtering
NASA Astrophysics Data System (ADS)
Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Abramov, Sergey K.; Egiazarian, Karen O.; Astola, Jaakko T.
2011-12-01
This article addresses under which conditions filtering can visibly improve the image quality. The key points are the following. First, we analyze filtering efficiency for 25 test images, from the color image database TID2008. This database allows assessing filter efficiency for images corrupted by different noise types for several levels of noise variance. Second, the limit of filtering efficiency is determined for independent and identically distributed (i.i.d.) additive noise and compared to the output mean square error of state-of-the-art filters. Third, component-wise and vector denoising is studied, where the latter approach is demonstrated to be more efficient. Fourth, using of modern visual quality metrics, we determine that for which levels of i.i.d. and spatially correlated noise the noise in original images or residual noise and distortions because of filtering in output images are practically invisible. We also demonstrate that it is possible to roughly estimate whether or not the visual quality can clearly be improved by filtering.
NASA Technical Reports Server (NTRS)
Kawai, Ronald T. (Compiler)
2011-01-01
This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.
ERIC Educational Resources Information Center
Kim, James S.; Samson, Jennifer F.; Fitzgerald, Robert; Hartry, Ardice
2010-01-01
The purpose of this study was (1) to examine the causal effects of READ 180, a mixed-methods literacy intervention, on measures of word reading efficiency, reading comprehension and vocabulary, and oral reading fluency and (2) to examine whether print exposure among children in the experimental condition explained variance in posttest reading…
NASA Astrophysics Data System (ADS)
Ramirez, Joshua; Mann, Virginia
2005-08-01
Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.
A novel radiation hard pixel design for space applications
NASA Astrophysics Data System (ADS)
Aurora, A. M.; Marochkin, V. V.; Tuuva, T.
2017-11-01
We have developed a novel radiation hard photon detector concept based on Modified Internal Gate Field Effect Transistor (MIGFET) wherein a buried Modified Internal Gate (MIG) is implanted underneath a channel of a FET. In between the MIG and the channel of the FET there is depleted semiconductor material forming a potential barrier between charges in the channel and similar type signal charges located in the MIG. The signal charges in the MIG have a measurable effect on the conductance of the channel. In this paper a radiation hard double MIGFET pixel is investigated comprising two MIGFETs. By transferring the signal charges between the two MIGs Non-Destructive Correlated Double Sampling Readout (NDCDSR) is enabled. The radiation hardness of the proposed double MIGFET structure stems from the fact that interface related issues can be considerably mitigated. The reason for this is, first of all, that interface generated dark noise can be completely avoided and secondly, that interface generated 1/f noise can be considerably reduced due to a deep buried channel readout configuration. Electrical parameters of the double MIGFET pixel have been evaluated by 3D TCAD simulation study. Simulation results show the absence of interface generated dark noise, significantly reduced interface generated 1/f noise, well performing NDCDSR operation, and blooming protection due to an inherent vertical anti-blooming structure. In addition, the backside illuminated thick fully depleted pixel design results in low crosstalk due to lack of diffusion and good quantum efficiency from visible to Near Infra-Red (NIR) light. These facts result in excellent Signal-to-Noise Ratio (SNR) and very low crosstalk enabling thus excellent image quality. The simulation demonstrates the charge to current conversion gain for source current read-out to be 1.4 nA/e.
Effects of Noise and Proficiency on Intelligibility of Chinese-Accented English
ERIC Educational Resources Information Center
Rogers, Catherine L.; Dalby, Jonathan; Nishi, Kanae
2004-01-01
This study compared the intelligibility of native and foreign-accented English speech presented in quiet and mixed with three different levels of background noise. Two native American English speakers and four native Mandarin Chinese speakers for whom English is a second language each read a list of 50 phonetically balanced sentences (Egan, 1948).…
Ground Optical Signal Processing Architecture for Contributing Space-Based SSA Sensor Data
2014-09-01
Where 2 zodiacal 2 thermalphotons dNdNsignaldN and readdN is the read noise in noise-electrons. dNthermal is the photoelectron noise due...PhD, USAF Defense Advanced Research Projects Agency, Arlington, VA. ABSTRACT DARPA’s OrbitOutlook aims to augment the performance of the Space...SDA) and determine when satellites are at risk. OrbitOutlook also seeks to demonstrate the ability to rapidly include new instruments to alert for
Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V
2018-05-15
Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
One-shot estimate of MRMC variance: AUC.
Gallas, Brandon D
2006-03-01
One popular study design for estimating the area under the receiver operating characteristic curve (AUC) is the one in which a set of readers reads a set of cases: a fully crossed design in which every reader reads every case. The variability of the subsequent reader-averaged AUC has two sources: the multiple readers and the multiple cases (MRMC). In this article, we present a nonparametric estimate for the variance of the reader-averaged AUC that is unbiased and does not use resampling tools. The one-shot estimate is based on the MRMC variance derived by the mechanistic approach of Barrett et al. (2005), as well as the nonparametric variance of a single-reader AUC derived in the literature on U statistics. We investigate the bias and variance properties of the one-shot estimate through a set of Monte Carlo simulations with simulated model observers and images. The different simulation configurations vary numbers of readers and cases, amounts of image noise and internal noise, as well as how the readers are constructed. We compare the one-shot estimate to a method that uses the jackknife resampling technique with an analysis of variance model at its foundation (Dorfman et al. 1992). The name one-shot highlights that resampling is not used. The one-shot and jackknife estimators behave similarly, with the one-shot being marginally more efficient when the number of cases is small. We have derived a one-shot estimate of the MRMC variance of AUC that is based on a probabilistic foundation with limited assumptions, is unbiased, and compares favorably to an established estimate.
Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging
NASA Astrophysics Data System (ADS)
Graeve, Thorsten; Dereniak, Eustace L.
1993-01-01
The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.
ERIC Educational Resources Information Center
Hawkins, Renee O.; Marsicano, Richard; Schmitt, Ara J.; McCallum, Elizabeth; Musti-Rao, Shobana
2015-01-01
An alternating treatments design was used to compare the effects of two reading fluency interventions on the oral reading fluency and maze accuracy of four fourth-grade students. Also, by taking into account time spent in intervention, the efficiency of the two interventions was compared. In the adult-mediated repeated reading (RR) condition,…
Daikhin, Luba; Raviv, Ofri; Ahissar, Merav
2017-02-01
The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis), leading to the formation of less reliable sound predictions. Agus, Carrión-Castillo, Pressnitzer, and Ramus, (2014) reported seemingly contradictory evidence by showing similar performance by participants with and without dyslexia in a demanding auditory task that contained task-relevant regularities. To carefully assess the sensitivity of participants with dyslexia to regularities of this task, we replicated their study. Thirty participants with and 24 without dyslexia performed the replicated task. On each trial, a 1-s noise stimulus was presented. Participants had to decide whether the stimulus contained repetitions (was constructed from a 0.5-s noise segment repeated twice) or not. It is implicit in this structure that some of the stimuli with repetitions were themselves repeated across trials. We measured the ability to detect within-noise repetitions and the sensitivity to cross-trial repetitions of the same noise stimuli. We replicated the finding of similar mean performance. However, individuals with dyslexia were less sensitive to the cross-trial repetition of noise stimuli and tended to be more sensitive to repetitions in novel noise stimuli. These findings indicate that online auditory processing for individuals with dyslexia is adequate but their implicit retention and usage of sound regularities is indeed impaired.
Acoustics of Clear and Noise-Adapted Speech in Children, Young, and Older Adults
ERIC Educational Resources Information Center
Smiljanic, Rajka; Gilbert, Rachael C.
2017-01-01
Purpose: This study investigated acoustic-phonetic modifications produced in noise-adapted speech (NAS) and clear speech (CS) by children, young adults, and older adults. Method: Ten children (11-13 years of age), 10 young adults (18-29 years of age), and 10 older adults (60-84 years of age) read sentences in conversational and clear speaking…
ERIC Educational Resources Information Center
Hazan, Valerie; Messaoud-Galusi, Souhila; Rosen, Stuart
2013-01-01
Purpose: In this study, the authors aimed to determine whether children with dyslexia (hereafter referred to as "DYS children") are more affected than children with average reading ability (hereafter referred to as "AR children") by talker and intonation variability when perceiving speech in noise. Method: Thirty-four DYS and 25 AR children were…
NASA Astrophysics Data System (ADS)
Hechenblaikner, Gerald; Flatscher, Reinhold
2013-05-01
The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.
ERIC Educational Resources Information Center
Tarar, Jessica M.; Meisinger, Elizabeth B.; Dickens, Rachel H.
2015-01-01
The TOWRE-2 was developed to provide an efficient measure of two essential wordlevel reading skills, sight word reading and phonetic decoding skills. The Sight Word Efficiency (SWE) subtest assesses the number of real words that an individual can read from a vertical list within 45 s. This subtest is designed to measure the size of an individual's…
Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo
2015-05-01
The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception.
Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis
NASA Astrophysics Data System (ADS)
Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.
2011-01-01
A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.
AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers
NASA Technical Reports Server (NTRS)
Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.;
2011-01-01
SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.
Kawahito, Shoji; Seo, Min-Woong
2016-11-06
This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).
Kawahito, Shoji; Seo, Min-Woong
2016-01-01
This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972
A Low Noise Amplifier for Neural Spike Recording Interfaces
Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel
2015-01-01
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411
A Low Noise Amplifier for Neural Spike Recording Interfaces.
Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel
2015-09-30
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz-7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.
Reading Efficiency of Deaf and Hearing People in Spanish.
Moreno-Pérez, Francisco J; Saldaña, David; Rodríguez-Ortiz, Isabel R
2015-10-01
Different studies have showed poor reading performance in the deaf compared to the hearing population. This has overshadowed the fact that a minority of deaf children learns to read successfully and reaches levels similar to their hearing peers. We analyze whether deaf people deploy the same cognitive and learning processes in reading as their hearing peers. For this purpose, we analyzed the relation between phonological processing, speechreading, vocabulary, reading speed, and accuracy with reading efficiency in a sample of deaf people and two control groups respectively matched on chronological age and reading level. The results indicate that deaf people's level of reading efficiency is lower than hearing people's of the same age, but that deafness status in itself is not a good predictor of reading level. The results do not support the idea that deaf people's reading is the result of different processes from the hearing population. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Strategy for Understanding Noise-Induced Annoyance
1988-08-01
Estimation by Sequential Testing (PEST) (Taylor and Creelman , 1967) can be used to efficiently establish the indifference point for each such pair of...population on applicability of noise rating procedures". Noise Control Engineering, 4, 65-70. Taylor, M. M. & Creelman , C. D. "PEST: Efficient
Laboratory Study of the Noticeability and Annoyance of Sounds of Low Signal-to-Noise Ratio
NASA Technical Reports Server (NTRS)
Sneddon, Matthew; Howe, Richard; Pearsons, Karl; Fidell, Sanford
1996-01-01
This report describes a study of the noticeability and annoyance of intruding noises to test participants who were engaged in a distracting foreground task. Ten test participants read material of their own choosing while seated individually in front of a loudspeaker in an anechoic chamber. One of three specially constructed masking noise environments with limited dynamic range was heard at all times. A laboratory computer produced sounds of aircraft and ground vehicles as heard at varying distances at unpredictable intervals and carefully controlled levels. Test participants were instructed to click a computer mouse at any time that a noise distinct from the background noise environment came to their attention, and then to indicate their degree of annoyance with the noise that they had noticed. The results confirmed that both the noticeability of noise intrusions and their annoyance were closely related to their audibility.
The Role of Oral Language and Reading in the Transfer of Skills from Spanish to English Reading.
ERIC Educational Resources Information Center
Lopez-Emslie, Julia Rosa
A study to determine the role of oral language and reading skills in the transfer from two years of reading in Spanish to reading in English had as subjects 191 fourth grade students in a bilingual education program. Students were tested and classified as efficient and non-efficient readers. It was found that: (1) there is a relationship between…
Forsberg, Daniel; Gupta, Amit; Mills, Christopher; MacAdam, Brett; Rosipko, Beverly; Bangert, Barbara A; Coffey, Michael D; Kosmas, Christos; Sunshine, Jeffrey L
2017-03-01
The purpose of this study was to investigate how the use of multi-modal rigid image registration integrated within a standard picture archiving and communication system affects the efficiency of a radiologist while performing routine interpretations of cases including prior examinations. Six radiologists were recruited to read a set of cases (either 16 neuroradiology or 14 musculoskeletal cases) during two crossover reading sessions. Each radiologist read each case twice, one time with synchronized navigation, which enables spatial synchronization across examinations from different study dates, and one time without. Efficiency was evaluated based upon time to read a case and amount of scrolling while browsing a case using Wilcoxon signed rank test. Significant improvements in efficiency were found considering either all radiologists simultaneously, the two sections separately and the majority of individual radiologists for time to read and for amount of scrolling. The relative improvement for each individual radiologist ranged from 4 to 32% for time to read and from 14 to 38% for amount of scrolling. Image registration providing synchronized navigation across examinations from different study dates provides a tool that enables radiologists to work more efficiently while reading cases with one or more prior examinations.
Readings in technology assessment. [in relation to social impact and the law
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented which reflect research in the following areas: development of the concept of technology assessment; institutionalization of technology assessment; the interface between law and technology assessment; and assessment case studies. Case studies include hazards of the medical use of X-rays, environmental noise effects in transportation planning, genetic technology, impact of underground coal mining, and aircraft/airport noise abatement.
NASA Astrophysics Data System (ADS)
Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi
2004-06-01
We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.
Progress on the FDM Development at SRON: Toward 160 Pixels
NASA Astrophysics Data System (ADS)
den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.
2014-08-01
SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.
Bola, Łukasz; Radziun, Dominika; Siuda-Krzywicka, Katarzyna; Sowa, Joanna E.; Paplińska, Małgorzata; Sumera, Ewa; Szwed, Marcin
2017-01-01
It has been hypothesized that efficient reading is possible because all reading scripts have been matched, through cultural evolution, to the natural capabilities of the visual cortex. This matching has resulted in all scripts being made of line-junctions, such as T, X, or L. Our aim was to test a critical prediction of this hypothesis: visual reading in an atypical script that is devoid of line-junctions (such as the Braille alphabet read visually) should be much less efficient than reading in a “normal” script (e.g., Cyrillic). Using a lexical decision task, we examined Visual Braille reading speed and efficiency in sighted Braille teachers. As a control, we tested learners of a natural visual script, Cyrillic. Both groups participated in a two semester course of either visual Braille or Russian while their reading speed and accuracy was tested at regular intervals. The results show that visual Braille reading is slow, prone to errors and highly serial, even in Braille readers with years of prior reading experience. Although subjects showed some improvements in their visual Braille reading accuracy and speed following the course, the effect of word length on reading speed (typically observed in beginning readers) was remained very sizeable through all testing sessions. These results are in stark contrast to Cyrillic, a natural script, where only 3 months of learning were sufficient to achieve relative proficiency. Taken together, these results suggest that visual features such as line junctions and their combinations might be necessary for efficient reading. PMID:28421027
Bola, Łukasz; Radziun, Dominika; Siuda-Krzywicka, Katarzyna; Sowa, Joanna E; Paplińska, Małgorzata; Sumera, Ewa; Szwed, Marcin
2017-01-01
It has been hypothesized that efficient reading is possible because all reading scripts have been matched, through cultural evolution, to the natural capabilities of the visual cortex. This matching has resulted in all scripts being made of line-junctions, such as T, X, or L. Our aim was to test a critical prediction of this hypothesis: visual reading in an atypical script that is devoid of line-junctions (such as the Braille alphabet read visually) should be much less efficient than reading in a "normal" script (e.g., Cyrillic). Using a lexical decision task, we examined Visual Braille reading speed and efficiency in sighted Braille teachers. As a control, we tested learners of a natural visual script, Cyrillic. Both groups participated in a two semester course of either visual Braille or Russian while their reading speed and accuracy was tested at regular intervals. The results show that visual Braille reading is slow, prone to errors and highly serial, even in Braille readers with years of prior reading experience. Although subjects showed some improvements in their visual Braille reading accuracy and speed following the course, the effect of word length on reading speed (typically observed in beginning readers) was remained very sizeable through all testing sessions. These results are in stark contrast to Cyrillic, a natural script, where only 3 months of learning were sufficient to achieve relative proficiency. Taken together, these results suggest that visual features such as line junctions and their combinations might be necessary for efficient reading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco
2013-10-15
Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results:more » At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.« less
Eye Movements and Reading Comprehension While Listening to Preferred and Non-Preferred Study Music
ERIC Educational Resources Information Center
Johansson, Roger; Holmqvist, Kenneth; Mossberg, Frans; Lindgren, Magnus
2012-01-01
In the present study 24 university students read four different texts in four conditions: (1) while listening to music they preferred to listen to while studying; (2) while listening to music they did not prefer to listen to while studying; (3) while listening to a recording of noise from a cafe; and finally (4) in silence. After each text they…
Development of radiation tolerant monolithic active pixel sensors with fast column parallel read-out
NASA Astrophysics Data System (ADS)
Koziel, M.; Dorokhov, A.; Fontaine, J.-C.; De Masi, R.; Winter, M.
2010-12-01
Monolithic active pixel sensors (MAPS) [1] (Turchetta et al., 2001) are being developed at IPHC—Strasbourg to equip the EUDET telescope [2] (Haas, 2006) and vertex detectors for future high energy physics experiments, including the STAR upgrade at RHIC [3] (T.S. Collaboration, 2005) and the CBM experiment at FAIR/GSI [4] (Heuser, 2006). High granularity, low material budget and high read-out speed are systematically required for most applications, complemented, for some of them, with high radiation tolerance. A specific column-parallel architecture, implemented in the MIMOSA-22 sensor, was developed to achieve fast read-out MAPS. Previous studies of the front-end architecture integrated in this sensor, which includes in-pixel amplification, have shown that the fixed pattern noise increase consecutive to ionizing radiation can be controlled by means of a negative feedback [5] (Hu-Guo et al., 2008). However, an unexpected rise of the temporal noise was observed. A second version of this chip (MIMOSA-22bis) was produced in order to search for possible improvements of the radiation tolerance, regarding this type of noise. In this prototype, the feedback transistor was tuned in order to mitigate the sensitivity of the pixel to ionizing radiation. The performances of the pixels after irradiation were investigated for two types of feedback transistors: enclosed layout transistor (ELT) [6] (Snoeys et al., 2000) and "standard" transistor with either large or small transconductance. The noise performance of all test structures was studied in various conditions (expected in future experiments) regarding temperature, integration time and ionizing radiation dose. Test results are presented in this paper. Based on these observations, ideas for further improvement of the radiation tolerance of column parallel MAPS are derived.
Working Memory Training and Speech in Noise Comprehension in Older Adults.
Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S
2016-01-01
Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.
Working Memory Training and Speech in Noise Comprehension in Older Adults
Wayne, Rachel V.; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S.
2016-01-01
Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5–1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed. PMID:27047370
Contextual knowledge reduces demands on working memory during reading.
Miller, Lisa M Soederberg; Cohen, Jason A; Wingfield, Arthur
2006-09-01
An experiment is reported in which young, middle-aged, and older adults read and recalled ambiguous texts either with or without the topic title that supplied contextual knowledge. Within each of the age groups, the participants were divided into those with high or low working memory (WM) spans, with available WM capacity further manipulated by the presence or absence of an auditory target detection task concurrent with the reading task. Differences in reading efficiency (reading time per proposition recalled) between low WM span and high WM span groups were greater among readers who had access to contextual knowledge relative to those who did not, suggesting that contextual knowledge reduces demands on WM capacity. This position was further supported by the finding that increased age and attentional demands, two factors associated with reduced WM capacity, exaggerated the benefits of contextual knowledge on reading efficiency. The relative strengths of additional potential predictors of reading efficiency (e.g., interest, effort, and memory beliefs), along with knowledge, WM span, and age, are reported. Findings showed that contextual knowledge was the strongest predictor of reading efficiency even after controlling for the effects of all of the other predictors.
The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Jhabvala, M; Choi, K.; Reuter, D.; Sundaram, M.; Jhabvala, C; La, Anh; Waczynski, Augustyn; Bundas, Jason
2010-01-01
The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8[mu]m and 12.0[mu]m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.
Effects of Loudness Cues on Respiration in Individuals with Parkinson’s disease
Sadagopan, Neeraja; Huber, Jessica E.
2012-01-01
Individuals with Parkinson’s disease (PD) demonstrate low vocal intensity (hypophonia) which results in reduced speech intelligibility. We examined the effects of three cues to increase loudness on respiratory support in individuals with PD. Kinematic data from the rib cage and abdomen were collected using respiratory plethysmography while participants read a short passage. Individuals with PD and normal age- and sex-matched controls (OC) increased sound pressure level (SPL) to a similar extent. As compared to OC, individuals with PD used larger rib cage volume excursions in all conditions. Further, they did not slow their rate of speech in noise as OC speakers did. Respiratory strategies used to support increased loudness varied with the cue, but the two groups did not differ in the strategies used. When asked to target a specific loudness, both groups used more abdominal effort than at comfortable loudness. Speaking in background noise resulted in the largest increase in SPL with the most efficient respiratory patterns, suggesting natural or implicit cues may be best when treating hypophonia in individuals with PD. Data demonstrate the possibility that both vocal loudness and speech rate are impacted by cognitive mechanisms (attention or self-perception) in individuals with PD. PMID:17266087
The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Reuter, D.; Choi, K.; Sundaram, M.; Jhabvala, C.; La, A.; Waczynski, A.; Bundas, J.
2011-01-01
The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8 m and 12.0 m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.
NASA Astrophysics Data System (ADS)
Yan, Zhizhong; Hamel, Deny R.; Heinrichs, Aimee K.; Jiang, Xudong; Itzler, Mark A.; Jennewein, Thomas
2012-07-01
It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009), 10.1117/12.814669; X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011), 10.1117/12.883543; M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010), 10.1117/12.843588], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (˜100 counts per second (CPS)), good time jitter (˜30 ps), and good DE (˜10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10-18 W Hz-1/2, more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing can be tolerated.
Yan, Zhizhong; Hamel, Deny R; Heinrichs, Aimee K; Jiang, Xudong; Itzler, Mark A; Jennewein, Thomas
2012-07-01
It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10(-18) W Hz(-1/2), more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing can be tolerated.
Lutz, Gerhard; Porro, Matteo; Aschauer, Stefan; Wölfel, Stefan; Strüder, Lothar
2016-01-01
Depleted field effect transistors (DEPFET) are used to achieve very low noise signal charge readout with sub-electron measurement precision. This is accomplished by repeatedly reading an identical charge, thereby suppressing not only the white serial noise but also the usually constant 1/f noise. The repetitive non-destructive readout (RNDR) DEPFET is an ideal central element for an active pixel sensor (APS) pixel. The theory has been derived thoroughly and results have been verified on RNDR-DEPFET prototypes. A charge measurement precision of 0.18 electrons has been achieved. The device is well-suited for spectroscopic X-ray imaging and for optical photon counting in pixel sensors, even at high photon numbers in the same cell. PMID:27136549
Subelectron readout noise focal plane arrays for space imaging
NASA Astrophysics Data System (ADS)
Atlas, Gene; Wadsworth, Mark
2004-01-01
Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.
A large-format imager for the SkyMapper Survey Telescope
NASA Astrophysics Data System (ADS)
Granlund, A.; Conroy, P. G.; Keller, S. C.; Oates, A. P.; Schmidt, B.; Waterson, M. F.; Kowald, E.; Dawson, M. I.
2006-06-01
The Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) at Mt Stromlo Observatory is developing a wide-field Cassegrain Imager for the new 1.3m SkyMapper Survey Telescope under construction for Siding Spring Observatory, NSW, Australia. The Imager features a fast-readout, low-noise 268 Million pixel CCD mosaic that provides a 5.7 square degree field of view. Given the close relative sizes of the telescope and Imager, the work is proceeding in close collaboration with the telescope's manufacturer, Electro Optics Systems Pty Ltd (Canberra, Australia). The design of the SkyMapper Imager focal plane is based on E2V (Chelmsford, UK) deep depletion CCDs. These devices have 2048 x 4096 15 micron pixels, and provide a 91% filling factor in our mosaic configuration of 4 x 8 chips. In addition, the devices have excellent quantum efficiency from 300nm-950nm, near perfect cosmetics, and low-read noise, making them well suited to the all-sky ultraviolet through near-IR Southern Sky Survey to be conducted by the telescope. The array will be controlled using modified versions of the new IOTA controllers being developed for Pan-STARRS by Onaka and Tonry et al. These controllers provide a cost effective, low-volume, high speed solution for our detector read-out requirements. The system will have an integrated 6-filter exchanger, and Shack-Hartmann optics, and will be cooled by closed-cycle helium coolers. This paper will present the specifications, and opto-mechanical and detector control design of the SkyMapper Imager, including the test results of the detector characterisation and manufacturing progress.
PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information
Wu, Hao; Ji, Hongkai
2014-01-01
ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116
Development of Diesel Engine Diagnostics for U.S. Coast Guard Cutters.
1981-07-01
even though this type of transducer is sensitive to both acoustic noise and mechanical vibration. These "noise" signals are ordinarily of much higher...Unfortunately, this maintenance work was not scheduled for the immediate future, but the E.O. did agree to make exhaust pyrometer readings for the...pressure pulsations normally present in the engine crankcase. However, the very sensitive pressure transducer apparently registered the acoustical
NASA Astrophysics Data System (ADS)
Bogachev, Mikhail I.; Bunde, Armin
2011-06-01
We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.
The Flight Track Noise Impact Model
NASA Technical Reports Server (NTRS)
Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III
1997-01-01
To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.
Noise and sleep on board vessels in the Royal Norwegian Navy
Sunde, Erlend; Bråtveit, Magne; Pallesen, Ståle; Moen, Bente Elisabeth
2016-01-01
Previous research indicates that exposure to noise during sleep can cause sleep disturbance. Seamen on board vessels are frequently exposed to noise also during sleep periods, and studies have reported sleep disturbance in this occupational group. However, studies of noise and sleep in maritime settings are few. This study's aim was to examine the associations between noise exposure during sleep, and sleep variables derived from actigraphy among seamen on board vessels in the Royal Norwegian Navy (RNoN). Data were collected on board 21 RNoN vessels, where navy seamen participated by wearing an actiwatch (actigraph), and by completing a questionnaire comprising information on gender, age, coffee drinking, nicotine use, use of medication, and workload. Noise dose meters were used to assess noise exposure inside the seamen's cabin during sleep. Eighty-three sleep periods from 68 seamen were included in the statistical analysis. Linear mixed-effects models were used to examine the association between noise exposure and the sleep variables percentage mobility during sleep and sleep efficiency, respectively. Noise exposure variables, coffee drinking status, nicotine use status, and sleeping hours explained 24.9% of the total variance in percentage mobility during sleep, and noise exposure variables explained 12.0% of the total variance in sleep efficiency. Equivalent noise level and number of noise events per hour were both associated with increased percentage mobility during sleep, and the number of noise events was associated with decreased sleep efficiency. PMID:26960785
NASA Astrophysics Data System (ADS)
Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian
Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.
Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.
Gündoğan, Mustafa; Ledingham, Patrick M; Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2015-06-12
We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise created by control pulses to reach an unconditional noise level of (2.0±0.3)×10(-3) photons per pulse. We also report spin-wave storage of photonic time-bin qubits with conditional fidelities higher than achievable by a measure and prepare strategy, demonstrating that the spin-wave memory operates in the quantum regime. This makes our device the first demonstration of a quantum memory for time-bin qubits, with on-demand read-out of the stored quantum information. These results represent an important step for the use of solid-state quantum memories in scalable quantum networks.
Modeling high signal-to-noise ratio in a novel silicon MEMS microphone with comb readout
NASA Astrophysics Data System (ADS)
Manz, Johannes; Dehe, Alfons; Schrag, Gabriele
2017-05-01
Strong competition within the consumer market urges the companies to constantly improve the quality of their devices. For silicon microphones excellent sound quality is the key feature in this respect which means that improving the signal-to-noise ratio (SNR), being strongly correlated with the sound quality is a major task to fulfill the growing demands of the market. MEMS microphones with conventional capacitive readout suffer from noise caused by viscous damping losses arising from perforations in the backplate [1]. Therefore, we conceived a novel microphone design based on capacitive read-out via comb structures, which is supposed to show a reduction in fluidic damping compared to conventional MEMS microphones. In order to evaluate the potential of the proposed design, we developed a fully energy-coupled, modular system-level model taking into account the mechanical motion, the slide film damping between the comb fingers, the acoustic impact of the package and the capacitive read-out. All submodels are physically based scaling with all relevant design parameters. We carried out noise analyses and due to the modular and physics-based character of the model, were able to discriminate the noise contributions of different parts of the microphone. This enables us to identify design variants of this concept which exhibit a SNR of up to 73 dB (A). This is superior to conventional and at least comparable to high-performance variants of the current state-of-the art MEMS microphones [2].
Measurement and analysis of blank tire tread vibration and radiated noise
DOT National Transportation Integrated Search
2003-07-01
Traffic noise is a major concern in many communities. Although there are many measures being taken to reduce exposure to traffic noise, the most efficient method is to reduce the noise at its source. Tire noise has been shown to exceed the noise leve...
The impact of radiation damage on photon counting with an EMCCD for the WFIRST-AFTA coronagraph
NASA Astrophysics Data System (ADS)
Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Soman, Matthew; Jordan, Douglas; Demers, Richard; Harding, Leon; Hoenk, Michael; Michaels, Darren; Nemati, Bijan; Peddada, Pavani
2015-09-01
WFIRST-AFTA is a 2.4m class NASA observatory designed to address a wide range of science objectives using two complementary scientific payloads. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view, and will gather NIR statistical data on exoplanets through gravitational microlensing. The second instrument is a high contrast coronagraph that will carry out the direct imaging and spectroscopic analysis of exoplanets, providing a means to probe the structure and composition of planetary systems. The coronagraph instrument is expected to operate in low photon flux for long integration times, meaning all noise sources must be kept to a minimum. In order to satisfy the low noise requirements, the Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras. The EMCCD was selected in comparison with other candidates because of its low effective electronic read noise at sub-electron values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterised and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Efficiency (CTE) of the device throughout the mission lifetime. Here we present our latest results from pre- and post-irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST-AFTA coronagraph instrument. A description of the detector technology is presented, alongside considerations for operation within a space environment. The results from a room temperature irradiation are discussed in context with the nominal operating requirements of AFTA-C and future work which entails a cryogenic irradiation of the CCD201-20 is presented.
Adaptive detection of noise signal according to Neumann-Pearson criterion
NASA Astrophysics Data System (ADS)
Padiryakov, Y. A.
1985-03-01
Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.
Bahaz, Mohamed; Benzid, Redha
2018-03-01
Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.
Hunt, D C; Tanioka, Kenkichi; Rowlands, J A
2007-12-01
The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers-veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.
2007-12-15
The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comesmore » with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.« less
AO wavefront sensing detector developments at ESO
NASA Astrophysics Data System (ADS)
Downing, Mark; Kolb, Johann; Baade, Dietrich; Iwert, Olaf; Hubin, Norbert; Reyes, Javier; Feautrier, Philippe; Gach, Jean-Luc; Balard, Philippe; Guillaume, Christian; Stadler, Eric; Magnard, Yves
2010-07-01
The detector is a critical component of any Adaptive Optics WaveFront Sensing (AO WFS) system. The required combination of fast frame rate, high quantum efficiency, low noise, large number and size of pixels, and low image lag can often only be met by specialized custom developments. ESO's very active WFS detector development program is described. Key test results are presented for newly developed detectors: a) the e2v L3Vision CCD220 (the fastest/lowest noise AO detector to date) to be deployed soon on 2nd Generation VLT instruments, and b) the MPI-HLL pnCCD with its superb high "red" response. The development of still more advanced laser/natural guide-star WFS detectors is critical for the feasibility of ESO's EELT. The paper outlines: a) the multi-phased development plan that will ensure detectors are available on-time for EELT first-light AO systems, b) results of design studies performed by industry during 2007 including a comparison of the most promising technologies, c) results from CMOS technology demonstrators that were built and tested over the past two years to assess and validate various technologies at the pixel level, their fulfillment of critical requirements (especially read noise and speed), and scalability to full-size. The next step will be towards Scaled-Down Demonstrators (SDD) to retire architecture and process risks. The SDD will be large enough to be used for E-ELT first-light AO WFS systems. For full operability, 30-50 full-scale devices will be needed.
ERIC Educational Resources Information Center
Spichtig, Alexandra N.; Hiebert, Elfrieda H.; Vorstius, Christian; Pascoe, Jeffrey P.; Pearson, P. David; Radach, Ralph
2016-01-01
The present study measured the comprehension-based silent reading efficiency of U.S. students in grades 2, 4, 6, 8, 10, and 12. Students read standardized grade-level passages while an eye movement recording system was used to measure reading rate, fixations (eye stops) per word, fixation durations, and regressions (right-to-left eye movements)…
A comparison of the performance of digital mammography systems.
Monnin, P; Gutierrez, D; Bulling, S; Guntern, D; Verdun, F R
2007-03-01
An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.
Blocked impurity band hybrid infrared focal plane arrays for astronomy
NASA Technical Reports Server (NTRS)
Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.
1989-01-01
High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.
MT6425CA: a 640 X 512-25μm CTIA ROIC for SWIR InGaAs detector arrays
NASA Astrophysics Data System (ADS)
Eminoglu, Selim; Mahsereci, Yigit Uygar; Altiner, Caglar; Akin, Tayfun
2012-06-01
This paper reports the development of a new CTIA ROIC (MT6425CA) suitable for SWIR InGaAs detector arrays. MT6425CA has a format of 640 × 512 with a pixel pitch of 25 μm and has a system-on-chip architecture, where all the critical timing and biasing for this ROIC are generated by programmable blocks on-chip. MT6425CA is a highly configurable and flexible ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. The ROIC runs on 3.3V supply voltage at nominal clock speed of 10 MHz clock. It performs snapshot operation both using Integrate-Then-Read (ITR) and Integrate-While- Read (IWR) modes. The CTIA type pixel input circuitry has a full-well-capacity (FWC) of about 320,000e-, with an input referred read noise of less than 110e- at 300K. MT6425CA has programmable number of outputs, where 4, 2, or 1 output can be selected along with an analog reference for pseudo-differential operation. The integration time can be programmed up to 1s in steps of 0.1μs. The gain and offset in the ROIC can be programmed to adjust the output offset and voltage swing. ROIC dissipates less than 130mW from a 3.3V supply at full speed and full frame size with 4 outputs, providing both low-power and low-noise operation. MT6425CA is fabricated using a modern mixed-signal CMOS process on 200mm CMOS wafers with a high yield above 75%, yielding more than 50 working parts per wafer. It has been silicon verified, and tested parts are available either in wafer and die levels with a complete documentation including test reports and wafer maps. A USB based camera electronics and camera development platform with software are available to help customers to evaluate the imaging performance of MT6425CA in a fast and efficient way.
Considerations on the Optimal and Efficient Processing of Information-Bearing Signals
ERIC Educational Resources Information Center
Harms, Herbert Andrew
2013-01-01
Noise is a fundamental hurdle that impedes the processing of information-bearing signals, specifically the extraction of salient information. Processing that is both optimal and efficient is desired; optimality ensures the extracted information has the highest fidelity allowed by the noise, while efficiency ensures limited resource usage. Optimal…
Measurement of speech levels in the presence of time varying background noise
NASA Technical Reports Server (NTRS)
Pearsons, K. S.; Horonjeff, R.
1982-01-01
Short-term speech level measurements which could be used to note changes in vocal effort in a time varying noise environment were studied. Knowing the changes in speech level would in turn allow prediction of intelligibility in the presence of aircraft flyover noise. Tests indicated that it is possible to use two second samples of speech to estimate long term root mean square speech levels. Other tests were also performed in which people read out loud during aircraft flyover noise. Results of these tests indicate that people do indeed raise their voice during flyovers at a rate of about 3-1/2 dB for each 10 dB increase in background level. This finding is in agreement with other tests of speech levels in the presence of steady state background noise.
2013-01-01
Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333
Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study
NASA Technical Reports Server (NTRS)
Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.
2007-01-01
The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.
Single photon detection using Geiger mode CMOS avalanche photodiodes
NASA Astrophysics Data System (ADS)
Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.
2005-10-01
Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.
Automatic and efficient methods applied to the binarization of a subway map
NASA Astrophysics Data System (ADS)
Durand, Philippe; Ghorbanzadeh, Dariush; Jaupi, Luan
2015-12-01
The purpose of this paper is the study of efficient methods for image binarization. The objective of the work is the metro maps binarization. the goal is to binarize, avoiding noise to disturb the reading of subway stations. Different methods have been tested. By this way, a method given by Otsu gives particularly interesting results. The difficulty of the binarization is the choice of this threshold in order to reconstruct. Image sticky as possible to reality. Vectorization is a step subsequent to that of the binarization. It is to retrieve the coordinates points containing information and to store them in the two matrices X and Y. Subsequently, these matrices can be exported to a file format 'CSV' (Comma Separated Value) enabling us to deal with them in a variety of software including Excel. The algorithm uses quite a time calculation in Matlab because it is composed of two "for" loops nested. But the "for" loops are poorly supported by Matlab, especially in each other. This therefore penalizes the computation time, but seems the only method to do this.
Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.
Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker
2013-07-01
It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.
NASA Astrophysics Data System (ADS)
Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan
2014-08-01
The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.
An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping
NASA Astrophysics Data System (ADS)
Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare
2017-04-01
Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which represents a 2 to 5-fold increase in efficiency. The 5 km grid reduces the number of model executions further to 1024. However, over the first 25 km the 5 km grid produces errors of up to 13.8 dB when compared to the highly accurate but inefficient 1 km grid. The newly developed adaptive grid generates much smaller errors of less than 0.5 dB while demonstrating high computational efficiency. Our results show that the adaptive grid provides the ability to retain the accuracy of noise level predictions and improve the efficiency of the modelling process. This can help safeguard sensitive marine ecosystems from noise pollution by improving the underwater noise predictions that inform management activities. References Shapiro, G., Chen, F., Thain, R., 2014. The Effect of Ocean Fronts on Acoustic Wave Propagation in a Shallow Sea, Journal of Marine System, 139: 217 - 226. http://dx.doi.org/10.1016/j.jmarsys.2014.06.007.
Comparison of exercise blood pressure measured by technician and an automated system.
Garcia-Gregory, J A; Jackson, A S; Studeville, J; Squires, W G; Owen, C A
1984-05-01
We evaluated the automated system Blood Pressure Measuring System (BPMS) developed by NASA on 277 adult males who elected to have a treadmill test as part of their annual physical. The BPMS uses acoustic transduction with a computer-assisted ECG gating to detect nonsynchronous noise. The BPMS readings were compared to pressures simultaneously measured by trained technicians. For all stages of work, BPMS readings were higher for systolic and lower for diastolic than technician readings. At peak stages of work, BPMS systolic pressures were about 20 mmHg higher than technician readings. Within each 3-min workstage, BPMS readings were found to be more inconsistent than technician readings. The standard errors of measurement for BPMS were from two to three times higher than technician values. These data showed automated blood pressure readings were significantly different than technician values and subject to more random fluctuations. These findings demonstrate the need to view exercise blood pressure measured by automated systems with caution.
Perceptual learning improves visual performance in juvenile amblyopia.
Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M
2005-09-01
To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.
Evaluations of effects due to low-frequency noise in a low demanding work situation
NASA Astrophysics Data System (ADS)
Bengtsson, J.; Persson Waye, K.; Kjellberg, A.
2004-11-01
Noise sources with a dominating content of low frequencies (20-200 Hz) are found in many occupational environments. This study aimed to evaluate effects of moderate levels of low-frequency noise on attention, tiredness and motivation in a low demanding work situation. Two ventilation noises at the same A-weighted sound pressure level of 45 dB were used: one of a low-frequency character and one of a flat frequency character (reference noise). Thirty-eight female subjects worked with six performance tasks for 4 h in the noises in a between-subject design. Most of the tasks were monotonous and routine in character. Subjective reports were collected using questionnaires and cortisol levels were measured in saliva. The major finding in this study was that low-frequency noise negatively influenced performance on two tasks sensitive to reduced attention and on a proof-reading task. Performances of tasks aimed at evaluating motivation were not significantly affected. The difference in work performance was not reflected by the subjective reports. No effect of noise was found on subjective stress or cortisol levels.
How noise affects quantum detector tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van
2015-10-07
We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.
The analysis of transient noise of PCB P/G network based on PI/SI co-simulation
NASA Astrophysics Data System (ADS)
Haohang, Su
2018-02-01
With the frequency of the space camera become higher than before, the power noise of the imaging electronic system become the important factor. Much more power noise would disturb the transmissions signal, and even influence the image sharpness and system noise. "Target impedance method" is one of the traditional design method of P/G network (power and ground network), which is shorted of transient power noise analysis and often made "over design". In this paper, a new design method of P/G network is provided which simulated by PI/SI co-simulation. The transient power noise can be simulated and then applied in the design of noise reduction, thus effectively controlling the change of the noise in the P/G network. The method can efficiently control the number of adding decoupling capacitor, and is very efficient and feasible to keep the power integrity.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, J.; Kim, J.; Kim, D. W.; Yun, S.; Lim, C. H.; Kim, H. K.
2016-11-01
For the purpose of designing an x-ray detector system for cargo container inspection, we have investigated the energy-absorption signal and noise in CdWO4 detectors for megavoltage x-ray photons. We describe the signal and noise measures, such as quantum efficiency, average energy absorption, Swank noise factor, and detective quantum efficiency (DQE), in terms of energy moments of absorbed energy distributions (AEDs) in a detector. The AED is determined by using a Monte Carlo simulation. The results show that the signal-related measures increase with detector thickness. However, the improvement of Swank noise factor with increasing thickness is weak, and this energy-absorption noise characteristic dominates the DQE performance. The energy-absorption noise mainly limits the signal-to-noise performance of CdWO4 detectors operated at megavoltage x-ray beam.
Phonological mismatch makes aided speech recognition in noise cognitively taxing.
Rudner, Mary; Foo, Catharina; Rönnberg, Jerker; Lunner, Thomas
2007-12-01
The working memory framework for Ease of Language Understanding predicts that speech processing becomes more effortful, thus requiring more explicit cognitive resources, when there is mismatch between speech input and phonological representations in long-term memory. To test this prediction, we changed the compression release settings in the hearing instruments of experienced users and allowed them to train for 9 weeks with the new settings. After training, aided speech recognition in noise was tested with both the trained settings and orthogonal settings. We postulated that training would lead to acclimatization to the trained setting, which in turn would involve establishment of new phonological representations in long-term memory. Further, we postulated that after training, testing with orthogonal settings would give rise to phonological mismatch, associated with more explicit cognitive processing. Thirty-two participants (mean=70.3 years, SD=7.7) with bilateral sensorineural hearing loss (pure-tone average=46.0 dB HL, SD=6.5), bilaterally fitted for more than 1 year with digital, two-channel, nonlinear signal processing hearing instruments and chosen from the patient population at the Linköping University Hospital were randomly assigned to 9 weeks training with new, fast (40 ms) or slow (640 ms), compression release settings in both channels. Aided speech recognition in noise performance was tested according to a design with three within-group factors: test occasion (T1, T2), test setting (fast, slow), and type of noise (unmodulated, modulated) and one between-group factor: experience setting (fast, slow) for two types of speech materials-the highly constrained Hagerman sentences and the less-predictable Hearing in Noise Test (HINT). Complex cognitive capacity was measured using the reading span and letter monitoring tests. PREDICTION: We predicted that speech recognition in noise at T2 with mismatched experience and test settings would be associated with more explicit cognitive processing and thus stronger correlations with complex cognitive measures, as well as poorer performance if complex cognitive capacity was exceeded. Under mismatch conditions, stronger correlations were found between performance on speech recognition with the Hagerman sentences and reading span, along with poorer speech recognition for participants with low reading span scores. No consistent mismatch effect was found with HINT. The mismatch prediction generated by the working memory framework for Ease of Language Understanding is supported for speech recognition in noise with the highly constrained Hagerman sentences but not the less-predictable HINT.
Let's Talk about Stroke and Aphasia
... others say • P roblems with reading, writing or math • I nability to process long words and infrequently ... short and to the point. • Keep the noise level down and stand where the survivor can see ...
Los Angeles Residential Helicopter Noise Relief Act of 2011
Sen. Feinstein, Dianne [D-CA
2011-12-16
Senate - 12/16/2011 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Los Angeles Residential Helicopter Noise Relief Act of 2013
Sen. Feinstein, Dianne [D-CA
2013-02-04
Senate - 02/04/2013 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Ester, Edward F.; Deering, Sean
2014-01-01
Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80–130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230–330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing PMID:25274817
ERIC Educational Resources Information Center
Kim, Young-Suk Grace
2015-01-01
The primary goal was to expand our understanding of text-reading fluency (efficiency or automaticity): how its relation to other constructs (e.g., word reading fluency, reading comprehension) changes over time and how it is different from word-reading fluency and reading comprehension. The study examined (a) developmentally changing relations…
ERIC Educational Resources Information Center
Kim, Young-Suk Grace
2015-01-01
The primary goal was to expand our understanding of text-reading fluency (efficiency or automaticity): how its relation to other constructs (e.g., word-reading fluency, reading comprehension) changes over time and how it is different from word-reading fluency and reading comprehension. The study examined (a) developmentally changing relations…
Photographic Video Disc Technology Assessment
1976-09-27
by a universal type motor that is driven from the ac power lines using a triac . The triac is controlled by a phase locked loop control circuit that...Regardless of signal format, direct analogue or an A/D converted digital signal, it is recorded by modulated laser beam and can be read out by either...was made to record with frequency modulation (FM) because of its immunity to noise at low frequencies where much of the system noise is. The usual
Children's cognition and aircraft noise exposure at home--the West London Schools Study.
Matsui, T; Stansfeld, S; Haines, M; Head, J
2004-01-01
The association of aircraft noise exposure with cognitive performance was examined by means of a cross-sectional field survey. Two hundred thirty six children attending 10 primary schools around Heathrow Airport in west London were tested on reading comprehension, immediate/delayed recall and sustained attention. In order to obtain the information about their background, a questionnaire was delivered to the parents and 163 answers were collected. Logistic regression models were used to assess performance on the cognitive tests in relation to aircraft noise exposure at home and possible individual and school level confounding factors. A significant dose-response relationship was found between aircraft noise exposure at home and performance on memory tests of immediate/delayed recall. However there was no strong association with the other cognitive outcomes. These results suggest that aircraft noise exposure at home may affect children's memory.
NASA Astrophysics Data System (ADS)
Li, Song; Wang, Caizhu; Li, Yeqiu; Wang, Ling; Sakata, Shiro; Sekiya, Hiroo; Kuroiwa, Shingo
In this paper, we propose a new framework of removing salt and pepper impulse noise. In our proposed framework, the most important point is that the number of noise-free white and black pixels in a noisy image can be determined by using the noise rates estimated by Fuzzy Impulse Noise Detection and Reduction Method (FINDRM) and Efficient Detail-Preserving Approach (EDPA). For the noisy image includes many noise-free white and black pixels, the detected noisy pixel from the FINDRM is re-checked by using the alpha-trimmed mean. Finally, the impulse noise filtering phase of the FINDRM is used to restore the image. Simulation results show that for the noisy image including many noise-free white and black pixels, the proposed framework can decrease the False Hit Rate (FHR) efficiently compared with the FINDRM. Therefore, the proposed framework can be used more widely than the FINDRM.
Shield, Bridget M; Dockrell, Julie E
2008-01-01
While at school children are exposed to various types of noise including external, environmental noise and noise generated within the classroom. Previous research has shown that noise has detrimental effects upon children's performance at school, including reduced memory, motivation, and reading ability. In England and Wales, children's academic performance is assessed using standardized tests of literacy, mathematics, and science. A study has been conducted to examine the impact, if any, of chronic exposure to external and internal noise on the test results of children aged 7 and 11 in London (UK) primary schools. External noise was found to have a significant negative impact upon performance, the effect being greater for the older children. The analysis suggested that children are particularly affected by the noise of individual external events. Test scores were also affected by internal classroom noise, background levels being significantly related to test results. Negative relationships between performance and noise levels were maintained when the data were corrected for socio-economic factors relating to social deprivation, language, and special educational needs. Linear regression analysis has been used to estimate the maximum levels of external and internal noise which allow the schools surveyed to achieve required standards of literacy and numeracy.
Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor.
Andreychenko, A; Raaijmakers, A J E; Sbrizzi, A; Crijns, S P M; Lagendijk, J J W; Luijten, P R; van den Berg, C A T
2017-01-01
Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line. Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Core/Combustor Noise - Research Overview
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2017-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.
Frequency division multiplexed readout of TES detectors with baseband feedback
NASA Astrophysics Data System (ADS)
den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.
2012-09-01
SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.
ZOOM Lite: next-generation sequencing data mapping and visualization software
Zhang, Zefeng; Lin, Hao; Ma, Bin
2010-01-01
High-throughput next-generation sequencing technologies pose increasing demands on the efficiency, accuracy and usability of data analysis software. In this article, we present ZOOM Lite, a software for efficient reads mapping and result visualization. With a kernel capable of mapping tens of millions of Illumina or AB SOLiD sequencing reads efficiently and accurately, and an intuitive graphical user interface, ZOOM Lite integrates reads mapping and result visualization into a easy to use pipeline on desktop PC. The software handles both single-end and paired-end reads, and can output both the unique mapping result or the top N mapping results for each read. Additionally, the software takes a variety of input file formats and outputs to several commonly used result formats. The software is freely available at http://bioinfor.com/zoom/lite/. PMID:20530531
Optimization and performance of the Robert Stobie Spectrograph Near-InfraRed detector system
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Indahl, Briana; Eggen, Nathan; Wolf, Marsha; Hooper, Eric; Jaehnig, Kurt; Thielman, Don; Burse, Mahesh
2018-01-01
At the University of Wisconsin-Madison, we are building and testing the near-infrared (NIR) spectrograph for the Southern African Large Telescope-RSS-NIR. RSS-NIR will be an enclosed cooled integral field spectrograph. The RSS-NIR detector system uses a HAWAII-2RG (H2RG) HgCdTe detector from Teledyne controlled by the SIDECAR ASIC and an Inter-University Centre for Astronomy and Astrophysics (IUCCA) ISDEC card. We have successfully characterized and optimized the detector system and report on the optimization steps and performance of the system. We have reduced the CDS read noise to ˜20 e- for 200 kHz operation by optimizing ASIC settings. We show an additional factor of 3 reduction of read noise using Fowler sampling techniques and a factor of 2 reduction using up-the-ramp group sampling techniques. We also provide calculations to quantify the conditions for sky-limited observations using these sampling techniques.
NASA Astrophysics Data System (ADS)
Budde, Adam; Nilsen, Roy; Nett, Brian
2014-03-01
State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.
Static Noise Margin Enhancement by Flex-Pass-Gate SRAM
NASA Astrophysics Data System (ADS)
O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi
A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.
The formation of quantum images and their transformation and super-resolution reading
NASA Astrophysics Data System (ADS)
Balakin, D. A.; Belinsky, A. V.
2016-05-01
Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.
DART Core/Combustor-Noise Initial Test Results
NASA Technical Reports Server (NTRS)
Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.
2017-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.
Observer efficiency in free-localization tasks with correlated noise.
Abbey, Craig K; Eckstein, Miguel P
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.
Observer efficiency in free-localization tasks with correlated noise
Abbey, Craig K.; Eckstein, Miguel P.
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854
New and Better Near-Infrared Detectors for JWST Near Infrared Spectrograph
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Mott, D. Brent; Wen, Yiting; Linder, Don; Greenhouse, Matthew A.; Hill, Robert J.
2014-01-01
ESA and NASA recently selected two 5 m cutoff Teledyne H2RG sensor chip assemblies (SCA) for flight on the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These HgCdTe SCAs incorporate Teledynes improved barrier layer design that eliminates the degradation that affected earlier JWST H2RGs(Rauscher et al. 2012a). The better indium barrier, together with other design changes, has improved the performance and reliability of JWSTs SCAs. In this article, we describe the measured performance characteristics that most directly affect scientific observations including read noise, total noise, dark current, quantum efficiency (QE), and image persistence. As part of measuring QE, we measured the quantum yield as a function of photon energy,, and found that it exceeds unity for photon energies E (2.65.2) Eg, where Eg is the HgCdTe bandgap energy. This corresponds to. 2 m for NIRSpecs 5 m cutoff HgCdTe. Our measurements agree well with a previous measurement by McCullough et al. (2008) for. 1.3. For 1.3, we find a slower increase in with photon energy than McCullough et al. did. However, and as McCullough et al. note, their two state model of the yield process is not valid for large 1.
Working memory training to improve speech perception in noise across languages
Ingvalson, Erin M.; Dhar, Sumitrajit; Wong, Patrick C. M.; Liu, Hanjun
2015-01-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners. PMID:26093435
Working memory training to improve speech perception in noise across languages.
Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun
2015-06-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.
Efficient laser noise reduction method via actively stabilized optical delay line.
Li, Dawei; Qian, Cheng; Li, Ye; Zhao, Jianye
2017-04-17
We report a fiber laser noise reduction method by locking it to an actively stabilized optical delay line, specifically a fiber-based Mach-Zehnder interferometer with a 10 km optical fiber spool. The fiber spool is used to achieve large arm imbalance. The heterodyne signal of the two arms converts the laser noise from the optical domain to several megahertz, and it is used in laser noise reduction by a phase-locked loop. An additional phase-locked loop is induced in the system to compensate the phase noise due to environmentally induced length fluctuations of the optical fiber spool. A major advantage of this structure is the efficient reduction of out-of-loop frequency noise, particularly at low Fourier frequency. The frequency noise reaches -30 dBc/Hz at 1 Hz, which is reduced by more than 90 dB compared with that of the laser in its free-running state.
Laser Cooling and Slowing of a Diatomic Molecule
2013-12-01
mirror ( Semrock , FF669-Di01) before passing through the interaction region along the 3 mm axis of the slit. Windows are home-made Brewster windows (See... Semrock FF669-Di01 and Semrock FF741-Di01) and a polarizing beam splitter (PBS) to produce a single beam with 1e2 full width intensity waist d = 3.4 mm...pixels as possible, thereby reducing read noise and dark current noise. Behind the camera lens is a single interference filter ( Semrock , FF01-650/60, 24
Quantum Device Applications of Mesoscopic Superconductivity
NASA Astrophysics Data System (ADS)
Hakonen, P. J.
2006-08-01
A brief account is given on the possibilities of mesoscopic superconductivity in low-noise amplifier and detector applications. In particular, three devices will be described: 1) Bloch oscillating transistor (BOT), 2) Inductively-read superconducting Cooper pair transistor (L-SET), and 3) Quantum capacitive phase detector (C-SET). The BOT is a low-noise current amplifier while the L-SET and C-SET act as ultra-sensitive charge and phase detectors, respectively. The basic operating principles and the main characteristics of these devices will be reviewed and discussed.
Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation
NASA Astrophysics Data System (ADS)
Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.
2017-06-01
Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.
NASA Technical Reports Server (NTRS)
Bailey, Gary C.
1987-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.
Aircraft Geared Architecture Reduces Fuel Cost and Noise
NASA Technical Reports Server (NTRS)
2015-01-01
In an effort to increase fuel efficiency and reduce noise in commercial airplanes, NASA aeronautics teamed up with East Hartford, Connecticut-based Pratt & Whitney through a Space Act Agreement to help the company increase the efficiency of its turbofan engine. The company's new PurePower line of engines is 15 percent more fuel-efficient and up to 75 percent quieter than its competitors.
NASA Astrophysics Data System (ADS)
Ishii, Yuichiro; Tanaka, Miki; Yabuuchi, Makoto; Sawada, Yohei; Tanaka, Shinji; Nii, Koji; Lu, Tien Yu; Huang, Chun Hsien; Sian Chen, Shou; Tse Kuo, Yu; Lung, Ching Cheng; Cheng, Osbert
2018-04-01
We propose a highly symmetrical 10 transistor (10T) 2-read/write (2RW) dual-port (DP) static random access memory (SRAM) bitcell in 28 nm high-k/metal-gate (HKMG) planar bulk CMOS. It replaces the conventional 8T 2RW DP SRAM bitcell without any area overhead. It significantly improves the robustness of process variations and an asymmetric issue between the true and bar bitline pairs. Measured data show that read current (I read) and read static noise margin (SNM) are respectively boosted by +20% and +15 mV by introducing the proposed bitcell with enlarged pull-down (PD) and pass-gate (PG) N-channel MOSs (NMOSs). The minimum operating voltage (V min) of the proposed 256 kbit 10T DP SRAM is 0.53 V in the TT process, 25 °C under the worst access condition with read/write disturbances, and improved by 90 mV (15%) compared with the conventional one.
How Does Speed and Accuracy in Reading Relate to Reading Comprehension in Arabic?
ERIC Educational Resources Information Center
Abu-Leil, Aula Khateeb; Share, David L.; Ibrahim, Raphiq
2014-01-01
The purpose of this study was to investigate the potential contribution of decoding efficiency to the development of reading comprehension among skilled adult native Arabic speakers. In addition, we tried to investigate the influence of Arabic vowels on reading accuracy, reading speed, and therefore to reading comprehension. Seventy-five Arabic…
Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers
NASA Astrophysics Data System (ADS)
Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen
2017-08-01
The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.
Microwave device investigations
NASA Technical Reports Server (NTRS)
Haddad, G. I.; Lomax, R. J.; Masnari, N. A.; Shabde, S. E.
1971-01-01
Several tasks were active during this report period: (1) noise modulation in avalanche-diode devices; (2) schottky-barrier microwave devices; (3) intermodulation products in IMPATT diode amplifiers; (4) harmonic generation using Read-diode varactors; and (5) fabrication of GaAs Schottky-barrier IMPATT diodes.
Noise level in neonatal incubators: A comparative study of three models.
Fernández Zacarías, F; Beira Jiménez, J L; Bustillo Velázquez-Gaztelu, P J; Hernández Molina, R; Lubián López, Simón
2018-04-01
Preterm infants usually have to spend a long time in an incubator, excessive noise in which can have adverse physiological and psychological effects on neonates. In fact, incubator noise levels typically range from 45 to 70 dB but differences in this respect depend largely on the noise measuring method used. The primary aim of this work was to assess the extent to which noise in an incubator comes from its own fan and how efficiently the incubator can isolate external noise. Three different incubator models were characterized for acoustic performance by measuring their internal noise levels in an anechoic chamber, and also for noise isolation efficiency by using a pink noise source in combination with an internal and an external microphone that were connected to an SVAN958 noise analyzer. The incubators studied produced continuous equivalent noise levels of 53.5-58 dB and reduced external noise by 5.2-10.4 dB. A preterm infant in an incubator is exposed to noise levels clearly exceeding international recommendations even though such levels usually comply with the limit set in the standard IEC60601-2-19: 2009 (60 dBA) under normal conditions of use. Copyright © 2018. Published by Elsevier B.V.
Active noise control technique for diesel train locomotor exhaust noise abatement
NASA Astrophysics Data System (ADS)
Cotana, Franco; Rossi, Federico
2002-11-01
An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.
Reading in French-Speaking Adults with Dyslexia
ERIC Educational Resources Information Center
Martin, Jennifer; Cole, Pascale; Leuwers, Christel; Casalis, Severine; Zorman, Michel; Sprenger-Charolles, Liliane
2010-01-01
This study investigated the reading and reading-related skills of 15 French-speaking adults with dyslexia, whose performance was compared with that of chronological-age controls (CA) and reading-level controls (RL). Experiment 1 assessed the efficiency of their phonological reading-related skills (phonemic awareness, phonological short-term…
Miller, Christi W; Stewart, Erin K; Wu, Yu-Hsiang; Bishop, Christopher; Bentler, Ruth A; Tremblay, Kelly
2017-08-16
This study evaluated the relationship between working memory (WM) and speech recognition in noise with different noise types as well as in the presence of visual cues. Seventy-six adults with bilateral, mild to moderately severe sensorineural hearing loss (mean age: 69 years) participated. Using a cross-sectional design, 2 measures of WM were taken: a reading span measure, and Word Auditory Recognition and Recall Measure (Smith, Pichora-Fuller, & Alexander, 2016). Speech recognition was measured with the Multi-Modal Lexical Sentence Test for Adults (Kirk et al., 2012) in steady-state noise and 4-talker babble, with and without visual cues. Testing was under unaided conditions. A linear mixed model revealed visual cues and pure-tone average as the only significant predictors of Multi-Modal Lexical Sentence Test outcomes. Neither WM measure nor noise type showed a significant effect. The contribution of WM in explaining unaided speech recognition in noise was negligible and not influenced by noise type or visual cues. We anticipate that with audibility partially restored by hearing aids, the effects of WM will increase. For clinical practice to be affected, more significant effect sizes are needed.
Optical encryption and QR codes: secure and noise-free information retrieval.
Barrera, John Fredy; Mira, Alejandro; Torroba, Roberto
2013-03-11
We introduce for the first time the concept of an information "container" before a standard optical encrypting procedure. The "container" selected is a QR code which offers the main advantage of being tolerant to pollutant speckle noise. Besides, the QR code can be read by smartphones, a massively used device. Additionally, QR code includes another secure step to the encrypting benefits the optical methods provide. The QR is generated by means of worldwide free available software. The concept development probes that speckle noise polluting the outcomes of normal optical encrypting procedures can be avoided, then making more attractive the adoption of these techniques. Actual smartphone collected results are shown to validate our proposal.
Kiani, M A; Sim, K S; Nia, M E; Tso, C P
2015-05-01
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Children's Orthographic Knowledge and Their Word Reading Skill: Testing Bidirectional Relations
ERIC Educational Resources Information Center
Conrad, Nicole J.; Deacon, S. Hélène
2016-01-01
Prominent models of word reading concur that the development of efficient word reading depends on the establishment of lexical orthographic representations in memory. In turn, word reading skills are conceptualised as supporting the development of these orthographic representations. As such, models of word reading development make clear…
Validity Evidence for the Test of Silent Reading Efficiency and Comprehension (TOSREC)
ERIC Educational Resources Information Center
Johnson, Evelyn S.; Pool, Juli L.; Carter, Deborah R.
2011-01-01
An essential component of a response to intervention (RTI) framework is a screening process that is both accurate and efficient. The purpose of this study was to analyze the validity evidence for the "Test of Silent Reading Efficiency and Comprehension" (TOSREC) to determine its potential for use within a screening process. Participants included…
ERIC Educational Resources Information Center
Gupta, R. M.
1985-01-01
Low IQ should not be deemed as an index of poor learning ability. Information about middle school children's learning efficiency as measured by the Learning Efficiency Test Battery was found to be more useful for predicting reading ability than conventional types of assessment. (Author/RM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Tse -Yuan; Mehlhorn, Tonia L; Pelletier, Dale A.
RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, whichmore » were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). Furthermore, this study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.« less
Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh
2017-06-15
Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lu, Tse -Yuan; Mehlhorn, Tonia L; Pelletier, Dale A.; ...
2016-05-31
RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, whichmore » were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). Furthermore, this study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.« less
Manga, Punita; Klingeman, Dawn M; Lu, Tse-Yuan S; Mehlhorn, Tonia L; Pelletier, Dale A; Hauser, Loren J; Wilson, Charlotte M; Brown, Steven D
2016-01-01
RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, which were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). This study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.
NASA Astrophysics Data System (ADS)
Masuzawa, Tomoaki; Ebisudani, Taishi; Ochiai, Jun; Saito, Ichitaro; Yamada, Takatoshi; Chua, Daniel H. C.; Mimura, Hidenori; Okano, Ken
2016-09-01
Although present imaging devices are mostly silicon-based devices such as CMOS and CCD, these devices are reaching their sensitivity limit due to the band gap of silicon. Amorphous selenium (a-Se) is a promising candidate for high- sensitivity photo imaging devices, because of its low thermal noise, high spatial resolution, as well as adaptability to wide-area deposition. In addition, internal signal amplification is reported on a-Se based photodetectors, which enables a photodetector having effective quantum efficiency over 100 % against visible light. Since a-Se has sensitivity to UV and soft X-rays, the reported internal signal amplification should be applicable to UV and X-ray detection. However, application of the internal signal amplification required high voltage, which caused unexpected breakdown at the contact or thin-film transistor-based signal read-out. For this reason, vacuum devices having electron-beam read-out is proposed. The advantages of vacuum-type devices are vacuum insulation and its extremely low dark current. In this study, we present recent progresses in developing a-Se based photoconductive films and photodetector using nitrogen-doped diamond electron beam source as signal read-out. A novel electrochemical method is used to dope impurities into a-Se, turning the material from weak p-type to n-type. A p-n junction is formed within a-Se photoconductive film, which has increased the sensitivity of a-Se based photodetector. Our result suggests a possibility of high sensitivity photodetector that can potentially break the limit of silicon-based devices.
Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin
2017-09-01
The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.
NASA Astrophysics Data System (ADS)
Stansfeld, Stephen A.; Clark, Charlotte
2005-04-01
Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.
Multimodality: a way to cope with road traffic noise? The case of European treefrog (Hyla arborea).
Troïanowski, Mathieu; Melot, Geoffrey; Lengagne, Thierry
2014-09-01
In the last decades, traffic noise has become a new challenge for efficient animal communication and several studies suggest that it is involved in population declines. Although poorly investigated in a traffic noise context, communication is generally multimodal, which can be viewed as a way to improve communication efficiency by allowing shift from a sensory modality to another when one modality suffers from noise. In the present study, we investigated multimodal shift in the European treefrog (Hyla arborea), a species using both acoustic and visual cues during male quality assessment task performed by females. Females were used in a discrimination task in two environmental conditions: with or without traffic noise. In traffic noise conditions, we showed that females' reliance on acoustic signal embedded in noise pollution did not decrease in favour of visual signals, therefore showing that females do not shift between modalities in response to traffic noise. Although, we did not evidence multimodal shift in our study, many species facing traffic noise present multimodal communication, and should be investigated to evaluate the importance of multimodal shift as a way to cope with traffic noise pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Acoustic and Perceptual Analyses of Adductor Spasmodic Dysphonia in Mandarin-speaking Chinese.
Chen, Zhipeng; Li, Jingyuan; Ren, Qingyi; Ge, Pingjiang
2018-02-12
The objective of this study was to examine the perceptual structure and acoustic characteristics of speech of patients with adductor spasmodic dysphonia (ADSD) in Mandarin. Case-Control Study MATERIALS AND METHODS: For the estimation of dysphonia level, perceptual and acoustic analysis were used for patients with ADSD (N = 20) and the control group (N = 20) that are Mandarin-Chinese speakers. For both subgroups, a sustained vowel and connected speech samples were obtained. The difference of perceptual and acoustic parameters between the two subgroups was assessed and analyzed. For acoustic assessment, the percentage of phonatory breaks (PBs) of connected reading and the percentage of aperiodic segments and frequency shifts (FS) of vowel and reading in patients with ADSD were significantly worse than controls, the mean harmonics-to-noise ratio and the fundamental frequency standard deviation of vowel as well. For perceptual evaluation, the rating of speech and vowel in patients with ADSD are significantly higher than controls. The percentage of aberrant acoustic events (PB, frequency shift, and aperiodic segment) and the fundamental frequency standard deviation and mean harmonics-to-noise ratio were significantly correlated with the perceptual rating in the vowel and reading productions. The perceptual and acoustic parameters of connected vowel and reading in patients with ADSD are worse than those in normal controls, and could validly and reliably estimate dysphonia of ADSD in Mandarin-speaking Chinese. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Azarpour, Masoumeh; Enzner, Gerald
2017-12-01
Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening test data analysis confirms the conclusions drawn based on the objective evaluation.
Two-party quantum key agreement protocols under collective noise channel
NASA Astrophysics Data System (ADS)
Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong
2018-06-01
Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.
ERIC Educational Resources Information Center
Baker, Doris Luft; Biancarosa, Gina; Park, Bitnara Jasmine; Bousselot, Tracy; Smith, Jean-Louise; Baker, Scott K.; Kame'enui, Edward J.; Alonzo, Julie; Tindal, Gerald
2015-01-01
We examined the criterion validity and diagnostic efficiency of oral reading fluency (ORF), word reading accuracy, and reading comprehension (RC) for students in Grades 7 and 8 taking into account form effects of ORF, time of assessment, and individual differences, including student designations of limited English proficiency and special education…
Lexical-Semantic Reading in a Shallow Orthography: Evidence from a Girl with Williams Syndrome
ERIC Educational Resources Information Center
Barca, Laura; Bello, Arianna; Volterra, Virginia; Burani, Cristina
2010-01-01
The reading skills of a girl with Williams Syndrome are assessed by a timed word-naming task. To test the efficiency of lexical and nonlexical reading, we considered four marker effects: Lexicality (better reading of words than nonwords), frequency (better reading of high than low frequency words), length (better reading of short than long words),…
ERIC Educational Resources Information Center
Thomas, Lisa B.
2012-01-01
Reading comprehension is a critical aspect of the reading process. Children who experience significant problems in reading comprehension are at risk for long-term academic and social problems. High-quality measures are needed for early, efficient, and effective identification of children in need of remediation in reading comprehension. Substantial…
Improvements in Interval Time Tracking and Effects on Reading Achievement
ERIC Educational Resources Information Center
Taub, Gordon E.; McGrew, Kevin S.; Keith, Timothy Z.
2007-01-01
This study examined the effect of improvements in timing/rhythmicity on students' reading achievement. 86 participants completed pre- and post-test measures of reading achievement (i.e., Woodcock-Johnson III, Comprehensive Test of Phonological Processing, Test of Word Reading Efficiency, and Test of Silent Word Reading Fluency). Students in the…
Neural Correlates of Oral Word Reading, Silent Reading Comprehension, and Cognitive Subcomponents
ERIC Educational Resources Information Center
Xia, Zhichao; Zhang, Linjun; Hoeft, Fumiko; Gu, Bin; Gong, Gaolang; Shu, Hua
2018-01-01
The ability to read is essential for cognitive development. To deepen our understanding of reading acquisition, we explored the neuroanatomical correlates (cortical thickness; CT) of word-reading fluency and sentence comprehension efficiency in Chinese with a group of typically developing children (N = 21; 12 females and 9 males; age range…
Assessing Motivation To Read. Instructional Resource No. 14.
ERIC Educational Resources Information Center
Gambrell, Linda B.; And Others
The Motivation to Read Profile (MRP) is a public-domain instrument designed to provide teachers with an efficient and reliable way to assess reading motivation qualitatively and quantitatively by evaluating students' self-concept as readers and the value they place on reading. The MRP consists of two basic instruments: the Reading Survey (a…
Quiet Cruise Efficient Short Take-off and Landing Subsonic Transport System
NASA Technical Reports Server (NTRS)
Kawai, Ron
2008-01-01
This NASA funded study conceived a revolutionary airplane concept to enable future traffic growth by using regional air space. This requires a very quiet airplane with STOL capability. Starting with a Blended Wing Body that is cruise efficient with inherent low noise characteristics from forward noise shielding and void of aft downward noise reflections, integration of embedded distributed propulsion enables incorporation of the revolutionary concept for jet noise shielding. Embedded distributed propulsion also enables incorporation of a fan bleed internally blown flap for quiet powered lift. The powered lift provides STOL capability for operation at regional airports with rapid take-off and descent to further reduce flyover noise. This study focused on configuring the total engine noise shielding STOL concept with a BWB airplane using the Boeing Phantom Works WingMOD multidisciplinary optimization code to define a planform that is pitch controllable. The configuration was then sized and mission data developed to enable NASA to assess the flyover and sideline noise. The foundational technologies needed are identified including military dual use benefits.
Background noise cancellation for improved acoustic detection of manatee vocalizations
NASA Astrophysics Data System (ADS)
Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.
2005-06-01
The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .
Background noise cancellation for improved acoustic detection of manatee vocalizations
NASA Astrophysics Data System (ADS)
Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.
2005-04-01
The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.
A CMOS-Compatible, Low-Noise ISFET Based on High Efficiency Ion-Modulated Lateral-Bipolar Conduction
Chang, Sheng-Ren; Chen, Hsin
2009-01-01
Ion-sensitive, field-effect transistors (ISFET) have been useful biosensors in many applications. However, the signal-to-noise ratio of the ISFET is limited by its intrinsic, low-frequency noise. This paper presents an ISFET capable of utilizing lateral-bipolar conduction to reduce low-frequency noise. With a particular layout design, the conduction efficiency is further enhanced. Moreover, the ISFET is compatible with the standard CMOS technology. All materials above the gate-oxide are removed by simple, die-level post-CMOS process, allowing ions to modulate the lateral-bipolar current directly. By varying the gate-to-bulk voltage, the operation mode of the ISFET is controlled effectively, so is the noise performance measured and compared. Finally, the biasing conditions preferable for different low-noise applications are identified. Under the identified biasing condition, the signal-to-noise ratio of the ISFET as a pH sensor is proved to be improved by more than five times. PMID:22408508
Prevalence of noise-induced hearing loss among woodworkers in Nepal: a pilot study
Robinson, Tim; Whittaker, Joshua; Acharya, Aanand; Singh, Devesh; Smith, Michael
2015-01-01
Background: The woodworking industry represents an important cause of occupational noise-induced hearing loss (NIHL), a significant yet underappreciated problem in many developing countries. Objectives: To describe the prevalence of occupational NIHL among woodworkers in Nepal and measure noise levels at workplaces. Methods: We conducted a cross-sectional study with 124 woodworkers (88 carpenters, 36 sawyers), recruited through convenience sampling from 26 workplaces. Pure-tone audiometry between the frequencies 0·5 and 8 kHz ascertained participants’ hearing status, and noise readings were taken at selected workplaces. Results: In all, 31% of carpenters and 44% of sawyers met criteria for NIHL, with 7 and 17% meeting World Health Organization (WHO) criteria for hearing impairment (HI), respectively. Noise levels at various workplaces ranged from 71·2 to 93·9 dBA. Conclusions: Woodworkers in Nepal are at risk of occupational NIHL. As the industry develops, this problem will likely become more extensive, highlighting the need for workplace interventions and additional research. PMID:25335826
NASA Astrophysics Data System (ADS)
von Zanthier, Christoph; Holl, Peter; Kemmer, Josef; Lechner, Peter; Maier, B.; Soltau, Heike; Stoetter, R.; Braeuninger, Heinrich W.; Dennerl, Konrad; Haberl, Frank; Hartmann, R.; Hartner, Gisela D.; Hippmann, H.; Kastelic, E.; Kink, W.; Krause, N.; Meidinger, Norbert; Metzner, G.; Pfeffermann, Elmar; Popp, M.; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Truemper, Joachim; Weber, U.; Carathanassis, D.; Engelhard, S.; Gebhart, Th.; Hauff, D.; Lutz, G.; Richter, R. H.; Seitz, H.; Solc, P.; Bihler, Edgar; Boettcher, H.; Kendziorra, Eckhard; Kraemer, J.; Pflueger, Bernhard; Staubert, Ruediger
1998-04-01
The concept and performance of the fully depleted pn- junction CCD system, developed for the European XMM- and the German ABRIXAS-satellite missions for soft x-ray imaging and spectroscopy in the 0.1 keV to 15 keV photon range, is presented. The 58 mm X 60 mm large pn-CCD array uses pn- junctions for registers and for the backside instead of MOS registers. This concept naturally allows to fully deplete the detector volume to make it an efficient detector to photons with energies up to 15 keV. For high detection efficiency in the soft x-ray region down to 100 eV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with an on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout with a pixel read rate of 3 MHz and an electronic noise floor of ENC < e-. With the complete parallel readout, very fast pn-CCD readout modi can be implemented in the system which allow for high resolution photon spectroscopy of even the brightest x-ray sources in the sky.
NASA Astrophysics Data System (ADS)
DeForest, Craig; Seaton, Daniel B.; Darnell, John A.
2017-08-01
I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO/AIA , SDO/HMI, STEREO/SECCHI, and GOES-R/SUVI) that explore the benefits and limits of the technique.
Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min
2007-08-17
This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.
Development of Trivia Game for speech understanding in background noise.
Schwartz, Kathryn; Ringleb, Stacie I; Sandberg, Hilary; Raymer, Anastasia; Watson, Ginger S
2015-01-01
Listening in noise is an everyday activity and poses a challenge for many people. To improve the ability to understand speech in noise, a computerized auditory rehabilitation game was developed. In Trivia Game players are challenged to answer trivia questions spoken aloud. As players progress through the game, the level of background noise increases. A study using Trivia Game was conducted as a proof-of-concept investigation in healthy participants. College students with normal hearing were randomly assigned to a control (n = 13) or a treatment (n = 14) group. Treatment participants played Trivia Game 12 times over a 4-week period. All participants completed objective (auditory-only and audiovisual formats) and subjective listening in noise measures at baseline and 4 weeks later. There were no statistical differences between the groups at baseline. At post-test, the treatment group significantly improved their overall speech understanding in noise in the audiovisual condition and reported significant benefits in their functional listening abilities. Playing Trivia Game improved speech understanding in noise in healthy listeners. Significant findings for the audiovisual condition suggest that participants improved face-reading abilities. Trivia Game may be a platform for investigating changes in speech understanding in individuals with sensory, linguistic and cognitive impairments.
Accent, intelligibility, and comprehensibility in the perception of foreign-accented Lombard speech
NASA Astrophysics Data System (ADS)
Li, Chi-Nin
2003-10-01
Speech produced in noise (Lombard speech) has been reported to be more intelligible than speech produced in quiet (normal speech). This study examined the perception of non-native Lombard speech in terms of intelligibility, comprehensibility, and degree of foreign accent. Twelve Cantonese speakers and a comparison group of English speakers read simple true and false English statements in quiet and in 70 dB of masking noise. Lombard and normal utterances were mixed with noise at a constant signal-to-noise ratio, and presented along with noise-free stimuli to eight new English listeners who provided transcription scores, comprehensibility ratings, and accent ratings. Analyses showed that, as expected, utterances presented in noise were less well perceived than were noise-free sentences, and that the Cantonese speakers' productions were more accented, but less intelligible and less comprehensible than those of the English speakers. For both groups of speakers, the Lombard sentences were correctly transcribed more often than their normal utterances in noisy conditions. However, the Cantonese-accented Lombard sentences were not rated as easier to understand than was the normal speech in all conditions. The assigned accent ratings were similar throughout all listening conditions. Implications of these findings will be discussed.
Reading, Complexity and the Brain
ERIC Educational Resources Information Center
Goswami, Usha
2008-01-01
Brain imaging offers a new technology for understanding the acquisition of reading by children. It can contribute novel evidence concerning the key mechanisms supporting reading, and the brain systems that are involved. The extensive neural architecture that develops to support efficient reading testifies to the complex developmental processes…
DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (∼98%), even with a poor signal/noise ratio. PMID:22677395
Long-Wavelength 640 x 486 GaAs/AlGaAs Quantum Well Infrared Photodetector Snap-Shot Camera
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hong, Winn; Sundaram, Mani; Maker, Paul D.; Muller, Richard E.; Shott, Craig A.; Carralejo, Ronald
1998-01-01
A 9-micrometer cutoff 640 x 486 snap-shot quantum well infrared photodetector (QWIP) camera has been demonstrated. The performance of this QWIP camera is reported including indoor and outdoor imaging. The noise equivalent differential temperature (NE.deltaT) of 36 mK has been achieved at 300 K background with f/2 optics. This is in good agreement with expected focal plane array sensitivity due to the practical limitations on charge handling capacity of the multiplexer, read noise, bias voltage, and operating temperature.
The Contribution of Segmental and Suprasegmental Phonology to Reading Comprehension
Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo
2016-01-01
The aim of the present study was to examine the relation between decoding and segmental and suprasegmental phonology, and their contribution to reading comprehension, in the upper primary grades. Following a longitudinal design, the performance of 99 Dutch primary school children on phonological awareness (segmental phonology) and text reading prosody (suprasegmental phonology) in fourth-grade and fifth-grade, and reading comprehension in sixth-grade were examined. In addition, decoding efficiency as a general assessment of reading was examined. Structural path modeling firstly showed that the relation between decoding efficiency and both measures of phonology from fourth- to fifth grade was unidirectional. Secondly, the relation between decoding in fourth- and fifth-grade and reading comprehension in sixth-grade became indirect when segmental and suprasegmental phonology were added to the model. Both factors independently exerted influence on later reading comprehension. This leads to the conclusion that not only segmental, but also suprasegmental phonology, contributes substantially to children's reading development. PMID:27551159
ERIC Educational Resources Information Center
Taylor, Laura A.
2015-01-01
Reading rate, a component of reading not closely attended to by educators and researchers prior to the 20th century, quickly became the subject of considerable research shortly after the turn of the century. This article uses historical content analysis to examine primary source documents from that period (1910-1925) to explore why reading rate…
FMLRC: Hybrid long read error correction using an FM-index.
Wang, Jeremy R; Holt, James; McMillan, Leonard; Jones, Corbin D
2018-02-09
Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.
Cryogenic measurements of aerojet GaAs n-JFETs
NASA Technical Reports Server (NTRS)
Goebel, John H.; Weber, Theodore T.
1993-01-01
The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.
NASA Technical Reports Server (NTRS)
Rauscher, Bernard; Arendt, Richard G.; Fixsen, D. J.; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, D. V.
2012-01-01
We describe a Wiener optimal approach to using the reference output and reference pixels that are built into Teledyne's HAWAII-2RG detector arrays. In this way, we are reducing the total noise per approximately 1000 second 88 frame up-the-ramp dark integration from about 6.5 e- rms to roughly 5 e- rms. Using a principal components analysis formalism, we achieved these noise improvements without altering the hardware in any way. In addition to being lower, the noise is also cleaner with much less visible correlation. For example, the faint horizontal banding that is often seen in HAWAII-2RG images is almost completely removed. Preliminary testing suggests that the relative gains are even higher when using non flight grade components. We believe that these techniques are applicable to most HAWAII-2RG based instruments.
Spectral analysis of fundamental signal and noise performances in photoconductors for mammography.
Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse; Yun, Seungman; Cunningham, Ian A
2012-05-01
This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI(2), PbI(2), PbO, and TlBr, for x-ray spectra typically used in mammography. It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). The quantum efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI(2), PbI(2), and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm(-2), a-Se, HgI(2), and PbI(2) provide similar DQE values to PbO and TlBr. The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.
Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI
Wronski, M. M.; Rowlands, J. A.
2008-01-01
The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10−7–10−2 R∕frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range. PMID:19175080
Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M. M.; Rowlands, J. A.
2008-12-15
The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmablemore » avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range.« less
ERIC Educational Resources Information Center
Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.
2016-01-01
Skilled reading depends on recognizing words efficiently in isolation ("word-level processing"; "WL") and extracting meaning from text ("discourse-level processing"; "DL"); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as…
ERIC Educational Resources Information Center
Lee, Chien I.; Chang, Chih C.
2017-01-01
How to enhance students' reading comprehension as well as reading interest is a currently serious problem for elementary school students. Students can learn various knowledge through reading, as a result of this reason, the advantage and disadvantage of reading ability could directly affect the learning efficiency. This study proposes networked…
Reading by Children with Low Vision
ERIC Educational Resources Information Center
Gompel, Marjolein; van Bon, Wim H. J.; Schreuder, Robert
2004-01-01
This study of the reading of text found that despite their lower reading speed on a reading-comprehension task, the children with low vision comprehended texts at least as well as did the sighted children. Children with low vision need more time to read and comprehend a text, but they seem to use this time with enough efficiency to process the…
Stewart, Erin K.; Wu, Yu-Hsiang; Bishop, Christopher; Bentler, Ruth A.; Tremblay, Kelly
2017-01-01
Purpose This study evaluated the relationship between working memory (WM) and speech recognition in noise with different noise types as well as in the presence of visual cues. Method Seventy-six adults with bilateral, mild to moderately severe sensorineural hearing loss (mean age: 69 years) participated. Using a cross-sectional design, 2 measures of WM were taken: a reading span measure, and Word Auditory Recognition and Recall Measure (Smith, Pichora-Fuller, & Alexander, 2016). Speech recognition was measured with the Multi-Modal Lexical Sentence Test for Adults (Kirk et al., 2012) in steady-state noise and 4-talker babble, with and without visual cues. Testing was under unaided conditions. Results A linear mixed model revealed visual cues and pure-tone average as the only significant predictors of Multi-Modal Lexical Sentence Test outcomes. Neither WM measure nor noise type showed a significant effect. Conclusion The contribution of WM in explaining unaided speech recognition in noise was negligible and not influenced by noise type or visual cues. We anticipate that with audibility partially restored by hearing aids, the effects of WM will increase. For clinical practice to be affected, more significant effect sizes are needed. PMID:28744550
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE GERONIMO,G.; FRIED, J.; FROST, E.
We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detectormore » process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.« less
NASA Astrophysics Data System (ADS)
Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carr, S. M.; Carroll, M. S.
2015-05-01
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10-100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.
WFC3: IR Detector On-Orbit Performance
NASA Astrophysics Data System (ADS)
Hilbert, Bryan; Dulude, M.; McCullough, P.; MacKenty, J. W.; Kimble, R. A.; Hill, R. J.; Viana, A.; Bushouse, H.; Baggett, S.; WFC3 Team
2010-01-01
Using data taken during Servicing Mission Observatory Verification (SMOV4), we have characterized dark current and readnoise behavior of the IR Channel, along with its level of measured background signal. Using data taken in June and July of 2009, we find the dark current in the IR channel to be 0.043 - 0.050 e-/s/pixel. The correlated double sampling (CDS) read noise in RAPID sequences is 20-22 electrons, similar to that measured in ground testing. The effective noise measured in an image created from 16 reads of a SPARS200 ramp is 11.6 - 12.7 electrons. Using internal flat field images, we measured the inverse gain to be 2.28 - 2.47 ± 0.04 e-/ADU, depending on quadrant. The ratio of the mean instrumental irradiance (ADU/s/pixel) measured on orbit to that obtained in ground testing is 1.06 - 1.07, indicating a brightening of the Tungsten lamp on orbit. We also note the continued appearance of cosmic ray-like sources, dubbed "snowballs", in on orbit data.
GO FASTER: Building Morpheme Fluency
ERIC Educational Resources Information Center
Fishley, Katelyn M.; Konrad, Moira; Hessler, Terri
2017-01-01
Vocabulary knowledge is an important foundation skill for reading across all subject areas. Because students with disabilities lag behind their peers in reading skills, there is a need for efficient and effective vocabulary interventions. Focusing on morpheme knowledge is one efficient approach to building vocabulary. This article describes an…
A de-noising method using the improved wavelet threshold function based on noise variance estimation
NASA Astrophysics Data System (ADS)
Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao
2018-01-01
The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.
Clark, Charlotte
2018-01-01
This systematic review assesses the quality of the evidence across individual studies on the effect of environmental noise (road traffic, aircraft, and train and railway noise) on cognition. Quantitative non-experimental studies of the association between environmental noise exposure on child and adult cognitive performance published up to June 2015 were reviewed: no limit was placed on the start date for the search. A total of 34 papers were identified, all of which were of child populations. 82% of the papers were of cross-sectional design, with fewer studies of longitudinal or intervention design. A range of cognitive outcomes were examined. The quality of the evidence across the studies for each individual noise source and cognitive outcome was assessed using an adaptation of GRADE methodology. This review found, given the predominance of cross-sectional studies, that the quality of the evidence across studies ranged from being of moderate quality for an effect for some outcomes, e.g., aircraft noise effects on reading comprehension and on long-term memory, to no effect for other outcomes such as attention and executive function and for some noise sources such as road traffic noise and railway noise. The GRADE evaluation of low quality evidence across studies for some cognitive domains and for some noise sources does not necessarily mean that there are no effects: rather, that more robust and a greater number of studies are required. PMID:29414890
Clark, Charlotte; Paunovic, Katarina
2018-02-07
This systematic review assesses the quality of the evidence across individual studies on the effect of environmental noise (road traffic, aircraft, and train and railway noise) on cognition. Quantitative non-experimental studies of the association between environmental noise exposure on child and adult cognitive performance published up to June 2015 were reviewed: no limit was placed on the start date for the search. A total of 34 papers were identified, all of which were of child populations. 82% of the papers were of cross-sectional design, with fewer studies of longitudinal or intervention design. A range of cognitive outcomes were examined. The quality of the evidence across the studies for each individual noise source and cognitive outcome was assessed using an adaptation of GRADE methodology. This review found, given the predominance of cross-sectional studies, that the quality of the evidence across studies ranged from being of moderate quality for an effect for some outcomes, e.g., aircraft noise effects on reading comprehension and on long-term memory, to no effect for other outcomes such as attention and executive function and for some noise sources such as road traffic noise and railway noise. The GRADE evaluation of low quality evidence across studies for some cognitive domains and for some noise sources does not necessarily mean that there are no effects: rather, that more robust and a greater number of studies are required.
ERIC Educational Resources Information Center
Galluzzo, Charles A.
2010-01-01
There is a great deal of research supporting Reading Recovery as a successful reading intervention program that assists below level first graders readers in closing the gap in reading at the same level of their average peers. There is a lack of research that analyses the cost-effectiveness of the Reading Recovery program compared to the cost in…
Reading Titles of Empirical Research Papers
ERIC Educational Resources Information Center
Labassi, Tahar
2009-01-01
The restricted time allocated to courses and the immediate need to read literature in English necessitates the teaching of selective reading in many English as a foreign language contexts. This paper reports on one element of an expeditious (quick, effective, efficient and selective) reading course for learners in an English for Academic Purposes…
Noise levels of dental equipment used in dental college of Damascus University.
Qsaibati, Mhd Loutify; Ibrahim, Ousama
2014-11-01
In dental practical classes, the acoustic environment is characterized by high noise levels in relation to other teaching areas. The aims of this study were to measure noise levels produced during the different dental learning clinics, by equipments used in dental learning areas under different working conditions and by used and brand new handpieces under different working conditions. The noise levels were measured by using a noise level meter with a microphone, which was placed at a distance of 15 cm from a main noise source in pre-clinical and clinical areas. In laboratories, the microphone was placed at a distance of 15 cm and another reading was taken 2 m away. Noise levels of dental learning clinics were measured by placing noise level meter at clinic center. The data were collected, tabulated and statistically analyzed using t-tests. Significance level was set at 5%. In dental clinics, the highest noise was produced by micro motor handpiece while cutting on acrylic (92.2 dB) and lowest noise (51.7 dB) was created by ultrasonic scaler without suction pump. The highest noise in laboratories was caused by sandblaster (96 dB at a distance of 15 cm) and lowest noise by stone trimmer when only turned on (61.8 dB at a distance of 2 m). There was significant differences in noise levels of the equipment's used in dental laboratories and dental learning clinics (P = 0.007). The highest noise level recorded in clinics was at pedodontic clinic (67.37 dB). Noise levels detected in this study were considered to be close to the limit of risk of hearing loss 85 dB.
Noise levels of dental equipment used in dental college of Damascus University
Qsaibati, Mhd. Loutify; Ibrahim, Ousama
2014-01-01
Background: In dental practical classes, the acoustic environment is characterized by high noise levels in relation to other teaching areas. The aims of this study were to measure noise levels produced during the different dental learning clinics, by equipments used in dental learning areas under different working conditions and by used and brand new handpieces under different working conditions. Materials and Methods: The noise levels were measured by using a noise level meter with a microphone, which was placed at a distance of 15 cm from a main noise source in pre-clinical and clinical areas. In laboratories, the microphone was placed at a distance of 15 cm and another reading was taken 2 m away. Noise levels of dental learning clinics were measured by placing noise level meter at clinic center. The data were collected, tabulated and statistically analyzed using t-tests. Significance level was set at 5%. Results: In dental clinics, the highest noise was produced by micro motor handpiece while cutting on acrylic (92.2 dB) and lowest noise (51.7 dB) was created by ultrasonic scaler without suction pump. The highest noise in laboratories was caused by sandblaster (96 dB at a distance of 15 cm) and lowest noise by stone trimmer when only turned on (61.8 dB at a distance of 2 m). There was significant differences in noise levels of the equipment's used in dental laboratories and dental learning clinics (P = 0.007). The highest noise level recorded in clinics was at pedodontic clinic (67.37 dB). Conclusions: Noise levels detected in this study were considered to be close to the limit of risk of hearing loss 85 dB. PMID:25540655
Wheel/Rail Noise and Vibration : Volume 1. Mechanics of Wheel Rail Noise Generation.
DOT National Transportation Integrated Search
1975-05-01
The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...
Intelligent switching between different noise propagation algorithms: analysis and sensitivity
DOT National Transportation Integrated Search
2012-08-10
When modeling aircraft noise on a large scale (such as an analysis of annual aircraft : operations at an airport), it is important that the noise propagation model used for the : analysis be both efficient and accurate. In this analysis, three differ...
ERIC Educational Resources Information Center
Wallace, Jennifer N.
2013-01-01
As education law evolves, educators are faced with difficult decisions regarding curriculum, prevention programs, and intervention strategies to use with their students. The use of evidence-based strategies for all academic skill areas, including reading, has become increasingly common in schools. Twenty-four 4th grade students participated in an…
Using Eye-Tracking to Measure Lexical Inferences and Its Effects on Reading Rate during EFL Reading
ERIC Educational Resources Information Center
Dolgunsöz, Emrah
2016-01-01
Inferring unknown word meanings by using contextual clues is a common strategy employed by EFL learners during reading. This study aims to (a) investigate the effect of familiarity on lexical inferences in EFL reading; (b) examine inference efficiency among EFL readers with different levels of vocabulary knowledge and reading proficiency; and (c)…
Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads.
Song, Li; Florea, Liliana
2015-01-01
Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Füllgrabe, Christian; Rosen, Stuart
2016-01-01
With the advent of cognitive hearing science, increased attention has been given to individual differences in cognitive functioning and their explanatory power in accounting for inter-listener variability in understanding speech in noise (SiN). The psychological construct that has received most interest is working memory (WM), representing the ability to simultaneously store and process information. Common lore and theoretical models assume that WM-based processes subtend speech processing in adverse perceptual conditions, such as those associated with hearing loss or background noise. Empirical evidence confirms the association between WM capacity (WMC) and SiN identification in older hearing-impaired listeners. To assess whether WMC also plays a role when listeners without hearing loss process speech in acoustically adverse conditions, we surveyed published and unpublished studies in which the Reading-Span test (a widely used measure of WMC) was administered in conjunction with a measure of SiN identification. The survey revealed little or no evidence for an association between WMC and SiN performance. We also analysed new data from 132 normal-hearing participants sampled from across the adult lifespan (18-91 years), for a relationship between Reading-Span scores and identification of matrix sentences in noise. Performance on both tasks declined with age, and correlated weakly even after controlling for the effects of age and audibility (r = 0.39, p ≤ 0.001, one-tailed). However, separate analyses for different age groups revealed that the correlation was only significant for middle-aged and older groups but not for the young (< 40 years) participants.
Kneissler, Jan; Stalph, Patrick O; Drugowitsch, Jan; Butz, Martin V
2014-01-01
It has been shown previously that the control of a robot arm can be efficiently learned using the XCSF learning classifier system, which is a nonlinear regression system based on evolutionary computation. So far, however, the predictive knowledge about how actual motor activity changes the state of the arm system has not been exploited. In this paper, we utilize the forward velocity kinematics knowledge of XCSF to alleviate the negative effect of noisy sensors for successful learning and control. We incorporate Kalman filtering for estimating successive arm positions, iteratively combining sensory readings with XCSF-based predictions of hand position changes over time. The filtered arm position is used to improve both trajectory planning and further learning of the forward velocity kinematics. We test the approach on a simulated kinematic robot arm model. The results show that the combination can improve learning and control performance significantly. However, it also shows that variance estimates of XCSF prediction may be underestimated, in which case self-delusional spiraling effects can hinder effective learning. Thus, we introduce a heuristic parameter, which can be motivated by theory, and which limits the influence of XCSF's predictions on its own further learning input. As a result, we obtain drastic improvements in noise tolerance, allowing the system to cope with more than 10 times higher noise levels.
A fast 1-D detector for imaging and time resolved SAXS experiments
NASA Astrophysics Data System (ADS)
Menk, R. H.; Arfelli, F.; Bernstorff, S.; Pontoni, D.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.
1999-02-01
A one-dimensional test detector on the principle of a highly segmented ionization chamber with shielding grid (Frisch grid) was developed to evaluate if this kind of detector is suitable for advanced small-angle X-ray scattering (SAXS) experiments. At present it consists of 128 pixels which can be read out within 0.2 ms with a noise floor of 2000 e-ENC. A quantum efficiency of 80% for a photon energy of 8 keV was achieved. This leads to DQE values of 80% for photon fluxes above 1000 photons/pixel and integration time. The shielding grid is based on the principles of the recently invented MCAT structure and the GEM structure which also allows electron amplification in the gas. In the case of the MCAT structure, an energy resolution of 20% at 5.9 keV was observed. The gas amplification mode enables imaging with this integrating detector on a subphoton noise level with respect to the integration time. Preliminary experiments of saturation behavior show that this kind of detector digests a photon flux density up to 10 12 photons/mm 2 s and operates linearly. A spatial resolution of at least three line pairs/mm was obtained. All these features show that this type of detector is well suited for time-resolved SAXS experiments as well as high flux imaging applications.
Porosev, V V; Shekhtman, L I; Zelikman, M I; Blinov, N N
2004-01-01
Theoretical and experimental research results related with the influence of correlation of signals in neighboring elements of digital X-ray receiver-transformer produced on the evaluation of the output ratio noise/signal and, as a consequence, on the evaluation of quantum registration efficiency are described in the paper.
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Higgins, Eleanor L; Raskind, Marshall H
2004-12-01
This study was conducted to assess the effectiveness of two programs developed by the Frostig Center Research Department to improve the reading and spelling of students with learning disabilities (LD): a computer Speech Recognition-based Program (SRBP) and a computer and text-based Automaticity Program (AP). Twenty-eight LD students with reading and spelling difficulties (aged 8 to 18) received each program for 17 weeks and were compared with 16 students in a contrast group who did not receive either program. After adjusting for age and IQ, both the SRBP and AP groups showed significant differences over the contrast group in improving word recognition and reading comprehension. Neither program showed significant differences over contrasts in spelling. The SRBP also improved the performance of the target group when compared with the contrast group on phonological elision and nonword reading efficiency tasks. The AP showed significant differences in all process and reading efficiency measures.
Fixed Wing Project: Technologies for Advanced Air Transports
NASA Technical Reports Server (NTRS)
Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri
2014-01-01
The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
Channel modeling, signal processing and coding for perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Wu, Zheng
With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.
Building an Experimental Setup to Characterize an H4RG-15
NASA Astrophysics Data System (ADS)
Hirata, Mickie; Hodapp, K.; Hall, Donald N. B.; Goebel, Sean B.; Jacobson, Shane M.
2018-01-01
The Teledyne Imaging Sensors H4RG-15 infrared detector is designed for the next era of extremely large telescopes. Characterization of individual H4RG-15 detectors are critical for future astronomical use. ULBcam, a former UH88 IR camera and remnant test dewar for H2RG characterization, was previously modified for H4RG-15 characterization. During the summer, this system was further upgraded with a baffle tube to a blackbody illumination source to allow controlled field illumination. This baffle tube, designed in OpenSCAD, was constructed in the IfA machine shop. Specific placements of the 50-micron aperture and scatter restrictive baffling was designed in Zemax. Four separate data sets were acquired to look into detector persistence, dark current, read noise, and charge gain. With the illumination source set at 450 K, ten ramps of 90/90 read frames were taken to pass saturation values. These tests were repeated at 500K to show results at over saturated conditions. Five ramps of 136/136 read frames were taken with a blank shutter applied. The persistence results showed expected results with signals settling from the third ramp. Dark current results showed higher than Teledyne stated values at 0.06 electrons/second, a factor of 6 higher than expected, which exposes systematic ULBcam dark testing capabilities. The read noise resulted with an expected value of 0.014 electrons. The charge gain showed 0.02 electrons/ADU where the expected value is 2 electrons/ADU. Data analysis using reference frame subtraction will be done for future work.
Eason, Sarah H.; Sabatini, John; Goldberg, Lindsay; Bruce, Kelly; Cutting, Laurie E.
2013-01-01
To further explore contextual reading rate, an important aspect of reading fluency, we examined the relationship between word reading efficiency (WRE) and contextual oral reading rate (ORR), the degree to which they overlap across different comprehension measures, whether oral language (semantics and syntax) predicts ORR beyond contributions of word-level skills, and whether the WRE–ORR relationship varies based on different reader profiles. Assessing reading and language of average readers, poor decoders, and poor comprehenders, ages 10 to 14, ORR was the strongest predictor of comprehension across various formats; WRE contributed no unique variance after taking ORR into account. Findings indicated that semantics, not syntax, contributed to ORR. Poor comprehenders performed below average on measures of ORR, despite average WRE, expanding previous findings suggesting specific weaknesses in ORR for this group. Together, findings suggest that ORR draws upon skills beyond those captured by WRE and suggests a role for oral language (semantics) in ORR. PMID:23667307
NASA Astrophysics Data System (ADS)
Yang, Zengzhang
2017-11-01
The natural lighting design in the reading spaces of university libraries not only influences physical and mental health of readers but also concerns the energy consumption of the libraries. The scientific and rational design of natural lighting is the key to the design of energy saving for physical environment of the reading space. The paper elaborates the present situation and existed problems of natural lighting in reading spaces of university libraries across Jinan region based on characteristics of light climate of Jinan region and concrete utilization of reading spaces in university libraries, and combining field measurement, survey, research and data analysis of reading spaces in Shandong Women’s University’s library. The paper, under the perspective of energy-efficiency, puts forward proposals to improve natural lighting in the reading spaces of university libraries from five aspects, such as adjustment of interior layout, optimization of outer windows design, employment of the reflector panel, design lighting windows on inner walls and utilization of adjustable sun shading facilities.
Wheel/Rail Noise and Vibration : Volume 2. Applications to Control of Wheel/Rail Noise.
DOT National Transportation Integrated Search
1975-05-01
The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...
Acoustic and aerodynamic testing of a scale model variable pitch fan
NASA Technical Reports Server (NTRS)
Jutras, R. R.; Kazin, S. B.
1974-01-01
A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.
NASA Astrophysics Data System (ADS)
Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul; Dahlin, Torleif; Auken, Esben
2016-11-01
The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. Two major limitations restrict the extraction of the spectral information of TDIP data in the field: (i) the difficulty of acquiring reliable early-time measurements in the millisecond range and (ii) the self-potential background drift in the measured potentials distorting the shape of the late-time IP responses, in the second range. Recent developments in TDIP acquisition equipment have given access to full-waveform recordings of measured potentials and transmitted current, opening for a breakthrough in data processing. For measuring at early times, we developed a new method for removing the significant noise from power lines contained in the data through a model-based approach, localizing the fundamental frequency of the power-line signal in the full-waveform IP recordings. By this, we cancel both the fundamental signal and its harmonics. Furthermore, an efficient processing scheme for identifying and removing spikes in TDIP data was developed. The noise cancellation and the de-spiking allow the use of earlier and narrower gates, down to a few milliseconds after the current turn-off. In addition, tapered windows are used in the final gating of IP data, allowing the use of wider and overlapping gates for higher noise suppression with minimal distortion of the signal. For measuring at late times, we have developed an algorithm for removal of the self-potential drift. Usually constant or linear drift-removal algorithms are used, but these algorithms often fail in removing the background potentials present when the electrodes used for potential readings are previously used for current injection, also for simple contact resistance measurements. We developed a drift-removal scheme that models the polarization effect and efficiently allows for preserving the shape of the IP responses at late times. Uncertainty estimates are essential in the inversion of IP data. Therefore, in the final step of the data processing, we estimate the data standard deviation based on the data variability within the IP gates and the misfit of the background drift removal Overall, the removal of harmonic noise, spikes, self-potential drift, tapered windowing and the uncertainty estimation allows for doubling the usable range of TDIP data to almost four decades in time (corresponding to four decades in frequency), which will significantly advance the applicability of the IP method.
5 CFR 9800.5 - Public reading room.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Public reading room. 9800.5 Section 9800.5 Administrative Personnel COUNCIL OF THE INSPECTORS GENERAL ON INTEGRITY AND EFFICIENCY FREEDOM OF INFORMATION ACT REGULATIONS § 9800.5 Public reading room. CIGIE maintains an electronic public reading room on its Web site, http://www.ignet.gov,...
5 CFR 9800.5 - Public reading room.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Public reading room. 9800.5 Section 9800.5 Administrative Personnel COUNCIL OF THE INSPECTORS GENERAL ON INTEGRITY AND EFFICIENCY FREEDOM OF INFORMATION ACT REGULATIONS § 9800.5 Public reading room. CIGIE maintains an electronic public reading room on its Web site, http://www.ignet.gov,...
How To Read Faster. Power of the Printed Word.
ERIC Educational Resources Information Center
Cosby, Bill
Three practical ways to get the meaning from printed words quickly and efficiently are: (1) previewing; (2) skimming; and (3) clustering. Previewing and skimming are ways of getting through a lot of reading material without reading every word. Previewing is especially helpful for heavy reading like long articles, business reports, and nonfiction…
Reading Efficiency of Deaf and Hearing People in Spanish
ERIC Educational Resources Information Center
Moreno-Pérez, Francisco J.; Saldaña, David; Rodríguez-Ortiz, Isabel R.
2015-01-01
Different studies have showed poor reading performance in the deaf compared to the hearing population. This has overshadowed the fact that a minority of deaf children learns to read successfully and reaches levels similar to their hearing peers. We analyze whether deaf people deploy the same cognitive and learning processes in reading as their…
Read buffer optimizations to support compiler-assisted multiple instruction retry
NASA Technical Reports Server (NTRS)
Alewine, N. J.; Fuchs, W. K.; Hwu, W. M.
1993-01-01
Multiple instruction retry is a recovery mechanism for transient processor faults. We previously developed a compiler-assisted approach to multiple instruction ferry in which a read buffer of size 2N (where N represents the maximum instruction rollback distance) was used to resolve some data hazards while the compiler resolved the remaining hazards. The compiler-assisted scheme was shown to reduce the performance overhead and/or hardware complexity normally associated with hardware-only retry schemes. This paper examines the size and design of the read buffer. We establish a practical lower bound and average size requirement for the read buffer by modifying the scheme to save only the data required for rollback. The study measures the effect on the performance of a DECstation 3100 running ten application programs using six read buffer configurations with varying read buffer sizes. Two alternative configurations are shown to be the most efficient and differed depending on whether split-cycle-saves are assumed. Up to a 55 percent read buffer size reduction is achievable with an average reduction of 39 percent given the most efficient read buffer configuration and a variety of applications.
Cavalli, Eddy; Colé, Pascale; Leloup, Gilles; Poracchia-George, Florence; Sprenger-Charolles, Liliane; El Ahmadi, Abdessadek
Developmental dyslexia is a lifelong impairment affecting 5% to 10% of the population. In French-speaking countries, although a number of standardized tests for dyslexia in children are available, tools suitable to screen for dyslexia in adults are lacking. In this study, we administered the Alouette reading test to a normative sample of 164 French university students without dyslexia and a validation sample of 83 students with dyslexia. The Alouette reading test is designed to screen for dyslexia in children, since it taps skills that are typically deficient in dyslexia (i.e., phonological skills). However, the test's psychometric properties have not previously been available, and it is not standardized for adults. The results showed that, on the Alouette test, dyslexic readers were impaired on measures of accuracy, speed, and efficiency (accuracy/reading time). We also found significant correlations between the Alouette reading efficiency and phonological efficiency scores. Finally, in terms of the Alouette test, speed-accuracy trade-offs were found in both groups, and optimal cutoff scores were determined with receiver operator characteristic curves analysis, yielding excellent discriminatory power, with 83.1% sensitivity and 100% specificity for reading efficiency. Thus, this study supports the Alouette test as a sensitive and specific screening tool for adults with dyslexia.
The design and research of anti-color-noise chaos M-ary communication system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yongqing, E-mail: fuyongqing@hrbeu.edu.cn; Li, Xingyuan; Li, Yanan
Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructingmore » anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.« less
Noise Modeling From Conductive Shields Using Kirchhoff Equations.
Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J
2010-10-09
Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.
ERIC Educational Resources Information Center
Woodall, Billy
2010-01-01
This study investigated the effects of simultaneously reading and listening to the same text on comprehension and fluency gains for basic-level English language learners at a university in Puerto Rico. The quiz scores and fluency rates of two English lab groups (n = 69) who read and listened to E. B. White's novel "Charlotte's Web" were…
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa
2015-08-01
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.
An unsteady aerodynamic formulation for efficient rotor tonal noise prediction
NASA Astrophysics Data System (ADS)
Gennaretti, M.; Testa, C.; Bernardini, G.
2013-12-01
An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.
Takashima, Atsuko; Hulzink, Iris; Wagensveld, Barbara; Verhoeven, Ludo
2016-08-01
Printed text can be decoded by utilizing different processing routes depending on the familiarity of the script. A predominant use of word-level decoding strategies can be expected in the case of a familiar script, and an almost exclusive use of letter-level decoding strategies for unfamiliar scripts. Behavioural studies have revealed that frequently occurring words are read more efficiently, suggesting that these words are read in a more holistic way at the word-level, than infrequent and unfamiliar words. To test whether repeated exposure to specific letter combinations leads to holistic reading, we monitored both behavioural and neural responses during novel script decoding and examined changes related to repeated exposure. We trained a group of Dutch university students to decode pseudowords written in an unfamiliar script, i.e., Korean Hangul characters. We compared behavioural and neural responses to pronouncing trained versus untrained two-character pseudowords (equivalent to two-syllable pseudowords). We tested once shortly after the initial training and again after a four days' delay that included another training session. We found that trained pseudowords were pronounced faster and more accurately than novel combinations of radicals (equivalent to letters). Imaging data revealed that pronunciation of trained pseudowords engaged the posterior temporo-parietal region, and engagement of this network was predictive of reading efficiency a month later. The results imply that repeated exposure to specific combinations of graphemes can lead to emergence of holistic representations that result in efficient reading. Furthermore, inter-individual differences revealed that good learners retained efficiency more than bad learners one month later. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thanh, Vo Hong; Marchetti, Luca; Reali, Federico; Priami, Corrado
2018-02-01
The stochastic simulation algorithm (SSA) has been widely used for simulating biochemical reaction networks. SSA is able to capture the inherently intrinsic noise of the biological system, which is due to the discreteness of species population and to the randomness of their reciprocal interactions. However, SSA does not consider other sources of heterogeneity in biochemical reaction systems, which are referred to as extrinsic noise. Here, we extend two simulation approaches, namely, the integration-based method and the rejection-based method, to take extrinsic noise into account by allowing the reaction propensities to vary in time and state dependent manner. For both methods, new efficient implementations are introduced and their efficiency and applicability to biological models are investigated. Our numerical results suggest that the rejection-based method performs better than the integration-based method when the extrinsic noise is considered.
Military aircrew and noise-induced hearing loss: prevention and management.
Rajguru, Renu
2013-12-01
Modern-day high performance aircraft are more powerful, more efficient, and, unfortunately, frequently produce high noise levels, resulting in noise-induced hearing loss (NIHL) in military aircrew. Military pilots are required to perform many flight duties correctly in the midst of many challenges that may affect mission completion as well as aircraft and aircrew safety. NIHL can interfere with successful mission completion. NIHL may also require aircrew to be downgraded from flying duties, with the incumbent re-training costs for downgraded personnel and training costs for new/replacement aircrew. As it is not possible to control the source of the noise without compromising the efficiency of the engine and aircraft, protecting the aircrew from hazards of excessive noise and treating NIHL are of extreme importance. In this article we discuss various personal hearing protection devices and their efficacy, and pharmacological agents for prevention and management of NIHL.
76 FR 60961 - Approval of Noise Compatibility Program; Kissimmee Gateway Airport, Kissimmee, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... Aviation Safety and Noise Abatement Act, hereinafter referred to as ``the Act'') and 14 CFR part 150. These... the program without derogating safety, adversely affecting the efficient use and management of the... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Approval of Noise Compatibility...
The development of cortical sensitivity to visual word forms.
Ben-Shachar, Michal; Dougherty, Robert F; Deutsch, Gayle K; Wandell, Brian A
2011-09-01
The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous group of children, initially 7-12 years old. The results show age-related increase in children's cortical sensitivity to word visibility in posterior left occipito-temporal sulcus (LOTS), nearby the anatomical location of the visual word form area. Moreover, the rate of increase in LOTS word sensitivity specifically correlates with the rate of improvement in sight word efficiency, a measure of speeded overt word reading. Other cortical regions, including V1, posterior parietal cortex, and the right homologue of LOTS, did not demonstrate such developmental changes. These results provide developmental support for the hypothesis that LOTS is part of the cortical circuitry that extracts visual word forms quickly and efficiently and highlight the importance of developing cortical sensitivity to word visibility in reading acquisition.
The Development of Cortical Sensitivity to Visual Word Forms
Ben-Shachar, Michal; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.
2011-01-01
The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous group of children, initially 7–12 years old. The results show age-related increase in children's cortical sensitivity to word visibility in posterior left occipito-temporal sulcus (LOTS), nearby the anatomical location of the visual word form area. Moreover, the rate of increase in LOTS word sensitivity specifically correlates with the rate of improvement in sight word efficiency, a measure of speeded overt word reading. Other cortical regions, including V1, posterior parietal cortex, and the right homologue of LOTS, did not demonstrate such developmental changes. These results provide developmental support for the hypothesis that LOTS is part of the cortical circuitry that extracts visual word forms quickly and efficiently and highlight the importance of developing cortical sensitivity to word visibility in reading acquisition. PMID:21261451
Völkel, Gabriela; Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul
2016-01-01
The current study constituted part of a larger, longitudinal, South African-based study, namely, The Road and Aircraft Noise Exposure on Children’s Cognition and Health (RANCH—South Africa). In the context of a multicultural South Africa and varying demographic variables thereof, this study sought to investigate and describe the effects of gender, socioeconomic status and home language on primary school children’s reading comprehension in KwaZulu-Natal. In total, 834 learners across 5 public schools in the KwaZulu-Natal province participated in the study. A biographical questionnaire was used to obtain biographical data relevant to this study, and the Suffolk Reading Scale 2 (SRS2) was used to obtain reading comprehension scores. The findings revealed that there was no statistical difference between males and females on reading comprehension scores. In terms of socioeconomic status (SES), learners from a low socioeconomic background performed significantly better than those from a high socioeconomic background. English as a First Language (EL1) speakers had a higher mean reading comprehension score than speakers who spoke English as an Additional Language (EAL). Reading comprehension is indeed affected by a variety of variables, most notably that of language proficiency. The tool to measure reading comprehension needs to be standardized and administered in more than one language, which will ensure increased reliability and validity of reading comprehension scores. PMID:26999169
Völkel, Gabriela; Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul
2016-03-15
The current study constituted part of a larger, longitudinal, South African-based study, namely, The Road and Aircraft Noise Exposure on Children's Cognition and Health (RANCH-South Africa). In the context of a multicultural South Africa and varying demographic variables thereof, this study sought to investigate and describe the effects of gender, socioeconomic status and home language on primary school children's reading comprehension in KwaZulu-Natal. In total, 834 learners across 5 public schools in the KwaZulu-Natal province participated in the study. A biographical questionnaire was used to obtain biographical data relevant to this study, and the Suffolk Reading Scale 2 (SRS2) was used to obtain reading comprehension scores. The findings revealed that there was no statistical difference between males and females on reading comprehension scores. In terms of socioeconomic status (SES), learners from a low socioeconomic background performed significantly better than those from a high socioeconomic background. English as a First Language (EL1) speakers had a higher mean reading comprehension score than speakers who spoke English as an Additional Language (EAL). Reading comprehension is indeed affected by a variety of variables, most notably that of language proficiency. The tool to measure reading comprehension needs to be standardized and administered in more than one language, which will ensure increased reliability and validity of reading comprehension scores.
TFaNS Tone Fan Noise Design/Prediction System. Volume 2; User's Manual; 1.4
NASA Technical Reports Server (NTRS)
Topol, David A.; Eversman, Walter
1999-01-01
TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Lewis (presently NASA Glenn). The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. These effects have been added to an existing annular duct/isolated stator noise prediction capability. TFaNS consists of: the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and write them to files. CUP3D: Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions. AWAKEN: CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so it can be used by the system. This volume of the report provides information on code input and file structure essential for potential users of TFANS. This report is divided into three volumes: Volume 1. System Description, CUP3D Technical Documentation, and Manual for Code Developers; Volume 2. User's Manual, TFANS Vers. 1.4; Volume 3. Evaluation of System Codes.
TFaNS Tone Fan Noise Design/Prediction System. Volume 3; Evaluation of System Codes
NASA Technical Reports Server (NTRS)
Topol, David A.
1999-01-01
TFANS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Lewis (presently NASA Glenn). The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. These effects have been added to an existing annular duct/isolated stator noise prediction capability. TFANS consists of: The codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and write them to files. Cup3D: Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions. AWAKEN: CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so it can be used by the system. This volume of the report evaluates TFANS versus full-scale and ADP 22" fig data using the semi-empirical wake modelling in the system. This report is divided into three volumes: Volume 1: System Description, CUP3D Technical Documentation, and Manual for Code Developers; Volume II: User's Manual, TFANS Version 1.4; Volume III: Evaluation of System Codes.
Comparison of community reactions to traffic noise
NASA Astrophysics Data System (ADS)
Osada, Y.
1991-12-01
In 1989, the community reaction to aircraft noise was surveyed around the New Tokyo International Airport (Narita Airport) by means of an interview method. The questionnaire used in the survey was a modified version of a question sheet used in a study around Yokota Airbase in 1971. The results of these two surveys were compared. The response to questions on interference with conversation, talking on the telephone and listening to TV and radio was quite similar in the two studies. However, some differences were observed in the rates of interference with night sleep and reading and/or concentrating. This may be caused by differences between the two studies in aircraft flight patterns and occupations of the respondents. Such tendencies were also observed when the Narita survey was compared with other studies conducted around the airports of Yokota, Haneda, Chitose, Osaka, Fukuoka and Miyazaki. Finally, the community reaction to aircraft noise was compared with the reaction to road traffic noise and train noise. The rates of annoyance and speech interference were highly dependent on noise levels. Other relevant factors, such as sex, age, year of residence, occupation, etc., had much weaker relations to the extent of reactions.
Ikuta, Rikizo; Nozaki, Shota; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2017-07-06
Embedding a quantum state in a decoherence-free subspace (DFS) formed by multiple photons is one of the promising methods for robust entanglement distribution of photonic states over collective noisy channels. In practice, however, such a scheme suffers from a low efficiency proportional to transmittance of the channel to the power of the number of photons forming the DFS. The use of a counter-propagating coherent pulse can improve the efficiency to scale linearly in the channel transmission, but it achieves only protection against phase noises. Recently, it was theoretically proposed [Phys. Rev. A 87, 052325(2013)] that the protection against bit-flip noises can also be achieved if the channel has a reciprocal property. Here we experimentally demonstrate the proposed scheme to distribute polarization-entangled photon pairs against a general collective noise including the bit flip noise and the phase noise. We observed an efficient sharing rate scaling while keeping a high quality of the distributed entangled state. Furthermore, we show that the method is applicable not only to the entanglement distribution but also to the transmission of arbitrary polarization states of a single photon.
Efficient Learning for the Poor: New Insights into Literacy Acquisition for Children
NASA Astrophysics Data System (ADS)
Abadzi, Helen
2008-11-01
Reading depends on the speed of visual recognition and capacity of short-term memory. To understand a sentence, the mind must read it fast enough to capture it within the limits of the short-term memory. This means that children must attain a minimum speed of fairly accurate reading to understand a passage. Learning to read involves "tricking" the brain into perceiving groups of letters as coherent words. This is achieved most efficiently by pairing small units consistently with sounds rather than learning entire words. To link the letters with sounds, explicit and extensive practice is needed; the more complex the spelling of a language, the more practice is necessary. However, schools of low-income students often waste instructional time and lack reading resources, so students cannot get sufficient practice to automatize reading and may remain illiterate for years. Lack of reading fluency in the early grades creates inefficiencies that affect the entire educational system. Neurocognitive research on reading points to benchmarks and monitoring indicators. All students should attain reading speeds of 45-60 words per minute by the end of grade 2 and 120-150 words per minute for grades 6-8.
A Low Fidelity Simulation To Examine The Design Space For An Expendable Active Decoy
2017-12-01
Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N ...discussed in Aircraft Model Section III.E), and read the associated integration improvement factor off the left side of Figure 10. b p b s f n ...V0 is the root mean squared noise level. 2 2 0 2 2 0 V V N V p V e V (18) The probability density function for Gaussian noise is
DNA base-calling from a nanopore using a Viterbi algorithm.
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-05-16
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Electric motor/controller design tradeoffs for noise, weight, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, N.L.; Brown, G.W.
1994-12-31
It is common for an AUV [Autonomous Underwater Vehicle] designer to be put in the position of a subsystem hardware integrator. In the case of electric motors and controllers this may be more by necessity than choice because a suitable subsystems supplier cannot be found. As a result, motors and controllers are purchased from various manufacturers who may optimize the design of each part but hold system performance secondary in importance. Unlike hydraulics, an electric motor/controller system presents significant opportunities to improve noise, weight, and efficiency. But, these opportunities can best be recognized by a single source who not onlymore » understands the technology but has the ability to implement them in the development and manufacture of the product. An analysis is presented which explains the various design considerations of noise, weight and efficiency of electric motors and controllers for submersible AUV`s. In concert with the design considerations, their interrelationships are discussed as to how they affect each other in the overall optimization of the system. In conclusion, a matrix is created which shows how the resultant system parameters of noise, weight, and efficiency may be ``traded off`` to tailor the best overall system for the application. 1 ref.« less
NASA Technical Reports Server (NTRS)
Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.
2012-01-01
An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.
Kermani, Mojtaba; Verghese, Ashika; Vidyasagar, Trichur R
2018-02-01
A major controversy regarding dyslexia is whether any of the many visual and phonological deficits found to be correlated with reading difficulty cause the impairment or result from the reduced amount of reading done by dyslexics. We studied this question by comparing a visual capacity in the left and right visual hemifields in people habitually reading scripts written right-to-left or left-to-right. Selective visual attention is necessary for efficient visual search and also for the sequential recognition of letters in words. Because such attentional allocation during reading depends on the direction in which one is reading, asymmetries in search efficiency may reflect biases arising from the habitual direction of reading. We studied this by examining search performance in three cohorts: (a) left-to-right readers who read English fluently; (b) right-to-left readers fluent in reading Farsi but not any left-to-right script; and (c) bilingual readers fluent in English and in Farsi, Arabic, or Hebrew. Left-to-right readers showed better search performance in the right hemifield and right-to-left readers in the left hemifield, but bilingual readers showed no such asymmetries. Thus, reading experience biases search performance in the direction of reading, which has implications for the cause and effect relationships between reading and cognitive functions. Copyright © 2017 John Wiley & Sons, Ltd.
Handbook for industrial noise control
NASA Technical Reports Server (NTRS)
1981-01-01
The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.
Handbook for industrial noise control
NASA Astrophysics Data System (ADS)
The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.
TFaNS-Tone Fan Noise Design/Prediction System: Users' Manual TFaNS Version 1.5
NASA Technical Reports Server (NTRS)
Topol, David A.; Huff, Dennis L. (Technical Monitor)
2003-01-01
TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Glenn. The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. The first version of this design system was developed under a previous NASA contract. Several improvements have been made to TFaNS. This users' manual shows how to run this new system. TFaNS consists of the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and writes them to files, CUP3D Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions, and AWAKEN CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so they can be used by the system. This report provides information on code input and file structure essential for potential users of TFaNS.
Comparison of two optimized readout chains for low light CIS
NASA Astrophysics Data System (ADS)
Boukhayma, A.; Peizerat, A.; Dupret, A.; Enz, C.
2014-03-01
We compare the noise performance of two optimized readout chains that are based on 4T pixels and featuring the same bandwidth of 265kHz (enough to read 1Megapixel with 50frame/s). Both chains contain a 4T pixel, a column amplifier and a single slope analog-to-digital converter operating a CDS. In one case, the pixel operates in source follower configuration, and in common source configuration in the other case. Based on analytical noise calculation of both readout chains, an optimization methodology is presented. Analytical results are confirmed by transient simulations using 130nm process. A total input referred noise bellow 0.4 electrons RMS is reached for a simulated conversion gain of 160μV/e-. Both optimized readout chains show the same input referred 1/f noise. The common source based readout chain shows better performance for thermal noise and requires smaller silicon area. We discuss the possible drawbacks of the common source configuration and provide the reader with a comparative table between the two readout chains. The table contains several variants (column amplifier gain, in-pixel transistor sizes and type).
León-Montiel, Roberto de J; Quiroz-Juárez, Mario A; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L
2015-11-27
Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.
Does Anthropogenic Noise in National Parks Impair Memory?
ERIC Educational Resources Information Center
Benfield, Jacob A.; Bell, Paul A.; Troup, Lucy J.; Soderstrom, Nick
2010-01-01
Research on noise shows that a variety of effects including stress, annoyance, and performance decrements exist for certain types of sounds. Noise interferes with cognitive ability by overloading the attentional system or simply distracting from efficient encoding or rehearsal, but very little research has extended those findings to recreation or…
Effects of Road Traffic Noise on Inhabitants of Tokyo
NASA Astrophysics Data System (ADS)
Yoshida, T.; Osada, Y.; Kawaguchi, T.; Hoshiyama, Y.; Yoshida, K.; Yamamoto, K.
1997-08-01
A questionnaire-based study was performed in an area of about 16 ha near a main road in Tokyo to elucidate any relations between road traffic noise and the effects of this noise among women living on both sides of the road. Questions concerned annoyance, sleep disturbance, interference with daily activities, health-related symptoms and disease histories. 366 inhabitants were analyzed. Dose-response relationships were found in high reported responses to noisiness, annoyance, dissatisfaction with the nearby environment and interference with listening to TV, conversation and reading. It was also found that the number of high responses to questions increases clearly at noise levels above 70 dB(A),Leq(24h), with regard to interference with thinking and sleep disturbance (waking during the night), fatigue, headache, gastroenteric disorders, loss of appetite, depression and irritation. Furthermore, there was an increase in reports of disease histories with noise above 70 dB(A) for climacteric disturbances, and at noise above 65 dB(A) for deafness, heart disease and hypercholestrolemia. These all suggest that noise may be related to the health status of inhabitants living in areas with heavy road traffic. A noise level of 65 dB(A) or 70 dB(A) inLeq(24h)was the critical point above which respondents indicated increased effects on health and reports of disease increased.
Yuan, Samuel W.; Rottmayer, Robert Earl; Carey, Matthew J.
1999-01-01
A compact read/write head having a biased giant magnetoresistive sensor. Permanent magnet films are placed adjacent to the giant magnetoresistive sensor operating in the current-perpendicular-to the-plane (Cpp) mode and spaced with respect to the sensor by conducting films. These permanent magnet films provide a magnetic bias. The bias field is substantial and fairly uniform across sensor height. Biasing of the giant magnetoresistive sensor provides distinguishable response to the rising and falling edges of a recorded pulse on an adjacent recording medium, improves the linearity of the response, and helps to reduce noise. This read/write head is much simpler to fabricate and pattern and provides an enhanced uniformity of the bias field throughout the sensor.
Operation and performance of new NIR detectors from SELEX
NASA Astrophysics Data System (ADS)
Atkinson, D.; Bezawada, N.; Hipwood, L. G.; Shorrocks, N.; Milne, H.
2012-07-01
The European Space Agency (ESA) has funded SELEX Galileo, Southampton, UK to develop large format near infrared (NIR) detectors for its future space and ground based programmes. The UKATC has worked in collaboration with SELEX Galileo to test and characterise the new detectors produced during phase-1 of the development. In order to demonstrate the detector material performance, the HgCdTe (MCT) detector diodes (grown on GaAs substrate through MOVPE process in small 320×256, 24μm pixel format) are hybridised to the existing SELEX Galileo SWALLOW CMOS readout chip. The substrate removed and MCT thinned detector arrays were then tested and evaluated at the UKATC following screening tests at SELEX. This paper briefly describes the test setup, the operational aspects of the readout multiplexer and presents the performance parameters of the detector arrays including: conversion gain, detector dark current, read noise, linearity, quantum efficiency and persistence for various detector temperatures between 80K and 140K.
Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources
NASA Astrophysics Data System (ADS)
Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.
2018-05-01
Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.
Design of a 40-nm CMOS integrated on-chip oscilloscope for 5-50 GHz spin wave characterization
NASA Astrophysics Data System (ADS)
Egel, Eugen; Csaba, György; Dietz, Andreas; Breitkreutz-von Gamm, Stephan; Russer, Johannes; Russer, Peter; Kreupl, Franz; Becherer, Markus
2018-05-01
Spin wave (SW) devices are receiving growing attention in research as a strong candidate for low power applications in the beyond-CMOS era. All SW applications would require an efficient, low power, on-chip read-out circuitry. Thus, we provide a concept for an on-chip oscilloscope (OCO) allowing parallel detection of the SWs at different frequencies. The readout system is designed in 40-nm CMOS technology and is capable of SW device characterization. First, the SWs are picked up by near field loop antennas, placed below yttrium iron garnet (YIG) film, and amplified by a low noise amplifier (LNA). Second, a mixer down-converts the radio frequency (RF) signal of 5 - 50 GHz to lower intermediate frequencies (IF) around 10 - 50 MHz. Finally, the IF signal can be digitized and analyzed regarding the frequency, amplitude and phase variation of the SWs. The power consumption and chip area of the whole OCO are estimated to 166.4 mW and 1.31 mm2, respectively.
Parallel object-oriented, denoising system using wavelet multiresolution analysis
Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.
2005-04-12
The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.
The impact of workload on the ability to localize audible alarms.
Edworthy, Judy; Reid, Scott; Peel, Katie; Lock, Samantha; Williams, Jessica; Newbury, Chloe; Foster, Joseph; Farrington, Martin
2018-10-01
Very little is known about people's ability to localize sound under varying workload conditions, though it would be expected that increasing workload should degrade performance. A set of eight auditory clinical alarms already known to have relatively high localizability (the ease with which their location is identified) when tested alone were tested in six conditions where workload was varied. Participants were required to indicate the location of a series of alarms emanating at random from one of eight speaker locations. Additionally, they were asked to read, carry out mental arithmetic tasks, be exposed to typical ICU noise, or carry out either the reading task or the mental arithmetic task in ICU noise. Performance in the localizability task was best in the control condition (no secondary task) and worst in those tasks which involved both a secondary task and noise. The data does therefore demonstrate the typical pattern of increasing workload affecting a primary task in an area where there is little data. In addition, the data demonstrates that performance in the control condition results in a missed alarm on one in ten occurrences, whereas performance in the heaviest workload conditions results in a missed alarm on every fourth occurrence. This finding has implications for the understanding of both 'inattentional deafness' and 'alarm fatigue' in clinical environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluating effectiveness of dynamic soundfield system in the classroom.
da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino
2016-01-01
Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students' academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants' experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students' academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness.
Baldwin, Alex S.; Baker, Daniel H.; Hess, Robert F.
2016-01-01
The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system’s input has on its output one can estimate the variance of this internal noise. By applying this simple “linear amplifier” model to the human visual system, one can entirely explain an observer’s detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system’s internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies. PMID:26953796
Baldwin, Alex S; Baker, Daniel H; Hess, Robert F
2016-01-01
The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.
SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out
NASA Astrophysics Data System (ADS)
Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm
2014-03-01
Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Yokota, Hajime; Goto, Mariko; Bamba, Chisa; Kiba, Maki; Yamada, Kei
2017-05-01
To assess whether alterations in the type of duty assignment system can affect the reading efficiency and stress level of diagnostic radiologists. Fourteen board-certified diagnostic radiologists were enrolled. We investigated three different reading systems for 1 week each. System 1 is our default, in which there are no assigned duties and everyone finishes when all cases are done. In system 2, two late shift readers are assigned every day, and, after everyone else leaves at a fixed time (5:30 p.m.), they take all remaining cases until they are finished. In system 3, a dedicated single reader is assigned to finish 30 cases, and everyone else will read all remaining cases. The total time required for reading and the number of cases read were recorded. In addition, participants completed two questionnaires regarding work-related stress. There was a trend toward shorter finishing time in system 2 and 3 compared to system 1 (P = 0.072 and 0.012). In terms of working stress, the subjective burden was lighter when systems 2 or 3 were employed. Minor modification of the duty assignment system has the potential to improve working efficiency and may reduce the work-related stress of diagnostic radiologists.
Linear-time general decoding algorithm for the surface code
NASA Astrophysics Data System (ADS)
Darmawan, Andrew S.; Poulin, David
2018-05-01
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
Spectral analysis of fundamental signal and noise performances in photoconductors for mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse
2012-05-15
Purpose: This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI{sub 2}, PbI{sub 2}, PbO, and TlBr, for x-ray spectra typically used in mammography. Methods: It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). Results: The quantummore » efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI{sub 2}, PbI{sub 2}, and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm{sup -2}, a-Se, HgI{sub 2}, and PbI{sub 2} provide similar DQE values to PbO and TlBr. Conclusions: The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.« less
Comparison of the Efficiency of Two Flashcard Drill Methods on Children's Reading Performance
ERIC Educational Resources Information Center
Joseph, Laurice; Eveleigh, Elisha; Konrad, Moira; Neef, Nancy; Volpe, Robert
2012-01-01
The purpose of this study was to extend prior flashcard drill and practice research by holding instructional time constant and allowing learning trials to vary. Specifically, the authors aimed to determine whether an incremental rehearsal method or a traditional drill and practice method was most efficient in helping 5 first-grade children read,…
ERIC Educational Resources Information Center
Chappie, David Alexander
The primary problem was concerned with the uses of hypnosis and waking suggestions as means of improving reading efficiency. A second problem concerned rectifying research design inadequacies related to hypnosis experiments. The procedure used pretest scores secured for rate, comprehension, and vocabulary. Subjects were placed in experimental and…
CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking
NASA Astrophysics Data System (ADS)
Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.
2017-12-01
We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.
NASA Astrophysics Data System (ADS)
Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian
2017-11-01
A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.
Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.
Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio
2017-10-06
Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.
Clarissa Spoken Dialogue System for Procedure Reading and Navigation
NASA Technical Reports Server (NTRS)
Hieronymus, James; Dowding, John
2004-01-01
Speech is the most natural modality for humans use to communicate with other people, agents and complex systems. A spoken dialogue system must be robust to noise and able to mimic human conversational behavior, like correcting misunderstandings, answering simple questions about the task and understanding most well formed inquiries or commands. The system aims to understand the meaning of the human utterance, and if it does not, then it discards the utterance as being meant for someone else. The first operational system is Clarissa, a conversational procedure reader and navigator, which will be used in a System Development Test Objective (SDTO) on the International Space Station (ISS) during Expedition 10. In the present environment one astronaut reads the procedure on a Manual Procedure Viewer (MPV) or paper, and has to stop to read or turn pages, shifting focus from the task. Clarissa is designed to read and navigate ISS procedures entirely with speech, while the astronaut has his eyes and hands engaged in performing the task. The system also provides an MPV like graphical interface so the procedure can be read visually. A demo of the system will be given.
Babisch, Wolfgang; Wolf, Kathrin; Petz, Markus; Heinrich, Joachim; Cyrys, Josef; Peters, Annette
2014-05-01
Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. The association between traffic noise (road and rail) and the prevalence of hypertension was assessed in two study populations with a total of 4,166 participants 25-74 years of age. Traffic noise (weighted day-night average noise level; LDN) at the facade of the dwellings was derived from noise maps. Annual average PM2.5 mass concentrations at residential addresses were estimated by land-use regression. Hypertension was assessed by blood pressure readings, self-reported doctor-diagnosed hypertension, and antihypertensive drug intake. In the Greater Augsburg, Germany, study population, traffic noise and air pollution were not associated with hypertension. In the City of Augsburg population (n = 1,893), where the exposure assessment was more detailed, the adjusted odds ratio (OR) for a 10-dB(A) increase in noise was 1.16 (95% CI: 1.00, 1.35), and 1.11 (95% CI: 0.94, 1.30) after additional adjustment for PM2.5. The adjusted OR for a 1-μg/m3 increase in PM2.5 was 1.15 (95% CI: 1.02, 1.30), and 1.11 (95% CI: 0.98, 1.27) after additional adjustment for noise. For isolated systolic hypertension, the fully adjusted OR for noise was 1.43 (95% CI: 1.10, 1.86) and for PM2.5 was 1.08 (95% CI: 0.87, 1.34). Traffic noise and PM2.5 were both associated with a higher prevalence of hypertension. Mutually adjusted associations with hypertension were positive but no longer statistically significant.
Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N
2016-01-01
Previous work has shown that individuals with lower working memory demonstrate reduced intelligibility for speech processed with fast-acting compression amplification. This relationship has been noted in fluctuating noise, but the extent of noise modulation that must be present to elicit such an effect is unknown. This study expanded on previous study by exploring the effect of background noise modulations in relation to compression speed and working memory ability, using a range of signal to noise ratios. Twenty-six older participants between ages 61 and 90 years were grouped by high or low working memory according to their performance on a reading span test. Speech intelligibility was measured for low-context sentences presented in background noise, where the noise varied in the extent of amplitude modulation. Simulated fast- or slow-acting compression amplification combined with individual frequency-gain shaping was applied to compensate for the individual's hearing loss. Better speech intelligibility scores were observed for participants with high working memory when fast compression was applied than when slow compression was applied. The low working memory group behaved in the opposite way and performed better under slow compression compared with fast compression. There was also a significant effect of the extent of amplitude modulation in the background noise, such that the magnitude of the score difference (fast versus slow compression) depended on the number of talkers in the background noise. The presented signal to noise ratios were not a significant factor on the measured intelligibility performance. In agreement with earlier research, high working memory allowed better speech intelligibility when fast compression was applied in modulated background noise. In the present experiment, that effect was present regardless of the extent of background noise modulation.
NASA Astrophysics Data System (ADS)
Vinogradov, Vasiliy Yu.; Morozov, Oleg G.; Morozov, Gennady A.; Sakhabutdinov, Airat Zh.; Nureev, Ilnur I.; Kuznetsov, Artem A.; Faskhutdinov, Lenar M.; Sarvarova, Lutsia M.
2017-04-01
In this paper, we consider a number of different methods that form the modern approach to the development of aircraft GTE's noise suppression systems at service conditions. The herein-presented efficient noise suppression system on the base of fiber optic sensors makes it possible to reduce pulsations at the exhaust nozzle exit and noise levels at the engine outlet section.
Boudaoud, Mokrane; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe
2012-01-01
The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.
Open Rotor Aeroacoustic Modeling
NASA Technical Reports Server (NTRS)
Envia, Edmane
2012-01-01
Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.
Open Rotor Aeroacoustic Modelling
NASA Technical Reports Server (NTRS)
Envia, Edmane
2012-01-01
Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.
Egge, Elianne; Bittner, Lucie; Andersen, Tom; Audic, Stéphane; de Vargas, Colomban; Edvardsen, Bente
2013-01-01
Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000–20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs) at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing. PMID:24069303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Zeng, G. L.
2006-09-15
A rotating slat collimator can be used to acquire planar-integral data. It achieves higher geometric efficiency than a parallel-hole collimator by accepting more photons, but the planar-integral data contain less tomographic information that may result in larger noise amplification in the reconstruction. Lodge evaluated the rotating slat system and the parallel-hole system based on noise behavior for an FBP reconstruction. Here, we evaluate the noise propagation properties of the two collimation systems for iterative reconstruction. We extend Huesman's noise propagation analysis of the line-integral system to the planar-integral case, and show that approximately 2.0(D/dp) SPECT angles, 2.5(D/dp) self-spinning angles atmore » each detector position, and a 0.5dp detector sampling interval are required in order for the planar-integral data to be efficiently utilized. Here, D is the diameter of the object and dp is the linear dimension of the voxels that subdivide the object. The noise propagation behaviors of the two systems are then compared based on a least-square reconstruction using the ratio of the SNR in the image reconstructed using a planar-integral system to that reconstructed using a line-integral system. The ratio is found to be proportional to {radical}(F/D), where F is a geometric efficiency factor. This result has been verified by computer simulations. It confirms that for an iterative reconstruction, the noise tradeoff of the two systems is not only dependent on the increase of the geometric efficiency afforded by the planar projection method, but also dependent on the size of the object. The planar-integral system works better for small objects, while the line-integral system performs better for large ones. This result is consistent with Lodge's results based on the FBP method.« less
Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A
2015-01-01
Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204
Supersonic jet noise and the high speed civil transport
NASA Astrophysics Data System (ADS)
Seiner, John M.; Krejsa, Eugene A.
1989-07-01
An evaluation is made of the comparative advantages of prospective SST engine noise-suppression systems, with a view to their effectiveness in meeting the federally-mandated community noise standards of FAR 36 Stage III. A noise-suppression system must be capable of removing at least 4 EPNdB of noise percent thrust loss at takeoff. While none of the suppressors presently discussed is capable of meeting this goal, the inverted velocity profile/annular convergent-divergent plug/acoustically-treated ejector suppressor combination of configurational elements appears to represent the most efficient noise-control apparatus. Noncircular cross-section nozzle geometries also furnish a general noise reduction advantage over circular ones.
Predicting reading outcomes with progress monitoring slopes among middle grade students
Tolar, Tammy D.; Barth, Amy E.; Fletcher, Jack M.; Francis, David J.; Vaughn, Sharon
2013-01-01
Effective implementation of response-to-intervention (RTI) frameworks depends on efficient tools for monitoring progress. Evaluations of growth (i.e., slope) may be less efficient than evaluations of status at a single time point, especially if slopes do not add to predictions of outcomes over status. We examined progress monitoring slope validity for predicting reading outcomes among middle school students by evaluating latent growth models for different progress monitoring measure-outcome combinations. We used multi-group modeling to evaluate the effects of reading ability, reading intervention, and progress monitoring administration condition on slope validity. Slope validity was greatest when progress monitoring was aligned with the outcome (i.e., word reading fluency slope was used to predict fluency outcomes in contrast to comprehension outcomes), but effects varied across administration conditions (viz., repeated reading of familiar vs. novel passages). Unless the progress monitoring measure is highly aligned with outcome, slope may be an inefficient method for evaluating progress in an RTI context. PMID:24659899
X-ray Hybrid CMOS Detectors : Recent progress in development and characterization
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.
2017-08-01
PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.
Efficient Learning for the Poor: New Insights into Literacy Acquisition for Children
ERIC Educational Resources Information Center
Abadzi, Helen
2008-01-01
Reading depends on the speed of visual recognition and capacity of short-term memory. To understand a sentence, the mind must read it fast enough to capture it within the limits of the short-term memory. This means that children must attain a minimum speed of fairly accurate reading to understand a passage. Learning to read involves "tricking" the…
ERIC Educational Resources Information Center
Leffert, Beatrice G.
From the perspective of a reading consultant, the processes of thinking and reading apply to efficient learning. Language teachers should know: (1) the difference between surface structure and deep meaning of an utterance, (2) the importance of "affect" on learning: the reader's personal involvement with the material and with its presentation,…
The Advantage of Word-Based Processing in Chinese Reading: Evidence from Eye Movements
ERIC Educational Resources Information Center
Li, Xingshan; Gu, Junjuan; Liu, Pingping; Rayner, Keith
2013-01-01
In 2 experiments, we tested the prediction that reading is more efficient when characters belonging to a word are presented simultaneously than when they are not in Chinese reading using a novel variation of the moving window paradigm (McConkie & Rayner, 1975). In Experiment 1, we found that reading was slowed down when Chinese readers could…
ERIC Educational Resources Information Center
Burns, Matthew K.; Hodgson, Jennifer; Parker, David C.; Fremont, Kathryn
2011-01-01
Reading instruction for middle- and high-school students is focused on vocabulary and comprehension, yet research suggests that comprehension skills among these students are alarmingly low. Small-group reading interventions are becoming more prevalent in schools, but there are few studies regarding small-group reading comprehension interventions.…
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Measurement Techniques for Transmit Source Clock Jitter for Weak Serial RF Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Schlesinger, Adam M.
2010-01-01
Techniques for filtering clock jitter measurements are developed, in the context of controlling data modulation jitter on an RF carrier to accommodate low signal-to-noise ratio thresholds of high-performance error correction codes. Measurement artifacts from sampling are considered, and a tutorial on interpretation of direct readings is included.
Speech Perception Abilities of Adults with Dyslexia: Is There Any Evidence for a True Deficit?
ERIC Educational Resources Information Center
Hazan, Valerie; Messaoud-Galusi, Souhila; Rosen, Stuart; Nouwens, Suzan; Shakespeare, Bethanie
2009-01-01
Purpose: This study investigated whether adults with dyslexia show evidence of a consistent speech perception deficit by testing phoneme categorization and word perception in noise. Method: Seventeen adults with dyslexia and 20 average readers underwent a test battery including standardized reading, language and phonological awareness tests, and…
Direct force-measuring transducer used in blood pressure research
NASA Technical Reports Server (NTRS)
Eige, J. J.; Newgard, P. M.; Pressman, G. L.
1965-01-01
Direct force measuring transducer acts as an arterial tonometer, gives a direct readout to instrumentation, and is unaffected by ambient noise. It uses a semiconductor strain gage which is deflected by pressure pulses in the artery. The deflection changes the resistance of the gage and alters the voltage reading on the associated instrumentation.
NASA Astrophysics Data System (ADS)
Akimov, D. A.; Fedotov, Andrei B.; Koroteev, Nikolai I.; Magnitskii, S. A.; Naumov, A. N.; Sidorov-Biryukov, Dmitri A.; Sokoluk, N. T.; Zheltikov, Alexei M.
1998-04-01
The possibilities of optimizing data writing and reading in devices of 3D optical memory using photochromic materials are discussed. We quantitatively analyze linear and nonlinear optical properties of induline spiropyran molecules, which allows us to estimate the efficiency of using such materials for implementing 3D optical-memory devices. It is demonstrated that, with an appropriate choice of polarization vectors of laser beams, one can considerably improve the efficiency of two-photon writing in photochromic materials. The problem of reading the data stored in a photochromic material is analyzed. The possibilities of data reading methods with the use of fluorescence and four-photon techniques are compared.
Quantifying noise in optical tweezers by allan variance.
Czerwinski, Fabian; Richardson, Andrew C; Oddershede, Lene B
2009-07-20
Much effort is put into minimizing noise in optical tweezers experiments because noise and drift can mask fundamental behaviours of, e.g., single molecule assays. Various initiatives have been taken to reduce or eliminate noise but it has been difficult to quantify their effect. We propose to use Allan variance as a simple and efficient method to quantify noise in optical tweezers setups.We apply the method to determine the optimal measurement time, frequency, and detection scheme, and quantify the effect of acoustic noise in the lab. The method can also be used on-the-fly for determining optimal parameters of running experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, M. J.; Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123
2015-05-18
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification.more » The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less
TSSi--an R package for transcription start site identification from 5' mRNA tag data.
Kreutz, C; Gehring, J S; Lang, D; Reski, R; Timmer, J; Rensing, S A
2012-06-15
High-throughput sequencing has become an essential experimental approach for the investigation of transcriptional mechanisms. For some applications like ChIP-seq, several approaches for the prediction of peak locations exist. However, these methods are not designed for the identification of transcription start sites (TSSs) because such datasets contain qualitatively different noise. In this application note, the R package TSSi is presented which provides a heuristic framework for the identification of TSSs based on 5' mRNA tag data. Probabilistic assumptions for the distribution of the data, i.e. for the observed positions of the mapped reads, as well as for systematic errors, i.e. for reads which map closely but not exactly to a real TSS, are made and can be adapted by the user. The framework also comprises a regularization procedure which can be applied as a preprocessing step to decrease the noise and thereby reduce the number of false predictions. The R package TSSi is available from the Bioconductor web site: www.bioconductor.org/packages/release/bioc/html/TSSi.html.
Experimental QR code optical encryption: noise-free data recovering.
Barrera, John Fredy; Mira-Agudelo, Alejandro; Torroba, Roberto
2014-05-15
We report, to our knowledge for the first time, the experimental implementation of a quick response (QR) code as a "container" in an optical encryption system. A joint transform correlator architecture in an interferometric configuration is chosen as the experimental scheme. As the implementation is not possible in a single step, a multiplexing procedure to encrypt the QR code of the original information is applied. Once the QR code is correctly decrypted, the speckle noise present in the recovered QR code is eliminated by a simple digital procedure. Finally, the original information is retrieved completely free of any kind of degradation after reading the QR code. Additionally, we propose and implement a new protocol in which the reception of the encrypted QR code and its decryption, the digital block processing, and the reading of the decrypted QR code are performed employing only one device (smartphone, tablet, or computer). The overall method probes to produce an outcome far more attractive to make the adoption of the technique a plausible option. Experimental results are presented to demonstrate the practicality of the proposed security system.
Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; ...
2015-05-21
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to withoutmore » the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less
Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney
2012-01-01
RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676
Law, Jeremy M.; Vandermosten, Maaike; Ghesquiere, Pol; Wouters, Jan
2014-01-01
This study investigated whether auditory, speech perception, and phonological skills are tightly interrelated or independently contributing to reading. We assessed each of these three skills in 36 adults with a past diagnosis of dyslexia and 54 matched normal reading adults. Phonological skills were tested by the typical threefold tasks, i.e., rapid automatic naming, verbal short-term memory and phonological awareness. Dynamic auditory processing skills were assessed by means of a frequency modulation (FM) and an amplitude rise time (RT); an intensity discrimination task (ID) was included as a non-dynamic control task. Speech perception was assessed by means of sentences and words-in-noise tasks. Group analyses revealed significant group differences in auditory tasks (i.e., RT and ID) and in phonological processing measures, yet no differences were found for speech perception. In addition, performance on RT discrimination correlated with reading but this relation was mediated by phonological processing and not by speech-in-noise. Finally, inspection of the individual scores revealed that the dyslexic readers showed an increased proportion of deviant subjects on the slow-dynamic auditory and phonological tasks, yet each individual dyslexic reader does not display a clear pattern of deficiencies across the processing skills. Although our results support phonological and slow-rate dynamic auditory deficits which relate to literacy, they suggest that at the individual level, problems in reading and writing cannot be explained by the cascading auditory theory. Instead, dyslexic adults seem to vary considerably in the extent to which each of the auditory and phonological factors are expressed and interact with environmental and higher-order cognitive influences. PMID:25071512
X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques
NASA Astrophysics Data System (ADS)
Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.
2012-12-01
X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.
Application of low-noise CID imagers in scientific instrumentation cameras
NASA Astrophysics Data System (ADS)
Carbone, Joseph; Hutton, J.; Arnold, Frank S.; Zarnowski, Jeffrey J.; Vangorden, Steven; Pilon, Michael J.; Wadsworth, Mark V.
1991-07-01
CIDTEC has developed a PC-based instrumentation camera incorporating a preamplifier per row CID imager and a microprocessor/LCA camera controller. The camera takes advantage of CID X-Y addressability to randomly read individual pixels and potentially overlapping pixel subsets in true nondestructive (NDRO) as well as destructive readout modes. Using an oxy- nitride fabricated CID and the NDRO readout technique, pixel full well and noise levels of approximately 1*10(superscript 6) and 40 electrons, respectively, were measured. Data taken from test structures indicates noise levels (which appear to be 1/f limited) can be reduced by a factor of two by eliminating the nitride under the preamplifier gate. Due to software programmability, versatile readout capabilities, wide dynamic range, and extended UV/IR capability, this camera appears to be ideally suited for use in spectroscopy and other scientific applications.
The Effects of Student and Text Characteristics on the Oral Reading Fluency of Middle-Grade Students
Barth, Amy E.; Tolar, Tammy D.; Fletcher, Jack M.; Francis, David
2014-01-01
We evaluated the effects of student characteristics (sight word reading efficiency, phonological decoding, verbal knowledge, level of reading ability, grade, gender) and text features (passage difficulty, length, genre, and language and discourse attributes) on the oral reading fluency of a sample of middle-school students in Grades 6–8 (N = 1,794). Students who were struggling (n = 704) and typically developing readers (n = 1,028) were randomly assigned to read five 1-min passages from each of 5 Lexile bands (within student range of 550 Lexiles). A series of multilevel analyses showed that student and text characteristics contributed uniquely to oral reading fluency rates. Student characteristics involving sight word reading efficiency and level of decoding ability accounted for more variability than reader type and verbal knowledge, with small, but statistically significant effects of grade and gender. The most significant text feature was passage difficulty level. Interactions involving student text characteristics, especially attributes involving overall ability level and difficulty of the text, were also apparent. These results support views of the development of oral reading fluency that involve interactions of student and text characteristics and highlight the importance of scaling for passage difficulty level in assessing individual differences in oral reading fluency. PMID:24567659
Training directionally selective motion pathways can significantly improve reading efficiency
NASA Astrophysics Data System (ADS)
Lawton, Teri
2004-06-01
This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.
Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency
NASA Technical Reports Server (NTRS)
Castner, Raymond
2011-01-01
The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
NASA Technical Reports Server (NTRS)
Castner, Ray
2012-01-01
The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan
2014-01-01
Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise. PMID:25566159
Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan
2014-01-01
Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise.
Denoising of polychromatic CT images based on their own noise properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Hye; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr
Purpose: Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determinedmore » according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise. Methods: For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted. Results: Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution. Conclusions: To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.« less
León-Montiel, Roberto de J.; Quiroz-Juárez, Mario A.; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L.; Moya-Cessa, Héctor M.; Torres, Juan P.; Aragón, José L.
2015-01-01
Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed. PMID:26610864
The Use of Hypnosis in Improving Reading Performance.
ERIC Educational Resources Information Center
Fillmer, H. Thompson; And Others
1983-01-01
Describes a study investigating the effects of group hypnosis on the reading improvement of university students. Finds marginally significant improvement in total vocabulary and comprehension scores and greatest improvement in students with initially low reading scores. Sees group hypnosis as an efficient and economically feasible instructional…
ERIC Educational Resources Information Center
O'Connor, N.; Hermelin, B.
1994-01-01
Two young autistic children exhibited normal reading comprehension but reading speeds considerably faster than controls. The effect of randomizing word order was minimal for the older of the two autistic boys. Results indicate that efficient grapheme-phoneme conversion is primarily responsible for the fast reading of the autistic children.…
Taylor-Made Education: The Influence of the Efficiency Movement on the Testing of Reading Skills.
ERIC Educational Resources Information Center
Allen, JoBeth
Much of what has developed in the testing of reading harkens back to the days of the "Cult of Efficiency" movement in education that can be largely attributed to Frederick Winslow Taylor. Taylor spent most of his productive years studying time and motion in an attempt to streamline industrial production so that people could work as…
Do children with reading delay benefit from the use of personal FM systems in the classroom?
Purdy, Suzanne C; Smart, Jennifer L; Baily, Melissa; Sharma, Mridula
2009-12-01
FM systems have been used to compensate for poor signal-to-noise ratios in classrooms. This study evaluates benefits of a 6-week trial of personal FM systems used during the school day for children with reading delay aged 6-11 years, using a randomized control design. Teachers and children completed the LIFE-UK questionnaire. Test-retest reliability of the LIFE-UK children's version was confirmed in a separate group of 18 children from the same school. The 23 children in the FM group had significantly improved teacher ratings, and the children's ratings of classroom listening for difficult situations were significantly better after the trial. These changes did not occur for the 23 control-group children. Most children (92%) commented positively about the FM after the trial. It is likely that a longer FM trial or a specific reading intervention combined with FM will be required for the benefits of enhanced listening to affect performance on standardized reading tests.
Sigurdardottir, Heida Maria; Fridriksdottir, Liv Elisabet; Gudjonsdottir, Sigridur; Kristjánsson, Árni
2018-06-01
Evidence of interdependencies of face and word processing mechanisms suggest possible links between reading problems and abnormal face processing. In two experiments we assessed such high-level visual deficits in people with a history of reading problems. Experiment 1 showed that people who were worse at face matching had greater reading problems. In experiment 2, matched dyslexic and typical readers were tested, and difficulties with face matching were consistently found to predict dyslexia over and above both novel-object matching as well as matching noise patterns that shared low-level visual properties with faces. Furthermore, ADHD measures could not account for face matching problems. We speculate that reading difficulties in dyslexia are partially caused by specific deficits in high-level visual processing, in particular for visual object categories such as faces and words with which people have extensive experience. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2012-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.
Personal noise dosimeters: accuracy and reliability in varied settings.
Cook-Cunningham, Sheri Lynn
2014-01-01
This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units) in both pink noise (PN) environments and natural environments (NEs) through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3) Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a) All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b) all dosimeters were within the recommended American National Standard Institute (ANSI) SI.25-1991 standard of ±2 dB (A) of a reference measurement; and (c) all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A) when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students). This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D) were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera) while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured during a day in the life of college music students. Three participants each wore two types of dosimeters for an 8-h period during a normal school day. Descriptive statistical analyzes including means, standard deviation and Pearson product-moment correlation. The primary finding is that the dosimeters in this study recorded results within ±2 dB of either a reference measurement or within dosimeters in all four conditions examined. All dosimeters studied measured steady noise source accurately and consistently, with strong positive correlations across all instruments. Measurements acquired during choral rehearsals indicated a maximum of 1.5 dB difference across dosimeters. The Etymotic research personal noise dosimeters (ER200D) could provide individuals and schools of music with a relatively inexpensive tool to monitor sound doses. Findings from this study suggest that the three brands of dosimeters tested will provide reliable Leq levels and hearing dosages in both PN and natural settings.
High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu
2016-03-01
We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce
2015-08-03
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less
MMIC Replacement for Gunn Diode Oscillators
NASA Technical Reports Server (NTRS)
Crowe, Thomas W.; Porterfield, David
2011-01-01
An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.
Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System
NASA Technical Reports Server (NTRS)
Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.
2009-01-01
The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.
Noise levels in neonatal intensive care unit and use of sound absorbing panel in the isolette.
Altuncu, E; Akman, I; Kulekci, S; Akdas, F; Bilgen, H; Ozek, E
2009-07-01
The purposes of this study were to measure the noise level of a busy neonatal intensive care unit (NICU) and to determine the effect of sound absorbing panel (SAP) on the level of noise inside the isolette. The sound pressure levels (SPL) of background noise, baby crying, alarms and closing of isolette's door/portholes were measured by a 2235-Brüel&Kjaer Sound Level Meter. Readings were repeated after applying SAP (3D pyramidal shaped open cell polyurethane foam) to the three lateral walls and ceiling of the isolette. The median SPL of background noise inside the NICU was 56dBA and it decreased to 47dBA inside the isolette. The median SPL of monitor alarms and baby crying inside the isolette were not different than SPL measured under radiant warmer (p>0.05). With SAP, the median SPL of temperature alarm inside the isolette decreased significantly from 82 to 72dBA, monitor alarm from 64 to 56dBA, porthole closing from 81 to 74dBA, and isolette door closing from 80 to 68dBA (p<0.01). There was a significant reduction in the noise produced by baby crying when SAP was used in the isolette (79dBA vs 69dBA, respectively) (p<0.0001). There was also significant attenuation effect of panel on the environmental noise. The noise level in our NICU is significantly above the universally recommended levels. Being inside the isolette protects infants from noise sources produced outside the isolette. However, very high noises are produced inside the isolette as well. Sound absorbing panel can be a simple solution and it attenuated the noise levels inside the isolette.
Efficiencies for the statistics of size discrimination.
Solomon, Joshua A; Morgan, Michael; Chubb, Charles
2011-10-19
Different laboratories have achieved a consensus regarding how well human observers can estimate the average orientation in a set of N objects. Such estimates are not only limited by visual noise, which perturbs the visual signal of each object's orientation, they are also inefficient: Observers effectively use only √N objects in their estimates (e.g., S. C. Dakin, 2001; J. A. Solomon, 2010). More controversial is the efficiency with which observers can estimate the average size in an array of circles (e.g., D. Ariely, 2001, 2008; S. C. Chong, S. J. Joo, T.-A. Emmanouil, & A. Treisman, 2008; K. Myczek & D. J. Simons, 2008). Of course, there are some important differences between orientation and size; nonetheless, it seemed sensible to compare the two types of estimate against the same ideal observer. Indeed, quantitative evaluation of statistical efficiency requires this sort of comparison (R. A. Fisher, 1925). Our first step was to measure the noise that limits size estimates when only two circles are compared. Our results (Weber fractions between 0.07 and 0.14 were necessary for 84% correct 2AFC performance) are consistent with the visual system adding the same amount of Gaussian noise to all logarithmically transduced circle diameters. We exaggerated this visual noise by randomly varying the diameters in (uncrowded) arrays of 1, 2, 4, and 8 circles and measured its effect on discrimination between mean sizes. Efficiencies inferred from all four observers significantly exceed 25% and, in two cases, approach 100%. More consistent are our measurements of just-noticeable differences in size variance. These latter results suggest between 62 and 75% efficiency for variance discriminations. Although our observers were no more efficient comparing size variances than they were at comparing mean sizes, they were significantly more precise. In other words, our results contain evidence for a non-negligible source of late noise that limits mean discriminations but not variance discriminations.
Median Robust Extended Local Binary Pattern for Texture Classification.
Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti
2016-03-01
Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.
Chen, He; Zhou, Xuanfeng; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2015-12-28
We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator.
High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.
Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming
2015-07-13
We demonstrated an all-fiber, high-power noise-like pulse laser system at the 1.56-µm wavelength. A low-power noise-like pulse train generated by a ring oscillator was amplified using a two-stage amplifier, where the performance of the second-stage amplifier determined the final output power level. The optical intensity in the second-stage amplifier was managed well to avoid not only the excessive spectral broadening induced by nonlinearities but also any damage to the device. On the other hand, the power conversion efficiency of the amplifier was optimized through proper control of its pump wavelength. The pump wavelength determines the pump absorption and therefore the power conversion efficiency of the gain fiber. Through this approach, the average power of the noise-like pulse train was amplified considerably to an output of 13.1 W, resulting in a power conversion efficiency of 36.1% and a pulse energy of 0.85 µJ. To the best of our knowledge, these amplified pulses have the highest average power and pulse energy for noise-like pulses in the 1.56-µm wavelength region. As a result, the net gain in the cascaded amplifier reached 30 dB. With peak and pedestal widths of 168 fs and 61.3 ps, respectively, for the amplified pulses, the pedestal-to-peak intensity ratio of the autocorrelation trace remains at the value of 0.5 required for truly noise-like pulses.
Determination of quality parameters from statistical analysis of routine TLD dosimetry data.
German, U; Weinstein, M; Pelled, O
2006-01-01
Following the as low as reasonably achievable (ALARA) practice, there is a need to measure very low doses, of the same order of magnitude as the natural background, and the limits of detection of the dosimetry systems. The different contributions of the background signals to the total zero dose reading of thermoluminescence dosemeter (TLD) cards were analysed by using the common basic definitions of statistical indicators: the critical level (L(C)), the detection limit (L(D)) and the determination limit (L(Q)). These key statistical parameters for the system operated at NRC-Negev were quantified, based on the history of readings of the calibration cards in use. The electronic noise seems to play a minor role, but the reading of the Teflon coating (without the presence of a TLD crystal) gave a significant contribution.
NASA Technical Reports Server (NTRS)
Misoda, J.; Magliozzi, B.
1973-01-01
The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.
Dole, Marjorie; Hoen, Michel; Meunier, Fanny
2012-06-01
Developmental dyslexia is associated with impaired speech-in-noise perception. The goal of the present research was to further characterize this deficit in dyslexic adults. In order to specify the mechanisms and processing strategies used by adults with dyslexia during speech-in-noise perception, we explored the influence of background type, presenting single target-words against backgrounds made of cocktail party sounds, modulated speech-derived noise or stationary noise. We also evaluated the effect of three listening configurations differing in terms of the amount of spatial processing required. In a monaural condition, signal and noise were presented to the same ear while in a dichotic situation, target and concurrent sound were presented to two different ears, finally in a spatialised configuration, target and competing signals were presented as if they originated from slightly differing positions in the auditory scene. Our results confirm the presence of a speech-in-noise perception deficit in dyslexic adults, in particular when the competing signal is also speech, and when both signals are presented to the same ear, an observation potentially relating to phonological accounts of dyslexia. However, adult dyslexics demonstrated better levels of spatial release of masking than normal reading controls when the background was speech, suggesting that they are well able to rely on denoising strategies based on spatial auditory scene analysis strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dependence of image quality on image operator and noise for optical diffusion tomography
NASA Astrophysics Data System (ADS)
Chang, Jenghwa; Graber, Harry L.; Barbour, Randall L.
1998-04-01
By applying linear perturbation theory to the radiation transport equation, the inverse problem of optical diffusion tomography can be reduced to a set of linear equations, W(mu) equals R, where W is the weight function, (mu) are the cross- section perturbations to be imaged, and R is the detector readings perturbations. We have studied the dependence of image quality on added systematic error and/or random noise in W and R. Tomographic data were collected from cylindrical phantoms, with and without added inclusions, using Monte Carlo methods. Image reconstruction was accomplished using a constrained conjugate gradient descent method. Result show that accurate images containing few artifacts are obtained when W is derived from a reference states whose optical thickness matches that of the unknown teste medium. Comparable image quality was also obtained for unmatched W, but the location of the target becomes more inaccurate as the mismatch increases. Results of the noise study show that image quality is much more sensitive to noise in W than in R, and the impact of noise increase with the number of iterations. Images reconstructed after pure noise was substituted for R consistently contain large peaks clustered about the cylinder axis, which was an initially unexpected structure. In other words, random input produces a non- random output. This finding suggests that algorithms sensitive to the evolution of this feature could be developed to suppress noise effects.
Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images
NASA Astrophysics Data System (ADS)
Zhu, Yuhong; Li, Hongyang; Jiang, Huageng
2017-12-01
This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.
A generalized theory on the noise generation from supersonic shear layers.
NASA Technical Reports Server (NTRS)
Pao, S. P.
1971-01-01
A generalization is presented of Phillips' (1960) theory of noise generation by supersonic turbulent shear layers. Both Mach wave radiation and non-Mach wave noise radiation mechanisms are considered. The range of validity of Phillips' theory has been expanded to include the low supersonic and transonic ranges. These generalizations are important not only for their analytical rigor, but also for their prospective applications to practical problems in jet noise prediction and control. The noise generation mechanisms in a supersonic jet are found to differ from those in a subsonic jet. The theory is considered to offer some prospects of answering important questions in supersonic jet noise, such as noise source distribution, mean flow refraction effects, directivity, spectrum, and efficiency of noise radiation.
Cost-Effective Prediction of Reading Difficulties.
ERIC Educational Resources Information Center
Heath, Steve M.; Hogben, John H.
2004-01-01
This study addressed 2 questions: (a) Can preschoolers who will fail at reading be more efficiently identified by targeting those at highest risk for reading problems? and (b) will auditory temporal processing (ATP) improve the accuracy of identification derived from phonological processing and oral language ability? A sample of 227 preschoolers…
Explaining Variance in Comprehension for Students in a High-Poverty Setting
ERIC Educational Resources Information Center
Conradi, Kristin; Amendum, Steven J.; Liebfreund, Meghan D.
2016-01-01
This study examined the contributions of decoding, language, spelling, and motivation to the reading comprehension of elementary school readers in a high-poverty setting. Specifically, the research questions addressed whether and how the influences of word reading efficiency, semantic knowledge, reading self-concept, and spelling on reading…
Aye, Aye, Aye, Aye: Orthography Enhances Rapid Word Reading in an Exploratory Study.
ERIC Educational Resources Information Center
Neuhaus, Graham F.; Post, Yolanda
2003-01-01
Uses a novel word-reading efficiency measure to determine if articulations or processing times associated with reading the word "aye" were enhanced through the phonological or orthographic qualities contained in the preceding word. Documents the importance of separating phonological and orthographic information in English homophones. (SG)
Integrated Language Experience Approach--Using Research Unit.
ERIC Educational Resources Information Center
Warren City Schools, OH.
This program, included in "Effective Reading Programs...," is the result of the efforts of a small team of teachers who desired an alternative method for teaching efficient reading and study skills to underachieving high school students and for supplementing remedial reading classes. Begun in 1972, the program serves 130 ninth graders…
Research-Based Integrated Reading and Writing Course Development
ERIC Educational Resources Information Center
Pierce, Calisa A.
2017-01-01
With the continuing national emphases on acceleration and completion, an integrated reading and writing course (a combined developmental reading and developmental writing course, with all levels compressed into a single course) is one way to move students more quickly and efficiently through the developmental sequence while still maintaining…
How Individual Differences Interact with Task Demands in Text Processing
ERIC Educational Resources Information Center
Wang, Zuowei; Sabatini, John; O'Reilly, Tenaha; Feng, Gary
2017-01-01
Reading is affected by both situational requirements and one's cognitive skills. The current study investigated how individual differences interacted with task requirements to determine reading behavior and outcome. We recorded the eye movements of college students, who differed in reading efficiency, while they completed a multiple-choice (MC)…
Translation initiation events on structured eukaryotic mRNAs generate gene expression noise
Dacheux, Estelle; Malys, Naglis; Meng, Xiang; Ramachandran, Vinoy; Mendes, Pedro
2017-01-01
Abstract Gene expression stochasticity plays a major role in biology, creating non-genetic cellular individuality and influencing multiple processes, including differentiation and stress responses. We have addressed the lack of knowledge about posttranscriptional contributions to noise by determining cell-to-cell variations in the abundance of mRNA and reporter protein in yeast. Two types of structural element, a stem–loop and a poly(G) motif, not only inhibit translation initiation when inserted into an mRNA 5΄ untranslated region, but also generate noise. The noise-enhancing effect of the stem–loop structure also remains operational when combined with an upstream open reading frame. This has broad significance, since these elements are known to modulate the expression of a diversity of eukaryotic genes. Our findings suggest a mechanism for posttranscriptional noise generation that will contribute to understanding of the generally poor correlation between protein-level stochasticity and transcriptional bursting. We propose that posttranscriptional stochasticity can be linked to cycles of folding/unfolding of a stem–loop structure, or to interconversion between higher-order structural conformations of a G-rich motif, and have created a correspondingly configured computational model that generates fits to the experimental data. Stochastic events occurring during the ribosomal scanning process can therefore feature alongside transcriptional bursting as a source of noise. PMID:28521011
Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A
2012-08-15
The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed.
Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A.
2012-01-01
The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001–2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9–10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed. PMID:22842719
Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng
2018-06-13
Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurin, I.; Bramati, A.; Giacobino, E.
2005-09-15
Semiconductor lasers are particularly well suited for the implementation of pump-noise suppression, yielding a reduction of the intensity noise in the laser. In this simple picture, the maximal amount of squeezing is equal to the quantum efficiency. However, experimental results on intensity noise reduction by pump-noise suppression are usually above this limit. This discrepancy suggests that additional noise sources must be involved. Here we successful y interpret the full noise behavior of a single-mode laser diode far above threshold by considering two excess noise sources: the leakage current fluctuations across the laser and the Petermann excess noise. We have estimatedmore » the contribution of each noise source using the results of the correlations between the laser output intensity noise and the voltage fluctuations across the laser diode (light-voltage correlations) and obtained good agreement between our theory and experimental results.« less
Copy number variants calling for single cell sequencing data by multi-constrained optimization.
Xu, Bo; Cai, Hongmin; Zhang, Changsheng; Yang, Xi; Han, Guoqiang
2016-08-01
Variations in DNA copy number carry important information on genome evolution and regulation of DNA replication in cancer cells. The rapid development of single-cell sequencing technology allows one to explore gene expression heterogeneity among single-cells, thus providing important cancer cell evolution information. Single-cell DNA/RNA sequencing data usually have low genome coverage, which requires an extra step of amplification to accumulate enough samples. However, such amplification will introduce large bias and makes bioinformatics analysis challenging. Accurately modeling the distribution of sequencing data and effectively suppressing the bias influence is the key to success variations analysis. Recent advances demonstrate the technical noises by amplification are more likely to follow negative binomial distribution, a special case of Poisson distribution. Thus, we tackle the problem CNV detection by formulating it into a quadratic optimization problem involving two constraints, in which the underling signals are corrupted by Poisson distributed noises. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signals from single-cell sequencing data are anticipated to fit the CNVs patterns more accurately. An efficient numerical solution based on the classical alternating direction minimization method (ADMM) is tailored to solve the proposed model. We demonstrate the advantages of the proposed method using both synthetic and empirical single-cell sequencing data. Our experimental results demonstrate that the proposed method achieves excellent performance and high promise of success with single-cell sequencing data. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Long-term Self-noise Estimates of Seismic Sensors From a High-noise Vault
NASA Astrophysics Data System (ADS)
Hicks, S. P.; Goessen, S.; Hill, P.; Rietbrock, A.
2017-12-01
To understand the detection capabilities of seismic stations and for reducing biases in ambient noise imaging, it is vital to assess the contribution of instrument self-noise to overall site noise. Self-noise estimates typically come from vault installations in continental interiors with very low ambient noise levels. However, this approach restricts the independent assessment of self-noise by individual end-users to assess any variations in their own instrument pools from nominal specifications given by manufacturers and from estimations given in comparative test papers. However, the calculation method should be adapted to variable installation conditions. One problem is that microseism noise can contaminate self-noise results caused by instrument misalignment errors or manufacturing limits; this effect becomes stronger where ambient noise is higher. Moreover, due to expected stochastic and time-varying sensor noise, estimates based on hand-picking small numbers of data segments may not accurately reflect true self-noise. We report on results from a self-noise test experiment of Güralp seismic instruments (3T, 3ESPC broadband seismometers, Fortis strong motion accelerometer) that were installed in the sub-surface vault of the Eskdalemuir Seismic Observatory in Scotland, UK over the period October 2016-August 2017. Due to vault's proximity to the ocean, secondary microseism noise is strong, so we efficiently compute the angle of misalignment that maximises waveform coherence with a reference sensor. Self-noise was calculated using the 3-sensor correlation technique and we compute probability density functions of self-noise to assess its spread over time. We find that not correcting for misalignments as low as 0.1° can cause self-noise to be artificially higher by up to 15 dB at frequencies of 0.1-1 Hz. Our method thus efficiently removes the effect of microseism contamination on self-noise; for example, it restores the minimum noise floor for a 360s - 50 Hz 3T to -195 dB at 0.2 Hz. Furthermore, based on the analysis of our calculated probability density functions, we find at long-periods (> 30 s) the average self-noise can be up to 5 dB higher than the minimum noise floor. We discuss the validity of these results in terms of making direct comparisons with self-noise results from much quieter installations.
Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion
NASA Astrophysics Data System (ADS)
Yoshioka, T.; Yoshida, J.; Kodama, K.
2011-03-01
Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.
The Aviation System Analysis Capability Noise Impact Model
NASA Technical Reports Server (NTRS)
Wingrove, Earl R., III; Ege, Russell; Burn, Melissa; Carey, Jeffrey; Bradley, Kevin
1998-01-01
To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on community noise impact and air carrier operating efficiency at any of 16 large- and medium-sized U.S. airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, or 10 decibels. NIM computes the resultant noise impact and estimates any airline operations improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the.contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternate routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.
The Aviation System Analysis Capability Noise Impact Model
NASA Technical Reports Server (NTRS)
Ege, Russell A.; Brown, Jerome; Bradley, Kevin; Grandi, Fabio
1999-01-01
To meet its objective of assisting the US aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operation might have on community noise impact and air carrier operating efficiency at any of 16 large and medium size US airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, and 10 decibels, NIM computes the resultant noise impact and estimates any airline operational improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternated routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.
Health-hazard evaluation report HETA 88-030-2109, Neiman Sawmills, Inc. , Hulett, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubbs, R.L.
1991-04-01
In response to a request from management, an evaluation was undertaken of possible hazardous working conditions as a result of excessive noise at the Neiman Sawmill facilities (SIC-2421), Hulett, Wyoming. The company produced several varieties of untreated boards and lumber products from pine logs. During this survey 108 workers were employed. Noise dosimetry readings revealed that 73% of the surveyed job descriptions (16 of 22) had time weighted average (TWA) noise levels in excess of 90 decibles-A (dBA). Only one job had TWA levels less than the NIOSH recommended limits of 85dBA. Engineering noise controls produced differing amounts of noisemore » reduction to the workers. An enclosure around the planer in the planer mill was found to be effective. However, the separation of the edger and trimmer operations to their own buildings was not an effective noise reduction technique. Hearing tests revealed that 72.5% of the employees exhibited some degree of hearing impairment at one or more audiometric test frequencies. The author concludes that a health hazard existed for workers. The author recommends that a comprehensive hearing conservation program should be implemented. Recommendations for engineering controls for the mills are included.« less
Graphene-based terahertz photodetector by noise thermometry technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ming-Jye, E-mail: mingjye@asiss.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan; Wang, Ji-Wun
2014-01-20
We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 4–6 GHz span has been achieved.
Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor.
Majidzadeh, V; Schmid, A; Leblebici, Y
2011-06-01
This paper presents a neural recording amplifier array suitable for large-scale integration with multielectrode arrays in very low-power microelectronic cortical implants. The proposed amplifier is one of the most energy-efficient structures reported to date, which theoretically achieves an effective noise efficiency factor (NEF) smaller than the limit that can be achieved by any existing amplifier topology, which utilizes a differential pair input stage. The proposed architecture, which is referred to as a partial operational transconductance amplifier sharing architecture, results in a significant reduction of power dissipation as well as silicon area, in addition to the very low NEF. The effect of mismatch on crosstalk between channels and the tradeoff between noise and crosstalk are theoretically analyzed. Moreover, a mathematical model of the nonlinearity of the amplifier is derived, and its accuracy is confirmed by simulations and measurements. For an array of four neural amplifiers, measurement results show a midband gain of 39.4 dB and a -3-dB bandwidth ranging from 10 Hz to 7.2 kHz. The input-referred noise integrated from 10 Hz to 100 kHz is measured at 3.5 μVrms and the power consumption is 7.92 μW from a 1.8-V supply, which corresponds to NEF = 3.35. The worst-case crosstalk and common-mode rejection ratio within the desired bandwidth are - 43.5 dB and 70.1 dB, respectively, and the active silicon area of each amplifier is 256 μm × 256 μm in 0.18-μm complementary metal-oxide semiconductor technology.
Loś-Spychalska, T
1997-01-01
A growing incidence of the voice organ occupational diseases has recently become one of major health problems. There is a need to objective diagnostic examinations performed in teachers who apply for occupational disease certification. The aim of our study was to assess the feasibility of larynx vocal efficiency test during noise load in diagnosis of the voice organ occupational diseases in teachers.
Quantum key distribution using basis encoding of Gaussian-modulated coherent states
NASA Astrophysics Data System (ADS)
Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua
2018-04-01
The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.
Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.
1998-01-01
A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.
Evaluating effectiveness of dynamic soundfield system in the classroom
da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino
2016-01-01
Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students’ academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants’ experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students’ academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness. PMID:26780961
CCDiode: an optimal detector for laser confocal microscopes
NASA Astrophysics Data System (ADS)
Pawley, James B.; Blouke, Morley M.; Janesick, James R.
1996-04-01
The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often < 20 photons/pixel (from the specimen, assuming a standard 512 X 768, 1 sec. scan). Although this data rate limits the speed at which information can be derived from the specimen, saturation of the fluorophor, photobleaching of the dye, and phototoxicity prevent it being increased. Currently, most LCMs use photomultiplier tubes (PMT, QE equals 1 - 30% 400 - 900 nm). By contrast, rear-illuminated, scientific charge-coupled devices (CCD) now routinely readout the signal from square sensors approximately 30 micrometers on a side with a QE of 80 - 90%, a noise of only +/- 3 e-/pix and with no multiplicative noise. For this reason, in 1989, one of us (JJ) developed a rear-illuminated, single-channel Si sensor, called the Turbodiode, employing some of the sophisticated readout techniques used to measure charge in a scientific CCD. We are now extending this work to a device in which a single 36 X 36 micrometers sensor is read out through a low-noise FET charge amplifier with a reset circuit and then passed to a correlated, double-sampling digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.
LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.
Disdero, Eric; Filée, Jonathan
2017-01-01
Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed. LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences. LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.
The nature and efficiency of the word reading strategies of orally raised deaf students.
Miller, Paul
2009-01-01
The main objective of this study was to unveil similarities and differences in the word reading strategies of orally raised individuals with prelingual deafness and hearing individuals. Relevant data were gathered by a computerized research paradigm asking participants to make rapid same/different judgments for words. There were three distinct study conditions: (a) a visual condition manipulating the visual-perceptional properties of the target word pairs, (b) a phonological condition manipulating their phonological properties, and (c) a control condition. Participants were 31 high school and postgraduate students with prelingual deafness and 59 hearing students (the control group). Analysis of response latencies and accuracy in the three study conditions suggests that the word reading strategies the groups relied upon to process the stimulus materials were of the same nature. Evidence further suggests that prelingual deafness does not undermine the efficiency with which readers use these strategies. To gain a broader understanding of the obtained evidence, participants' performance in the word processing experiment was correlated with their phonemic awareness-the hypothesized hallmark of proficient word reading-and their reading comprehension skills. Findings are discussed with reference to a reading theory that assigns phonology a central role in proficient word reading.
Lee, Young Han
2012-01-01
The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Speech Recognition and Cognitive Skills in Bimodal Cochlear Implant Users
ERIC Educational Resources Information Center
Hua, Håkan; Johansson, Björn; Magnusson, Lennart; Lyxell, Björn; Ellis, Rachel J.
2017-01-01
Purpose: To examine the relation between speech recognition and cognitive skills in bimodal cochlear implant (CI) and hearing aid users. Method: Seventeen bimodal CI users (28-74 years) were recruited to the study. Speech recognition tests were carried out in quiet and in noise. The cognitive tests employed included the Reading Span Test and the…
46 CFR 27.201 - What are the requirements for general alarms on towing vessels?
Code of Federal Regulations, 2012 CFR
2012-10-01
... emergency. (2) Is capable of notifying persons in any accommodation, work space, and the engine room. (3) Has installed, in the engine room and any other area where background noise makes a general alarm hard to hear, a supplemental flashing red light that is identified with a sign that reads: Attention...
46 CFR 27.201 - What are the requirements for general alarms on towing vessels?
Code of Federal Regulations, 2013 CFR
2013-10-01
... emergency. (2) Is capable of notifying persons in any accommodation, work space, and the engine room. (3) Has installed, in the engine room and any other area where background noise makes a general alarm hard to hear, a supplemental flashing red light that is identified with a sign that reads: Attention...
46 CFR 27.201 - What are the requirements for general alarms on towing vessels?
Code of Federal Regulations, 2010 CFR
2010-10-01
... emergency. (2) Is capable of notifying persons in any accommodation, work space, and the engine room. (3) Has installed, in the engine room and any other area where background noise makes a general alarm hard to hear, a supplemental flashing red light that is identified with a sign that reads: Attention...
46 CFR 27.201 - What are the requirements for general alarms on towing vessels?
Code of Federal Regulations, 2011 CFR
2011-10-01
... emergency. (2) Is capable of notifying persons in any accommodation, work space, and the engine room. (3) Has installed, in the engine room and any other area where background noise makes a general alarm hard to hear, a supplemental flashing red light that is identified with a sign that reads: Attention...
46 CFR 27.201 - What are the requirements for general alarms on towing vessels?
Code of Federal Regulations, 2014 CFR
2014-10-01
... emergency. (2) Is capable of notifying persons in any accommodation, work space, and the engine room. (3) Has installed, in the engine room and any other area where background noise makes a general alarm hard to hear, a supplemental flashing red light that is identified with a sign that reads: Attention...
Effect of individual blade control on noise radiation
NASA Technical Reports Server (NTRS)
Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.
1995-01-01
In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.
Latest generation of ASICs for photodetector readout
NASA Astrophysics Data System (ADS)
Seguin-Moreau, N.
2013-08-01
The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...
How Logical Reasoning Mediates the Relation between Lexical Quality and Reading Comprehension
ERIC Educational Resources Information Center
Segers, Eliane; Verhoeven, Ludo
2016-01-01
The present study aimed to examine the role of logical reasoning in the relation between lexical quality and reading comprehension in 146 fourth grade Dutch children. We assessed their standardized reading comprehension measure, along with their decoding efficiency and vocabulary as measures of lexical quality, syllogistic reasoning as measure of…
College Online Developmental Reading Instruction: Creating a Path to Independent and Active Learning
ERIC Educational Resources Information Center
Johnson, E. Janet
2010-01-01
Online courses require students to be independent readers and efficient learners. College students who need developmental reading lack these qualities; consequently, faculty do not generally view developmental reading courses as appropriate for an online format. However, an effectively designed online course based on best practices can engage less…
Beyond the Computer: Reading as a Process of Intellectual Development.
ERIC Educational Resources Information Center
Thompson, Mark E.
With more than 100,000 computers in public schools across the United States, the impact of computer assisted instruction (CAI) on students' reading behavior needs to be evaluated. In reading laboratories, CAI has been found to provide an efficient and highly motivating means of teaching specific educational objectives. Yet, while computer…
Noise and coupling induced synchronization in a network of chaotic neurons
NASA Astrophysics Data System (ADS)
Ciszak, Marzena; Euzzor, Stefano; Geltrude, Andrea; Tito Arecchi, F.; Meucci, Riccardo
2013-04-01
The synchronization in four forced FitzHugh-Nagumo (FHN) systems is studied, both experimentally and by numerical simulations of a model. We show that synchronization may be achieved either by coupling of systems through bidirectional diffusive interactions, by introducing a common noise to all systems or by combining both ingredients, noise and coupling together. Here we consider white and colored noises, showing that the colored noise is more efficient in synchronizing the systems respect to white noise. Moreover, a small addition of common noise allows the synchronization to occur at smaller values of the coupling strength. When the diffusive coupling in the absence of noise is considered, the system undergoes the transition to subthreshold oscillations, giving a spike suppression regime. We show that noise destroys the appearance of this dynamical regime induced by coupling.
Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo
2016-01-01
The purpose of this study was to examine the directionality of the relationship between text reading prosody and reading comprehension in the upper grades of primary school. We compared three theoretical possibilities: Two unidirectional relations from text reading prosody to reading comprehension and from reading comprehension to text reading prosody and a bidirectional relation between text reading prosody and reading comprehension. Further, we controlled for autoregressive effects and included decoding efficiency as a measure of general reading skill. Participants were 99 Dutch children, followed longitudinally, from fourth- to sixth-grade. Structural equation modeling showed that the bidirectional relation provided the best fitting model. In fifth-grade, text reading prosody was related to prior decoding and reading comprehension, whereas in sixth-grade, reading comprehension was related to prior text reading prosody. As such, the results suggest that the relation between text reading prosody and reading comprehension is reciprocal, but dependent on grade level. PMID:27667916
A Single-Molecule Barcoding System using Nanoslits for DNA Analysis
NASA Astrophysics Data System (ADS)
Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.
Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels, creating molecular barcodes, which are efficiently read using fluorescence resonance energy transfer techniques for minimizing noise from unincorporated labels. As such, our integrative approach for the realization of genomic analysis through nanoconfinement, named nanocoding, was demonstrated through the barcoding and mapping of bacterial artificial chromosomal molecules, thereby providing the basis for a high-throughput platform competent for whole genome investigations.
SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST
NASA Astrophysics Data System (ADS)
Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.
2012-09-01
The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.
Development of a 750x750 pixels CMOS imager sensor for tracking applications
NASA Astrophysics Data System (ADS)
Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali
2017-11-01
Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.
See, Ya Hui Michelle; Petty, Richard E; Fabrigar, Leandre R
2013-08-01
We proposed that (a) processing interest for affective over cognitive information is captured by meta-bases (i.e., the extent to which people subjectively perceive themselves to rely on affect or cognition in their attitudes) and (b) processing efficiency for affective over cognitive information is captured by structural bases (i.e., the extent to which attitudes are more evaluatively congruent with affect or cognition). Because processing speed can disentangle interest from efficiency by being manifest as longer or shorter reading times, we hypothesized and found that more affective meta-bases predicted longer affective than cognitive reading time when processing efficiency was held constant (Study 1). In contrast, more affective structural bases predicted shorter affective than cognitive reading time when participants were constrained in their ability to allocate resources deliberatively (Study 2). When deliberation was neither encouraged nor constrained, effects for meta-bases and structural bases emerged (Study 3). Implications for affective-cognitive processing and other attitudes-relevant constructs are discussed.
Speech perception and production in severe environments
NASA Astrophysics Data System (ADS)
Pisoni, David B.
1990-09-01
The goal was to acquire new knowledge about speech perception and production in severe environments such as high masking noise, increased cognitive load or sustained attentional demands. Changes were examined in speech production under these adverse conditions through acoustic analysis techniques. One set of studies focused on the effects of noise on speech production. The experiments in this group were designed to generate a database of speech obtained in noise and in quiet. A second set of experiments was designed to examine the effects of cognitive load on the acoustic-phonetic properties of speech. Talkers were required to carry out a demanding perceptual motor task while they read lists of test words. A final set of experiments explored the effects of vocal fatigue on the acoustic-phonetic properties of speech. Both cognitive load and vocal fatigue are present in many applications where speech recognition technology is used, yet their influence on speech production is poorly understood.
Automated image quality assessment for chest CT scans.
Reeves, Anthony P; Xie, Yiting; Liu, Shuang
2018-02-01
Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.
Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor
NASA Astrophysics Data System (ADS)
McManus, D. J.; Forsyth, P. W. F.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.
2017-07-01
Newtonian noise is likely to be a future challenge at low frequencies for Advanced LIGO and other second generation gravitational wave detectors. We present the TorPeDO system: a dual torsion pendulum sensor designed to measure local gravitational forces to high precision. Gravitational forces induce a differential rotation between the two torsion beams, which is measured with an optical read-out. Both torsion pendulums have a common suspension point, tunable centre of mass, and resonant frequency. This produces a high level of mechanical common mode noise cancellation. We report on a controls prototype of the TorPeDO system, presenting the frequency response and tuning range of both pendulums. A noise budget and mechanical cross-coupling model for this system are also presented. We demonstrate frequency tuning of the two torsion pendulums to a difference of 4.3 μHz.
Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio
2015-04-01
This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements.
Initial Noise Assessment of an Embedded-wing-propulsion Concept Vehicle
NASA Technical Reports Server (NTRS)
Stone, James R.; Krejsa, Eugene A.
2008-01-01
Vehicle acoustic requirements are considered for a Cruise-Efficient Short Take-Off and Landing (CESTOL) vehicle concept using an Embedded-Wing-Propulsion (EWP) system based on a review of the literature. Successful development of such vehicles would enable more efficient use of existing airports in accommodating the anticipated growth in air traffic while at the same time reducing the noise impact on the community around the airport. A noise prediction capability for CESTOL-EWP aircraft is developed, based largely on NASA's FOOTPR code and other published methods, with new relations for high aspect ratio slot nozzles and wing shielding. The predictive model is applied to a preliminary concept developed by Boeing for NASA GRC. Significant noise reduction for such an aircraft relative to the current state-of-the-art is predicted, and technology issues are identified which should be addressed to assure that the potential of this design concept is fully achieved with minimum technical risk.
Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate
Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.
2013-01-01
Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696
Costanzo, Floriana; Rossi, Serena; Varuzza, Cristiana; Varvara, Pamela; Vicari, Stefano; Menghini, Deny
2018-03-14
Noninvasive brain stimulation transiently modulates reading ability in individuals with dyslexia by facilitating the underactive neural pathways in them. However, its long-term effects have not been determined. This study confirmed the ameliorative effects of multiple sessions of transcranial direct current stimulation (tDCS) combined with a training for reading on the reading abilities of children and adolescents with dyslexia and examined whether they are long-lasting. Twenty-six children and adolescents with dyslexia received 3 20-min sessions per week for 6 weeks (18 sessions) of left anodal/right cathodal tDCS, set to 1 mA, over the parieto-temporal regions, combined with training for reading. The participants were randomly assigned to receive active or sham treatment. Reading measures (text, high- and low-frequency words, non-words) were recorded before and immediately after the treatment and 1 and 6 months later. The long-term tolerability to tDCS was also evaluated. The active group received long-lasting benefits in reading. Specifically, the non-word reading efficiency index improved at every time point, as did the low-frequency word reading efficiency index at 1 and 6 months after the end of the treatment. No differences emerged in the sham group. No long-term adverse effects were documented. This study provides evidence of persistent improvements in reading in children and adolescents with dyslexia, constituting a new rehabilitative approach for the remediation of dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Five Year Plan for Fiscal Years 1992-1996
1991-10-01
for the detection of line sig- nals in visual noise. JQ 1 ...o. Am. Vol 4, No. 12, pgs. 2342-2354. 4) Kersten , D. (1987) Statistical efficiency for...the detection of visual noise. Vision Res. Vol 27, No. 6 pgs. 1029-1040. 5) Legge, G. E., Kersten , D., Burgess, A. E. (1987) Contrast discrimination in...noise. J. Opt. Soc. Am. Vol 4, No. 2, pgs 391-404. 6) Kersten , D. (1984) Spatial summation in visual noise. Vision Res. Vol 24, No. 12, pgs. 1977
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
Karabasov, S A
2010-08-13
Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.